JP2003176704A - Method for enhancing heat transfer inside turbulated cooling passage - Google Patents

Method for enhancing heat transfer inside turbulated cooling passage

Info

Publication number
JP2003176704A
JP2003176704A JP2002230695A JP2002230695A JP2003176704A JP 2003176704 A JP2003176704 A JP 2003176704A JP 2002230695 A JP2002230695 A JP 2002230695A JP 2002230695 A JP2002230695 A JP 2002230695A JP 2003176704 A JP2003176704 A JP 2003176704A
Authority
JP
Japan
Prior art keywords
gap
turbulator
cooling
electrode
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002230695A
Other languages
Japanese (ja)
Other versions
JP4216540B2 (en
Inventor
Ching-Pang Lee
チン−パン・リー
Rong-Shi Paul Chiu
ロン−シ・ポール・チウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2003176704A publication Critical patent/JP2003176704A/en
Application granted granted Critical
Publication of JP4216540B2 publication Critical patent/JP4216540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/006Cavity sinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/10Working turbine blades or nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/14Making holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0077Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for tempering, e.g. with cooling or heating circuits for temperature control of elements
    • F28D2021/0078Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for tempering, e.g. with cooling or heating circuits for temperature control of elements in the form of cooling walls

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance heat transfer and cooling efficiency in a cooling passage 10. <P>SOLUTION: This method for enhancing heat transfer and cooling efficiency in the cooling passage 10 includes forming a plurality of turbulator rings 14 in the passage, the rings projecting inwardly, substantially perpendicular to a cooling flow direction in the passage, and inward, and using a patterned electrode 16, forming at least one gap 22 in one or more of the turbulator rings, extending substantially parallel to the flow direction. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ノズル又はバケッ
トのようなタービン構成部品内の冷却通路に関し、具体
的には、熱伝達を強化し従って冷却効率を強化するター
ビュレータ付き冷却通路に関する。
FIELD OF THE INVENTION The present invention relates to cooling passages in turbine components such as nozzles or buckets, and more particularly to turbulated cooling passages for enhancing heat transfer and thus cooling efficiency.

【0002】[0002]

【従来の技術】ガスタービン効率は、高温ガス通路に沿
って流れタービンブレードを駆動するタービンガスの温
度に正比例する。ガスタービンは、一般的に2700°
Fにもなる運転温度を有する。これらの高温に耐えるた
めに、バケットは、最新の材料で製造され、一般的には
圧縮機の吐出空気である冷却媒体をバケットを通して流
すための平滑なボア冷却通路を一般に含む。通路はま
た、一般的に半径方向内側のバケット根元から半径方向
外側のバケット先端まで延びる。平滑なボア通路が今ま
で利用されてきたが、タービュレータなどの乱流促進装
置も、内部の熱伝達率を高めるために多くのガスタービ
ンバケットにおいては用いられている。熱伝達の強化
は、同じ冷却流量において平滑なボア通路と比べて2.
5倍もの高さになり得る。通常、タービュレータは、冷
却通路の内部表面に沿って内部突条又は粗面を含み、一
般的にセラミックコアを用いて冷却通路の内側に鋳造さ
れる。しかしながら、多くの現在用いられているタービ
ンにおいては、バケットの多くは、鋳造プロセスにより
形成された平滑な内部壁面を備える内部冷却通路を有し
ており、タービュレータを用いなければ冷却効果の強化
は得られない。多くの発電タービンバケットでは、成形
チューブ電解加工(STEM)により穿孔された円形の
丸孔を用いて、タービン翼形部内側の半径方向の冷却流
れ通路を形成する。STEMは、導電材料中に300:
1のような高いアスペクト比をもつ小径の深い孔を非接
触穿孔するのに用いられる。アスペクト比は、孔の最も
大きい横方向寸法、例えば直径に対する孔の長さ又は深
さの比であり、この孔の直径は、一部の特定の用途にお
いては、数ミリメートルほどまで小さい場合がある。S
TEMプロセスは、電極と被加工物の間にある空間内を
流れる電解質を通してそれらの間に電流を流すことを用
いて、電気溶解により材料を取り除く。
Gas turbine efficiency is directly proportional to the temperature of the turbine gas flowing along a hot gas path and driving turbine blades. Gas turbines are typically 2700 °
It has an operating temperature of F. To withstand these high temperatures, buckets are typically made of modern materials and generally include smooth bore cooling passages for flowing a cooling medium, typically compressor discharge air, through the bucket. The passages also generally extend from a radially inner bucket root to a radially outer bucket tip. While smooth bore passages have been used to date, turbulence enhancers such as turbulators are also used in many gas turbine buckets to increase the internal heat transfer coefficient. Enhanced heat transfer compared to a smooth bore passage at the same cooling flow rate.
It can be as high as 5 times. Turbulators typically include internal ridges or rough surfaces along the inner surface of the cooling passages and are typically cast inside the cooling passages using a ceramic core. However, in many currently used turbines, many of the buckets have internal cooling passages with smooth internal wall surfaces formed by the casting process, and without a turbulator no enhanced cooling effect can be obtained. I can't. In many power turbine buckets, circular round holes drilled by molded tube electromachining (STEM) are used to form the radial cooling flow passages inside the turbine airfoils. STEM has 300:
Used for non-contact drilling of small diameter deep holes with high aspect ratio such as 1. Aspect ratio is the largest lateral dimension of a hole, for example the ratio of the length or depth of the hole to its diameter, which in some particular applications can be as small as a few millimeters. . S
The TEM process uses electrolysis to remove material by passing an electrical current between them through an electrolyte that flows in a space between the electrode and the work piece.

