JP2003169634A - Method for solubilizing muscular protein in water by treating muscular protein with reducing sugar under low relative humidity and water-soluble sugar-added muscular protein - Google Patents

Method for solubilizing muscular protein in water by treating muscular protein with reducing sugar under low relative humidity and water-soluble sugar-added muscular protein

Info

Publication number
JP2003169634A
JP2003169634A JP2001373107A JP2001373107A JP2003169634A JP 2003169634 A JP2003169634 A JP 2003169634A JP 2001373107 A JP2001373107 A JP 2001373107A JP 2001373107 A JP2001373107 A JP 2001373107A JP 2003169634 A JP2003169634 A JP 2003169634A
Authority
JP
Japan
Prior art keywords
meat
protein
reducing
muscle
relative humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001373107A
Other languages
Japanese (ja)
Other versions
JP3860025B2 (en
Inventor
Hiroki Saeki
宏樹 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Technology Licensing Office Co Ltd
Original Assignee
Hokkaido Technology Licensing Office Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Technology Licensing Office Co Ltd filed Critical Hokkaido Technology Licensing Office Co Ltd
Priority to JP2001373107A priority Critical patent/JP3860025B2/en
Publication of JP2003169634A publication Critical patent/JP2003169634A/en
Application granted granted Critical
Publication of JP3860025B2 publication Critical patent/JP3860025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Meat, Egg Or Seafood Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solubilize meats or proteins in water under a low ionic strength which is lower than the concentration of physiological saline solution. <P>SOLUTION: This method for solubilizing the meats comprises mincing the various meats, extracting the meats to obtain the muscular proteins or as such, mixing the muscular proteins or the meats with a reducing saccharide, dehydrating the mixture, retaining the dehydrated product at 30 to 70°C under a relative humidity of ≤35% to maintain the water content of the mixture to 0.25 to 6%. Thus, the meats or muscular proteins can be solubilized in water even in a low ionic strength. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本件発明は、水産加工業、食
肉加工業等の食品加工分野、更には、健康食品、更には
繊維、素材産業の分野に関わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of food processing such as fishery processing and meat processing, as well as health food, and further to the fields of textiles and raw materials.

【0002】[0002]

【従来の技術】魚肉・畜肉は、練り製品、ソーセージ等
種々の加工食品として利用されている。これは、魚肉・
畜肉中のタンパク質が有するゲル形成能、乳化能、保水
能などの機能特性を利用するものである。魚肉から抽出
されたタンパク質成分は、未だ食品に十分利用されてい
ない。また、主として骨に含まれるタンパク質であるゼ
ラチンは、古くより、煮こごりやゼリーとして利用され
ていたが、ゼラチンのアミノ酸組成が極めて特異なもの
であることから、嗜好品としての意義は多いが、その用
途は限られたものであった。
2. Description of the Related Art Fish meat and livestock meat are used as various processed foods such as paste products and sausages. This is fish meat
It utilizes functional properties such as gel-forming ability, emulsifying ability, and water retention ability of proteins in livestock meat. The protein components extracted from fish meat are not yet fully utilized in food products. In addition, gelatin, which is a protein mainly contained in bone, has been used as boiled rice and jelly for a long time, but since the amino acid composition of gelatin is extremely unique, it has great significance as a luxury product, Its use was limited.

【0003】[0003]

【発明が解決しようとする課題】筋肉タンパク質は、上
記のゲル形成能、乳化能、保水能等の機能特性を持つ
が、筋肉タンパク質は変質しやすく、機能特性の保持が
困難であるという問題があった。更に、魚肉には、多量
の加工残査が生じるが、この有効利用も望まれていた。
また、他方、咀嚼機能が衰えた高齢者や病人に、栄養価
の高い蛋白質を摂取しやすいように、液状の高タンパク
含有食品の開発も望まれてきた。
Muscle proteins have the above-mentioned functional properties such as gel-forming ability, emulsifying ability, and water-retaining ability, but muscle proteins are liable to be deteriorated and it is difficult to maintain the functional characteristics. there were. Furthermore, a large amount of processing residue is generated in fish meat, and its effective use has also been desired.
On the other hand, it has been desired to develop a liquid high protein content food so that an elderly person or a sick person whose masticatory function is deteriorated can easily ingest a protein having a high nutritional value.

【0004】ところが、従来、魚肉を可溶化する技術と
しては、タンパク質分解酵素や酸を用いた加水分解法が
あるが、不十分な低分子化では苦みペプチドを生成する
という欠点があった。また、加水分解により、タンパク
質分子の有するさまざまな加工特性は分子の断裂によっ
て失われてしまう問題があった。
However, conventionally, as a technique for solubilizing fish meat, there has been a hydrolysis method using a proteolytic enzyme and an acid, but there is a drawback that a bitter peptide is produced when the molecular weight is insufficient. In addition, due to hydrolysis, various processing properties of protein molecules are lost due to rupture of the molecules.

【0005】本発明者等は、既に筋肉タンパク質にメイ
ラード反応により糖を付加することで、機能特性を保持
しつつ、タンパク質の機能を安定できないか試みたとこ
ろ、糖付加した筋原線維タンパク質画分が低塩濃度でも
可溶化することを既に見いだし報告している(Journal
of Agricultural and Food chemistry 1997, Vol.45,N
o.9, pp.3419-3422, 及びJournal of Agricultural and
Food Chemistry Vo.48, No.1, pp.17-21)。
The present inventors have tried to add a sugar to a muscle protein by the Maillard reaction to stabilize the function of the protein while retaining the functional characteristics. As a result, the glycosylated myofibrillar protein fraction Has already been found and reported to be solubilized even at low salt concentrations (Journal
of Agricultural and Food chemistry 1997, Vol.45, N
o.9, pp.3419-3422, and Journal of Agricultural and
Food Chemistry Vo.48, No.1, pp.17-21).

【0006】なお、メイラード反応は、還元糖とアミノ
酸のαアミノ基又はεアミノ基との反応で、シッフ塩基
の形成に始まり、転移反応を経て、比較的無色なアマリ
ド化合物を生成するまでの初期反応と、更に複雑な重合
反応を起し、褐色の高分子(メライノジン)を生成する
中期・終期反応に分類することができる。初期反応は、
比較的穏和な条件下で生じ、温度が高くかつ時間が長く
なるにつれ、中期、終期反応と進行するもので、初期反
応は反応系の水分含量に依存し、相対湿度が65〜70%で
最大となる。中期・終期反応は酸素や金属などの触媒が
共存すると促進されるといわれている(化学総説 No.4
3 食糧と化学 社団法人日本化学会編、学会出版セン
ター 昭和59年2月28日発行 第107〜109
頁)。筋肉タンパク質について言うと、魚肉タンパク質
中の反応性リジン残基と糖の還元末端との間のでメイラ
ード反応により、タンパク質に糖が付加される。筋肉タ
ンパク質の主成分であるミオシン分子には、ロッドと呼
ばれる分子構造の存在が存在し、ロッド部位は水に不溶
である。とくに、低イオン強度下でフィラメントを形成
して凝集するので、ミオシン分子は水に不溶である。と
ころが糖がロッド部分に結合すると、このフィラメント
形成能が失われ、さらに当該部位の親水性が増大するの
で、ミオシン分子は水溶化し、結果として筋肉全体が生
理的条件でも溶解することとなる。
[0006] The Maillard reaction is a reaction between a reducing sugar and an α-amino group or an ε-amino group of an amino acid, which starts with the formation of a Schiff base and undergoes a rearrangement reaction until the formation of a relatively colorless amalido compound. It can be classified into a reaction and an intermediate-stage / end-stage reaction in which a more complicated polymerization reaction is caused to generate a brown polymer (melinidine). The initial reaction is
It occurs under relatively mild conditions and progresses as the temperature rises and the time increases, with intermediate and final reactions.The initial reaction depends on the water content of the reaction system, and the maximum relative humidity is 65 to 70%. Becomes It is said that mid-term and end-term reactions are promoted in the presence of catalysts such as oxygen and metals (Chemical Review No.
3 Food and Chemistry The Chemical Society of Japan, Academic Publishing Center, Published February 28, 1984, 107-109
page). Regarding muscle proteins, sugars are added to proteins by the Maillard reaction between the reactive lysine residue in fish meat proteins and the reducing end of the sugar. The myosin molecule, which is the main component of muscle proteins, has a molecular structure called a rod, and the rod site is insoluble in water. In particular, myosin molecules are insoluble in water because they form filaments and aggregate under low ionic strength. However, when sugar binds to the rod portion, the filament forming ability is lost and the hydrophilicity of the portion is further increased, so that the myosin molecule becomes water-soluble, and as a result, the whole muscle is dissolved even under physiological conditions.

【0007】従来は、魚肉タンパク質の糖付加は、次の
ような工程で行っていた。すなわち、魚肉の背部普通筋
を細切し、50mM NaClにて3回洗浄した後、ホモジナイ
ズし、ろ過後、5000g−15分の遠心分離を数回行って魚
類筋原線維タンパク質画分(Mf)を沈殿させ、50mM N
aClに均質に懸濁し回収した。ミオシンは、このように
して得たMfを硫安分画法によって精製して得る。
Conventionally, sugar addition of fish meat protein has been carried out in the following steps. That is, the normal muscle of the back of fish meat was cut into small pieces, washed three times with 50 mM NaCl, homogenized, filtered, and then centrifuged at 5000 g-15 minutes several times to give a fish myofibrillar protein fraction (Mf). 50 mM N
It was uniformly suspended in aCl and collected. Myosin is obtained by purifying Mf thus obtained by the ammonium sulfate fractionation method.

【0008】得られたMf及びミオシンを、グルコース
又はリボースで修飾する際には、0.1〜0.6 Mグルコー
ス又はリボースを含む50mM NaClにMf又はミオシンを
懸濁し、凍結乾燥し、凍結乾燥物を、恒温恒湿度乾燥機
によって30〜50℃、相対湿度65%下に保持してタンパク
質を糖修飾するものである。また、アルギン酸オリゴ糖
により修飾する場合は、50mMNaCl−0.3〜0.6 Mソルビ
トール溶液にMf又はミオシンを懸濁し、オリゴ糖を混
合し、凍結乾燥させ、タンパク質―糖混合物を30〜40
℃、相対湿度65%下で、保持して修飾する。
When the obtained Mf and myosin are modified with glucose or ribose, Mf or myosin is suspended in 50 mM NaCl containing 0.1 to 0.6 M glucose or ribose, freeze-dried, and the freeze-dried product is incubated at a constant temperature. The protein is sugar-modified by keeping it at 30 to 50 ° C and 65% relative humidity with a constant humidity dryer. When modified with alginic acid oligosaccharide, Mf or myosin is suspended in 50 mM NaCl-0.3 to 0.6 M sorbitol solution, the oligosaccharides are mixed, and the mixture is freeze-dried to give a protein-sugar mixture at 30-40%.
Hold and modify at ℃ and 65% relative humidity.

【0009】しかしながら、筋肉タンパク質の主成分で
あるミオシンは、これまで研究がおこなわれてきた乳タ
ンパク質、血漿タンパク質、植物タンパク質などよりも
巨大分子で複雑な構造をしており、熱的に不安定であ
る。そのため、相対湿度65〜70%に保持すると、メイラ
ード反応が進行して糠が結合しても周囲に存在する水分
子の熱運動の影響を受けて変性してしまい、水溶化の度
合が低いことがわかった。実際、このようにして修飾さ
れたタンパク質は、0.1MのNaClでは、水溶化の程度
は、最大55〜64%にすぎず、工業的に利用するために
は、歩留まりが高いとは言えないものであった。特に、
食品工業などで利用するためには、通常食品に含まれる
塩分は、生理的食塩水濃度よりも低く、さらに低イオン
強度下での水溶化が望まれていた。
[0009] However, myosin, which is the main component of muscle proteins, is a macromolecule and has a more complex structure than the milk proteins, plasma proteins, and plant proteins that have been studied so far, and is thermally unstable. Is. Therefore, if the relative humidity is maintained at 65-70%, even if the Maillard reaction proceeds and the bran is bound, it will be denatured due to the thermal motion of the surrounding water molecules, and the degree of water solubilization will be low. I understood. In fact, the protein modified in this way has a water-solubilization degree of only 55 to 64% at a maximum with 0.1 M NaCl, which means that the yield is not high for industrial use. Met. In particular,
For use in the food industry and the like, the salt content of ordinary foods is lower than the physiological saline concentration, and it has been desired that the salt be solubilized under low ionic strength.

【0010】[0010]

【課題を解決するための手段】本件発明者等は、従来、
至適であると考えられていた30〜50℃、相対湿度65%の
高温高湿下で種々の糖を利用するなど条件を変えて、魚
肉タンパク質のメイラード反応の研究を続けてきた。と
ころが、たまたま、実験装置の動作不良から、メイラー
ド反応処理を低相対湿度下でおこしてしまったところ、
意外にも、低イオン強度下の水溶性が増加していた。そ
こで、0.6Mソルビトールを含むサケ筋肉の懸濁液を作
成し、これに筋原線維タンパク質量と等量のアルギン酸
オリゴ糖を溶解したあと脱水して、水分を8.4%とし
た。これをさまざまな湿度雰囲気(相対湿度5〜80%)に
保持して50℃で8時間保持してタンパク質と糖を反応さ
せた。その結果、相対湿度が35%以下では試料の水分が
さらに低下して(3%以下)安定するが、相対湿度が40
%を越えると逆に反応過程で環境水分が吸収されること
なった。たとえば、相対湿度50%と65%の場合には、8
時間後の試料水分はそれぞれ11.1%と20.7%に達した。
その後、このタンパク質を0.1MNaC1に溶解して溶解度
を測定したところ、反応時の相対湿度と溶解度の改変効
果の間には有為な関係があることが認められた。すなわ
ち、図1及び図2に示されるとおり、相対湿度が35%以
下で、反応過程における魚肉タンパク質試料の水分が6
%以下という条件で反応させたときに、高い溶解度が付
与できることを見いだしたものである。
SUMMARY OF THE INVENTION The inventors of the present invention have been
We have continued to study the Maillard reaction of fish meat proteins by changing the conditions such as using various sugars under the high temperature and high humidity of 30 to 50 ℃ and relative humidity of 65%, which were considered to be optimal. However, when I happened to perform the Maillard reaction treatment under low relative humidity due to the malfunction of the experimental equipment,
Surprisingly, the water solubility under low ionic strength was increased. Therefore, a suspension of salmon muscle containing 0.6 M sorbitol was prepared, and alginic acid oligosaccharide in an amount equal to the amount of myofibrillar protein was dissolved in this suspension, followed by dehydration to adjust the water content to 8.4%. This was kept in various humidity atmospheres (relative humidity 5 to 80%) and kept at 50 ° C. for 8 hours to react protein with sugar. As a result, when the relative humidity is 35% or less, the water content of the sample further decreases (3% or less) and stabilizes, but the relative humidity is 40% or less.
On the other hand, if it exceeds%, environmental moisture will be absorbed in the reaction process. For example, 8 for relative humidity of 50% and 65%
The moisture content of the sample after the time reached 11.1% and 20.7%, respectively.
Then, when this protein was dissolved in 0.1 M NaC1 and the solubility was measured, it was recognized that there was a significant relationship between the relative humidity during the reaction and the effect of modifying the solubility. That is, as shown in FIGS. 1 and 2, the relative humidity was 35% or less, and the water content of the fish protein sample in the reaction process was 6%.
It was found that a high solubility can be imparted when the reaction is carried out under the condition of not more than%.

【発明の実施の形態】本件発明は、相対湿度を抑えた条
件下で、筋肉タンパク質に糖を付加することにより、低
イオン強度下でも、十分な可溶性を持った水溶性のタン
パク質を製造するものである。本件発明は、種々の肉類
を細切りして、筋肉タンパク質を抽出し、或いはそのま
ま、還元性糖類と混合し、脱水し、相対湿度35%以下で
30〜70℃の範囲内に保持することにより、混合物中の水
分含量を0.25〜6%に維持することで、肉類又は筋肉タ
ンパク質を低イオン強度でも、水溶性とするものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is to produce a water-soluble protein having sufficient solubility even under low ionic strength by adding a sugar to a muscle protein under a condition of suppressing relative humidity. Is. In the present invention, various meats are shredded to extract muscle protein, or as it is, mixed with reducing sugars, dehydrated, and dried at a relative humidity of 35% or less.
By keeping the water content in the mixture at 0.25 to 6% by keeping it in the range of 30 to 70 ° C, the meat or muscle protein becomes water soluble even at low ionic strength.

【0011】本件発明で使用できる筋肉タンパク質とし
ては、魚肉、畜肉、貝類、イカ類などあらゆる生物の筋
肉タンパク質が挙げられる。更に、本件発明でいう肉類
とは、筋肉タンパク質を含有する肉類で、軟体動物又は
甲殻類の筋肉、魚肉、又は畜肉から選ばれた肉のことを
意味する。これら肉類を細切り処理することにより、筋
肉タンパク質を抽出精製する必要なく、そのまま水溶性
にすることもできる。細切りとは、上記肉を種々の手段
で切断することを意味し、例えば、ホモジナイズ処理及
び挽肉処理などが含まれ、好適には5ミリ、更に好適に
は3ミリ以下の網目を通過する程度にまで細切り、ある
いはミンチとすることが望ましい。
The muscle proteins that can be used in the present invention include muscle proteins of all organisms such as fish meat, meat, shellfish and squid. Furthermore, the term “meat” used in the present invention means meat containing muscle protein, and means meat selected from the muscles of molluscs or crustaceans, fish meat, or livestock meat. By cutting these meats into small pieces, the muscle proteins can be rendered water-soluble as they are without the need to extract and purify muscle proteins. Shredded means cutting the above-mentioned meat by various means, and includes, for example, homogenization treatment and minced meat treatment, and the like, preferably to the extent that it passes a mesh of 5 mm or less, more preferably 3 mm or less. It is desirable to chop up or to mince.

【0012】本件発明で使用できる還元性糖類として
は、単糖(グルコース、リボースなど)、平均重合度20以
下のオリゴ糖類で還元末端を有しているもの、例えば、
アルギン酸オリゴ糖、キトサンオリゴ糖などの還元性オ
リゴ糖が挙げられる。本件発明におけるタンパク質変性
防止剤としては、グルコースやソルビトール等が挙げら
れる。これらソルビトール等タンパク質変性防止剤は、
添加する還元性糖がアルギン酸オリゴ糖等のタンパク質
変性効果が小さいときに特に有効である。
The reducing saccharides that can be used in the present invention include monosaccharides (glucose, ribose, etc.), oligosaccharides having an average degree of polymerization of 20 or less and having reducing ends, for example,
Examples thereof include reducing oligosaccharides such as alginic acid oligosaccharide and chitosan oligosaccharide. Examples of the protein denaturation inhibitor in the present invention include glucose and sorbitol. These protein denaturants such as sorbitol are
It is particularly effective when the reducing sugar to be added has a small protein denaturing effect on alginic acid oligosaccharides and the like.

【0013】本件発明におけるタンパク質と糖の混合比
は、望ましくは、筋肉タンパク質:糖類=1:0.1〜
1:10の範囲であり、更に、軟体動物又は甲殻類の筋
肉、魚肉、又は畜肉と糖との混合比も含有される筋肉タ
ンパク質と糖の比率が同様の範囲が望ましい。
The mixing ratio of protein and sugar in the present invention is preferably muscle protein: sugar = 1: 0.1.
It is preferably in the range of 1:10, and the ratio of muscle protein to sugar contained in the mixture of mollusc or crustacean muscle, fish meat or meat and sugar is preferably in the same range.

【0014】筋肉タンパク質又は細切りした軟体動物又
は甲殻類の筋肉、魚肉、又は畜肉から選ばれた肉類は、
糖と混合後、脱水処理に付される。脱水処理は、種々の
手段により行うことができ、例えば、相対湿度10%の
低湿度下での加熱処理や、凍結乾燥、噴霧乾燥、減圧乾
燥等の処理あるいはこれらの組み合わせ処理により行う
ことができる。又、脱水処理により、メイラード反応に
好適な0.25〜6%の水分含量とすることもできるが、脱
水処理終了時点での水分含量が6%を上回るものであっ
たとしても、相対湿度35%以下で、30〜70℃に保持する
ことにより、水分含量を0.25〜6%の範囲にすることも
できる。
The muscle protein or meat selected from minced mollusc or crustacean muscle, fish meat, or livestock meat is
After mixing with sugar, it is dehydrated. The dehydration treatment can be performed by various means, for example, heat treatment under a low humidity of 10% relative humidity, freeze-drying, spray-drying, reduced-pressure drying, or a combination thereof. . Also, the water content of 0.25 to 6%, which is suitable for the Maillard reaction, can be obtained by the dehydration treatment, but even if the water content at the end of the dehydration treatment exceeds 6%, the relative humidity is 35% or less. By maintaining the temperature at 30 to 70 ° C., the water content can be adjusted to the range of 0.25 to 6%.

【0015】なお、本件発明の水溶性筋肉タンパク質
は、その優れた乳化性から、食品添加用乳化剤として使
用できるだけではなく、水溶性であることから、他の食
品への添加・混合が非常に容易となり、従来の畜肉食品
中(あるいは農産食品中)に魚肉を均質に混合して、加
工食品とすることも可能となる。更に、例えば、機能性
のある医療向けプロテインサプライとして、ア)流動食
(嚥下機能低下患者用、ベビーフード)、イ)高蛋白の
スポーツ飲料、ウ)高い乳化能を利用したビタミンA,
D,Eなどの脂溶性ビタミンや高度不飽和脂肪酸をこれら
食品に添加できる。
The water-soluble muscle protein of the present invention can be used not only as an emulsifying agent for food additives because of its excellent emulsifying property, but also because it is water-soluble, it is very easy to add and mix with other foods. Therefore, it becomes possible to mix fish meat into conventional meat products (or agricultural products) homogeneously to prepare processed foods. Furthermore, for example, as a functional protein supply for medical use, a) liquid food (for patients with reduced swallowing function, baby food), b) sports drink with high protein, c) vitamin A using high emulsifying ability,
Fat-soluble vitamins such as D and E and highly unsaturated fatty acids can be added to these foods.

【0016】本件発明の方法で製造された、低イオン強
度下で水溶性である糖付加筋肉タンパク質は、従来の高
湿度下で糖付加されたものとは、タンパク質が変性して
おらず、しかも筋肉タンパク質の主成分であるミオシン
分子の凝集程度が少なく、結果的に加熱凝集しにくいと
いう性質を有する点(図3)で、構造的に相違する、新
規なものである。更に本件発明の方法を実施例により、
詳細に説明する。
The glycosylated muscle protein produced by the method of the present invention, which is water-soluble under low ionic strength, is not denatured as compared with the conventional glycosylated muscle protein under high humidity, and This is a novel structure that differs structurally in that the myosin molecule, which is the main component of muscle protein, has a low degree of aggregation and, as a result, has the property of being less likely to undergo heat aggregation (FIG. 3). Further, the method of the present invention is
The details will be described.

【0017】[0017]

【実施例】[実施例1] ホタテガイとグルコース 細切したホタテガイ貝柱100gに、その筋原線維タンパ
ク質量(18.5%湿重量)と等しい量のグルコース(18.5
g)を混合したのち、加圧と凍結乾燥によって脱水して
水分含量を0.7%とした。これを50℃、相対湿度30%に1
2時間保持したところ、ホタテガイ筋原線維タンパク質
中の60%のリジン残基がグルコースと結合した。このグ
ルコース修飾タンパク質の0.1M NaC1に対する溶解度は8
9%となり、ホタテガイ貝柱の水溶性化が達成できた。な
お、この一連の処理中にタンパク質の分解が全く起こっ
ていないことをSDS−ポリアクリルアミドゲル電気泳動
分析によって確認した。 [実施例2] サケ筋肉とアルギン酸オリゴ糖 サケ筋肉を2mm目のふるい〈J1S-8811〉を通過するサイ
ズまでミートチョッパーで細切した。この魚肉100gに対
してそれに含まれる筋原線維タンパク質量(15%湿重
量)と等量のアルギン酸オリゴ糖(15g)とソルビトー
ル(14.1g)を混合した後、凍結乾燥によって脱水して
水分含量を0.9%とした。続いて60℃で4時間保持したと
ころ、アルギン酸オリゴ糖分子はサケ筋肉中のリジン残
基と反応してタンパク質−アルギン酸オリゴ糖複合体
(以下、Meat-AOと称する)となった。このMeat-AO製造時
の反応相対湿度を35%以下に制御することによって、Me
at-AOの0.05M−0.1M NaC1に対する溶解度は88-93%とな
り、サケ筋肉の水溶性化が達成できた。なお、この一連
の処理中にタンパク質の分解が全く起こっていないこと
を、SDS−ポリアクリルアミドゲル電気泳動分析によっ
て確認した。
[Examples] [Example 1] 100 g of scallop scallops minced with scallops and glucose were placed in an amount of glucose (18.5%) equivalent to the amount of myofibrillar protein (18.5% wet weight).
g) was mixed and then dehydrated by pressurization and freeze-drying to a water content of 0.7%. 1 at 50 ° C and 30% relative humidity
After holding for 2 hours, 60% of lysine residues in scallop myofibrillar protein bound to glucose. The solubility of this glucose-modified protein in 0.1M NaC1 is 8
It was 9%, and the water solubility of the scallop scallop was achieved. It was confirmed by SDS-polyacrylamide gel electrophoresis analysis that no protein degradation occurred during this series of treatments. [Example 2] The salmon muscle and the alginic acid oligosaccharide salmon muscle were cut into small pieces with a meat chopper until they passed through a 2 mm sieve <J1S-8811>. 100 g of this fish meat was mixed with alginic acid oligosaccharide (15 g) and sorbitol (14.1 g) in an amount equal to the amount of myofibrillar protein (15% wet weight) contained in it, and then freeze-dried to dehydrate the water content. It was set to 0.9%. Subsequently, when kept at 60 ° C for 4 hours, the alginate oligosaccharide molecule reacts with the lysine residue in salmon muscle to react with the protein-alginate oligosaccharide complex.
(Hereinafter referred to as Meat-AO). By controlling the reaction relative humidity during the production of Meat-AO to 35% or less, Me
The solubility of at-AO in 0.05M-0.1M NaC1 was 88-93%, and water solubility of salmon muscle was achieved. In addition, it was confirmed by SDS-polyacrylamide gel electrophoresis analysis that no protein degradation occurred during this series of treatments.

【0018】[実施例3]牛もも肉とグルコースあるい
はアルギン酸オリゴ糖 経産牛のもも肉を屠畜後7日間4℃に保持した後、結締組
織をトリミングしてから挽き肉にし(チョッパー網目サ
イズ:3mm目)、5倍量の生理食塩水で3回洗浄した(筋原
線維タンパク質濃度は9.5%)。この洗浄肉に対してそ
れに含まれる筋原繊維タンパク質との重量比率でグルコ
ースとアルギン酸オリゴ糖を1:1および1:0.1で混合し
た。アルギン酸オリゴ糖を添加した場合には、さらにも
も肉の6%に相当する重量のソルビトール(終濃度で約
0.3 M)を混合した。次いで、これらのもも肉-糖混合物
を凍結乾燥によって水分含量を0.7%とした後、50℃で
相対湿度5%に12時間保持し、グルコース修飾筋肉(Meat
-G)あるいはアルギン酸オリゴ糖修飾筋肉(Meat-AO)を得
た。通常の筋肉タンパク質は生理食塩水には溶解しない
が、Meat-GとMeat-AOの0.05M NaC1に対する溶解度は79
%および85%となり、牛肉の水溶性化が達成できた。な
お、この一連の処理中にタンパク質の分解が全く起こっ
ていないことを、SDS−ポリアクリルアミドゲル電気泳
動分析によって確認した。
Example 3 Beef thighs and glucose or alginate oligosaccharides Thighs of multi-productive cattle were kept at 4 ° C. for 7 days after slaughter, and then the tightening tissue was trimmed to obtain ground meat (chopper mesh size: 3 mm ), And washed 3 times with 5 times the amount of physiological saline (myofibrillar protein concentration was 9.5%). Glucose and alginate oligosaccharides were mixed at a ratio of 1: 1 and 1: 0.1 to the washed meat in a weight ratio with the myofibrillar protein contained therein. When alginic acid oligosaccharides were added, the weight of sorbitol equivalent to 6% of the meat was even more
0.3 M) was mixed. Then, these thigh-sugar mixtures were freeze-dried to a water content of 0.7% and then kept at 50 ° C. and a relative humidity of 5% for 12 hours to give glucose-modified muscle (Meat
-G) or an alginic acid oligosaccharide-modified muscle (Meat-AO) was obtained. Normal muscle proteins are not soluble in saline, but Meat-G and Meat-AO have a solubility in 0.05M NaC1 of 79.
% And 85%, and the water-solubilization of beef was achieved. In addition, it was confirmed by SDS-polyacrylamide gel electrophoresis analysis that no protein degradation occurred during this series of treatments.

【0019】[実施例4]サケ筋肉とアルギン酸オリゴ
糖 実施例2と同様の方法で細切りした魚肉(サケ)を0.6
M ソルビトール溶液に懸濁した(筋原線維タンパク質
濃度1%)。これに筋原線維タンパク質と等量のアルギ
ン酸オリゴ糖を加えたのち、凍結乾燥によって水分含量
を8.4%まで脱水した。 (i)50℃で、5%相対湿度下で8時間反応させたとこ
ろ、反応過程でのタンパク質-糖複合体の水分含量は1.6
%となり、0.1M NaCl中での溶解度は93%であり、水溶
化できた。 (ii)50℃で、35%相対湿度下で8時間反応させたと
ころ、反応過程でのタンパク質-糖複合体の水分含量は
5.4%となり、0.1M NaCl中での溶解度は93%であり、水
溶化できた。
[Example 4] Salmon muscle and alginic acid oligosaccharides 0.6 pieces of fish meat (salmon) finely chopped by the same method as in Example 2 was used.
Suspended in M sorbitol solution (myofibrillar protein concentration 1%). After adding an alginic acid oligosaccharide in the same amount as the myofibrillar protein, the water content was dehydrated to 8.4% by freeze-drying. (I) When the reaction was carried out at 50 ° C and 5% relative humidity for 8 hours, the water content of the protein-sugar complex in the reaction process was 1.6.
%, The solubility in 0.1 M NaCl was 93%, and it could be solubilized. (Ii) When the reaction was performed at 50 ° C. and 35% relative humidity for 8 hours, the water content of the protein-sugar complex in the reaction process was
The solubility was 5.4%, and the solubility in 0.1M NaCl was 93%, and it was solubilized.

【0020】[実施例5]サケ筋肉とアルギン酸オリゴ
糖 実施例2と同様の方法で細切りした魚肉(サケ)を0.3
M ソルビトール溶液に懸濁した(筋原線維タンパク質
濃度1%)。これに筋原線維タンパク質と等量のアルギ
ン酸オリゴ糖を加えたのち、凍結乾燥によって水分含量
を4.9%まで脱水した。 (i)50℃で、5%相対湿度下で8時間反応させたとこ
ろ、反応過程でのタンパク質-糖複合体の水分含量は0.8
%となり,0.1M NaCl中での溶解度は89%であり、水溶
化できた。 (ii)50℃で、35%相対湿度下で8時間反応させたと
ころ、反応過程でのタンパク質-糖複合体の水分含量は
3.0%となり、0.1M NaCl中での溶解度は88%であり、水
溶化できた。
[Example 5] Salmon muscle and alginate oligosaccharide 0.3 g of fish meat (salmon) finely chopped by the same method as in Example 2 was used.
Suspended in M sorbitol solution (myofibrillar protein concentration 1%). After adding alginic acid oligosaccharide in the same amount as the myofibrillar protein, the water content was dehydrated to 4.9% by freeze-drying. (I) When the reaction was carried out at 50 ° C. and 5% relative humidity for 8 hours, the water content of the protein-sugar complex in the reaction process was 0.8.
%, The solubility in 0.1 M NaCl was 89%, and it could be solubilized. (Ii) When the reaction was performed at 50 ° C. and 35% relative humidity for 8 hours, the water content of the protein-sugar complex in the reaction process was
The solubility was 3.0%, the solubility in 0.1M NaCl was 88%, and it could be solubilized.

【0021】[比較例1]実施例2と同様の方法で細切
りした魚肉(サケ)を0.6M ソルビトール溶液に懸濁し
た(筋原線維タンパク質濃度1%)。これに筋原線維タ
ンパク質と等量のアルギン酸オリゴ糖を加えたのち、凍
結乾燥によって水分含量を8.4%まで脱水した。 (i)50℃で、55%相対湿度下で8時間反応させたとこ
ろ、反応過程でのタンパク質-糖複合体の水分含量は11.
1%となり0.1M NaCl中での溶解度は73%であった。 (ii)50℃で、65%相対湿度下で8時間反応させたと
ころ、反応過程でのタンパク質-糖複合体の水分含量は2
0.7%となり、0.1M NaCl中での溶解度は61%であった。
Comparative Example 1 Fish meat (salmon) sliced in the same manner as in Example 2 was suspended in a 0.6 M sorbitol solution (myofibrillar protein concentration 1%). After adding an alginic acid oligosaccharide in the same amount as the myofibrillar protein, the water content was dehydrated to 8.4% by freeze-drying. (I) When the reaction was carried out at 50 ° C. and 55% relative humidity for 8 hours, the water content of the protein-sugar complex was 11.
The solubility was 1% and the solubility in 0.1M NaCl was 73%. (Ii) When the reaction was carried out at 50 ° C. and 65% relative humidity for 8 hours, the water content of the protein-sugar complex was 2 during the reaction process.
The solubility was 0.7%, and the solubility in 0.1M NaCl was 61%.

【0022】[比較例2]実施例2と同様の方法で細切
りした魚肉(サケ)を0.3M ソルビトール溶液に懸濁し
た(筋原線維タンパク質濃度1%)。これに筋原線維タ
ンパク質と等量のアルギン酸オリゴ糖を加えたのち、凍
結乾燥によって水分含量を4.9%まで脱水した。 (i)50℃で、55%相対湿度下で8時間反応させたとこ
ろ、反応過程でのタンパク質-糖複合体の水分含量は9.3
%となり、0.1M NaCl中での溶解度は70%であった。 (ii)50℃で、65%相対湿度で8時間反応させたとこ
ろ、反応過程でのタンパク質-糖複合体の水分含量は14.
7%となり,0.1M NaCl中での溶解度は55%であった。
Comparative Example 2 Fish meat (salmon) finely chopped by the same method as in Example 2 was suspended in a 0.3 M sorbitol solution (myofibrillar protein concentration 1%). After adding alginic acid oligosaccharide in the same amount as the myofibrillar protein, the water content was dehydrated to 4.9% by freeze-drying. (I) When reacted at 50 ° C and 55% relative humidity for 8 hours, the water content of the protein-sugar complex in the reaction process was 9.3.
%, And the solubility in 0.1 M NaCl was 70%. (Ii) When reacted at 50 ° C. and 65% relative humidity for 8 hours, the water content of the protein-sugar complex in the reaction process was 14.
The solubility was 7%, and the solubility in 0.1M NaCl was 55%.

【0023】[0023]

【発明の効果】本件発明により、低イオン強度下におい
ても、魚肉、畜肉を始め、種々の筋肉タンパク質を低イ
オン強度下でも、水溶化することに成功した。本発明の
水溶性タンパク質は、魚肉、畜肉をタンパク質、種々の
食品に容易に添加混合でき、食品加工用途を広げ、さら
には、咀嚼機能が低下した病老人のために、タンパク質
補給にも有用であり、更には、このように一旦水溶化の
した後乾燥させることにより、紡糸化、シート化等種々
の成型品を製造することも可能である。このような成型
品は、タンパク質から構成されていることから、廃棄後
も微生物により容易に分解されることから、環境保全に
も優れている。
Industrial Applicability According to the present invention, various muscle proteins such as fish meat and meat, even under low ionic strength, were successfully solubilized under low ionic strength. The water-soluble protein of the present invention can be easily added to and mixed with fish meat and livestock protein, various foods, expands food processing applications, and is also useful for protein supplementation for the sick elderly with reduced masticatory function. In addition, it is also possible to manufacture various molded articles such as spinning and sheeting by once water-solubilizing and then drying. Since such a molded product is composed of protein, it is easily decomposed by microorganisms even after being discarded, and thus it is excellent in environmental protection.

【図面の簡単な説明】[Brief description of drawings]

【図1】糖修飾反応過程の水分がアルギン酸オリゴ糖修
飾したサケ筋原線維タンパク質の溶解度におよぼす影
響。 白丸:実施例4と比較例1で示したサケ筋肉の試料をさ
まざまな湿度下で60℃-4時間保持した。 黒丸:実施例4と比較例1で示したサケ筋肉の試料をさ
まざまな湿度下で50℃-8時間保持した。
FIG. 1 shows the influence of water content during the sugar modification reaction on the solubility of salmon myofibrillar proteins modified with alginate oligosaccharides. White circles: The salmon muscle samples shown in Example 4 and Comparative Example 1 were kept under various humidities at 60 ° C. for 4 hours. Black circles: The salmon muscle samples shown in Example 4 and Comparative Example 1 were kept under various humidities at 50 ° C for 8 hours.

【図2】糖との反応過程における相対湿度が筋肉タンパ
ク質の水溶化におよぼす影響.実験条件は図1と同じ。
[Fig. 2] Effect of relative humidity on water solubilization of muscle protein during reaction with sugar. The experimental conditions are the same as in FIG.

【図3】アルギン酸オリゴ糖修飾したコイ筋原線維タン
パク質の熱凝集性。アルギン酸オリゴ糖修飾したタンパ
ク質を0.16Mと0.5M NaCl(pH 6.7)に溶解した後、
さまざまな温度で3時間加熱した後、その溶解度を測定
した。未修飾のタンパク質は熱変性して凝集し、容易に
不溶化することが分かる。
FIG. 3: Thermal aggregation of carp myofibrillar protein modified with alginate oligosaccharide. After dissolving the alginic acid oligosaccharide-modified protein in 0.16 M and 0.5 M NaCl (pH 6.7),
After heating at various temperatures for 3 hours, its solubility was measured. It can be seen that the unmodified protein is heat-denatured, aggregated, and easily insolubilized.

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 軟体動物又は甲殻類の筋肉、魚肉、又は
畜肉から選ばれた肉類を細切りし、還元性糖類と混合
後、脱水し、30〜70℃の環境下で水分含量を0.25〜6.0
%に維持することによる肉類の水溶化方法。
1. Meat selected from muscles of molluscs or crustaceans, fish meat, or livestock meat is shredded, mixed with reducing sugars, dehydrated, and water content of 0.25 to 6.0 in an environment of 30 to 70 ° C.
A method for solubilizing meat by maintaining the content at%.
【請求項2】 軟体動物又は甲殻類の筋肉、魚肉、又は
畜肉由来の筋肉タンパク質を還元性糖類と混合後、脱水
し、30〜70℃の環境下に水分含量を0.25〜6.0%に維持
することによる筋肉タンパク質の水溶化方法。
2. A muscle protein derived from mollusc or crustacean muscle, fish meat, or livestock meat is mixed with reducing sugars and then dehydrated to maintain the water content at 0.25 to 6.0% in an environment of 30 to 70 ° C. A method for water-solubilizing muscle proteins by the method.
【請求項3】 脱水を水分含量が10%以下となるまで行
う請求項1〜2記載の方法。
3. The method according to claim 1, wherein dehydration is carried out until the water content becomes 10% or less.
【請求項4】 還元糖類が、グルコース、リボース、な
ど還元性単糖、又はキトサンオリゴ糖、アルギン酸オリ
ゴ糖など還元性オリゴ糖である請求項1〜3項記載の方
法。
4. The method according to claim 1, wherein the reducing sugar is a reducing monosaccharide such as glucose or ribose, or a reducing oligosaccharide such as chitosan oligosaccharide or alginic acid oligosaccharide.
【請求項5】 軟体動物又は甲殻類の筋肉、魚肉、又は
畜肉から選ばれた肉類を細切りし、還元性糖類と混合
後、脱水し、相対湿度35%以下でかつ30〜70℃の環境に
保持することによる肉類の水溶化方法。
5. Meat selected from muscles of molluscs or crustaceans, fish meat, or livestock meat is shredded, mixed with reducing sugars, and dehydrated, and the environment is kept at a relative humidity of 35% or less and at 30 to 70 ° C. A method of solubilizing meat by holding it.
【請求項6】 軟体動物又は甲殻類の筋肉、魚肉、又は
畜肉由来の筋肉タンパク質を還元性糖類と混合後、脱水
し、相対湿度35%以下でかつ30〜70℃の環境に保持する
ことによる筋肉タンパク質の水溶化方法。
6. By mixing a muscle protein of mollusc or crustacean muscle, fish meat, or livestock meat with a reducing saccharide, dehydrating the mixture, and maintaining it in an environment of relative humidity of 35% or less and 30 to 70 ° C. Method for solubilizing muscle protein.
【請求項7】 脱水を水分含量が10%以下になるまで行
う請求項5〜6項記載の方法。
7. The method according to claim 5, wherein the dehydration is performed until the water content becomes 10% or less.
【請求項8】 還元糖類が、グルコース、リボースなど
の還元性単糖、または、キトサンオリゴ糖、アルギン酸
オリゴ糖などの還元性オリゴ糖である請求項5〜7項記
載の方法。
8. The method according to claim 5, wherein the reducing sugar is a reducing monosaccharide such as glucose or ribose, or a reducing oligosaccharide such as chitosan oligosaccharide or alginate oligosaccharide.
【請求項9】 軟体動物又は甲殻類の筋肉、魚肉、又は
畜肉から選ばれる肉類を細切りし、還元性糖類と混合
後、脱水し、30〜70℃の環境下に水分含量を0.25〜6%
に維持することにより水溶化された肉類。
9. Meat selected from muscles of molluscs or crustaceans, fish meat, or livestock meat is shredded, mixed with reducing sugars, and dehydrated, and the water content is 0.25 to 6% in an environment of 30 to 70 ° C.
Meat solubilized by maintaining at.
【請求項10】 軟体動物又は甲殻類の筋肉、魚肉、又
は畜肉由来の筋肉タンパク質を還元性糖類と混合後、脱
水し、30〜70℃の環境下で水分含量を0.25〜6%に維持
することにより可溶化された筋肉タンパク質。
10. A muscle protein derived from mollusc or crustacean muscle, fish meat, or livestock meat is mixed with reducing sugars and then dehydrated to maintain the water content at 0.25 to 6% under an environment of 30 to 70 ° C. The solubilized muscle protein.
【請求項11】 還元糖類が、グルコース、リボースな
どの還元性単糖、または、キトサンオリゴ糖、アルギン
酸オリゴ糖などの還元性オリゴ糖である請求項10項記
載の筋肉タンパク質。
11. The muscle protein according to claim 10, wherein the reducing sugar is a reducing monosaccharide such as glucose or ribose, or a reducing oligosaccharide such as chitosan oligosaccharide or alginate oligosaccharide.
【請求項12】 軟体動物又は甲殻類の筋肉、魚肉、又
は畜肉の肉から選ばれた肉類を細切りし、還元性糖類と
混合後、脱水し、相対湿度35%以下でかつ30〜70℃の環
境で水分含量が0.25〜6%となるように保持することに
より水溶化された肉類。
12. Meat selected from muscles of molluscs or crustaceans, fish meat, or meat of livestock meat is shredded, mixed with reducing sugars, and dehydrated, and the relative humidity is 35% or less and 30 to 70 ° C. Meat solubilized by keeping the water content in the environment to be 0.25 to 6%.
【請求項13】 軟体動物又は甲殻類の筋肉、魚肉、又
は畜肉由来の筋肉タンパク質を還元性糖類と混合後、脱
水し、相対湿度35%以下でかつ30〜70℃の環境に保持す
ることにより水溶化された筋肉タンパク質。
13. A muscle protein of mollusc or crustacean muscle, fish meat, or meat derived from meat is mixed with reducing sugars, dehydrated, and kept in an environment of relative humidity of 35% or less and 30 to 70 ° C. Solubilized muscle protein.
【請求項14】 還元糖類が、グルコース、リボースな
どの還元性単糖、または、キトサンオリゴ糖、アルギン
酸オリゴ糖などの還元性オリゴ糖である請求項13項記
載の筋肉タンパク質。
14. The muscle protein according to claim 13, wherein the reducing sugar is a reducing monosaccharide such as glucose or ribose, or a reducing oligosaccharide such as chitosan oligosaccharide or alginate oligosaccharide.
【請求項15】 脱水を相対湿度35%以下の加熱により
行う請求項1〜8項記載の方法。
15. The method according to claim 1, wherein dehydration is performed by heating at a relative humidity of 35% or less.
【請求項16】 脱水工程が相対湿度35%以下の加熱に
より行うものである、請求項9〜14項記載の水溶化さ
れた肉類又は筋肉タンパク質。
16. The water-solubilized meat or muscle protein according to claim 9, wherein the dehydration step is performed by heating at a relative humidity of 35% or less.
【請求項17】 還元性糖類とタンパク質変性防止剤を
混合後に、脱水する請求項1〜8項いずれか1項記載の
方法。
17. The method according to claim 1, wherein the reducing saccharide and the protein denaturation inhibitor are mixed and then dehydrated.
【請求項18】 請求項17記載の方法により水溶化さ
れた肉類又は筋肉タンパク質。
18. A meat or muscle protein solubilized by the method according to claim 17.
JP2001373107A 2001-12-06 2001-12-06 Method for water-solubilizing muscle protein by treatment with reducing sugar under low relative humidity and water-soluble sugar-added muscle protein Expired - Fee Related JP3860025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001373107A JP3860025B2 (en) 2001-12-06 2001-12-06 Method for water-solubilizing muscle protein by treatment with reducing sugar under low relative humidity and water-soluble sugar-added muscle protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001373107A JP3860025B2 (en) 2001-12-06 2001-12-06 Method for water-solubilizing muscle protein by treatment with reducing sugar under low relative humidity and water-soluble sugar-added muscle protein

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006035547A Division JP2006136342A (en) 2006-02-13 2006-02-13 Method for solubilizing muscular protein in water by treating with reducing sugar at low relative humidity and water-soluble sugar-added muscular protein

Publications (2)

Publication Number Publication Date
JP2003169634A true JP2003169634A (en) 2003-06-17
JP3860025B2 JP3860025B2 (en) 2006-12-20

Family

ID=19181882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001373107A Expired - Fee Related JP3860025B2 (en) 2001-12-06 2001-12-06 Method for water-solubilizing muscle protein by treatment with reducing sugar under low relative humidity and water-soluble sugar-added muscle protein

Country Status (1)

Country Link
JP (1) JP3860025B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005120541A1 (en) * 2004-06-11 2005-12-22 Hiroki Saeki Process for producing protein having its antihypertensive activity enhanced
JP2009126856A (en) * 2007-11-28 2009-06-11 Fancl Corp New blood neutral fat increase inhibitor
WO2015146955A1 (en) * 2014-03-26 2015-10-01 日本水産株式会社 Method for modifying marine protein material
CN112772857A (en) * 2020-12-24 2021-05-11 江苏益客食品集团股份有限公司 Preparation method of flavor-enhanced sauced duck meat product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005120541A1 (en) * 2004-06-11 2005-12-22 Hiroki Saeki Process for producing protein having its antihypertensive activity enhanced
JPWO2005120541A1 (en) * 2004-06-11 2008-09-18 宏樹 佐伯 Method for producing protein with enhanced antihypertensive effect
JP2009126856A (en) * 2007-11-28 2009-06-11 Fancl Corp New blood neutral fat increase inhibitor
WO2015146955A1 (en) * 2014-03-26 2015-10-01 日本水産株式会社 Method for modifying marine protein material
JP6040339B2 (en) * 2014-03-26 2016-12-07 日本水産株式会社 Modification method of marine protein material
CN112772857A (en) * 2020-12-24 2021-05-11 江苏益客食品集团股份有限公司 Preparation method of flavor-enhanced sauced duck meat product
CN112772857B (en) * 2020-12-24 2023-04-18 江苏益客食品集团股份有限公司 Preparation method of flavor-enhanced sauced duck meat product

Also Published As

Publication number Publication date
JP3860025B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
Gao et al. Effect of high intensity ultrasound on gelation properties of silver carp surimi with different salt contents
Lynch et al. Harnessing the potential of blood proteins as functional ingredients: A review of the state of the art in blood processing
RU2225694C2 (en) Protein composition and method for isolating protein composition out of muscular tissue
Ghani Effect of pH on functional, rheological and structural properties of eel (Monopterus sp.) skin gelatin compared to bovine gelatin
US20180271116A1 (en) Protein Composition Obtained From Meat Trimmings
JP2011520927A (en) Collagen peptide with immunity-enhancing activity derived from the yellow jellyfish and its preparation and use
JPH10506010A (en) Method of treating an aqueous protein solution to kill microorganisms therein without causing coagulation
US4181749A (en) Process for producing surimi
CN107259423A (en) A kind of squid high processing method successively
US4406831A (en) Meat protein product and process
JP3860025B2 (en) Method for water-solubilizing muscle protein by treatment with reducing sugar under low relative humidity and water-soluble sugar-added muscle protein
JPWO2005120541A1 (en) Method for producing protein with enhanced antihypertensive effect
JP2006136342A (en) Method for solubilizing muscular protein in water by treating with reducing sugar at low relative humidity and water-soluble sugar-added muscular protein
JP4130560B2 (en) Water soluble meat preparation
RU2059383C1 (en) Method for production of multifunctional collagen preparation
EP0064104A1 (en) Meat protein product and process
KR101021920B1 (en) Method on water-solubilization of myofibrillar proteins by glycosylation
JPH0630616B2 (en) Method for producing water-soluble elastin and molding composition containing collagen and elastin
EP1635650A1 (en) Recovery of peptones
KR101083357B1 (en) Separation method of muscle protein
Koli et al. Development of fish byproducts by using fish and shellfish waste for up-liftment of socio-economic status of fisher folk
JP3141130B2 (en) Seasoning material and method for producing the same
JPH03117462A (en) Gelation-accelerating substance for protein
RU2193332C1 (en) Dietetic product and method of its production
RU2654357C1 (en) Method for obtaining protein-fat emulsion

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030613

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20030613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20030613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041021

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050914

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees