JP2003170210A - Automatic plate thickness-controlling method for cold- rolling mill - Google Patents

Automatic plate thickness-controlling method for cold- rolling mill

Info

Publication number
JP2003170210A
JP2003170210A JP2001372460A JP2001372460A JP2003170210A JP 2003170210 A JP2003170210 A JP 2003170210A JP 2001372460 A JP2001372460 A JP 2001372460A JP 2001372460 A JP2001372460 A JP 2001372460A JP 2003170210 A JP2003170210 A JP 2003170210A
Authority
JP
Japan
Prior art keywords
value
thickness
plate thickness
rolling mill
side thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001372460A
Other languages
Japanese (ja)
Inventor
Hidehiko Matsuoka
英彦 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2001372460A priority Critical patent/JP2003170210A/en
Publication of JP2003170210A publication Critical patent/JP2003170210A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an outlet side plate thickness with a high accuracy by optimizing an AGC gain. <P>SOLUTION: In an automatic plate thickness-controlling method for a cold- rolling mill, an inlet side plate thickness variations detecting value is tracked from the inlet side thickness gage position to the outlet side thickness gage position and on the way of the tracking, when the inlet side plate thickness variations tracking arrives at the drafting point of the rolling mill, the drafting volume variations of the rolling mill is detected, and the value is tracked from the drafting point to the outlet side thickness gauge, and an excess or deficiency of the AGC gain preset value is judged and the AGC gain is adjusted by the tracking value of the inlet side plate thickness variations tracked to the outlet side thickness gage, the tracking value of the drafting position and the outlet side plate thickness variations. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は冷間圧延機のAGC
(自動板厚制御)ゲインの自動調整方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to an AGC of a cold rolling mill.
(Automatic plate thickness control) The present invention relates to an automatic gain adjustment method.

【0002】[0002]

【従来の技術】図2はフィードフォワードAGCとフィ
ードバックAGCとから構成される冷間圧延機における
代表的な板厚制御の構成図を示す。図において1は入側
厚み計、2は出側厚み計、3は入側デフレクタロール、
4は出側デフレクタロール、5は圧延機、6は入側コイ
ル、7は出側コイル、8、9はパルス発生器、10は積
分器、11は乗算器、12はフィードバックAGCゲイ
ン、13は板速度演算器、14は加算器、15はサーボ
アンプ、16はフィードフォワードAGCゲイン、17
はシフトレジスタ、18はカウンタ、19は設定器、2
0は比較器、29はサーボバルブである。次に動作を説
明する。入側厚み計1により検出された入側板厚偏差は
遅延機能を持つシフトレジスタに入力される。また、入
側デフレクタロール3に取り付けられたパルス発信器
(以下PLGと記す。)により入側板走行量をパルスカウン
タでを演算し、一定の板走行長ごとにシフトレジスタ1
7のシフトパルスを発信し、入側板厚偏差をサンプリン
グし、シフトレジスタ17に入力するとともに、シフト
レジスタ17に記憶された板厚偏差データのシフトを行
う。シフトレジスタ17に記憶された板厚偏差は、それ
に対応する板が圧延機の圧下装置の動作遅れを考慮した
圧延機の圧下点の手前のある点に到達した時にシフトレ
ジスタから出力される。この出力値に板の塑性変形特性
により演算されたフィードフォワードAGCゲイン16
を乗じた量がフィードフォワードAGCの圧下位置目標
値として出力される。また、出側厚み計2で検出された
出側板厚偏差は積分器8により積分される。圧延機の直
下の圧延ロール位置で圧延された結果残存する出側板厚
偏差はその点が出側厚み計2で検出される。従って、こ
の間に輸送遅れが存在し、輸送遅れ時間は圧延速度に逆
比例する。従って、圧延速度にかかわらず安定したフィ
ードバックAGC動作を実現するために、上記の積分器
10の出力値に、圧延速度に比例した値を乗ずる方法が
取られている。さらにこの演算結果に、板の塑性変形特
性に応じて決定されるフィードバックAGCゲインを乗
じた値がフィードバックAGCの圧下位置目標値として
出力される。以上述べたフィードフォーワードAGCと
フィードバックAGCの圧下位置目標値の和が総合的な
AGCの圧下位置目標値である。したがって、フィード
フォワードAGCゲイン16からの出力とフィードバッ
クAGCゲイン12からの出力の両者を加算器14によ
り加算した信号をサーボアンプ15へ入力する。
2. Description of the Related Art FIG. 2 is a block diagram showing a typical strip thickness control in a cold rolling mill composed of a feedforward AGC and a feedback AGC. In the figure, 1 is an inlet side thickness gauge, 2 is an outlet side thickness gauge, 3 is an inlet side deflector roll,
4 is an output side deflector roll, 5 is a rolling mill, 6 is an input side coil, 7 is an output side coil, 8 and 9 are pulse generators, 10 is an integrator, 11 is a multiplier, 12 is a feedback AGC gain, and 13 is Plate speed calculator, 14 is adder, 15 is servo amplifier, 16 is feedforward AGC gain, 17
Is a shift register, 18 is a counter, 19 is a setter, 2
Reference numeral 0 is a comparator, and 29 is a servo valve. Next, the operation will be described. The entrance side plate thickness deviation detected by the entrance side thickness gauge 1 is input to a shift register having a delay function. In addition, the pulse generator attached to the deflector roll 3 on the input side
(Hereinafter, referred to as PLG.) The input side plate travel amount is calculated by the pulse counter, and the shift register 1
The shift pulse of No. 7 is transmitted to sample the input side plate thickness deviation, which is input to the shift register 17, and the plate thickness deviation data stored in the shift register 17 is shifted. The plate thickness deviation stored in the shift register 17 is output from the shift register when the corresponding plate reaches a certain point before the rolling point of the rolling mill in consideration of the operation delay of the rolling mill rolling device. The feedforward AGC gain 16 calculated by this output value based on the plastic deformation characteristics of the plate
An amount obtained by multiplying by is output as a rolling position target value of the feedforward AGC. Further, the output side plate thickness deviation detected by the output side thickness gauge 2 is integrated by the integrator 8. The exit side thickness gauge 2 detects the deviation of the exit side plate thickness that remains as a result of rolling at the position of the rolling roll just below the rolling mill. Therefore, there is a transportation delay during this period, and the transportation delay time is inversely proportional to the rolling speed. Therefore, in order to realize a stable feedback AGC operation regardless of the rolling speed, a method of multiplying the output value of the integrator 10 by a value proportional to the rolling speed is adopted. Furthermore, a value obtained by multiplying this calculation result by a feedback AGC gain determined according to the plastic deformation characteristic of the plate is output as the target value of the feedback AGC pressure reduction position. The sum of the reduction position target values of the feedforward AGC and the feedback AGC described above is the total reduction position target value of the AGC. Therefore, the signal obtained by adding both the output from the feedforward AGC gain 16 and the output from the feedback AGC gain 12 by the adder 14 is input to the servo amplifier 15.