【0003】[0003]

【発明が解決しようとする課題】冷却通路の内側の突条
すなわち環状のタービュレータ・リングは、’579出
願中に記載されているようにSTEM穿孔プロセスの間
に形成することができる。これら円形のタービュレータ
・リングは、冷却流れ方向に垂直に通路中に突出して、
冷却通路の内側の熱伝達を強化するための乱渦流を生成
する。一般的に、ある期間現場で使用された後には、リ
ング間の表面には、冷却空気からのごみが蓄積して、望
ましくない絶縁層を形成し、従って冷却効率を低下させ
ることになる。STEMで穿孔されたタービュレータ付
き冷却通路の内側の熱伝達を更に強化し、同時にごみの
蓄積を減少させ、従って冷却効率を維持することができ
る改良された形状を有するのが望ましい。
The ridges or annular turbulator rings inside the cooling passages can be formed during the STEM drilling process as described in the '579 application. These circular turbulator rings project into the passages perpendicular to the cooling flow direction,
It creates turbulent vortices to enhance heat transfer inside the cooling passages. Generally, after some field use, the surfaces between the rings will accumulate debris from the cooling air, forming an undesirable insulating layer and thus reducing cooling efficiency. It would be desirable to have an improved geometry that would further enhance heat transfer inside the STEM-perforated turbulated cooling passages while at the same time reducing debris accumulation and thus maintaining cooling efficiency.

【0004】[0004]

【課題を解決するための手段】本発明の方法において、
既に形成されているタービュレータ・リングは、追加の
空気通路を提供しかつリング間の流れの淀み領域を防止
する軸方向に向いたギャップを備えるように改造され
る。
In the method of the present invention,
Preformed turbulator rings are modified to have axially oriented gaps that provide additional air passage and prevent flow stagnation areas between the rings.

【0005】STEMプロセスを用いてギャップを形成
するために、現存の半径方向の冷却通路より断面が僅か
に小さい電極が選択される。電極は、外部表面全体に絶
縁誘電材料すなわち被覆を有する。被覆の一部は、その
後、例えばレーザアブレーション技術を用いて除去され
て所望のギャップパターンを形成する。ギャップ間の軸
方向の間隔距離は、冷却通路内のタービュレータ・リン
グ間の間隔距離と等しい。周方向には、各リングに対し
て少なくとも2つのギャップが設けられる。ギャップ
は、隣接するリング間で整合されるか又はオフセットさ
れるかのいずれかにすることができる。次いで、パター
ン化された電極は、現存する冷却通路の内側に配置さ
れ、STEMプロセスを用いてタービュレータ・リング
内に多数の軸方向に向いたギャップが形成される。具体
的には、パターン化された電極は、電極と被加工物(バ
ケット)との間の電解液と電流の印加との組合せによ
り、タービュレータ・リングの隣接部分から金属を溶解
してリング中に軸方向のギャップを形成する。すでに上
述したように、これらのギャップは追加の空気通路を提
供することになるので、空気がギャップの端縁を通過す
るとき、追加の乱渦流が生成されて、表面の熱伝達を強
化し従って冷却効率を強化すると同時にごみの蓄積も減
少させることになる。
In order to form the gap using the STEM process, electrodes with a cross section slightly smaller than the existing radial cooling passages are selected. The electrodes have an insulating dielectric material or coating over the outer surface. A portion of the coating is then removed using, for example, laser ablation techniques to form the desired gap pattern. The axial distance between the gaps is equal to the distance between the turbulator rings in the cooling passage. In the circumferential direction, at least two gaps are provided for each ring. The gaps can either be aligned or offset between adjacent rings. The patterned electrode is then placed inside an existing cooling passage and a number of axially oriented gaps are formed in the turbulator ring using the STEM process. Specifically, the patterned electrode combines the electrolyte and the application of an electric current between the electrode and the work piece (bucket) to melt the metal from the adjacent portion of the turbulator ring into the ring. Form an axial gap. As already mentioned above, these gaps will provide additional air passages so that as air passes through the edges of the gap, additional turbulent vortices will be created, enhancing the heat transfer on the surface and thus It will increase the cooling efficiency and at the same time reduce the accumulation of dust.

【0006】従って、より広い形態において、本発明
は、冷却通路内の熱伝達及び冷却効率を強化する方法に
関し、該方法は、通路内の冷却流れ方向にほぼ垂直に、
内向きに突出する複数のタービュレータ・リングを該通
路内に形成する段階と、パターン化された電極を用い
て、タービュレータ・リングの1つ又はそれ以上の中
に、流れ方向に平行に延びる少なくとも1つのギャップ
を形成する段階とを含む。
Accordingly, in a broader aspect, the present invention relates to a method of enhancing heat transfer and cooling efficiency in a cooling passage, the method being generally perpendicular to the cooling flow direction in the passage.
Forming a plurality of inwardly projecting turbulator rings within the passageway and using patterned electrodes to extend at least one of the turbulator rings parallel to the flow direction. Forming two gaps.

【0007】別の形態において、本発明は、被加工物内
の冷却通路の内側の半径方向内向きに突出するタービュ
レータ・リング中にギャップを形成するための方法に関
し、該方法は、(a)その上に電気絶縁材料を具えてお
り、該電気絶縁材料が、非絶縁部分により中断され、従
ってタービュレータ・リング内の意図したギャップの位
置にほぼ向かい合って、その外側表面の周りに非絶縁部
分のパターンを生じる電極を前記通路の内部に配置する
段階と、(b)冷却通路を通して電極と冷却通路の内部
表面との間に電解液を流す段階と、電極と被加工物との
間に電流を流して、タービュレータ・リング中にギャッ
プを形成する段階とを含む。
In another aspect, the invention relates to a method for forming a gap in a radially inwardly projecting turbulator ring inside a cooling passage in a workpiece, the method comprising: (a) An electrically insulative material is provided thereon, the electrically insulative material being interrupted by the non-insulating portion and thus substantially facing the intended location of the gap in the turbulator ring and surrounding the outer surface of the non-insulating portion. Placing a patterned electrode inside the passage, (b) flowing an electrolyte through the cooling passage between the electrode and the inner surface of the cooling passage, and applying an electric current between the electrode and the workpiece. Flowing to form a gap in the turbulator ring.

【0008】[0008]

【発明の実施の形態】図1を参照すると、機械構成部品
12(例えば、高圧タービンノズル又はバケット)内の
冷却通路10は、一般的にバケット(又は他の構成部
品)が鋳造されるときに、平滑なボアとして形成され
る。その後、通路は、該通路のほぼ全長に沿って軸方向
に間隔を置いて配置された状態になった複数の環状の突
条すなわちタービュレータ・リング14を含むように成
形し直される。タービュレータ・リング14は、STE
M穿孔プロセスの間にパターン化された電極によって形
成されることができ、このパターン化された電極は、環
状の溝を、該環状の溝の間にタービュレータ・リングを
後に残して通路内に形成する。言い換えれば、最初の通
路直径は、タービュレータ・リングの内径とほぼ同一で
ある。’579出願においては、タービュレータ・リン
グ及びギャップは、単一の工程で形成される。本発明で
は、STEM穿孔を利用して、リング中にギャップがな
い現存のタービュレータ付き通路に対して「改造」を施
すことができる強化を行う。
DETAILED DESCRIPTION OF THE INVENTION Referring to FIG. 1, a cooling passage 10 in a machine component 12 (eg, a high pressure turbine nozzle or bucket) is typically used when the bucket (or other component) is being cast. , Formed as a smooth bore. The passage is then reshaped to include a plurality of annular ridges or turbulator rings 14 that are axially spaced along substantially the entire length of the passage. Turbulator ring 14 is STE
M may be formed by a patterned electrode during the perforation process, the patterned electrode forming an annular groove in the passageway leaving behind a turbulator ring between the annular grooves. To do. In other words, the initial passage diameter is approximately the same as the inner diameter of the turbulator ring. In the '579 application, the turbulator ring and gap are formed in a single step. The present invention utilizes STEM drilling to provide enhancements that allow "remodeling" of existing turbulated passages that have no gaps in the ring.

【0009】図2は、予め形成されたタービュレータ・
リング14中に軸方向に向けられかつ周方向に配列され
たギャップを形成するように設計された電極16を示
す。具体的には、電極16は、通路10の直径より僅か
に小さく、また、特にタービュレータ・リング14の内
径よりも小さい外径を有する中空で円筒形の管である。
この例示的な実施形態において、電極の内径は、タービ
ュレータ・リング14の内径より約0.005インチ小
さい。電極16は、ほぼその全長にわたって誘電体、す
なわち電気絶縁被覆18を施される。被覆18の一部
は、例えば、レーザアブレーション法により選択的に除
去されて、図2に示すような所望のギャップパターンを
形成する。電極の今露出された(すなわち、非絶縁の)
部分20の形状、寸法及び軸方向の間隔距離は、タービ
ュレータ・リング14中の所望のギャップ22に対応す
る。具体的には、非絶縁ギャップ部分は、電極16とタ
ービュレータ・リングとの間を流れる電解液と、電極と
バケットとの間の電流の印加と協働して、電極の露出し
た部分20に近接するタービュレータ・リング14から
金属材料を取り除き、その結果ギャップ22(図4を参
照)を形成する。周方向には、タービュレータ・リング
14毎に少なくとも1つ、好ましくは2つのギャップ2
2を有することが好ましく、またギャップ22は隣接す
るタービュレータ間で整合されていても又はオフセット
されていてもよい。
FIG. 2 shows a preformed turbulator.
Shown are electrodes 16 designed to form axially oriented and circumferentially aligned gaps in ring 14. Specifically, the electrode 16 is a hollow, cylindrical tube having a diameter slightly smaller than the diameter of the passage 10 and, in particular, an outer diameter smaller than the inner diameter of the turbulator ring 14.
In this exemplary embodiment, the inner diameter of the electrode is about 0.005 inch less than the inner diameter of turbulator ring 14. The electrode 16 is provided with a dielectric or electrically insulating coating 18 over substantially its entire length. A portion of the coating 18 is selectively removed by, for example, laser ablation to form the desired gap pattern as shown in FIG. Electrodes now exposed (ie, non-insulated)
The shape, dimensions, and axial spacing of the portions 20 correspond to the desired gap 22 in the turbulator ring 14. Specifically, the non-insulating gap portion is proximate to the exposed portion 20 of the electrode in cooperation with the electrolyte flowing between the electrode 16 and the turbulator ring and the application of current between the electrode and the bucket. The metallic material is removed from the turbulator ring 14 which results in the formation of the gap 22 (see FIG. 4). In the circumferential direction, at least one, preferably two gaps 2 per turbulator ring 14 are provided.
2 is preferred and the gap 22 may be aligned or offset between adjacent turbulators.

【0010】ギャップ22は、追加の空気通路を提供
し、タービュレータ間に流れの淀み領域が形成されるの
を防止する。空気がギャップ22を通過すると、追加の
乱渦流が生成されて表面の熱伝達を強化することにな
る。ギャップ22はまた、タービュレータ・リング間の
ごみの蓄積を減少させ、それによって冷却効率を維持す
る。
The gap 22 provides additional air passage and prevents the formation of flow stagnation regions between the turbulators. As air passes through the gap 22, additional turbulent vortices will be created to enhance surface heat transfer. The gap 22 also reduces debris build-up between the turbulator rings, thereby maintaining cooling efficiency.

【0011】本発明を、現在最も実用的で好ましい実施
形態であると考えられるものに関して説明してきたが、
本発明は、開示した実施形態に限定されるべきではな
く、反対に、特許請求の範囲の技術思想及び技術的範囲
に含まれる様々な変更及び均等な構成を保護しようとす
るものであることを理解されたい。
While this invention has been described in what is presently considered to be the most practical and preferred embodiments,
The present invention should not be limited to the disclosed embodiments, but on the contrary, aims to protect various modifications and equivalent configurations included in the technical idea and the technical scope of the claims. I want you to understand.

【0012】特許請求の範囲に示す参照符号は、本発明
の技術的範囲を狭めることを意図するものではなく、そ
れらを容易に理解することを意図するものである。
Reference signs in the claims are not intended to narrow the scope of the invention, but to facilitate their understanding.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来のタービュレータ付き冷却通路の断面
図。
FIG. 1 is a sectional view of a conventional cooling passage with a turbulator.

【図2】 本発明によるパターン化された電極の概略側
面図。
2 is a schematic side view of a patterned electrode according to the present invention. FIG.

【図3】 図1に類似しているが、図2の電極がその中
に挿入されている断面図。
3 is a cross-sectional view similar to FIG. 1 but with the electrodes of FIG. 2 inserted therein.

【図4】 本発明による熱伝達強化用のギャップを有す
る、タービュレータ付き冷却通路の一部の斜視図。
FIG. 4 is a perspective view of a portion of a cooling passage with a turbulator having a gap for enhancing heat transfer according to the present invention.

【符号の説明】[Explanation of symbols]

10 冷却通路 12 被加工物 14 タービュレータ・リング 22 ギャップ 10 cooling passages 12 Workpiece 14 Turbulator Ring 22 gap

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年10月7日(2002.10.
7)
[Submission date] October 7, 2002 (2002.10.
7)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】図2は、予め形成されたタービュレータ・
リング14中に軸方向に向けられかつ周方向に配列され
たギャップを形成するように設計された電極16を示
す。具体的には、電極16は、通路10の直径より僅か
に小さく、また、特にタービュレータ・リング14の内
径よりも小さい外径を有する中空で円筒形の管である。
この例示的な実施形態において、電極の外径は、タービ
ュレータ・リング14の内径より約0.005インチ小
さい。電極16は、ほぼその全長にわたって誘電体、す
なわち電気絶縁被覆18を施される。被覆18の一部
は、例えば、レーザアブレーション法により選択的に除
去されて、図2に示すような所望のギャップパターンを
形成する。電極の今露出された(すなわち、非絶縁の)
部分20の形状、寸法及び軸方向の間隔距離は、タービ
ュレータ・リング14中の所望のギャップ22に対応す
る。具体的には、非絶縁ギャップ部分は、電極16とタ
ービュレータ・リングとの間を流れる電解液と、電極と
バケットとの間の電流の印加と協働して、電極の露出し
た部分20に近接するタービュレータ・リング14から
金属材料を取り除き、その結果ギャップ22(図4を参
照)を形成する。周方向には、タービュレータ・リング
14毎に少なくとも1つ、好ましくは2つのギャップ2
2を有することが好ましく、またギャップ22は隣接す
るタービュレータ間で整合されていても又はオフセット
されていてもよい。
FIG. 2 shows a preformed turbulator.
Shown are electrodes 16 designed to form axially oriented and circumferentially aligned gaps in ring 14. Specifically, the electrode 16 is a hollow, cylindrical tube having a diameter slightly smaller than the diameter of the passage 10 and, in particular, an outer diameter smaller than the inner diameter of the turbulator ring 14.
In this exemplary embodiment, the outer diameter of the electrode is about 0.005 inches smaller than the inner diameter of turbulator ring 14. The electrode 16 is provided with a dielectric or electrically insulating coating 18 over substantially its entire length. A portion of the coating 18 is selectively removed by, for example, laser ablation to form the desired gap pattern as shown in FIG. Electrodes now exposed (ie, non-insulated)
The shape, dimensions, and axial spacing of the portions 20 correspond to the desired gap 22 in the turbulator ring 14. Specifically, the non-insulating gap portion is proximate to the exposed portion 20 of the electrode in cooperation with the electrolyte flowing between the electrode 16 and the turbulator ring and the application of current between the electrode and the bucket. The metallic material is removed from the turbulator ring 14 which results in the formation of the gap 22 (see FIG. 4). In the circumferential direction, at least one, preferably two gaps 2 per turbulator ring 14 are provided.
2 is preferred and the gap 22 may be aligned or offset between adjacent turbulators.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ロン−シ・ポール・チウ アメリカ合衆国、ニューヨーク州、グレン モント、フィールズ・エンド・ドライブ、 81番 Fターム(参考) 3C059 AA02 AB01 GB05 3G002 CA07 CA15 CB05 GA08 GB01   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ron-si Paul Chiu             Glenn, New York, United States             Mont, Fields End Drive,             81 F-term (reference) 3C059 AA02 AB01 GB05                 3G002 CA07 CA15 CB05 GA08 GB01

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 冷却通路(10)内の熱伝達及び冷却効
率を強化する方法であって、 該通路内の冷却流れ方向にほぼ垂直に、内向きに突出す
る複数のタービュレータ・リング(14)を該通路内に
形成する段階と、 パターン化された電極(16)を用いて、前記タービュ
レータ・リングの1つ又はそれ以上の中に、前記流れ方
向に平行に延びる少なくとも1つのギャップ(22)を
形成する段階と、を含むことを特徴とする方法。
1. A method for enhancing heat transfer and cooling efficiency within a cooling passage (10), the plurality of turbulator rings (14) projecting inwardly substantially perpendicular to the direction of cooling flow within the passage. At least one gap (22) extending parallel to the flow direction in one or more of the turbulator rings using a patterned electrode (16). Forming a.
【請求項2】 前記少なくとも1つのギャップ(22)
は、2つ又はそれ以上の該ギャップを含むことを特徴と
する、請求項1に記載の方法。
2. The at least one gap (22)
The method according to claim 1, characterized in that comprises two or more of said gaps.
【請求項3】 前記少なくとも1つのギャップ(22)
は、前記複数のタービュレータ・リング(14)の各々
の中に形成されることを特徴とする、請求項1に記載の
方法。
3. The at least one gap (22)
A method according to claim 1, characterized in that is formed in each of the plurality of turbulator rings (14).
【請求項4】 前記タービュレータ・リング(14)及
び前記ギャップ(22)は、電解加工により形成される
ことを特徴とする、請求項1に記載の方法。
4. Method according to claim 1, characterized in that the turbulator ring (14) and the gap (22) are formed by electrolytic machining.
【請求項5】 被加工物(12)内の冷却通路(10)
の内側の半径方向内向きに突出するタービュレータ・リ
ング中にギャップ(22)を形成するための方法であっ
て、 その上に電気絶縁材料(18)を具えており、該電気絶
縁材料が、非絶縁部分(20)により中断され、従って
前記タービュレータ・リング内の意図したギャップの位
置にほぼ向かい合って、その外側表面の周りに非絶縁部
分(20)のパターンを生じる電極(16)を前記通路
(10)の内部に配置する段階と、 前記冷却通路を通して前記電極と前記冷却通路の内部表
面との間に電解液を流す段階と、 前記電極と前記被加工物との間に電流を流して、前記タ
ービュレータ・リング(14)中に前記ギャップ(2
2)を形成する段階と、を含むことを特徴とする方法。
5. A cooling passage (10) in a workpiece (12).
A method for forming a gap (22) in a radially inwardly projecting turbulator ring on the inside of, comprising an electrically insulative material (18) thereon, the electrically insulative material comprising: The electrode (16) interrupted by the insulating portion (20) and thus approximately facing the intended position of the gap in the turbulator ring, resulting in a pattern of non-insulating portions (20) around its outer surface, the electrode (16). 10) placing inside, flowing an electrolyte through the cooling passage between the electrode and the inner surface of the cooling passage, and passing an electric current between the electrode and the workpiece, The gap (2) in the turbulator ring (14)
2) forming step 2).
【請求項6】 前記少なくとも1つのギャップ(22)
は、2つ又はそれ以上の該ギャップを含むことを特徴と
する、請求項5に記載の方法。
6. The at least one gap (22)
The method according to claim 5, characterized in that comprises two or more of said gaps.
【請求項7】 前記少なくとも1つのギャップ(22)
は、前記複数のタービュレータ・リング(14)の各々
の中に形成されることを特徴とする、請求項5に記載の
方法。
7. The at least one gap (22)
The method of claim 5, wherein is formed in each of the plurality of turbulator rings (14).
【請求項8】 前記タービュレータ・リング(14)及
び前記ギャップ(22)は、電解加工により形成される
ことを特徴とする、請求項5に記載の方法。
8. A method according to claim 5, characterized in that the turbulator ring (14) and the gap (22) are formed by electrolytic machining.
【請求項9】 前記冷却通路(10)は、ガスタービン
ノズル構成部品(12)内に設けられていることを特徴
とする、請求項5に記載の方法。
9. Method according to claim 5, characterized in that the cooling passages (10) are provided in a gas turbine nozzle component (12).
【請求項10】 前記冷却通路(10)は、ガスタービ
ンバケット構成部品(12)内に設けられていることを
特徴とする、請求項5に記載の方法。
10. Method according to claim 5, characterized in that the cooling passages (10) are provided in a gas turbine bucket component (12).
JP2002230695A 2001-08-09 2002-08-08 Method for enhancing heat transfer inside a cooling passage with a turbulator Expired - Fee Related JP4216540B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/925,024 US6582584B2 (en) 1999-08-16 2001-08-09 Method for enhancing heat transfer inside a turbulated cooling passage
US09/925024 2001-08-09

Publications (2)

Publication Number Publication Date
JP2003176704A true JP2003176704A (en) 2003-06-27
JP4216540B2 JP4216540B2 (en) 2009-01-28

Family

ID=25451086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230695A Expired - Fee Related JP4216540B2 (en) 2001-08-09 2002-08-08 Method for enhancing heat transfer inside a cooling passage with a turbulator

Country Status (5)

Country Link
US (1) US6582584B2 (en)
EP (1) EP1283327B1 (en)
JP (1) JP4216540B2 (en)
KR (1) KR100733174B1 (en)
DE (1) DE60220347T2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079483A (en) * 2007-09-25 2009-04-16 Mitsubishi Heavy Ind Ltd Gas turbine combustor
JP2011214575A (en) * 2010-03-31 2011-10-27 General Electric Co <Ge> Interior cooling channels
JP2014114816A (en) * 2012-12-11 2014-06-26 General Electric Co <Ge> Turbine component having cooling passages with varying diameter

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0229908D0 (en) * 2002-12-21 2003-01-29 Macdonald John Turbine blade
US6997675B2 (en) * 2004-02-09 2006-02-14 United Technologies Corporation Turbulated hole configurations for turbine blades
US7232290B2 (en) * 2004-06-17 2007-06-19 United Technologies Corporation Drillable super blades
EP1655092A1 (en) * 2004-11-09 2006-05-10 Siemens Aktiengesellschaft Method for electrolytic machining a workpiece having a through hole.
US7883320B2 (en) * 2005-01-24 2011-02-08 United Technologies Corporation Article having diffuser holes and method of making same
US7637720B1 (en) 2006-11-16 2009-12-29 Florida Turbine Technologies, Inc. Turbulator for a turbine airfoil cooling passage
US7938951B2 (en) * 2007-03-22 2011-05-10 General Electric Company Methods and systems for forming tapered cooling holes
US7964087B2 (en) * 2007-03-22 2011-06-21 General Electric Company Methods and systems for forming cooling holes having circular inlets and non-circular outlets
US20080230396A1 (en) * 2007-03-22 2008-09-25 General Electric Company Methods and systems for forming turbulated cooling holes
US7722327B1 (en) 2007-04-03 2010-05-25 Florida Turbine Technologies, Inc. Multiple vortex cooling circuit for a thin airfoil
US7901180B2 (en) * 2007-05-07 2011-03-08 United Technologies Corporation Enhanced turbine airfoil cooling
US8083485B2 (en) * 2007-08-15 2011-12-27 United Technologies Corporation Angled tripped airfoil peanut cavity
US8511992B2 (en) * 2008-01-22 2013-08-20 United Technologies Corporation Minimization of fouling and fluid losses in turbine airfoils
US8167560B2 (en) * 2009-03-03 2012-05-01 Siemens Energy, Inc. Turbine airfoil with an internal cooling system having enhanced vortex forming turbulators
US8894367B2 (en) * 2009-08-06 2014-11-25 Siemens Energy, Inc. Compound cooling flow turbulator for turbine component
US9376960B2 (en) * 2010-07-23 2016-06-28 University Of Central Florida Research Foundation, Inc. Heat transfer augmented fluid flow surfaces
US8329021B2 (en) * 2010-10-28 2012-12-11 Palmaz Scientific, Inc. Method for mass transfer of micro-patterns onto medical devices
US9605913B2 (en) 2011-05-25 2017-03-28 Saudi Arabian Oil Company Turbulence-inducing devices for tubular heat exchangers
FR2977659B1 (en) * 2011-07-06 2017-11-03 Lyonnaise Eaux France PROCESS FOR EXTRACTING THE HEAT FROM AN EFFLUENT CIRCULATING IN A CONDUIT, ESPECIALLY WASTEWATER, HEAT EXCHANGER AND MATERIAL FOR CARRYING OUT SAID METHOD
US20130022444A1 (en) * 2011-07-19 2013-01-24 Sudhakar Neeli Low pressure turbine exhaust diffuser with turbulators
EP2599957A1 (en) * 2011-11-21 2013-06-05 Siemens Aktiengesellschaft Cooling fin system for a cooling channel and turbine blade
US8876475B1 (en) * 2012-04-27 2014-11-04 Florida Turbine Technologies, Inc. Turbine blade with radial cooling passage having continuous discrete turbulence air mixers
US9995148B2 (en) 2012-10-04 2018-06-12 General Electric Company Method and apparatus for cooling gas turbine and rotor blades
US9850762B2 (en) 2013-03-13 2017-12-26 General Electric Company Dust mitigation for turbine blade tip turns
JP6071742B2 (en) * 2013-05-16 2017-02-01 三菱重工業株式会社 Electrolytic machining tool, electrolytic machining system, and method for manufacturing perforated member
JP2016530448A (en) * 2013-09-09 2016-09-29 シーメンス アクティエンゲゼルシャフト Gas turbine combustion chamber and tool and method for forming a cooling tube in a gas turbine member
WO2015065717A1 (en) * 2013-10-29 2015-05-07 United Technologies Corporation Pedestals with heat transfer augmenter
US9878386B2 (en) * 2013-10-31 2018-01-30 Foundation Of Soongsil University-Industry Cooperation Eccentric electrode for electric discharge machining, method of manufacturing the same, and micro electric discharge machining apparatus including the same
CN103615320A (en) * 2013-11-28 2014-03-05 中国航天科技集团公司第六研究院第十一研究所 Turbulent flow ring structure with uniform fuel gas temperature field
US10422235B2 (en) 2014-05-29 2019-09-24 General Electric Company Angled impingement inserts with cooling features
US9957816B2 (en) 2014-05-29 2018-05-01 General Electric Company Angled impingement insert
US10690055B2 (en) 2014-05-29 2020-06-23 General Electric Company Engine components with impingement cooling features
WO2015184294A1 (en) 2014-05-29 2015-12-03 General Electric Company Fastback turbulator
US10364684B2 (en) 2014-05-29 2019-07-30 General Electric Company Fastback vorticor pin
WO2016017697A1 (en) * 2014-07-29 2016-02-04 京セラ株式会社 Heat exchanger
US10233775B2 (en) 2014-10-31 2019-03-19 General Electric Company Engine component for a gas turbine engine
US10280785B2 (en) 2014-10-31 2019-05-07 General Electric Company Shroud assembly for a turbine engine
CN104481699B (en) * 2014-11-10 2016-08-17 沈阳黎明航空发动机(集团)有限责任公司 A kind of processing method of oversize drum barrel precision connecting hole
US10533749B2 (en) * 2015-10-27 2020-01-14 Pratt & Whitney Cananda Corp. Effusion cooling holes
US10871075B2 (en) 2015-10-27 2020-12-22 Pratt & Whitney Canada Corp. Cooling passages in a turbine component
US10094225B2 (en) * 2016-01-25 2018-10-09 United Technologies Corporation Core component having toroidal structures
MD4547C1 (en) * 2017-03-15 2018-08-31 Институт Прикладной Физики Академии Наук Молдовы Tool electrode and process for dimensional electrochemical machining
US10422229B2 (en) * 2017-03-21 2019-09-24 United Technologies Corporation Airfoil cooling
US10989070B2 (en) * 2018-05-31 2021-04-27 General Electric Company Shroud for gas turbine engine
JP7210694B2 (en) * 2018-07-31 2023-01-23 ゼネラル・エレクトリック・カンパニイ Cooled airfoil and manufacturing method
US11397059B2 (en) 2019-09-17 2022-07-26 General Electric Company Asymmetric flow path topology
KR102178081B1 (en) 2020-08-07 2020-11-13 주식회사 대부산업 Stirring system for composting fermentation of organic waste
US11962188B2 (en) 2021-01-21 2024-04-16 General Electric Company Electric machine
JP2022112731A (en) * 2021-01-22 2022-08-03 三菱重工業株式会社 Duct forming plate, blade and gas turbine with the same, and manufacturing method of duct forming plate

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6602533U (en) * 1966-01-10 1969-06-04 Daimler Benz Ag METHOD OF MAKING COOLANT SLOTS IN GAS TURBINE BLADES AIRPLANE ENGINES AND EQUIPMENT FOR CARRYING OUT THIS PROCEDURE
US5413463A (en) 1991-12-30 1995-05-09 General Electric Company Turbulated cooling passages in gas turbine buckets
US5536143A (en) 1995-03-31 1996-07-16 General Electric Co. Closed circuit steam cooled bucket
US5797726A (en) 1997-01-03 1998-08-25 General Electric Company Turbulator configuration for cooling passages or rotor blade in a gas turbine engine
US5738493A (en) 1997-01-03 1998-04-14 General Electric Company Turbulator configuration for cooling passages of an airfoil in a gas turbine engine
US6200439B1 (en) * 1998-11-05 2001-03-13 General Electric Company Tool for electrochemical machining
US6174134B1 (en) 1999-03-05 2001-01-16 General Electric Company Multiple impingement airfoil cooling
US6142734A (en) 1999-04-06 2000-11-07 General Electric Company Internally grooved turbine wall
JP2000310495A (en) * 1999-04-26 2000-11-07 Mitsubishi Shindoh Co Ltd Heat transfer pipe with inner surface grooves
US6234752B1 (en) * 1999-08-16 2001-05-22 General Electric Company Method and tool for electrochemical machining
US6273682B1 (en) 1999-08-23 2001-08-14 General Electric Company Turbine blade with preferentially-cooled trailing edge pressure wall
US6290463B1 (en) 1999-09-30 2001-09-18 General Electric Company Slotted impingement cooling of airfoil leading edge
US6234755B1 (en) 1999-10-04 2001-05-22 General Electric Company Method for improving the cooling effectiveness of a gaseous coolant stream, and related articles of manufacture
US6254347B1 (en) * 1999-11-03 2001-07-03 General Electric Company Striated cooling hole
US6243948B1 (en) 1999-11-18 2001-06-12 General Electric Company Modification and repair of film cooling holes in gas turbine engine components
US6416283B1 (en) * 2000-10-16 2002-07-09 General Electric Company Electrochemical machining process, electrode therefor and turbine bucket with turbulated cooling passage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079483A (en) * 2007-09-25 2009-04-16 Mitsubishi Heavy Ind Ltd Gas turbine combustor
JP2011214575A (en) * 2010-03-31 2011-10-27 General Electric Co <Ge> Interior cooling channels
JP2014114816A (en) * 2012-12-11 2014-06-26 General Electric Co <Ge> Turbine component having cooling passages with varying diameter

Also Published As

Publication number Publication date
DE60220347D1 (en) 2007-07-12
EP1283327B1 (en) 2007-05-30
JP4216540B2 (en) 2009-01-28
DE60220347T2 (en) 2008-01-24
EP1283327A3 (en) 2004-04-21
EP1283327A2 (en) 2003-02-12
US20020025248A1 (en) 2002-02-28
KR20030014632A (en) 2003-02-19
KR100733174B1 (en) 2007-06-27
US6582584B2 (en) 2003-06-24

Similar Documents

Publication Publication Date Title
JP2003176704A (en) Method for enhancing heat transfer inside turbulated cooling passage
JP4138288B2 (en) Turbine blade having vortex generation cooling passage, electrolytic machining method thereof, and electrode therefor
US6554571B1 (en) Curved turbulator configuration for airfoils and method and electrode for machining the configuration
US6539627B2 (en) Method of making turbulated cooling holes
US8993923B2 (en) System and method for manufacturing an airfoil
US7883320B2 (en) Article having diffuser holes and method of making same
EP1215005B1 (en) Electrochemical machining process for forming surface roughness elements on a gas turbine shroud
US8858175B2 (en) Film hole trench
JP5993144B2 (en) Cooling channel system and associated method for high temperature components covered by a coating
US5306401A (en) Method for drilling cooling holes in turbine blades
US10100666B2 (en) Hot gas path component for turbine system
JP2015513632A (en) Method for forming near-surface cooling passages in components subjected to high stresses by heat and components having such passages
JP2009162224A (en) Method of forming cooling hole and turbine airfoil with hybrid-formed cooling holes
JP2003184574A (en) Component wall having interrupted ribbed heat transfer surface
JP2006341363A (en) Electric discharge machining electrode
JP6798796B2 (en) Turbine components with surface cooling channels and methods of forming them
US20160245097A1 (en) Airfoil and method for manufacturing an airfoil
EP2527597A2 (en) Turbine blade with curved film cooling passages
JP2001173406A (en) Cooling hole with groove
KR102324846B1 (en) Method of forming a secondary structure on a single crystal structure
WO2019245546A1 (en) Cooled turbine blade assembly, corresponding methods for cooling and manufacturing
JP2007042334A (en) Anode for discharge lamp
JP2007146846A (en) Method for creating serpentine cooling circuit in turbine blade
US9249917B2 (en) Active sealing member
CN117222492A (en) Electrode for connecting with the emitter head (plug) of a plasma torch by increasing the area of the cooling surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080422

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

R150 Certificate of patent or registration of utility model

Ref document number: 4216540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees