JP2003172493A - Vacuum heat insulating material - Google Patents

Vacuum heat insulating material

Info

Publication number
JP2003172493A
JP2003172493A JP2001372604A JP2001372604A JP2003172493A JP 2003172493 A JP2003172493 A JP 2003172493A JP 2001372604 A JP2001372604 A JP 2001372604A JP 2001372604 A JP2001372604 A JP 2001372604A JP 2003172493 A JP2003172493 A JP 2003172493A
Authority
JP
Japan
Prior art keywords
film
heat insulating
vacuum
insulating material
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001372604A
Other languages
Japanese (ja)
Inventor
Takashi Miyamoto
隆司 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2001372604A priority Critical patent/JP2003172493A/en
Publication of JP2003172493A publication Critical patent/JP2003172493A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Packages (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heating insulating material which exercises sufficient heat insulating performance without the movement of heat through an armor body of the vacuum heat insulating material, has high gas barrier property of the armor body, and keeps a vacuum condition inside of the armor body for a long period to keep heat insulating performance. <P>SOLUTION: In this vacuum heat insulating material manufactured by sealing a heat insulating core material inside of the armor body made of a laminate film having the gas barrier property, and applying the vacuum inside of the armor body, the laminate film includes a laminate film of an organic film and an inorganic film formed on a base material. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷蔵庫や低温コン
テナ等に取り付けて、断熱効果を発揮する真空断熱材に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum heat insulating material which exhibits a heat insulating effect when attached to a refrigerator, a low temperature container or the like.

【0002】[0002]

【従来の技術】冷蔵庫や低温コンテナ等には、従来から
種々の断熱材が用いられており、特に、断熱性能の優れ
た断熱材として、断熱性のコア材を外装体内に封入し、
内部を真空排気した構成の真空断熱材が使用されてい
る。この外装体は、外部からのガス(空気)の侵入を防
ぎ、内部を長期間真空状態に保持するために、ガスバリ
ア性に優れたものである必要がある。そこで、従来、高
いガスバリア性を持たすために、外装体のガスバリア層
のとして7〜15μm程度の厚さの金属アルミニウム箔
を含む積層フィルムが主として用いられてきた。
2. Description of the Related Art A variety of heat insulating materials have been used in refrigerators, low temperature containers, etc., and in particular, as a heat insulating material having excellent heat insulating performance, a heat insulating core material is enclosed in an outer casing,
A vacuum heat insulating material having a structure in which the inside is evacuated is used. This exterior body is required to have excellent gas barrier properties in order to prevent gas (air) from entering from the outside and maintain the inside in a vacuum state for a long time. Therefore, conventionally, in order to have a high gas barrier property, a laminated film including a metal aluminum foil having a thickness of about 7 to 15 μm has been mainly used as a gas barrier layer of an outer package.

【0003】[0003]

【発明が解決しようとする課題】しかし、このようなア
ルミ箔の場合、ガスバリア性には優れているが、アルミ
ニウム自体の熱伝導率が高いため、外装体を通しての熱
伝導〔ヒ−トブリッジ〕によって、十分な断熱性能が得
られないという問題があった。この問題の解決を目的と
して、外装体のガスバリア層に、熱伝導率が比較的小さ
いステンレス箔などを用いる方法〔特開平8−1593
76号公報〕やアルミニウムの蒸着膜を用いる方法、セ
ラミックスやガラスの蒸着膜を用いる方法〔特開平7−
113493号公報、特開平8−152258号公報〕
などが発明されている。
However, in the case of such an aluminum foil, although the gas barrier property is excellent, the thermal conductivity of aluminum itself is high, so that the heat conduction through the outer casing (heat bridge) However, there is a problem that sufficient heat insulation performance cannot be obtained. For the purpose of solving this problem, a method of using a stainless foil or the like having a relatively small thermal conductivity for the gas barrier layer of the outer casing [JP-A-8-1593].
No. 76] or a method using a vapor deposited film of aluminum, a method using a vapor deposited film of ceramics or glass [JP-A-7-
No. 113493, JP-A-8-152258]
Have been invented.

【0004】しかし、ステンレス箔などを用いる方法で
は、まだなおステンレスの熱伝導率が高いためにヒ−ト
ブリッジの低減が不十分である。また、アルミニウムや
セラミックスあるいはガラスの蒸着膜を用いる方法で
は、ヒ−トブリッジの低減は十分であるが、蒸着膜にピ
ンホ−ルやクラックが存在するためガスバリア性が不十
分であり、長期間に亘って、外装体の内部を真空状態に
保っておくことが不可能であった。本発明はこのような
事情に鑑みてなされたもので、その目的とするところ
は、真空断熱材の外装体を通しての熱の移動がなく十分
な断熱性能が得られ、且つ、外装体のガスバリア性が高
く、長期に亘って外装体内部の真空状態が保たれ、断熱
性能が維持される真空断熱材を提供することである。
However, the method using stainless steel foil or the like is insufficient in reducing the heat bridge because the thermal conductivity of stainless steel is still high. Further, in the method using the vapor deposition film of aluminum, ceramics or glass, the heat bridge is sufficiently reduced, but the vapor barrier property is insufficient due to the presence of pinholes and cracks in the vapor deposition film, and the vapor barrier property is long-term. Therefore, it is impossible to keep the inside of the exterior body in a vacuum state. The present invention has been made in view of such circumstances, and an object of the present invention is to obtain sufficient heat insulation performance without heat transfer through the outer package of the vacuum heat insulating material, and to provide a gas barrier property of the outer package. It is to provide a vacuum heat insulating material which has a high temperature, maintains a vacuum state inside the outer package for a long period of time, and maintains heat insulating performance.

【0005】[0005]

【発明を解決するための手段】請求項1に記載の発明
は、ガスバリア性を有する積層フィルムからなる外装体
内部に断熱コア材を封入し、その外装体内部を真空排気
した真空断熱材において、前記積層フィルムが、支持基
材上に形成された有機物膜と無機物膜との積層膜を含む
ことを特徴とする真空断熱材である。
According to a first aspect of the present invention, there is provided a vacuum heat insulating material in which a heat insulating core material is enclosed inside an exterior body made of a laminated film having a gas barrier property, and the interior of the exterior body is evacuated to vacuum. The laminated film includes a laminated film of an organic material film and an inorganic material film formed on a supporting substrate, which is a vacuum heat insulating material.

【0006】請求項2に記載の発明は、前記有機物膜
が、電子線または紫外線重合性樹脂を、電子線または紫
外線によって重合硬化させたものであることを特徴とす
る請求項1に記載の真空断熱材である。
The invention according to claim 2 is characterized in that the organic film is obtained by polymerizing and curing an electron beam or ultraviolet ray polymerizable resin with an electron beam or ultraviolet ray. It is a heat insulating material.

【0007】請求項3に記載の発明は、前記無機物膜の
厚さが、5nm以上500nm以下であることを特徴と
する請求項1または2に記載の真空断熱材である。
The invention according to claim 3 is the vacuum heat insulating material according to claim 1 or 2, wherein the thickness of the inorganic film is 5 nm or more and 500 nm or less.

【0008】請求項4に記載の発明は、ガスバリア性を
有する2枚の積層フィルムからなる外装体内部に断熱コ
ア材を封入し、その外装体内部を真空排気した真空断熱
材において、前記積層フィルムのうち少なくとも1枚
が、支持基材上に形成された有機物膜と無機物膜との積
層膜を含むことを特徴とする真空断熱材である。
According to a fourth aspect of the present invention, there is provided a vacuum heat insulating material in which a heat insulating core material is enclosed inside an exterior body made of two laminated films having a gas barrier property, and the interior of the exterior body is vacuum-exhausted. At least one of them is a vacuum heat insulating material including a laminated film of an organic film and an inorganic film formed on a supporting substrate.

【0009】請求項5に記載の発明は、前記積層フィル
ムのうち、高温側に位置する1枚が、熱反射性の材料を
含むことを特徴とする請求項4のいずれかに記載の真空
断熱材である。
In the invention according to claim 5, one of the laminated films, which is located on the high temperature side, contains a heat-reflecting material, and the vacuum heat insulation according to claim 4. It is a material.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施の形態を図
を用いて詳細に説明する。本発明の真空断熱材は、ガス
バリア性を有する積層フィルムを含む外装体1の内部に
断熱コア材5が封入され、外装体内部が真空排気されて
いるものであって、前記積層フィルム、有機物膜7と無
機物膜8との積層膜を含むことを特徴とするものであ
る。本発明の真空断熱材は、ガスバリア性を有する積層
フィルム2、3をからなる外装体からなり、最後に4方
シールして真空断熱材としてもよいし(図1)、1枚の
ガスバリア性を有する積層フィルム4をからなる外装体
からなり、最後に3方シールして真空断熱材としてもよ
い(図2)。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described in detail below with reference to the drawings. The vacuum heat insulating material of the present invention is one in which a heat insulating core material 5 is enclosed inside an exterior body 1 including a laminated film having a gas barrier property, and the interior of the exterior body is evacuated to vacuum, and the laminated film, organic film It is characterized by including a laminated film of 7 and the inorganic film 8. The vacuum heat insulating material of the present invention comprises an exterior body composed of laminated films 2 and 3 having gas barrier properties, and may be finally sealed in four directions to form a vacuum heat insulating material (FIG. 1). It is also possible to use a laminated film 4 that has an outer package and finally seal it on three sides to form a vacuum heat insulating material (FIG. 2).

【0011】本発明の有機物膜と無機物膜との積層膜を
含む積層フィルムは、少なくとも支持基材上に有機物膜
と無機物膜との積層膜を形成したものである。支持基材
としては、ポリエチレンテレフタレ−ト(PET)、ポ
リエチレンナフタレ−ト(PEN)、ポリブチレンテレ
フタレ−ト(PBT)などのポリエステル、ポリエチレ
ン(PE)、ポリプロピレン(PP)、ポリスチレン
(PS)などのポリオレフィン、ナイロン−6、ナイロ
ン−66などのポリアミド(PA)、ポリイミド、ポリ
アクリレ−ト、ポリ塩化ビニル(PVC)、ポリ塩化ビ
ニリデン(PVDC)、ポリビニルアルコ−ル(PV
A)、エチレン−ビニルアルコ−ル共重合体(EVO
H)、ポリカ−ボネ−ト(PC)、ポリエ−テルスルフ
ォン(PES)、ポリメチルメタクリレ−ト(PMM
A)などやこれらの共重合体の無延伸あるいは延伸フィ
ルムである。これらの支持基材の表面は、有機物膜と無
機物膜との積層膜の形成に先立って、コロナ処理、火炎
処理、低温プラズマ処理、薬品処理等の表面処理が施さ
れていても差し支えない。またこれらのプラスチックフ
ィルムには、必要に応じて帯電防止剤や紫外線吸収剤、
可塑剤、滑剤などといった添加剤が含まれていても構わ
ない。
The laminated film including the laminated film of the organic substance film and the inorganic substance film of the present invention is one in which the laminated film of the organic substance film and the inorganic substance film is formed on at least the supporting substrate. Examples of the supporting substrate include polyesters such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and polybutylene terephthalate (PBT), polyethylene (PE), polypropylene (PP), polystyrene (PS). ) And other polyolefins, nylon-6, nylon-66 and other polyamides (PA), polyimides, polyacrylates, polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), polyvinyl alcohol (PV).
A), ethylene-vinyl alcohol copolymer (EVO
H), polycarbonate (PC), polyethersulfone (PES), polymethylmethacrylate (PMM)
It is an unstretched or stretched film of A) or the like or a copolymer thereof. The surface of these supporting base materials may be subjected to surface treatment such as corona treatment, flame treatment, low temperature plasma treatment, and chemical treatment prior to the formation of the laminated film of the organic substance film and the inorganic substance film. In addition, these plastic films may contain an antistatic agent or an ultraviolet absorber, if necessary.
Additives such as plasticizers and lubricants may be included.

【0012】本発明における無機物膜としては、金属ア
ルミニウム(Al)、酸化アルミニウム(AlOx)、
酸化珪素(SiOx)、酸化マグネシウム(MgO)、
酸化カルシウム(CaO)、酸化チタン(TiO2)、
酸化ジルコニウム(ZrO2)、窒化アルミニウム(A
lN)、窒化チタン(TiN)、窒化珪素(Si
34)、酸窒化アルミニウム(AlOxNy)、酸窒化
珪素(SiOxNy)、酸窒化チタン(TiOxN
y)、インジウム錫酸化物(ITO)、インジウムセリ
ウム酸化物(ICO)などの無機物の単独膜もしくは複
数の無機物の混合物膜や積層膜が用いられる。このよう
な無機物膜は、真空蒸着法、スパッタリング法、化学的
蒸着法(CVD法)などの真空プロセスによって形成さ
れる。また、その厚さは無機物膜の種類によって若干異
なるが、5nm以上、500nm以下であることが重要
である。5nm以下であると支持基材上に設けられた無
機物が島状になって膜状にならない場合があり、500
nm以上の場合には、膜自身の内部応力によって、膜が
割れたり、支持基材から剥がれたりする場合があるため
である。また、無機物膜がAlの場合には、ヒ−トブリ
ッジが大きくなって、断熱性能が低下することがあるた
め、特に500nm以下であることが重要である。ま
た、ガスバリア性能や断熱性能を阻害しない程度であれ
ば、このような無機物膜中にその他の成分が含まれてい
ても差し支えない。
As the inorganic film in the present invention, metal aluminum (Al), aluminum oxide (AlOx),
Silicon oxide (SiOx), magnesium oxide (MgO),
Calcium oxide (CaO), titanium oxide (TiO 2 ),
Zirconium oxide (ZrO 2 ), aluminum nitride (A
1N), titanium nitride (TiN), silicon nitride (Si
3 N 4 ), aluminum oxynitride (AlOxNy), silicon oxynitride (SiOxNy), titanium oxynitride (TiOxN)
y), a single film of an inorganic material such as indium tin oxide (ITO) or indium cerium oxide (ICO), or a mixed film or a laminated film of a plurality of inorganic materials is used. Such an inorganic film is formed by a vacuum process such as a vacuum deposition method, a sputtering method, a chemical vapor deposition method (CVD method). Further, the thickness is slightly different depending on the type of the inorganic film, but it is important that the thickness is 5 nm or more and 500 nm or less. If the thickness is 5 nm or less, the inorganic substance provided on the supporting substrate may become island-shaped and may not form a film.
This is because when the thickness is not less than nm, the film may be cracked or peeled off from the supporting substrate due to the internal stress of the film itself. Further, when the inorganic film is Al, the heat bridge may become large and the heat insulating performance may be deteriorated. Therefore, it is particularly important that the thickness is 500 nm or less. Further, other components may be contained in such an inorganic film as long as the gas barrier performance and the heat insulating performance are not impaired.

【0013】本発明における有機物膜は、支持基材表面
の凹凸を平滑にすること、無機物膜のクラックや欠陥の
伝播を遮断すること、無機物膜中の内部応力を緩和する
こと、無機物膜を保護すること、などを目的として設け
られるもので、これらの目的に添うものであれば、その
成分や組成、厚さ、形成方法など、いずれも特に限定さ
れるものではない。しかし、重合硬化速度の速さや塗工
後のエ−ジングが不要であることなどから紫外線あるい
は電子線重合性の樹脂を、紫外線あるいは電子線で硬化
させたものであることが好ましい。
The organic film in the present invention smoothes the irregularities on the surface of the supporting substrate, blocks the propagation of cracks and defects in the inorganic film, relaxes the internal stress in the inorganic film, and protects the inorganic film. The composition, the composition, the thickness, the forming method, and the like of the material are not particularly limited as long as they are provided for the purpose of meeting the purpose. However, it is preferable that an ultraviolet ray or electron beam polymerizable resin is cured by ultraviolet ray or electron beam because the polymerization and curing rate is high and aging after coating is unnecessary.

【0014】具体的には、イソアミルアクリレ−ト、ラ
ウリルアクリレ−ト、ステアリルアクリレ−ト、ブトキ
シエチルアクリレ−ト、エトキシジエチレングリコ−ル
アクリレ−ト、メトキシトリエチレングリコ−ルアクリ
レ−ト、メトキシポリエチレングリコ−ルアクリレ−
ト、メトキシジプロピレングリコ−ルアクリレ−ト、フ
ェノキシエチルアクリレ−ト、フェノキシポリエチレン
グリコ−ルアクリレ−ト、フェノ−ルEO変性アクリレ
−ト、ノニルフェノ−ルEO変性アクリレ−ト、テトラ
ヒドロフルフリルアクリレ−ト、イソボニルアクリレ−
ト、2−ヒドロキシエチルアクリレ−ト、2−ヒドロキ
シプロピルアクリレ−ト、2−ヒドロキシ−3−フェノ
キシプロピルアクリレ−ト、2−アクリロイロキシエチ
ルコハク酸、2−アクリロイロキシエチルフタル酸、2
−アクリロイロキシエチル−2−ヒドロキシエチルフタ
ル酸、2−エチルヘキシルカルビト−ルアクリレ−ト、
N−ビニル−2−ピロリドンなどの単官能アクリレ−
ト、メチルメタクリレ−ト、エチルメタクリレ−ト、n
−ブチルメタクリレ−ト、イソブチルメタクリレ−ト、
2−エチルヘキシルメタクリレ−ト、イソデシルメタク
リレ−ト、n−ラウリルメタクリレ−ト、アルキルメタ
クリレ−ト、トリデシルメタクリレ−ト、n−ステアリ
ルメタクリレ−ト、メトキシエチレングリコ−ルメタク
リレ−ト、メトキシポリエチレングリコ−ルメタクリレ
−ト、シクロヘキシルメタクリレ−ト、テトラヒドロフ
ルフリルメタクリレ−ト、ベンジルメタクリレ−ト、フ
ェノキシエチルメタクリレ−ト、イソボニルメタクリレ
−ト、2−ヒドロキシエチルメタクリレ−ト、2−ヒド
ロキシプロピルメタクリレ−ト、2−ヒドロキシブチル
メタクリレ−ト、ジメチルアミノエチルメタクリレ−
ト、ジエチルアミノエチルメタクリレ−ト、メタクリル
酸、2−メタクリロイロキシエチルコハク酸、2−メタ
クリロイロキシエチルヘキサヒドロフタル酸、2−メタ
クリロイロキシエチル−2−ヒドロキシプロピルフタレ
−ト、グリシジルメタクリレ−トなどの単官能メタクリ
レ−ト、トリエチレングリコ−ルジアクリレ−ト、ポリ
エチレングリコ−ルジアクリレ−ト、ネオペンチルグリ
コ−ルジアクリレ−ト、1.6−ヘキサンジオ−ルジア
クリレ−ト、1.9−ノナンジオ−ルジアクリレ−ト、
ジメチロ−ルトリシクロデカンジアクリレ−ト、エチレ
ングリコ−ルジメタクリレ−ト、ジエチレングリコ−ル
ジメタクリレ−ト、1.4−ブタンジオ−ルジメタクリ
レ−ト、1.6−ヘキサンジオ−ルジメタクリレ−ト、
1.9−ノナンジオ−ルジメタクリレ−ト、グリセリン
ジメタクリレ−ト、2−ヒドロキシ−3−アクリロイロ
キシプロピルメタクリレ−トなどの2官能のアクリレ−
トやメタクリレ−ト、トリメチロ−ルプロパントリアク
リレ−ト、ペンタエリスリト−ルトリアクリレ−ト、ペ
ンタエリスリト−ルテトラアクリレ−ト、ジペンタエリ
スリト−ルヘキサアクリレ−ト、トリメチロ−ルプロパ
ントリメタクリレ−ト、ペンタエリスリト−ルトリアク
リレ−トヘキサメチレンジイソシアネ−ト、ペンタエリ
スリト−ルトリアクリレ−トトリレンジイソシアネ−
ト、ペンタエリスリト−ルトリアクリレ−トイソホロン
ジイソシアネ−ト、ジペンタエリスリト−ルヘキサアク
リレ−ト、ジペンタエリスリト−ルヘキサアクリレ−ト
カプロラクトン付加物、ソルビト−ルヘキサアクリレ−
トエチレンオキサイド(EO)付加物などの3官能以上
のアクリレ−トやメタクリレ−ト、などが挙げられるが
これらに限定されるものではない。
Specifically, isoamyl acrylate, lauryl acrylate, stearyl acrylate, butoxyethyl acrylate, ethoxydiethylene glycol acrylate, methoxytriethylene glycol acrylate, methoxy Polyethylene glycol acryl
, Methoxydipropylene glycol acrylate, phenoxyethyl acrylate, phenoxypolyethylene glycol acrylate, phenol EO modified acrylate, nonylphenol EO modified acrylate, tetrahydrofurfuryl acrylate G, isobonyl acrylate
2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 2-acryloyloxyethyl succinic acid, 2-acryloyloxyethyl phthalic acid Two
-Acryloyloxyethyl-2-hydroxyethyl phthalic acid, 2-ethylhexyl carbitol acrylate,
Monofunctional acrylate such as N-vinyl-2-pyrrolidone
, Methyl methacrylate, ethyl methacrylate, n
-Butyl methacrylate, isobutyl methacrylate,
2-Ethylhexyl Methacrylate, Isodecyl Methacrylate, n-Lauryl Methacrylate, Alkyl Methacrylate, Tridecyl Methacrylate, n-Stearyl Methacrylate, Methoxyethylene Glycol Methacrylate , Methoxy polyethylene glycol methacrylate, cyclohexyl methacrylate, tetrahydrofurfuryl methacrylate, benzyl methacrylate, phenoxyethyl methacrylate, isobonyl methacrylate, 2-hydroxyethyl methacrylate. -, 2-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, dimethylaminoethyl methacrylate
, Diethylaminoethyl methacrylate, methacrylic acid, 2-methacryloyloxyethyl succinic acid, 2-methacryloyloxyethyl hexahydrophthalic acid, 2-methacryloyloxyethyl-2-hydroxypropyl phthalate, glycidyl methacrylic acid Monofunctional methacrylates such as rates, triethylene glycol diacrylate, polyethylene glycol diacrylate, neopentyl glycol diacrylate, 1.6-hexanediol diacrylate, 1.9-nonanedio- Lugia acrylate,
Dimethylol tricyclodecane diacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1.4-butanediol dimethacrylate, 1.6-hexanediol dimethacrylate,
Bifunctional acrylates such as 1.9-nonanediol dimethacrylate, glycerin dimethacrylate and 2-hydroxy-3-acryloyloxypropyl methacrylate.
And methacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, trimethylolpropane trimethacrylate. , Pentaerythritol triacrylate hexamethylene diisocyanate, pentaerythritol triacrylate tolylene diisocyanate
, Pentaerythritol triacrylate isophorone diisocyanate, dipentaerythritol hexahexaacrylate, dipentaerythritol hexaacrylate caprolactone adduct, sorbitol hexaacrylate
Examples thereof include trifunctional or higher functional acrylates and methacrylates such as ethylene oxide (EO) adducts, but are not limited thereto.

【0015】また、これらのアクリレ−トやメタクリレ
−トを単独で用いても良いし、2つ以上を混ぜ合わせて
用いても良い。特に、単官能のアクリレ−トやメタクリ
レ−トの場合は、2官能以上のアクリレ−トやメタクリ
レ−トと混合して用いられる。また、その他の紫外線硬
化性や電子線硬化性を持たない有機化合物と混ぜ合わせ
て用いても良い。
These acrylates and methacrylates may be used alone or in a mixture of two or more. In particular, in the case of monofunctional acrylate or methacrylate, it is used as a mixture with a bifunctional or higher functional acrylate or methacrylate. Moreover, you may mix and use it with the other organic compound which has neither ultraviolet curability nor electron beam curability.

【0016】このような有機物膜は、紫外線や電子線を
照射することによって重合硬化するため、成膜速度が速
い、エ−ジングなどの後処理を必要としない、真空中で
の成膜も可能であり、不純物の混入が避けられる上に、
無機物を成膜するための真空プロセスとのインライン化
が可能である、などの優れた特徴を持っているものであ
る。 また、その厚さは有機物の種類やコ−ティング方
法、硬化手段などによって異なるが、概ね0.2〜5.
0μm程度が好適である。0.2μmよりも薄いと有機
物膜が連続膜にならない場合があるためであり、5.0
μmよりも厚いと、有機物膜の硬化収縮によって無機物
膜にストレスがかかり、バリア性の低下が見られる場合
があるためである。
Since such an organic film is polymerized and hardened by irradiation with ultraviolet rays or electron beams, the film formation speed is high, post-treatment such as aging is not required, and film formation in vacuum is also possible. And, in addition to avoiding the inclusion of impurities,
It has an excellent feature that it can be in-line with a vacuum process for forming an inorganic film. Further, the thickness varies depending on the type of organic substance, the coating method, the curing means, etc., but is generally 0.2 to 5.
About 0 μm is preferable. This is because if the thickness is less than 0.2 μm, the organic film may not be a continuous film.
This is because if the thickness is larger than μm, the inorganic film may be stressed due to the shrinkage of the organic film upon curing and the barrier property may be deteriorated.