【0003】[0003]

【発明が解決しようとする課題】以下に従来技術におけ
るフィードフォワードAGCゲインとフィードバックA
GCゲインの演算方法とそれが有する問題点について述
べる。図3は冷間圧延機におけるAGCの考え方を表し
ている。図において縦軸は圧延荷重であり、横軸は圧延
機の圧下位置、入側板厚または出側板厚を表す。曲線
イ、ロは板の塑性変形特性を表す曲線であり、直線ハ、
ニは圧延機の変形特性を表す。圧延機の変形特性(ミル
定数)は厳密には直線にはならないが、一般には直線と
考えてさしつかえない。いま、圧延機が入側板厚H0
出側板厚h0、圧下位置S0、圧延荷重P0で圧延を行っ
ている場合を考える。図3において、曲線イがその時の
板の塑性変形特性を表し、直線ハが圧延機の変形特性を
表す。曲線イと直線ハの交点Aがその時の圧延状態を表
す。ここで入側板厚がH0からHに変化した場合を考え
る。この時、板の塑性変形特性は曲線イからそれをΔH
=H−H0だけ横軸方向に平行移動した曲線ロに変化
し、圧延状態は点Aから点Bに移動する。この時、圧延
荷重および出側板厚はそれぞれはP'、hに変化する。
AGCの目的は出側板厚を一定値h0に保つことであ
る。このために圧下位置をS0からSまでΔSだけ変化
させてやると圧延状態は点Bから点Cに変わり出側板厚
がh0になる。この時の圧延荷重はPになる。ΔH、Δ
Sは微小変化であるからその近傍で板の変形特性を線形
化して考えると図3における幾何学的関係から次の関係
式が選られる。
The feedforward AGC gain and the feedback A in the prior art will be described below.
The method of calculating the GC gain and the problems it has will be described. FIG. 3 shows the concept of AGC in a cold rolling mill. In the figure, the vertical axis represents the rolling load, and the horizontal axis represents the rolling position of the rolling mill, the entrance side plate thickness or the exit side plate thickness. Curves a and b are curves representing the plastic deformation characteristics of the plate, and straight lines c and
D represents the deformation characteristics of the rolling mill. The deformation characteristic (mill constant) of the rolling mill is not exactly a straight line, but in general, it can be considered as a straight line. Now, the rolling mill has an entrance side plate thickness H 0 ,
Consider a case where rolling is performed at the delivery side plate thickness h 0 , the rolling position S 0 , and the rolling load P 0 . In FIG. 3, the curve a represents the plastic deformation characteristic of the plate at that time, and the straight line c represents the deformation characteristic of the rolling mill. The intersection A of the curve a and the straight line c represents the rolling state at that time. Here, consider the case where the entrance side plate thickness changes from H 0 to H. At this time, the plastic deformation characteristic of the plate is
= H-H 0 changes to a curve B translated in the horizontal direction, and the rolling state moves from point A to point B. At this time, the rolling load and the delivery side plate thickness change to P ′ and h, respectively.
The purpose of AGC is to keep the outlet plate thickness at a constant value h 0 . For this reason, if the rolling position is changed by ΔS from S 0 to S, the rolling state changes from point B to point C, and the outgoing side plate thickness becomes h 0 . The rolling load at this time is P. ΔH, Δ
Since S is a slight change, the following relational expression is selected from the geometrical relation in FIG. 3 when the deformation characteristic of the plate is linearized in the vicinity thereof.

【0004】 ΔP=P−P0=ΔS・tanα=ΔH・tanβ (1) ΔS=ΔH・tanβ/tanα (2) ここで、M=tanα、m=tanβと置くと、式
(2)は次のように表される。 ΔS=m・ΔH/M (3) KFF=m/M (4) 式(4)がフィードフォワードAGCのゲインを表す式
である。
ΔP = P−P0 = ΔS · tan α = ΔH · tan β (1) ΔS = ΔH · tan β / tan α (2) Here, when M = tan α and m = tan β are set, the following equation (2) is obtained. Is represented as ΔS = m · ΔH / M (3) K FF = m / M (4) Formula (4) is a formula representing the gain of the feedforward AGC.

【0005】次にフィードバックAGCゲインについて
説明する。図3において圧延機が入側板厚H0、出側板
厚h0、圧下位置S0、圧延荷重P0で圧延を行っている
場合を考える。この時圧延機は曲線イと直線ハの交点A
で圧延を行っている。ここで何らかの原因により出側板
厚が変化した場合を考える。たとえばフィードフォワー
ドの場合と同様に入側板厚がH0からHに変化した場合
を考える。この時、板の塑性変形特性は曲線イから曲線
ロに変化し、圧延状態は点Aから点Bに移動する。この
時、圧延荷重および出側板厚はそれぞれはP'、hに変
化する。フィードバックAGCの目的は出側板厚hを検
出し、それに基づき圧下位置を制御し出側板厚を一定値
0に保つことである。このために圧下位置をS0からS
までΔSだけ変化させてやると圧延状態は点Bから点C
に変わり出側板厚がh0になる。この時の圧延荷重はP
になる。ΔH、ΔSは微小変化であるからその近傍で板
の変形特性を線形化して考えると図3におけるΔCDBの
幾何学的関係から次の関係式が選られる。
Next, the feedback AGC gain will be described. In FIG. 3, let us consider a case where the rolling mill is rolling at the inlet plate thickness H 0 , the outlet plate thickness h 0 , the rolling position S 0 , and the rolling load P 0 . At this time, the rolling mill is at the intersection A of the curve a and the straight line c.
Is rolling in. Here, consider a case where the outlet plate thickness changes for some reason. For example, consider the case where the entrance side plate thickness changes from H 0 to H as in the case of feedforward. At this time, the plastic deformation characteristics of the plate change from curve A to curve B, and the rolling state moves from point A to point B. At this time, the rolling load and the delivery side plate thickness change to P ′ and h, respectively. The purpose of the feedback AGC is to detect the outlet side plate thickness h, control the rolling position based on it, and maintain the outlet side plate thickness at a constant value h 0 . For this reason, the rolling position is changed from S 0 to S
Change by ΔS until the rolling condition changes from point B to point C
And the outgoing side plate thickness becomes h 0 . The rolling load at this time is P
become. Since ΔH and ΔS are minute changes, the following relational expression is selected from the geometrical relation of ΔCDB in FIG. 3 when linearizing the deformation characteristics of the plate in the vicinity thereof.

【0006】 ΔP'=P−P'=(ΔS−Δh)・M=Δh・m (5) ΔS=Δh・(1+m/M) (6) KFB=1+m/M (7) 式(7)がフィードバックAGCのゲインを表す式であ
る。
ΔP ′ = P−P ′ = (ΔS−Δh) · M = Δh · m (5) ΔS = Δh · (1 + m / M) (6) K FB = 1 + m / M (7) Formula (7) Is an expression representing the gain of the feedback AGC.

【0007】Mは圧延機の剛性を表す値で、ミル定数と
呼ばれ、一般に定数と考えてさしつかえない。mは板の
塑性変形特性を表す変数であり、曲線ロの点Cにおける
接線の傾きである。しかしながらmの値は検出器により
検出される量から直接演算することができないため、こ
のままでは式(4)、(7)の値を求めることができな
い。この問題を解決するため従来技術ではmの代わりに
図3において、曲線ロが横軸と交わる点Eを考え、線分
CEの傾きで代用していた。 m≒tanγ=P/(H−h) (8) 式(8)で示されるように板の塑性変形抵抗mはP、
H、hより近似的に求められる。しかしながら、正確に
はmは点Cにおける曲線ロの接線の傾きであるので、式
(8)により演算されたmの値は誤差を含んでいるた
め、特にフィードフォワードAGCにおいて十分な板厚
誤差修正効果が得られないという欠点があった。本発明
は上記問題点に鑑みてなされたものであり、その目的は
AGCゲインを最適化し、出側板厚偏差を減少させより
精度の高い出側板厚が得られるようにすることにある。
M is a value representing the rigidity of the rolling mill and is called a mill constant, which can be considered as a constant in general. m is a variable representing the plastic deformation characteristic of the plate, and is the slope of the tangent line at the point C of the curve b. However, since the value of m cannot be directly calculated from the amount detected by the detector, the values of equations (4) and (7) cannot be obtained as they are. In order to solve this problem, in the prior art, the point E where the curve B intersects the horizontal axis in FIG. 3 was considered instead of m, and the inclination of the line segment CE was used instead. m≈tan γ = P / (H−h) (8) As shown by the equation (8), the plastic deformation resistance m of the plate is P,
It can be approximately calculated from H and h. However, to be precise, since m is the slope of the tangent to the curve B at the point C, the value of m calculated by the equation (8) contains an error, so that the plate thickness error correction is sufficient especially in the feedforward AGC. There was a drawback that it was not effective. The present invention has been made in view of the above problems, and an object thereof is to optimize the AGC gain, reduce the deviation of the outgoing side plate thickness, and obtain a more accurate outgoing side plate thickness.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
するため、冷間圧延機の入側および出側に厚み計を有
し、入側厚み計は入側板厚および入側板厚設定値と入側
板厚検出値との差である入側板厚偏差を検出し、出側厚
み計は出側板厚および出側板厚設定値と出側板厚検出値
との差である出側板厚偏差を検出し、AGCゲインは基
準ゲインとして入側板厚検出値と出側板厚検出値との差
および圧延荷重検出値とから演算する冷間圧延機の自動
板厚制御方法において、入側板厚偏差検出値を入側厚み
計位置から出側厚み計位置までトラッキングし、そのト
ラッキング途中、入側板厚偏差トラッキングが圧延機圧
下点に到達した時、圧下位置制御された結果としてのそ
れに対応する圧延機の圧下量変化を検出し、その値を圧
下点から出側厚み計までトラッキングし、出側厚み計ま
でトラッキングされた入側板厚偏差のトラッキング値と
圧下位置のトラッキング値と出側板厚偏差とによりAG
Cゲイン設定値の過不足を判定し、AGCゲインを自動
的に調節するものである。また、前記AGCゲインの調
節は、フィードフォワードAGCのゲインの適正さの度
合いを表わす値Kを、Kの値が複数回連続して設定した
第一のしきい値(k1)より大きい時は定数Δmを加算
し板の塑性変形抵抗である新しいmの値とし、Kの値が
複数回連続して第二のしきい値(k2)より小さい時は
定数Δmを減算し新しいmの値とし、そのいずれでもな
い時はmの値をそのまま保持して調節するものである。
In order to solve the above problems, the present invention has thickness gauges on the inlet side and outlet side of a cold rolling mill, and the inlet side thickness gauge is an inlet side plate thickness and an inlet side plate thickness set value. And the input side thickness detection value, the output side thickness gauge detects the output side thickness and the output side thickness gauge detects the output side thickness and the output side thickness deviation, which is the difference between the output side thickness setting value and the output side thickness detection value. In the automatic strip thickness control method of the cold rolling mill, the AGC gain is calculated as the reference gain from the difference between the inlet side thickness detection value and the outlet side thickness detection value and the rolling load detection value. Tracking from the inlet side thickness gauge position to the outlet side thickness gauge position, and when the inlet side thickness deviation tracking reaches the rolling mill reduction point during the tracking, the corresponding reduction amount of the rolling mill as a result of the reduction position control Change is detected, and the value is measured from the rolling point to the output side thickness gauge. In tracked, the exit side thickness to gauge tracked thickness at entrance side deviation tracking value and output a tracking values of pressing position side thickness deviation and the AG
The AGC gain is automatically adjusted by determining whether the C gain set value is excessive or insufficient. Further, the adjustment of the AGC gain is a constant when the value K indicating the degree of adequacy of the gain of the feedforward AGC is larger than the first threshold value (k1) which is continuously set a plurality of times. Δm is added to obtain a new value of m, which is the plastic deformation resistance of the plate. When the value of K is smaller than the second threshold value (k2) continuously for a plurality of times, the constant Δm is subtracted to obtain a new value of m. When neither is the case, the value of m is held as it is for adjustment.

【0009】[0009]

【発明の実施の形態】本発明の実施例を図面に基づいて
以下に説明する。本発明の板厚制御システム構成図を図
1に示す。本発明は、図1のようなAGCシステムにお
いて板の塑性変形特性を表す変数mの演算誤差を自動的
に補正し、より精度の高いフィードフォワードAGCゲ
インKFFとフィードバックAGCゲインKFBを得る手法
に関するものである。本発明の実施例を図に基づいて説
明する。図1において、従来例と同一名称には極力同一
符号を付け重複説明を省略する。21、22は比較器、
23、24はカウンタ、25はシフトレジスタ、26、
27は演算手段、28は判定手段である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a block diagram of the plate thickness control system of the present invention. The present invention is a method for automatically correcting a calculation error of a variable m representing a plastic deformation characteristic of a plate in an AGC system as shown in FIG. 1 to obtain a more accurate feedforward AGC gain K FF and feedback AGC gain K FB. It is about. An embodiment of the present invention will be described with reference to the drawings. In FIG. 1, the same names as those of the conventional example are denoted by the same reference numerals as much as possible, and redundant description is omitted. 21 and 22 are comparators,
23 and 24 are counters, 25 is a shift register, 26,
27 is a calculation means, and 28 is a determination means.

【0010】入側厚み計1で検出された入側板厚はシフ
トレジスタ25に入力される。このシフトレジスタ25
はn個のレジスタを有し、入側厚み計から出側厚み計ま
での距離をn−1等分した距離ごとにサンプルされた入
側板厚のサンプル値ΔH1、ΔH2・・・ΔHnが格納さ
れており、入側厚み計でサンプルされこのシフトレジス
タにΔH1として入力された入側板厚偏差ΔHが板の走
行量に合わせてシフトパルス(1)またはシフトパルス
(2)によりトラッキングされ、シフトレジスタ内の出
側厚み計位置に到達した時にΔHnとしてシフトレジス
タ25から出力される。このトラッキングを進めるシフ
トパルスは板が入側厚み計位置から圧延機5の圧下点に
到達するまでは入側デフレクタロール3に取り付けられ
たパルス発信器8(以下PLGと略記する)の発生パル
ス量をカウンタ23で計数し、入側板の一定走行長を比
較器21により判定し発生される。また、板が圧延機5
を通過し、出側厚み計2に到達するまでは、出側デフレ
クタロール4に取り付けられたPLG9の発生パルス量
をカウンタ24で計数し、出側板の一定走行長を比較器
22により計数し、シフトパルスが発生される。このよ
うにして入側厚み計1でサンプルされた入側板厚偏差は
その点が出側厚み計に到達した時に、このシフトレジス
タ25からΔHnとして出力されるが、この値と、この
時出側厚み計で検出された出側板厚偏差Δhとから次の
値が計算される。
The entrance-side plate thickness detected by the entrance-side thickness gauge 1 is input to the shift register 25. This shift register 25
Has n registers, and sample values ΔH 1 , ΔH 2, ... ΔH n of the inlet side plate thickness sampled for each distance obtained by equally dividing the distance from the inlet side thickness gauge to the outlet side thickness gauge by n−1. Is stored, the inlet side thickness deviation ΔH which is sampled by the inlet side thickness meter and input as ΔH 1 to this shift register is tracked by the shift pulse (1) or the shift pulse (2) according to the traveling amount of the plate. When the output side thickness gauge position in the shift register is reached, it is output from the shift register 25 as ΔH n . The shift pulse for advancing this tracking is the amount of pulse generated by the pulse generator 8 (hereinafter abbreviated as PLG) attached to the inlet side deflector roll 3 until the plate reaches the rolling point of the rolling mill 5 from the inlet side thickness gauge position. Is counted by the counter 23, and the constant running length of the entrance side plate is determined by the comparator 21 and generated. In addition, the plate is rolling mill 5
Until it reaches the exit side thickness gauge 2, the generated pulse amount of the PLG 9 attached to the exit side deflector roll 4 is counted by the counter 24, and the constant running length of the exit side plate is counted by the comparator 22, A shift pulse is generated. The entrance side plate thickness deviation sampled by the entrance side thickness meter 1 in this way is output as ΔH n from this shift register 25 when the point reaches the exit side thickness meter. The following value is calculated from the output side plate thickness deviation Δh detected by the side thickness meter.

【0011】 K=Δh/ΔHn (9) 式(9)の値はフィードフォワードAGCのゲインの適
正さの度合いを表している。すなわち、フィードフォワ
ードAGCゲインが最適値であれば入側板厚偏差ΔHに
対しフィードフォワードAGCが理想的に動作し、出側
板厚偏差は零になる。フィードフォワードAGCゲイン
が最適値よりも小さければ、フィードフォワードAGC
の入側板厚偏差修正動作が不足になり、入側板厚偏差と
同じ符号を持つ出側板厚偏差が残り、Kが正の値をと
る。一方、フィードフォワードAGCゲインが最適値よ
りも大きければ、フィードフォワードAGCの入側板厚
偏差修正動作が過補償になり、入側板厚偏差と異なる符
号を持つ出側板厚偏差が発生し、Kが負の値を取る。本
発明ではこのような考え方に基づき、Kの値がx回(た
とえばx=5)連続してしきい値k1より大きい時は定
数Δmを加算し新しいmの値とする。また、Kの値がx
回連続してしきい値k2より小さい時は定数Δmを減算
し新しいmの値とする。そのいずれでもない時はmの値
を保持する。ここでKの値のx回連続性をmの増減の条
件に入れたのは安定したゲインを得るためである。ま
た、元になるmの値は従来技術と同様に式(8)で演算
される。
K = Δh / ΔH n (9) The value of the equation (9) represents the degree of appropriateness of the gain of the feedforward AGC. That is, if the feedforward AGC gain is an optimum value, the feedforward AGC ideally operates with respect to the inlet side plate thickness deviation ΔH, and the output side plate thickness deviation becomes zero. If the feedforward AGC gain is smaller than the optimum value, the feedforward AGC gain
The input side plate thickness deviation correction operation of 1 becomes insufficient, and the output side plate thickness deviation having the same sign as the input side plate thickness deviation remains, and K has a positive value. On the other hand, if the feedforward AGC gain is larger than the optimum value, the input side plate thickness deviation correction operation of the feedforward AGC becomes overcompensated, an output side plate thickness deviation having a sign different from the input side plate thickness deviation occurs, and K is negative. Takes the value of. In the present invention, on the basis of such an idea, when the value of K is larger than the threshold value k1 x times (for example, x = 5) continuously, the constant Δm is added to obtain a new value of m. Also, the value of K is x
When it is smaller than the threshold value k2 consecutively, the constant Δm is subtracted to obtain a new value of m. When neither of them is satisfied, the value of m is held. The reason why the continuity of the K value x times is included in the condition of increasing or decreasing m is to obtain a stable gain. The original value of m is calculated by the equation (8) as in the prior art.

【0012】[0012]

【発明の効果】従来技術ではAGCゲインが適正値でな
く、板厚偏差が十分修正されずに残存し、板厚精度を低
下させる主たる原因になっていた。本発明により、AG
Cゲインを最適化し、出側板厚偏差を減少させ、より精
度の高い出側板厚が得られるようになる。
In the prior art, the AGC gain was not an appropriate value, and the plate thickness deviation remained without being corrected, which was the main cause of lowering the plate thickness accuracy. According to the present invention, AG
By optimizing the C gain and reducing the deviation of the outgoing side plate thickness, a more accurate outgoing side plate thickness can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の板厚制御システム構成図。FIG. 1 is a block diagram of a plate thickness control system of the present invention.

【図2】従来の板厚制御システム構成図。FIG. 2 is a block diagram of a conventional plate thickness control system.

【図3】冷間圧延機におけるAGCの考え方を表した
図。
FIG. 3 is a diagram showing the concept of AGC in a cold rolling mill.

【符号の説明】[Explanation of symbols]

1 入側厚み計 2 出側厚み計 3 入側デフレクタロール 4 出側デフレクタロール 5 圧延機 6 入側コイル 7 出側コイル 8、9 パルス発生器 10 積分器 11 乗算器 12 フィードバックAGCゲイン 13 板速度演算器 14 加算器 15 サーボアンプ 16 フィードフォワード 17、25 シフトレジスタ 18、23、24 カウンタ 19 設定器 20、21、22 比較器 26、27 演算手段 28 判定手段 29 サーボバルブ 1 Entry side thickness gauge 2 Outgoing side thickness gauge 3 Entry side deflector roll 4 Deflector roll on the exit side 5 rolling mills 6 Inlet coil 7 Output coil 8, 9 pulse generator 10 Integrator 11 multiplier 12 Feedback AGC gain 13 Plate speed calculator 14 adder 15 Servo amplifier 16 Feedforward 17,25 shift register 18,23,24 counter 19 Setting device 20, 21, 22 comparator 26, 27 computing means 28 Judgment means 29 Servo valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷間圧延機の入側および出側に厚み計を
有し、入側厚み計は入側板厚および入側板厚設定値と入
側板厚検出値との差である入側板厚偏差を検出し、出側
厚み計は出側板厚および出側板厚設定値と出側板厚検出
値との差である出側板厚偏差を検出し、AGCゲインは
基準ゲインとして入側板厚検出値と出側板厚検出値との
差および圧延荷重検出値とから演算する冷間圧延機の自
動板厚制御方法において、 入側板厚偏差検出値を入側厚み計位置から出側厚み計位
置までトラッキングし、そのトラッキング途中、入側板
厚偏差トラッキングが圧延機圧下点に到達した時、圧下
位置制御された結果としてのそれに対応する圧延機の圧
下量変化を検出し、その値を圧下点から出側厚み計まで
トラッキングし、出側厚み計までトラッキングされた入
側板厚偏差のトラッキング値と圧下位置のトラッキング
値と出側板厚偏差とによりAGCゲイン設定値の過不足
を判定し、AGCゲインを自動的に調節することを特徴
とする冷間圧延機の自動板厚制御方法。
1. A cold rolling mill has thickness gauges on the inlet side and outlet side, and the inlet side thickness gauge is an inlet side plate thickness or a difference between an inlet side plate thickness set value and an inlet side plate thickness detection value. The output side thickness gauge detects the output side thickness and the output side thickness deviation which is the difference between the output side thickness setting value and the output side thickness detection value, and the AGC gain is the reference gain and the input side thickness detection value. In the automatic strip thickness control method of the cold rolling mill that calculates from the difference between the output side thickness detection value and the rolling load detection value, the input side thickness deviation detection value is tracked from the input side thickness gauge position to the output side thickness gauge position. During the tracking, when the incoming side thickness deviation tracking reaches the rolling mill reduction point, the corresponding change in the reduction amount of the rolling mill as a result of the reduction position control is detected, and the value is detected from the reduction point to the exit side thickness. Tracking up to the output side thickness meter A cold rolling machine characterized in that the AGC gain setting value is automatically adjusted by determining excess or deficiency of the AGC gain set value based on the tracking value of the inlet side thickness deviation, the tracking value of the reduction position, and the outlet side thickness deviation. Automatic plate thickness control method.
【請求項2】 前記AGCゲインの調節は、フィードフ
ォワードAGCのゲインの適正さの度合いを表わす値K
を、Kの値が複数回連続して設定した第一のしきい値
(k1)より大きい時は定数Δmを加算し、板の塑性変
形抵抗である新しいmの値とし、Kの値が複数回連続し
て第二のしきい値(k2)より小さい時は定数Δmを減
算し新しいmの値とし、そのいずれでもない時はmの値
をそのまま保持して調節することを特徴とする請求項1
記載の冷間圧延機の自動板厚制御方法。
2. The adjustment of the AGC gain is performed by a value K representing a degree of appropriateness of the gain of the feedforward AGC.
When the value of K is larger than the first threshold value (k1) that is set multiple times in succession, a constant Δm is added to obtain a new value of m that is the plastic deformation resistance of the plate. A constant Δm is subtracted to obtain a new value of m when the value is smaller than the second threshold value (k2) consecutively, and the value of m is held as it is and adjusted when the value is neither of the two. Item 1
An automatic strip thickness control method for the cold rolling mill described.
JP2001372460A 2001-12-06 2001-12-06 Automatic plate thickness-controlling method for cold- rolling mill Pending JP2003170210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372460A JP2003170210A (en) 2001-12-06 2001-12-06 Automatic plate thickness-controlling method for cold- rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001372460A JP2003170210A (en) 2001-12-06 2001-12-06 Automatic plate thickness-controlling method for cold- rolling mill

Publications (1)

Publication Number Publication Date
JP2003170210A true JP2003170210A (en) 2003-06-17

Family

ID=19181351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372460A Pending JP2003170210A (en) 2001-12-06 2001-12-06 Automatic plate thickness-controlling method for cold- rolling mill

Country Status (1)

Country Link
JP (1) JP2003170210A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343365A (en) * 2011-09-16 2012-02-08 中冶南方工程技术有限公司 Method and system for automatic thickness control over high-precision strip steel rolling under monitoring
CN103028610A (en) * 2011-09-29 2013-04-10 株式会社日立制作所 Rolling control device, rolling control method and rolling control program
KR20170073642A (en) 2015-03-26 2017-06-28 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Plate thickness control device for rolled material
CN111715700A (en) * 2020-05-08 2020-09-29 唐山钢铁集团有限责任公司 AGC state detection control method for strip mill
CN113751511A (en) * 2020-06-04 2021-12-07 宝山钢铁股份有限公司 Steel plate thickness control method, computer readable medium and electronic device
JP7503525B2 (en) 2021-07-06 2024-06-20 株式会社神戸製鋼所 Rolling mill thickness control device, method thereof, and rolling system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343365A (en) * 2011-09-16 2012-02-08 中冶南方工程技术有限公司 Method and system for automatic thickness control over high-precision strip steel rolling under monitoring
CN102343365B (en) * 2011-09-16 2013-06-19 中冶南方工程技术有限公司 Method and system for automatic thickness control over high-precision strip steel rolling under monitoring
CN103028610A (en) * 2011-09-29 2013-04-10 株式会社日立制作所 Rolling control device, rolling control method and rolling control program
KR20170073642A (en) 2015-03-26 2017-06-28 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Plate thickness control device for rolled material
JPWO2016151855A1 (en) * 2015-03-26 2017-06-29 東芝三菱電機産業システム株式会社 Thickness control device for rolled material
CN107073536A (en) * 2015-03-26 2017-08-18 东芝三菱电机产业***株式会社 The board thickness control apparatus of rolled parts
CN107073536B (en) * 2015-03-26 2019-11-05 东芝三菱电机产业***株式会社 The board thickness control apparatus of rolled parts
CN111715700A (en) * 2020-05-08 2020-09-29 唐山钢铁集团有限责任公司 AGC state detection control method for strip mill
CN111715700B (en) * 2020-05-08 2022-05-27 唐山钢铁集团有限责任公司 AGC state detection control method for strip mill
CN113751511A (en) * 2020-06-04 2021-12-07 宝山钢铁股份有限公司 Steel plate thickness control method, computer readable medium and electronic device
CN113751511B (en) * 2020-06-04 2024-03-08 宝山钢铁股份有限公司 Steel plate thickness control method, computer readable medium and electronic equipment
JP7503525B2 (en) 2021-07-06 2024-06-20 株式会社神戸製鋼所 Rolling mill thickness control device, method thereof, and rolling system

Similar Documents

Publication Publication Date Title
CN100515592C (en) Rolling mill control device and method
JP2003170210A (en) Automatic plate thickness-controlling method for cold- rolling mill
US11383279B2 (en) Plate thickness control device and plate thickness control method
JP2003001310A (en) Plate thickness control system for continuous rolling mill
JP5158772B2 (en) Thickness control device for rolling mill and thickness control method for rolling mill
JP3400965B2 (en) Plate thickness controller
EP0075946A2 (en) Dimension control device for a continuous rolling machine
JP2803573B2 (en) Manufacturing method of tapered steel plate
JPS6129806B2 (en)
JP3504154B2 (en) Automatic thickness control method and apparatus for rolling mill
JPH08332506A (en) Method for controlling thickness of taper plate
JP2007090437A (en) Thickness control system in revering mill
JP3027897B2 (en) Speed control method and apparatus for tandem rolling mill
JPH0227046B2 (en)
JP2697723B2 (en) Hot continuous rolling method
JP3369611B2 (en) Thickness control method in rolling
JPS6347522B2 (en)
JPS61222623A (en) Detecting method of welded point of strip
JPH0413408A (en) Method for controlling plate thickness
JPH07245976A (en) Speed compensation device for rolling mill
JP2001293510A (en) Method for controlling flying thickness change in continuous hot-rolling mill
JPH0957317A (en) Method and device for controlling plate thickness of tandem rolling mill
JPS5841608A (en) Tracking device for optional position of material to be rolled
JPH01143711A (en) Automatic controller for sheet thickness
JPS6150049B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060817