【0017】このような有機物膜の成膜方法としては、
所望の有機物やその混合物を溶剤に溶かしてグラビアコ
−ティングなどの方法でコ−ティングした後、オ−ブン
などで溶剤を揮発させ、次いで紫外線や電子線を照射し
て重合硬化させるのも一つの方法である。また、所望の
有機物やその混合物を真空中で蒸発させ、冷却した基材
上に液体膜として凝縮させた後、紫外線や電子線を照射
して重合硬化させてもよく、この場合、真空中での蒸発
方法としては、フラッシュ蒸発法が、所望の組成の有機
物膜が容易に、しかも高速で得られることから、最も適
した方法であると言える。
As a method of forming such an organic film,
It is also possible to dissolve a desired organic substance or a mixture thereof in a solvent and coat it by a method such as gravure coating, volatilize the solvent with an oven or the like, and then irradiate it with an ultraviolet ray or an electron beam to polymerize and cure it. There are two ways. In addition, a desired organic substance or a mixture thereof may be evaporated in a vacuum, condensed on a cooled substrate as a liquid film, and then irradiated with ultraviolet rays or an electron beam to be polymerized and cured. In this case, in a vacuum. As the evaporation method, the flash evaporation method can be said to be the most suitable method because an organic film having a desired composition can be easily obtained at high speed.

【0018】また、前記有機物膜と無機物膜との積層順
序や層数には特に制限はなく、複数の有機物膜や無機物
膜が同一のものであっても良いし、別のものであっても
よい。また、有機物膜と無機物膜の他にさらに他の機能
層を積層して積層フィルムとしてもよい。例えば、突き
刺し強度を向上させるためにナイロン等を積層すること
ができる。
Further, there is no particular limitation on the stacking order and the number of layers of the organic film and the inorganic film, and a plurality of organic films or inorganic films may be the same or different. Good. In addition to the organic film and the inorganic film, another functional layer may be laminated to form a laminated film. For example, nylon or the like can be laminated to improve the puncture strength.

【0019】本発明では、前記外装体構成するガスバリ
ア性を有する積層フィルムが2枚であってもよく、その
場合、高温側の積層フィルムが、熱反射性の材料を含ん
でいることが好ましく、低温側の積層フィルムが、前記
有機物膜と無機物膜との積層膜を含んでいることが好ま
しい。熱反射材料としては、例えば金属箔などが挙げら
れる。このようにすれば高温側からの熱を反射し、低温
側への熱の伝導を低減することができる。
In the present invention, the number of laminated films having gas barrier properties that constitute the outer package may be two. In that case, it is preferable that the laminated film on the high temperature side contains a heat-reflecting material. It is preferable that the laminated film on the low temperature side includes a laminated film of the organic film and the inorganic film. Examples of the heat-reflecting material include metal foil. By doing so, it is possible to reflect the heat from the high temperature side and reduce the heat conduction to the low temperature side.

【0020】さらに積層フィルム2、3、4は、最外層
にポリエチレン、ポリプロピレン、エチレン共重合体等
ヒ−トシ−ル性を有する樹脂からなるシ−ラント層9が
積層されてなるものである。このようなシ−ラント層
は、フィルム化した材料を接着剤(図示せず)を介して
ラミネ−トしたり、溶融した樹脂を直接押出すことによ
って積層される。
Further, the laminated films 2, 3 and 4 are obtained by laminating a sealant layer 9 made of a resin having a heat sealing property such as polyethylene, polypropylene and ethylene copolymer on the outermost layer. Such a sealant layer is laminated by laminating a film material through an adhesive (not shown) or directly extruding a molten resin.

【0021】また、本発明の真空断熱材として用いるた
めには前記積層フィルム2,3,4のガスバリア性とし
て、酸素透過度、水蒸気透過度がそれぞれ0.5(cm
3/m2・day)、0.1(g/m2・day)以下で
あると好ましく、0.1(cm3/m2・day)、0.
05(g/m2・day)以下であるとさらに好まし
い。
For use as a vacuum heat insulating material of the present invention, the gas permeability of the laminated films 2, 3 and 4 has an oxygen permeability and a water vapor permeability of 0.5 (cm), respectively.
3 / m 2 · day), 0.1 (g / m 2 · day) or less, preferably 0.1 (cm 3 / m 2 · day), 0.
It is more preferably not more than 05 (g / m 2 · day).

【0022】このような構成からなる積層体のヒ−トシ
−ル性樹脂層を内面として、断熱性コア材4を充填し真
空包装することによって本発明の真空断熱材を得ること
が出来る。この断熱性コア材料は、シリカやパ−ライ
ト、ケイ酸カルシウム等の粉末を一定の形状に成形した
成形体等が使用される。
The vacuum heat insulating material of the present invention can be obtained by filling the heat insulating resin layer of the laminate having such a structure as the inner surface with the heat insulating core material 4 and vacuum packing. As the heat insulating core material, a molded body obtained by molding powder of silica, pearlite, calcium silicate or the like into a certain shape is used.

【0023】[0023]

【実施例】次に、本発明の真空断熱材を具体的な一実施
例を挙げて、さらに詳しく説明する。
EXAMPLES Next, the vacuum heat insulating material of the present invention will be described in more detail with reference to a specific example.

【0024】<実施例1>厚さ12μmのPETフィル
ム〔ルミラ−P60 東レ製〕を支持体5とし、その片
面に乾燥後の厚さが約1μmになるようにアクリレ−ト
モノマ−〔トリエチレングリコ−ルジアクリレ−ト〕
(以下Ac1)をコ−ティングし、加速電圧120k
V、照射線量10Mradの電子線を照射して硬化させ
ることによって有機物膜7を形成した。続いてこの有機
物膜7上に電子線加熱式巻取り蒸着装置を用いて厚さ約
40nmの酸化珪素(以下SiOx)を成膜し無機物膜
8とした後、無機物膜8上にポリエステルウレタン系接
着剤(図示せず)を介して厚さ60μmの低密度ポリエ
チレンフィルムをラミネ−トしてシ−ラント層9とし、
本発明の積層フィルム4を得た。次いで、この積層フィ
ルムのシ−ラント層9同士を向かい合わせ、周辺をヒ−
トシ−ルし、断熱コア材5として粉末シリカの成形体を
真空密封し、図1に示す真空断熱材を得た。この真空断
熱材の外装体のガスバリア性〔酸素透過速度、水蒸気透
過速度〕およびこの真空断熱材中央部で測定した熱伝導
率を表1に示した。
Example 1 A PET film having a thickness of 12 μm [Lumira-P60 manufactured by Toray] was used as a support 5, and one side thereof had an acrylate monomer [triethyleneglycol so that the thickness after drying was about 1 μm. -Ludia acrylate)
(Hereinafter Ac1) is coated and the acceleration voltage is 120k.
The organic film 7 was formed by irradiating and curing with an electron beam of V and an irradiation dose of 10 Mrad. Then, a silicon oxide (hereinafter referred to as SiOx) having a thickness of about 40 nm is formed on the organic substance film 7 by using an electron beam heating winding vapor deposition device to form an inorganic substance film 8, and then the polyester urethane adhesive is applied on the inorganic substance film 8. A low density polyethylene film having a thickness of 60 μm is laminated through a chemical agent (not shown) to form a sealant layer 9,
The laminated film 4 of the present invention was obtained. Next, the sealant layers 9 of this laminated film are made to face each other, and the periphery is heat-treated.
The molded body of powdered silica was vacuum sealed as the heat insulating core material 5 to obtain the vacuum heat insulating material shown in FIG. Table 1 shows the gas barrier properties [oxygen permeation rate, water vapor permeation rate] of the outer package of the vacuum heat insulating material and the thermal conductivity measured at the central portion of the vacuum heat insulating material.

【0025】<実施例2>有機物膜、無機物膜を実施例
1と同様の厚さ、方法で支持体側から順にAc1/Si
Ox/Ac1/SiOx/Ac1のように設けた以外
は、実施例1と同様の方法で、本発明の積層フィルム4
を得た。この積層フィルムのシーラント層同士を向かい
合わせ、周辺をヒ−トシ−ルし、粉末シリカの成形体を
真空密封して得た真空断熱材のガスバリア性と熱伝導率
を実施例1と同様にして測定した。その測定結果を表1
に示した。
<Example 2> An organic film and an inorganic film having the same thickness and method as in Example 1 were sequentially used from the support side in the order of Ac1 / Si.
Laminated film 4 of the present invention was produced in the same manner as in Example 1 except that it was provided as Ox / Ac1 / SiOx / Ac1.
Got The sealant layers of this laminated film were opposed to each other, the periphery was heat-sealed, and the gas-barrier property and thermal conductivity of the vacuum heat insulating material obtained by vacuum-sealing the powder silica compact were the same as in Example 1. It was measured. The measurement results are shown in Table 1.
It was shown to.

【0026】<実施例3>厚さ12μmのPETフィル
ム〔ルミラ−P60 東レ製〕を支持体5とし、その片
面に乾燥後の厚さが約1μmになるように5重量%の光
重合開始剤〔イルガキュア184 チバ・スペシャルテ
ィ・ケミカルズ製〕を含むアクリレ−トモノマ−〔トリ
プロピレングリコ−ルジアクリレ−ト〕(以下Ac2)
をコ−ティングし、120mJ/cm2の紫外線を照射
して硬化させることによって有機物膜7を形成した。続
いてこの有機物膜7上に、無機物膜8として電子線加熱
式巻取り蒸着装置を用いて厚さ約40nmの金属アルミ
ニウム(以下Al)を成膜した後、金属アルミニウム膜
上にポリエステルウレタン系接着剤(図示せず)を介し
て厚さ60μmの低密度ポリエチレンフィルムをラミネ
−トしてシ−ラント層9とし、本発明の積層フィルム4
を得た。この積層フィルムのシーラント層同士を向かい
合わせ、周辺をヒ−トシ−ルし、粉末シリカの成形体を
真空密封して得た真空断熱材のガスバリア性と熱伝導率
を実施例1と同様にして測定した。その測定結果を表1
に示した。
Example 3 A PET film [Lumira-P60 Toray] having a thickness of 12 μm was used as a support 5, and 5% by weight of a photopolymerization initiator was used on one surface of the support 5 so that the thickness after drying was about 1 μm. Acrylate monomer containing [Irgacure 184 manufactured by Ciba Specialty Chemicals] [tripropylene glycol diacrylate] (hereinafter Ac2)
Was coated and was irradiated with ultraviolet rays of 120 mJ / cm 2 to be cured to form an organic material film 7. Subsequently, a metal aluminum (hereinafter referred to as Al) having a thickness of about 40 nm is formed on the organic material film 7 as the inorganic material film 8 by using an electron beam heating-type winding vapor deposition device, and then polyester urethane adhesive is applied on the metal aluminum film. A low-density polyethylene film having a thickness of 60 μm is laminated through a chemical agent (not shown) to form a sealant layer 9, and the laminated film 4 of the present invention is used.
Got The sealant layers of this laminated film were opposed to each other, the periphery was heat-sealed, and the gas-barrier property and thermal conductivity of the vacuum heat insulating material obtained by vacuum-sealing the powder silica compact were the same as in Example 1. It was measured. The measurement results are shown in Table 1.
It was shown to.

【0027】<実施例4>有機物膜、無機物膜を実施例
3と同様の厚さ、方法で支持体側から順にAc2/Al
/Ac2/Al/Ac2のように設けた以外は、実施例
3と同様の方法で、本発明の積層フィルム4を得た。こ
の積層フィルムのシーラント層同士を向かい合わせ、周
辺をヒ−トシ−ルし、粉末シリカの成形体を真空密封し
て得た真空断熱材のガスバリア性と熱伝導率を実施例1
と同様にして測定した。その測定結果を表1に示した。
<Example 4> An organic film and an inorganic film were formed in the same thickness and method as in Example 3 in order from the support side to Ac2 / Al.
A laminated film 4 of the present invention was obtained in the same manner as in Example 3, except that the laminated film 4 was formed as / Ac2 / Al / Ac2. The gas barrier property and the thermal conductivity of the vacuum heat insulating material obtained by sealing the periphery of the laminated film with the sealant layers facing each other and heat sealing the periphery and vacuum-sealing the molded product of the powder silica are shown in Example 1.
It measured similarly to. The measurement results are shown in Table 1.

【0028】<実施例5>厚さ12μmのPETフィル
ム〔ルミラ−P60 東レ製〕を支持体5とし、その片
面に乾燥後の厚さが約1μmになるようにアクリレ−ト
モノマ−〔ペンタエリスリト−ルトリアクリレ−トヘキ
サメチレンジイソシアネ−ト〕(以下Ac3)をコ−テ
ィングし、加速電圧120kV、照射線量10Mrad
の電子線を照射して硬化させることによって有機物膜7
を形成した。続いてこの有機物膜7上に、無機物膜8と
して直流マグネトロン式巻取りスパッタリング装置を用
いて厚さ約50nmのインジウムセリウム酸化物(以下
ICO)を成膜した後、この酸化物膜上にポリエステル
ウレタン系接着剤(図示せず)を介して厚さ60μmの
低密度ポリエチレンフィルムをラミネ−トしてシ−ラン
ト層9とし、本発明の積層フィルム4を得た。この積層
フィルムのシーラント層同士を向かい合わせ、周辺をヒ
−トシ−ルし、粉末シリカの成形体を真空密封して得た
真空断熱材のガスバリア性と熱伝導率を実施例1と同様
にして測定した。その測定結果を表1に示した。
Example 5 A PET film having a thickness of 12 μm [Lumira-P60 manufactured by Toray] was used as a support 5, and one side of the support was made of an acrylate monomer [pentaerythritol so that the thickness after drying was about 1 μm. -Lutriacrylate hexamethylene diisocyanate] (hereinafter Ac3), the acceleration voltage was 120 kV, and the irradiation dose was 10 Mrad.
Organic film 7 by irradiating and curing the electron beam of
Was formed. Subsequently, an indium cerium oxide (hereinafter referred to as ICO) having a thickness of about 50 nm is formed as the inorganic film 8 on the organic film 7 by using a DC magnetron-type winding sputtering device, and then polyester urethane is formed on the oxide film. A low-density polyethylene film having a thickness of 60 μm was laminated with a system adhesive (not shown) to form a sealant layer 9 to obtain a laminated film 4 of the present invention. The sealant layers of this laminated film were opposed to each other, the periphery was heat-sealed, and the gas-barrier property and thermal conductivity of the vacuum heat insulating material obtained by vacuum-sealing the powder silica compact were the same as in Example 1. It was measured. The measurement results are shown in Table 1.

【0029】<実施例6>有機物膜、無機物膜を実施例
5と同様の厚さ、方法で支持体側から順にAc3/IC
O/Ac3/ICO/Ac3のように設けた以外は、実
施例5と同様の方法で、本発明の積層フィルム4を得
た。この積層フィルムのシーラント層同士を向かい合わ
せ、周辺をヒ−トシ−ルし、粉末シリカの成形体を真空
密封して得た真空断熱材のガスバリア性と熱伝導率を実
施例1と同様にして測定した。その測定結果を表1に示
した。
<Example 6> An organic film and an inorganic film were formed in the same thickness and method as in Example 5 in order from the support side to Ac3 / IC.
A laminated film 4 of the present invention was obtained in the same manner as in Example 5 except that the laminated film 4 was formed as O / Ac3 / ICO / Ac3. The sealant layers of this laminated film were opposed to each other, the periphery was heat-sealed, and the gas-barrier property and thermal conductivity of the vacuum heat insulating material obtained by vacuum-sealing the powder silica compact were the same as in Example 1. It was measured. The measurement results are shown in Table 1.

【0030】<実施例7>厚さ12μmのPETフィル
ム〔ルミラ−P60 東レ製〕を支持体とし、その片面
に、実施例3と同様の方法で、厚さ約40nmの金属ア
ルミニウム(Al)の蒸着層を設け、その上にポリエス
テルウレタン系接着剤(図示せず)を介して厚さ60μ
mの低密度ポリエチレンフィルムをラミネ−トしてシー
ラント層とし高温側の積層フィルム2を得た。有機物
膜、無機物膜を実施例1と同様の厚さ、方法で支持体側
から順にAc1/SiOx/Ac1/SiOx/Ac1
のように設けた以外は、実施例1と同様の方法で、本発
明の低温側の積層フィルム3を得た次いで、この積層フ
ィルム2、3のシ−ラント層9同士を向かい合わせ、周
辺をヒ−トシ−ルし、断熱コア材5として粉末シリカの
成形体を真空密封し、図2に示す真空断熱材を得た。こ
の真空断熱材の外装体のガスバリア性〔酸素透過速度、
水蒸気透過速度〕およびこの真空断熱材中央部で測定し
た熱伝導率を表1に示した。
Example 7 A 12 μm thick PET film [Lumira-P60 manufactured by Toray] was used as a support, and one surface of the film was coated with metallic aluminum (Al) having a thickness of about 40 nm in the same manner as in Example 3. A vapor-deposited layer is provided, and a polyester urethane adhesive (not shown) is formed on the vapor-deposited layer to a thickness of 60 μ
A low density polyethylene film of m was laminated to form a sealant layer, and a laminated film 2 on the high temperature side was obtained. An organic film and an inorganic film are formed in the same thickness and method as in Example 1 in order from the support side to Ac1 / SiOx / Ac1 / SiOx / Ac1.
A low temperature side laminated film 3 of the present invention was obtained by the same method as in Example 1 except that the layers were provided as described above. After heat-sealing, a powder silica molded body as the heat insulating core material 5 was vacuum-sealed to obtain a vacuum heat insulating material shown in FIG. Gas barrier property of the exterior body of this vacuum insulation [oxygen permeation rate,
Water vapor transmission rate] and the thermal conductivity measured at the central portion of this vacuum heat insulating material are shown in Table 1.

【0031】<比較例1>厚さ12μmのPETフィル
ム〔ルミラ−P60 東レ製〕を支持体とし、その片面
に、実施例1と同様の方法で、厚さ約40nmの酸化珪
素層(SiOx)を設け、その上にポリエステルウレタ
ン系接着剤(図示せず)を介して厚さ60μmの低密度
ポリエチレンフィルムをラミネ−トしてシーラント層と
し、積層体を得た。この積層体のシーラント層同士を向
かい合わせ、周辺をヒ−トシ−ルし、粉末シリカの成形
体を真空密封して得た真空断熱材のガスバリア性と熱伝
導率を実施例1と同様にして測定した。その測定結果を
表1に示した。
Comparative Example 1 A 12 μm-thick PET film [Lumira-P60 Toray] was used as a support, and a silicon oxide layer (SiOx) having a thickness of about 40 nm was formed on one surface of the support in the same manner as in Example 1. Was provided, and a low-density polyethylene film having a thickness of 60 μm was laminated thereon via a polyester urethane-based adhesive (not shown) to form a sealant layer to obtain a laminate. The sealant layers of this laminate were opposed to each other, the periphery was heat-sealed, and a vacuum insulation material obtained by vacuum-sealing a powder silica compact was set to have the same gas barrier property and thermal conductivity as in Example 1. It was measured. The measurement results are shown in Table 1.

【0032】<比較例2>厚さ12μmのPETフィル
ム〔ルミラ−P60 東レ製〕を支持体とし、その片面
に、実施例3と同様の方法で、厚さ約40nmの金属ア
ルミニウム(Al)の蒸着層を設け、その上にポリエス
テルウレタン系接着剤(図示せず)を介して厚さ60μ
mの低密度ポリエチレンフィルムをラミネ−トしてシー
ラント層とし積層体を得た。この積層体のシーラント層
同士を向かい合わせ、周辺をヒ−トシ−ルし、粉末シリ
カの成形体を真空密封して得た真空断熱材のガスバリア
性と熱伝導率を実施例1と同様にして測定した。その測
定結果を表1に示した。
<Comparative Example 2> A PET film [Lumira-P60 Toray] having a thickness of 12 μm was used as a support, and one surface thereof was coated with metallic aluminum (Al) having a thickness of about 40 nm in the same manner as in Example 3. A vapor-deposited layer is provided, and a polyester urethane adhesive (not shown) is formed on the vapor-deposited layer to a thickness of 60 μ
A low density polyethylene film of m was laminated to form a sealant layer to obtain a laminate. The sealant layers of this laminate were opposed to each other, the periphery was heat-sealed, and a vacuum insulation material obtained by vacuum-sealing a powder silica compact was set to have the same gas barrier property and thermal conductivity as in Example 1. It was measured. The measurement results are shown in Table 1.

【0033】<比較例3>厚さ12μmのPETフィル
ム〔ルミラ−P60 東レ製〕を支持体とし、その片面
に、実施例5と同様の方法で、約50nmのインジウム
セリウム酸化物層(ICO)を設け、その上にポリエス
テルウレタン系接着剤(図示せず)を介して厚さ60μ
mの低密度ポリエチレンフィルムをラミネ−トしてシー
ラント層とし、積層体を得た。この積層体のシーラント
層同士を向かい合わせ、周辺をヒ−トシ−ルし、粉末シ
リカの成形体を真空密封して得た真空断熱材のガスバリ
ア性と熱伝導率を実施例1と同様にして測定した。その
測定結果を表1に示した。
Comparative Example 3 A PET film having a thickness of 12 μm (manufactured by Lumira-P60 Toray) was used as a support, and one side thereof was coated with an indium cerium oxide layer (ICO) of about 50 nm in the same manner as in Example 5. With a polyester urethane adhesive (not shown) on it and a thickness of 60 μm.
A low density polyethylene film of m was laminated to form a sealant layer to obtain a laminate. The sealant layers of this laminate were opposed to each other, the periphery was heat-sealed, and a vacuum insulation material obtained by vacuum-sealing a powder silica compact was set to have the same gas barrier property and thermal conductivity as in Example 1. It was measured. The measurement results are shown in Table 1.

【0034】<比較例4>厚さ12μmのPETフィル
ム〔ルミラ−P60 東レ製〕を支持体とし、その片面
に、乾燥後の厚さが約1μmになるようにアクリレ−ト
モノマ−〔トリエチレングリコ−ルジアクリレ−ト〕
(Ac1)をコ−ティングし、加速電圧120kV、照
射線量10Mradの電子線を照射して硬化させること
によってポリマ−層を形成した。そのアクリレ−ト層上
にポリエステルウレタン系接着剤(図示せず)を介して
厚さ60μmの低密度ポリエチレンフィルムをラミネ−
トしてシーラント層とし、積層体を得た。この積層体の
シーラント層同士を向かい合わせ、周辺をヒ−トシ−ル
し、粉末シリカの成形体を真空密封して得た真空断熱材
のガスバリア性と熱伝導率を実施例1と同様にして測定
した。その測定結果を表1に示した。
COMPARATIVE EXAMPLE 4 A 12 μm thick PET film [Lumira-P60 Toray] was used as a support, and one side of the acrylate monomer [triethyleneglycol] had a thickness of about 1 μm after drying. -Ludia acrylate)
A polymer layer was formed by coating (Ac1) and irradiating it with an electron beam having an accelerating voltage of 120 kV and an irradiation dose of 10 Mrad to cure it. A low density polyethylene film having a thickness of 60 μm is laminated on the acrylate layer via a polyester urethane adhesive (not shown).
To obtain a sealant layer to obtain a laminate. The sealant layers of this laminate were opposed to each other, the periphery was heat-sealed, and a vacuum insulation material obtained by vacuum-sealing a powder silica compact was set to have the same gas barrier property and thermal conductivity as in Example 1. It was measured. The measurement results are shown in Table 1.

【0035】<比較例5>厚さ12μmのPETフィル
ム〔ルミラ−P60 東レ製〕を支持体とし、その片面
に、乾燥後の厚さが約1μmになるように5重量%の光
重合開始剤〔イルガキュア184 チバ・スペシャルテ
ィ・ケミカルズ製〕を含むアクリレ−トモノマ−〔トリ
プロピレングリコ−ルジアクリレ−ト〕(Ac2)をコ
−ティングし、120mJ/cm2の紫外線を照射して
硬化させることによってポリマ−層を形成した。続いて
このアクリレ−ト層上にポリエステルウレタン系接着剤
(図示せず)を介して厚さ60μmの低密度ポリエチレ
ンフィルムをラミネ−トしてシーラント層とし、積層体
を得た。この積層体のシーラント層同士を向かい合わ
せ、周辺をヒ−トシ−ルし、粉末シリカの成形体を真空
密封して得た真空断熱材のガスバリア性と熱伝導率を実
施例1と同様にして測定した。その測定結果を表1に示
した。
Comparative Example 5 A PET film having a thickness of 12 μm (manufactured by Lumira-P60 Toray) was used as a support, and one side thereof was provided with 5% by weight of a photopolymerization initiator so that the thickness after drying was about 1 μm. Acrylate monomer containing [Irgacure 184 manufactured by Ciba Specialty Chemicals] [Tripropylene glycol diacrylate] (Ac2) is coated, and a polymer is obtained by irradiating with an ultraviolet ray of 120 mJ / cm 2 to cure. Layers were formed. Subsequently, a low-density polyethylene film having a thickness of 60 μm was laminated on the acrylate layer with a polyester urethane adhesive (not shown) as a sealant layer to obtain a laminate. The sealant layers of this laminate were opposed to each other, the periphery was heat-sealed, and a vacuum insulation material obtained by vacuum-sealing a powder silica compact was set to have the same gas barrier property and thermal conductivity as in Example 1. It was measured. The measurement results are shown in Table 1.

【0036】<比較例6>厚さ12μmのPETフィル
ム〔ルミラ−P60 東レ製〕を支持体とし、その片面
に、乾燥後の厚さが約1μmになるようにアクリレ−ト
モノマ−〔ペンタエリスリト−ルトリアクリレ−トヘキ
サメチレンジイソシアネ−ト〕(Ac3)をコ−ティン
グし、加速電圧120kV、照射線量10Mradの電
子線を照射して硬化させることによってポリマ−層を形
成した。続いてこのアクリレ−ト層上にポリエステルウ
レタン系接着剤(図示せず)を介して厚さ60μmの低
密度ポリエチレンフィルムをラミネ−トしてシーラント
層とし、積層体を得た。この積層体のシーラント層同士
を向かい合わせ、周辺をヒ−トシ−ルし、粉末シリカの
成形体を真空密封して得た真空断熱材のガスバリア性と
熱伝導率を実施例1と同様にして測定した。その測定結
果を表1に示した。
Comparative Example 6 A 12 μm thick PET film [Lumira-P60 manufactured by Toray] was used as a support, and one side thereof had an acrylate monomer [pentaerythritol so that the thickness after drying was about 1 μm. -Lutriacrylate hexamethylene diisocyanate] (Ac3) was coated, and a polymer layer was formed by curing by irradiating an electron beam with an accelerating voltage of 120 kV and an irradiation dose of 10 Mrad. Subsequently, a low-density polyethylene film having a thickness of 60 μm was laminated on the acrylate layer with a polyester urethane adhesive (not shown) as a sealant layer to obtain a laminate. The sealant layers of this laminate were opposed to each other, the periphery was heat-sealed, and a vacuum insulation material obtained by vacuum-sealing a powder silica compact was set to have the same gas barrier property and thermal conductivity as in Example 1. It was measured. The measurement results are shown in Table 1.

【0037】<比較例7>厚さ12μmのPETフィル
ム〔ルミラ−P60 東レ製〕を支持体とし、その片面
に、ポリエステルウレタン系接着剤(図示せず)を介し
て厚さ7μmの金属アルミニウム箔をラミネ−トし、続
いてこの金属アルミニウム箔上に、同じ接着剤を用いて
厚さ60μmの低密度ポリエチレンフィルムをラミネ−
トしてシーラント層とし、積層体を得た。この積層体の
シーラント層同士を向かい合わせ、周辺をヒ−トシ−ル
し、粉末シリカの成形体を真空密封して得た真空断熱材
のガスバリア性と熱伝導率を実施例1と同様にして測定
した。その測定結果を表1に示した。
Comparative Example 7 A 12 μm-thick PET film [Lumira-P60 Toray] was used as a support, and a polyester-urethane adhesive (not shown) was used on one side thereof to form a 7 μm-thick metal aluminum foil. And then a 60 μm thick low density polyethylene film was laminated onto this metallic aluminum foil using the same adhesive.
To obtain a sealant layer to obtain a laminate. The sealant layers of this laminate were opposed to each other, the periphery was heat-sealed, and a vacuum insulation material obtained by vacuum-sealing a powder silica compact was set to have the same gas barrier property and thermal conductivity as in Example 1. It was measured. The measurement results are shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】実施例1〜7に示したように、真空断熱材
の外装体として、支持基材上に有機物膜と無機物膜との
積層膜を含むガスバリア性を有する積層フィルムを用い
ることにより、真空断熱材の内部を長期間に亘って高い
真空度に保つために不可欠な高いガスバリア性を有する
外装体が得られ、またヒ−トブリッジによる熱伝導が無
く、高い断熱性能を有する真空断熱材が得られた。ま
た、比較例1〜3および比較例4〜6に示した結果は、
それぞれ無機物膜および有機物膜のみを積層フィルムと
して用いた場合のものであるが、これらの外装体では実
施例の場合ほどの高いガスバリア性が得られなかった。
特に比較例4〜6の場合では、有機物膜がガスバリア性
の向上にほとんど寄与していないため、真空断熱材内部
の真空度が始めから低く、他と比較して初期の熱伝導率
も高かった。また、比較例7に示した結果は、金属アル
ミニウム箔をガスバリア性として用いた場合のものであ
るが、この外装体では実施例のものと比較しても十分な
ガスバリア性が得られたが、この外装体を用いた真空断
熱材では、ヒ−トブリッジによる熱伝導によって、高い
断熱性能が得られなかった。
As shown in Examples 1 to 7, by using a laminated film having a gas barrier property including a laminated film of an organic material film and an inorganic material film on a supporting substrate as an outer package of a vacuum heat insulating material, An exterior body with a high gas barrier property, which is essential for maintaining a high degree of vacuum inside the heat insulating material for a long period of time, can be obtained, and there is no heat conduction due to a heat bridge, and a vacuum heat insulating material with high heat insulating performance can be obtained. Was given. The results shown in Comparative Examples 1 to 3 and Comparative Examples 4 to 6 are
These are the cases where only the inorganic film and the organic film are used as the laminated film, respectively, but the gas barrier properties as high as those of the examples were not obtained with these outer casings.
Particularly in Comparative Examples 4 to 6, since the organic film hardly contributed to the improvement of the gas barrier property, the vacuum degree inside the vacuum heat insulating material was low from the beginning, and the initial thermal conductivity was higher than the others. . Further, the results shown in Comparative Example 7 were obtained when the metal aluminum foil was used as the gas barrier property. However, this exterior body had sufficient gas barrier properties even when compared with those of the Examples. With the vacuum heat insulating material using this exterior body, high heat insulating performance could not be obtained due to heat conduction by the heat bridge.

【0040】[0040]

【発明の効果】以上述べたように、本発明によれば、ガ
スバリア性を有する積層フィルムからなる外装体内に断
熱コア材が封入され、その外装体内部が真空排気された
真空断熱材において、前記積層フィルムが、支持基材上
に形成された有機物膜と無機物膜との積層膜を含むこと
によって、真空断熱材の外装体を通しての熱の移動がな
く十分な断熱性能が得られ、且つ、外装体のガスバリア
性が高く、長期に亘って外装体内部の真空状態が保た
れ、断熱性能が維持される真空断熱材を提供することが
出来る。
As described above, according to the present invention, a heat insulating core material is enclosed in an outer package made of a laminated film having gas barrier properties, and the inside of the outer package is evacuated to vacuum. Since the laminated film includes the laminated film of the organic film and the inorganic film formed on the supporting substrate, sufficient heat insulation performance can be obtained without transfer of heat through the outer casing of the vacuum heat insulating material, and the outer casing. It is possible to provide a vacuum heat insulating material having a high gas barrier property of the body, maintaining a vacuum state inside the outer package for a long period of time, and maintaining heat insulating performance.

【0041】[0041]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の真空断熱材を示す断面図である。FIG. 1 is a cross-sectional view showing a vacuum heat insulating material of the present invention.

【図2】本発明の真空断熱材を示す断面図である。FIG. 2 is a sectional view showing a vacuum heat insulating material of the present invention.

【図3】本発明の真空断熱材の外装体を構成する積層フ
ィルムの一例を示す断面図である。
FIG. 3 is a cross-sectional view showing an example of a laminated film forming an outer casing of the vacuum heat insulating material of the present invention.

【符号の説明】[Explanation of symbols]

1 外装体 2 高温側の積層フィルム 3 低温側の積層フィルム 4 積層フィルム 5 断熱コア材 6 支持体 7 有機物膜 8 無機物膜 9 シーラント層 10 高温側 11 低温側 1 exterior body 2 Laminated film on the high temperature side 3 Laminated film on the low temperature side 4 laminated film 5 Insulation core material 6 support 7 Organic matter film 8 Inorganic film 9 Sealant layer 10 High temperature side 11 Low temperature side

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3E067 BA22A BA31A BB11A BB14A BB15A BB16A BB25A BB26A CA04 CA18 CA21 CA24 FB11 GA01 GA11 GA13 3H036 AA08 AA09 AB28 AC01 AE02 3L102 JA01 JA06 MB24 4F100 AA00D AA20 AH00C AK01A AK01C AK01E AK06 AK25 AK42 AS00B BA04 BA05 BA07 DD31 DE01 EJ08C GB90 JD02A JD02E JD07C JD09C JJ02 JJ02B YY00D   ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3E067 BA22A BA31A BB11A BB14A                       BB15A BB16A BB25A BB26A                       CA04 CA18 CA21 CA24 FB11                       GA01 GA11 GA13                 3H036 AA08 AA09 AB28 AC01 AE02                 3L102 JA01 JA06 MB24                 4F100 AA00D AA20 AH00C AK01A                       AK01C AK01E AK06 AK25                       AK42 AS00B BA04 BA05                       BA07 DD31 DE01 EJ08C                       GB90 JD02A JD02E JD07C                       JD09C JJ02 JJ02B YY00D

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ガスバリア性を有する積層フィルムからな
る外装体内部に断熱コア材を封入し、その外装体内部を
真空排気した真空断熱材において、前記積層フィルム
が、支持基材上に形成された有機物膜と無機物膜との積
層膜を含むことを特徴とする真空断熱材。
1. A vacuum heat insulating material in which a heat insulating core material is enclosed inside an outer package made of a laminated film having a gas barrier property, and the inside of the outer package is evacuated, wherein the laminated film is formed on a supporting base material. A vacuum heat insulating material comprising a laminated film of an organic material film and an inorganic material film.
【請求項2】前記有機物膜が、電子線または紫外線重合
性樹脂を、電子線または紫外線によって重合硬化させた
ものであることを特徴とする請求項1に記載の真空断熱
材。
2. The vacuum heat insulating material according to claim 1, wherein the organic film is obtained by polymerizing and curing an electron beam or ultraviolet ray polymerizable resin with an electron beam or ultraviolet ray.
【請求項3】前記無機物膜の厚さが、5nm以上500
nm以下であることを特徴とする請求項1または2に記
載の真空断熱材。
3. The thickness of the inorganic film is 5 nm or more and 500.
The vacuum heat insulating material according to claim 1, wherein the vacuum heat insulating material has a thickness of not more than nm.
【請求項4】ガスバリア性を有する2枚の積層フィルム
からなる外装体内部に断熱コア材を封入し、その外装体
内部を真空排気した真空断熱材において、前記積層フィ
ルムのうち少なくとも1枚が、支持基材上に形成された
有機物膜と無機物膜との積層膜を含むことを特徴とする
真空断熱材。
4. A vacuum heat insulating material in which a heat insulating core material is enclosed in an inside of an exterior body made of two laminated films having a gas barrier property and the interior of the exterior body is evacuated, and at least one of the laminated films is A vacuum heat insulating material comprising a laminated film of an organic film and an inorganic film formed on a supporting substrate.
【請求項5】前記積層フィルムのうち、高温側に位置す
る1枚が、熱反射性の材料を含むことを特徴とする請求
項4のいずれかに記載の真空断熱材。
5. The vacuum heat insulating material according to claim 4, wherein one of the laminated films located on the high temperature side contains a heat-reflecting material.
JP2001372604A 2001-12-06 2001-12-06 Vacuum heat insulating material Pending JP2003172493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372604A JP2003172493A (en) 2001-12-06 2001-12-06 Vacuum heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001372604A JP2003172493A (en) 2001-12-06 2001-12-06 Vacuum heat insulating material

Publications (1)

Publication Number Publication Date
JP2003172493A true JP2003172493A (en) 2003-06-20

Family

ID=19181466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372604A Pending JP2003172493A (en) 2001-12-06 2001-12-06 Vacuum heat insulating material

Country Status (1)

Country Link
JP (1) JP2003172493A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164034A (en) * 2003-11-20 2005-06-23 Itp Liquefied natural gas transporting pipe
EP1643180A1 (en) * 2003-07-04 2006-04-05 Matsushita Electric Industrial Co., Ltd. Vacuum thermal insulation material and equipment using the same
JP2008526573A (en) 2005-01-14 2008-07-24 ソリユテイア・インコーポレイテツド Laminate with moisture barrier
JPWO2021132457A1 (en) * 2019-12-24 2021-07-01
CN113969397A (en) * 2021-10-15 2022-01-25 浙江生波智能装备有限公司 Coating control method of novel vacuum coating equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465390A (en) * 1987-09-04 1989-03-10 Matsushita Refrigeration Heat insulator pack
JPH07113493A (en) * 1993-10-15 1995-05-02 Meisei Kogyo Kk Vacuum insulating member
JPH0882474A (en) * 1994-09-12 1996-03-26 Toshiba Corp Vacuum heat insulating material
JPH08152258A (en) * 1994-09-29 1996-06-11 Mitsubishi Chem Corp Vacuum heat insulator
JPH08159376A (en) * 1994-11-30 1996-06-21 Sanyo Electric Co Ltd Vacuum heat insulating material
JPH08312880A (en) * 1995-05-19 1996-11-26 Mitsubishi Chem Corp Vacuum heat insulating panel and its manufacture
JP2000310392A (en) * 1999-04-28 2000-11-07 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
JP2001032992A (en) * 1999-07-21 2001-02-06 Matsushita Electric Ind Co Ltd Vacuum insulating material
JP2003154534A (en) * 2001-11-22 2003-05-27 Asahi Glass Matex Co Ltd Vacuum heat insulator and method for manufacturing fiber-reinforced synthetic resin molding

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465390A (en) * 1987-09-04 1989-03-10 Matsushita Refrigeration Heat insulator pack
JPH07113493A (en) * 1993-10-15 1995-05-02 Meisei Kogyo Kk Vacuum insulating member
JPH0882474A (en) * 1994-09-12 1996-03-26 Toshiba Corp Vacuum heat insulating material
JPH08152258A (en) * 1994-09-29 1996-06-11 Mitsubishi Chem Corp Vacuum heat insulator
JPH08159376A (en) * 1994-11-30 1996-06-21 Sanyo Electric Co Ltd Vacuum heat insulating material
JPH08312880A (en) * 1995-05-19 1996-11-26 Mitsubishi Chem Corp Vacuum heat insulating panel and its manufacture
JP2000310392A (en) * 1999-04-28 2000-11-07 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
JP2001032992A (en) * 1999-07-21 2001-02-06 Matsushita Electric Ind Co Ltd Vacuum insulating material
JP2003154534A (en) * 2001-11-22 2003-05-27 Asahi Glass Matex Co Ltd Vacuum heat insulator and method for manufacturing fiber-reinforced synthetic resin molding

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1643180A1 (en) * 2003-07-04 2006-04-05 Matsushita Electric Industrial Co., Ltd. Vacuum thermal insulation material and equipment using the same
EP1643180A4 (en) * 2003-07-04 2010-08-25 Panasonic Corp Vacuum thermal insulation material and equipment using the same
JP2005164034A (en) * 2003-11-20 2005-06-23 Itp Liquefied natural gas transporting pipe
JP2012067919A (en) * 2003-11-20 2012-04-05 Itp Pipe for transportation of liquefied natural gas
JP2008526573A (en) 2005-01-14 2008-07-24 ソリユテイア・インコーポレイテツド Laminate with moisture barrier
JPWO2021132457A1 (en) * 2019-12-24 2021-07-01
JP7325053B2 (en) 2019-12-24 2023-08-14 パナソニックIpマネジメント株式会社 Thermal insulation bag, thermal insulation bag, and method for manufacturing thermal insulation bag
CN113969397A (en) * 2021-10-15 2022-01-25 浙江生波智能装备有限公司 Coating control method of novel vacuum coating equipment

Similar Documents

Publication Publication Date Title
TWI222764B (en) Barrier coatings and methods of making same
JP4677692B2 (en) Transparent gas barrier material and method for producing the same
KR102161963B1 (en) Transparent stacked film, transparent conductive film, and gas barrier stacked film
US10804419B2 (en) Photovoltaic devices with encapsulating barrier film
CN108025528A (en) It is used to prepare the method for barrier film
JP4624894B2 (en) Gas barrier structure and method for producing the same
JP2015103389A (en) Organic el device
JP4747425B2 (en) Transparent gas barrier laminate film
JP2010076288A (en) Gas-barrier laminated film
JP2003172493A (en) Vacuum heat insulating material
JP5311028B2 (en) Method for producing gas barrier laminate film
TW201441051A (en) Gasbarrier film and producing method thereof
JP2010173134A (en) Gas barrier laminated film
JP4014931B2 (en) Laminated body and method for producing the same
JP7115501B2 (en) Laminated barrier film.
JP4701570B2 (en) Transparent gas barrier material and method for producing the same
JP2008036948A (en) Gas-barrier laminated film
JP2009234057A (en) Gas barrier laminated film
WO2015083706A1 (en) Gas barrier film and method for producing same
JP6260412B2 (en) Gas barrier film
JP2007509191A (en) Barrier coating composition comprising inorganic flake material and device comprising this barrier coating composition
JP4052036B2 (en) Active energy ray-curable gas barrier improving resin composition for coating inorganic oxide, gas barrier laminate using the same, and method for producing the same
JP2008272944A (en) Gas barrier laminated film
JP2008272968A (en) Method for producing laminate and its gas gas-barrier film
JP2007238702A (en) Method for forming laminate and laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304