JP2003166178A - Heat-releasing sheet - Google Patents

Heat-releasing sheet

Info

Publication number
JP2003166178A
JP2003166178A JP2001364960A JP2001364960A JP2003166178A JP 2003166178 A JP2003166178 A JP 2003166178A JP 2001364960 A JP2001364960 A JP 2001364960A JP 2001364960 A JP2001364960 A JP 2001364960A JP 2003166178 A JP2003166178 A JP 2003166178A
Authority
JP
Japan
Prior art keywords
heat
resin
fibers
fiber
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001364960A
Other languages
Japanese (ja)
Inventor
Tadayoshi Miyasaka
忠与 宮坂
Atsuhiko Yamanaka
淳彦 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2001364960A priority Critical patent/JP2003166178A/en
Publication of JP2003166178A publication Critical patent/JP2003166178A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-releasing sheet having high heat conductivity, light weight and excellent electric insulation by orienting a thermoconductive fiber having anisotropy. <P>SOLUTION: This sheet is composed of the fiber impregnated with a resin such as a thermoconductive resin. The fiber is oriented in one direction, and has ≥10 W/m-K heat conductivity in the fiber direction. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は熱伝導性に異方性を
もつ熱伝導性繊維を望ましい方向に配向させ、さらに熱
伝導性樹脂が含浸されてなることを特徴とする熱伝導性
が高く軽量で絶縁性に優れた放熱シートに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is characterized in that it has a high thermal conductivity, which is characterized by orienting thermally conductive fibers having anisotropy in thermal conductivity in a desired direction and impregnated with a thermally conductive resin. The present invention relates to a heat dissipation sheet that is lightweight and has excellent insulation properties.

【0002】[0002]

【従来の技術】近年、モバイル機器が普及し、さらなる
軽量化と高性能化が求められている。この結果CPUの高
性能化による発熱量の増加とモバイル機器のコンパクト
化により絶縁性があり軽量で放熱性能が高い放熱素材が
求められている。また、各種熱交換機の効率UPや電源部
の高性能化のために絶縁性の放熱素材が求められてい
る。このような用途には熱伝導性のフィラーを混入した
熱伝導性のゴムシート、シリコンシートや熱伝導性の高
い炭素系材料であるグラファイトシート等が使用されて
いる。しかし、フィーラー混入シートは性能を上げるた
めにはフィラーを大量に混入しなければならず一般的に
重量が重くシートの成形も悪い。一方、高性能軽量グラ
ファイトシートは高価である。一般的にはアルミ、銅と
いった金属類が高い熱伝導性であるが、これらの金属類
は導電性であり絶縁性を要求される電子機器や電源部に
直接使用することは出来ない。
2. Description of the Related Art In recent years, mobile devices have become popular, and further weight reduction and higher performance have been demanded. As a result, due to the increase in heat generation due to the high performance of the CPU and the downsizing of mobile devices, there is a demand for heat-dissipating materials that are insulative, lightweight and have high heat dissipation performance. In addition, insulative heat dissipation materials are required to improve the efficiency of various heat exchangers and to improve the performance of power supplies. For such applications, a heat conductive rubber sheet mixed with a heat conductive filler, a silicon sheet, a graphite sheet which is a carbon material having high heat conductivity, and the like are used. However, in order to improve the performance of the feeler-containing sheet, a large amount of filler must be mixed, and the weight of the sheet is generally heavy and the sheet formation is poor. On the other hand, high performance lightweight graphite sheets are expensive. In general, metals such as aluminum and copper have high thermal conductivity, but these metals are electrically conductive and cannot be directly used in electronic devices and power supply units that require insulation.

【0003】絶縁性に優れる有機繊維で熱伝導性が高い
繊維として超高分子量ポリエチレンやポリベンザゾ−ル
繊維が知られている。超高分子量ポリエチレンは極低温
材で使用され、熱伝導性が高く冷却効率が高いため高性
能な超伝導マグネットのコイルボビン等に使用されてい
る。しかし、これらの繊維の熱伝導性には異方性があ
り、一般的に繊維方向は熱伝導性が高く繊維方向に垂直
な方向には熱伝導性が低い。従って、放熱性能の高い放
熱シートを製造するためにはこれらの放熱性繊維を放熱
させたい望ましい方向に配向させる必要がある。高磁場
で配向するポリベンザゾ−ル繊維では高磁場で配向させ
た高性能な放熱シートが製造されているが、この場合、
大型磁場発生装置が必要であり実用的には使用すること
が出来ない。また、超高分子量のポリエチレンは磁場配
向させることが出来ない。このために簡便に熱伝導繊維
を配向させる方法を開発する必要があった。
Ultrahigh molecular weight polyethylene and polybenzazole fibers are known as organic fibers having excellent insulating properties and having high thermal conductivity. Ultra-high-molecular-weight polyethylene is used as a cryogenic material, and is used for coil bobbins of high-performance superconducting magnets because of its high thermal conductivity and high cooling efficiency. However, the thermal conductivity of these fibers is anisotropic, and generally the thermal conductivity is high in the fiber direction and low in the direction perpendicular to the fiber direction. Therefore, in order to manufacture a heat dissipation sheet having high heat dissipation performance, it is necessary to orient these heat dissipation fibers in a desired direction for heat dissipation. Polybenzazole fibers oriented in a high magnetic field produce high-performance heat dissipation sheets oriented in a high magnetic field.
A large magnetic field generator is required and cannot be used practically. Also, ultra high molecular weight polyethylene cannot be magnetically oriented. For this reason, it was necessary to develop a method for easily orienting the heat conducting fibers.

【0004】布帛に単繊維を植毛させて繊維を配向させ
ることは一般的に行なわれているが、放熱シートの熱伝
導性を高めるためにはさらに熱伝導性繊維の接着面での
熱伝導性を高める必要があった。汎用性に優れる放熱シ
ートを一般的に製造するためには植毛される熱伝導性の
低い布帛や接着する樹脂を簡便に除去する必要がある。
また、場合によっては放熱体に直接熱伝導性繊維を熱伝
導性樹脂で植毛させる簡便な方法を開発する必要があっ
た。
It is generally practiced to implant single fibers on the cloth and orient the fibers. However, in order to enhance the thermal conductivity of the heat-dissipating sheet, the thermal conductivity of the heat-conductive fibers on the bonding surface is further increased. Needed to be raised. In order to generally manufacture a heat-dissipating sheet having excellent versatility, it is necessary to simply remove the cloth having low thermal conductivity to be flocked and the resin to be adhered.
Further, in some cases, it was necessary to develop a simple method for directly implanting heat-conductive fibers with a heat-conductive resin on a radiator.

【0005】また、繊維を引揃え熱伝導性樹脂で含浸し
た後、スライスして薄いシートを製造することも考えら
れるが、一般的に高熱伝導繊維は高強力・高弾性率繊維
であり、薄いシートにカットすることが出来ない。従っ
て、繊維間の熱伝導性をさらに高めるためには熱伝導性
の短繊維の植毛密度を高めると共に熱伝導繊維を配向さ
せた薄いシートを製造した後に熱伝導性樹脂を簡便に含
浸する方法を開発する必要があった。
It is also conceivable that the fibers are aligned and impregnated with the heat conductive resin, and then sliced to produce a thin sheet. Generally, the high heat conductive fiber is a fiber having a high strength and a high elastic modulus and is thin. Can not be cut into sheets. Therefore, in order to further enhance the thermal conductivity between fibers, a method of increasing the flocking density of thermally conductive short fibers and simply impregnating the thermally conductive resin after producing a thin sheet in which the thermally conductive fibers are oriented is proposed. Had to develop.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来異方性
のため放熱性能が得られなかった熱伝導性繊維を簡便に
配向させ、さらには放熱面および放熱シート内部の熱伝
導性を高めることにより絶縁性能に優れ、かつ、軽量で
放熱特性に優れた放熱シートおよびその製造方法を提供
することを課題とする。
DISCLOSURE OF THE INVENTION According to the present invention, a heat conductive fiber, which has not been able to obtain heat dissipation performance due to anisotropy in the related art, can be easily oriented, and further, the heat conductivity of the heat dissipation surface and the inside of the heat dissipation sheet is enhanced. It is therefore an object of the present invention to provide a heat dissipation sheet having excellent insulation performance, light weight, and excellent heat dissipation characteristics, and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決すべく鋭意研究を重ね、PCU等の放熱シートとして
特に好適な絶縁性で軽量な放熱シートを提供するために
下記の手段をとる。
Means for Solving the Problems The present invention has conducted extensive studies to solve the above problems, and takes the following means in order to provide an insulating and lightweight heat dissipation sheet that is particularly suitable as a heat dissipation sheet for a PCU or the like. .

【0008】即ち本発明は、樹脂含浸された繊維からな
るシートであって、当該繊維は一方向に配列されてお
り、且つ当該繊維は繊維方向の熱伝導率が10w/mK
以上の熱伝導性繊維であることを特徴とする放熱シート
であり、好ましくは樹脂が熱伝導性樹脂であることを特
徴とする前記記載の放熱シートである。以下本発明を詳
述する。
That is, the present invention is a sheet made of fibers impregnated with a resin, the fibers being arranged in one direction, and the fibers have a thermal conductivity of 10 w / mK in the fiber direction.
The heat dissipation sheet is characterized by being the above heat conductive fiber, and preferably the resin is a heat conductive resin. The present invention will be described in detail below.

【0009】本発明に係る放熱シ−トの製法例として
は、熱伝導性繊維に熱伝導性樹脂を含浸した後基材を剥
離する方法、基材に水溶性樹脂等除去可能な樹脂で仮接
着させた後基材を剥離し仮接着樹脂層を除去する方法、
基材層が放熱させたい放熱体またはアルミ箔等の熱伝導
性つする方法、熱伝導性短繊維不織布をニードル加工お
よびウォーター・ジェット加工し短繊維を表面から裏面
に配向させ、その不織布に熱伝導性樹脂を含浸させる方
法、等が挙げられる。
Examples of the method for producing the heat-dissipating sheet according to the present invention include a method of impregnating a heat-conductive fiber with a heat-conductive resin and then peeling the base material, and a temporary resin such as a water-soluble resin. A method of removing the temporary adhesive resin layer by peeling the base material after adhesion,
A method to make the base layer heat-conductive such as a heat radiator or aluminum foil, heat-conductive short fiber non-woven fabric is needle processed and water jet processed to orient the short fibers from the front surface to the back surface and heat the non-woven fabric. Examples include a method of impregnating with a conductive resin.

【0010】本発明のなかで最も効率よく配向させる方
法の1つとしては熱伝導性繊維を基材に植毛する方法が
あげられる。 即ち、異方性の大きい熱伝導性繊維を熱
伝導性の高い繊維方向に配向くさせるため剥離性のある
フィルム等の汎用基材に出来るだけ密度を高く、かつ、
繊維を基材に垂直に植毛した後、熱伝導性の低い基材を
除去することを特徴とする放熱シートである。植毛以外
にもダブルラッセル編地を中央部でカットする方法、ま
た、起毛パイルの先端部をカットする等の方法によって
も同様に繊維を配向させること出来る。この場合には熱
伝導性繊維を基材部分に使用したり、基材との接着樹脂
に熱伝導樹脂を用いることによりさらに高性能な放熱シ
ートの製造が可能である。
One of the most efficient methods of orienting in the present invention is a method of implanting heat conductive fibers on a substrate. That is, the density is as high as possible in a general-purpose base material such as a film having a peeling property in order to orient the highly conductive thermally conductive fiber in the direction of the highly thermally conductive fiber, and
It is a heat-dissipating sheet characterized by removing a base material having low thermal conductivity after fibers are vertically transplanted to the base material. In addition to the flocking, the fibers can be similarly oriented by a method of cutting the double russell knitted fabric at the central portion, or a method of cutting the tip portion of the raised pile. In this case, it is possible to manufacture a heat dissipation sheet with higher performance by using a heat conductive fiber in the base material portion or by using a heat conductive resin as an adhesive resin with the base material.

【0011】また、短繊維を配向する方法として放熱性
短繊維不織布をニードル加工やウォーター・ジェット加
工することにより短繊維をからませることによってもあ
る程度簡便に配向させることが可能である。さらに、配
向させた不織布に熱伝導性フィラーを混入した熱伝導性
樹脂等を含浸させることによりさらに高性能な放熱シー
トを製造することができる。
As a method for orienting the short fibers, the heat-dissipating short-fiber nonwoven fabric can be easily orientated to some extent by entangling the short fibers by needle processing or water jet processing. Furthermore, by impregnating the oriented nonwoven fabric with a heat conductive resin mixed with a heat conductive filler, a heat dissipation sheet with higher performance can be manufactured.

【0012】熱伝導性繊維としては各種熱伝導性の絶縁
性繊維であればいかなる繊維も用いることができるが、
好ましくは繊維方向の熱伝導性が10w/mK以上の性
能もつものが好ましく、さらに好ましくは50w/mK
以上の超高分子量ポリエチレンやポリベンザゾ−ル繊維
である。
As the heat conductive fiber, any kind of heat conductive insulating fiber can be used,
It is preferable that the thermal conductivity in the fiber direction is 10 w / mK or more, and more preferably 50 w / mK.
These are ultra-high molecular weight polyethylene and polybenzazole fibers.

【0013】本発明の放熱シートの性能を高めるために
は基材にコーテングする樹脂は熱伝導性樹脂または熱伝
導性フィラーを混入して熱伝導性を高めた樹脂を使用し
た放熱シートである。さらに、熱伝導性繊維の短繊維が
植毛された後、熱伝導性樹脂または熱伝導性フィラー等
を混入して熱伝導とした樹脂が含浸された放熱シートで
ある。含浸された後熱伝導性の低い汎用基材が剥離され
ば、熱伝導性樹脂の中に熱伝導性繊維を高配向させた放
熱シートが製造できる。
In order to improve the performance of the heat-dissipating sheet of the present invention, the resin coated on the substrate is a heat-dissipating sheet which uses a heat conductive resin or a resin in which a heat conductive filler is mixed to enhance the heat conductivity. Further, the heat dissipation sheet is obtained by impregnating a heat conductive resin or a resin for heat conduction by mixing a heat conductive resin or the like after the short fibers of the heat conductive fibers are implanted. If the general-purpose base material having low thermal conductivity is peeled off after impregnation, a heat dissipation sheet in which the thermal conductive fibers are highly oriented in the thermal conductive resin can be manufactured.

【0014】さらに、本発明の放熱シートにおいて好適
にもちいることができる製造方法としては基材にコーテ
ングされる樹脂がポバール等の水溶性樹脂等の除去可能
な樹脂を使用する方法が考えられる。この場合、熱伝導
性樹脂が含浸され基材が剥離された後、水溶性樹脂を水
洗除去することにより熱伝導性繊維の端面を表面に露出
させることができ、放熱効率を高めることができる。
Further, as a production method which can be preferably used in the heat dissipation sheet of the present invention, a method in which the resin to be coated on the substrate is a removable resin such as a water-soluble resin such as Poval is considered. In this case, after the heat conductive resin is impregnated and the base material is peeled off, the water-soluble resin is washed and removed to expose the end face of the heat conductive fiber to the surface, and heat dissipation efficiency can be improved.

【0015】本発明の放熱シートにおいて基材としてア
ルミ箔や熱伝導性繊維等の熱伝導性布帛をもちる場合お
よび放熱させたい放熱体に直接熱伝導性樹脂がコーテン
グされて熱伝導性繊維が植毛される場合は布帛および放
熱体を剥離しなくてもそのまま放熱シートとして使用す
ることができる。
In the heat-dissipating sheet of the present invention, when a heat-conductive cloth such as aluminum foil or heat-conductive fiber is used as the base material, or the heat-dissipating member to be dissipated is coated directly with the heat-conductive resin to form the heat-conducting fiber. In the case of flocking, it can be used as it is as a heat radiation sheet without peeling off the cloth and the heat radiator.

【0016】本発明で用いた実験方法を以下に示す。The experimental method used in the present invention is shown below.

【0017】(実験方法)熱伝導率の測定はヒーターに
2点間の温度差ΔTが1Kとなるように一定の電流を流し,
k=QL/(ΔTS)を用いて定常熱流法により測定した.ここ
でQは流す熱量、Lは温度計間の距離、Sは試料の断面積
である。なお、植毛品は熱硬化樹脂にて固定した後基材
フィルムを剥離して熱伝導率を測定した。本実験方法を
用いて測定した実施例を以下に示す。
(Experimental method) A heater was used to measure the thermal conductivity.
Apply a constant current so that the temperature difference ΔT between the two points is 1K,
It was measured by the steady heat flow method using k = QL / (ΔTS). Here, Q is the amount of heat flowing, L is the distance between thermometers, and S is the cross-sectional area of the sample. The flocked product was fixed with a thermosetting resin, and then the substrate film was peeled off to measure the thermal conductivity. Examples measured by using this experimental method are shown below.

【0018】[0018]

【実施例】(実施例1)片面にシリコンコートしたポリ
エチレンテレフタレートフィルムに高強度ポリエチレン
繊維ダイニーマSK60を面積率30%で垂直に植毛し、これ
を熱硬化樹脂にて固定した。なお試用した熱硬化樹脂は
表1に記す。 (実施例2)片面にシリコンコートしたポリエチレンテ
レフタレートフィルムに高強度ポリエチレン繊維ダイニ
ーマSK71を面積率30%で垂直に植毛し、これを熱硬化樹
脂にて固定した。なお試用した熱硬化樹脂は表1に記
す。 (実施例3)片面にシリコンコートしたポリエチレンテ
レフタレートフィルムに高強度ポリベンザゾ−ル繊維ザ
イロンHMを面積率30%で垂直に植毛し、これを熱硬化樹
脂にて固定した。なお試用した熱硬化樹脂は表1に記
す。 (実施例4)片面にシリコンコートしたポリエチレンテ
レフタレートフィルムにさらにPVAをコートし、高強度
ポリエチレン繊維ダイニーマSK60を面積率30%で垂直に
植毛し、これを熱硬化樹脂にて固定した。なお試用した
熱硬化樹脂は表1に記す。
[Example] (Example 1) High-strength polyethylene fiber Dyneema SK60 was vertically planted at an area ratio of 30% on a polyethylene terephthalate film coated on one side with silicon, and this was fixed with a thermosetting resin. The thermosetting resins used for trial are shown in Table 1. (Example 2) High-strength polyethylene fiber dyneema SK71 was vertically planted at an area ratio of 30% on a polyethylene terephthalate film coated on one side with silicon, and this was fixed with a thermosetting resin. The thermosetting resins used for trial are shown in Table 1. (Example 3) High-strength polybenzazole fiber Zylon HM was vertically flocked at an area ratio of 30% on a polyethylene terephthalate film coated on one side with silicon, and this was fixed with a thermosetting resin. The thermosetting resins used for trial are shown in Table 1. (Example 4) A polyethylene terephthalate film coated on one side with silicon was further coated with PVA, and high-strength polyethylene fiber Dyneema SK60 was vertically flocked at an area ratio of 30%, and this was fixed with a thermosetting resin. The thermosetting resins used for trial are shown in Table 1.

【0019】(比較例1)片面にシリコンコートしたポ
リエチレンテレフタレートフィルムにガラス繊維を面積
率30%で垂直に植毛し、これを熱硬化樹脂にて固定し
た。なお試用した熱硬化樹脂は表2に記す。 (比較例2)窒化アルミ粉末をエポキシ樹脂で硬化させ
た。なお試用した熱硬化樹脂は表2に記す。
(Comparative Example 1) Glass fibers were vertically planted at an area ratio of 30% on a polyethylene terephthalate film coated on one side with silicon and fixed with a thermosetting resin. The thermosetting resins used for trial are shown in Table 2. (Comparative Example 2) Aluminum nitride powder was cured with an epoxy resin. The thermosetting resins used for trial are shown in Table 2.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】実施例,比較例の結果を表3,4に示す。The results of Examples and Comparative Examples are shown in Tables 3 and 4.

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【表4】 高強度ポリエチレン繊維,ポリベンザゾ−ル繊維を用い
た放熱シートは10W/mK以上の高い熱伝導率を示し.電気
絶縁性に優れかつ放熱性に優れた材料であることが証明
された。
[Table 4] A heat-dissipating sheet using high-strength polyethylene fiber or polybenzazol fiber has a high thermal conductivity of 10 W / mK or more. It has been proved that the material has excellent electric insulation and heat dissipation.

【0025】[0025]

【発明の効果】本発明によると異方性を持つ熱伝導性繊
維を配向させ熱伝導性が高く軽量で絶縁性に優れた放熱
シートを提供することが可能となった。
EFFECTS OF THE INVENTION According to the present invention, it is possible to provide a heat-dissipating sheet in which anisotropic heat-conducting fibers are oriented and which has high heat conductivity, light weight, and excellent insulating properties.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】樹脂含浸された繊維からなるシートであっ
て、当該繊維は一方向に配列されており、且つ当該繊維
は繊維方向の熱伝導率が10w/mK以上の熱伝導性繊
維であることを特徴とする放熱シート。
1. A sheet made of resin-impregnated fibers, wherein the fibers are arranged in one direction, and the fibers are thermally conductive fibers having a thermal conductivity in the fiber direction of 10 w / mK or more. A heat dissipation sheet characterized in that
【請求項2】樹脂が熱伝導性樹脂であることを特徴とす
る請求項1記載の放熱シート。
2. The heat dissipation sheet according to claim 1, wherein the resin is a heat conductive resin.
JP2001364960A 2001-11-29 2001-11-29 Heat-releasing sheet Pending JP2003166178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001364960A JP2003166178A (en) 2001-11-29 2001-11-29 Heat-releasing sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364960A JP2003166178A (en) 2001-11-29 2001-11-29 Heat-releasing sheet

Publications (1)

Publication Number Publication Date
JP2003166178A true JP2003166178A (en) 2003-06-13

Family

ID=19175065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364960A Pending JP2003166178A (en) 2001-11-29 2001-11-29 Heat-releasing sheet

Country Status (1)

Country Link
JP (1) JP2003166178A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060501A (en) * 2007-09-03 2009-03-19 Fujifilm Corp Backing material, ultrasonic probe, ultrasonic endoscope, ultrasonic diagnostic device, and ultrasonic endoscope device
JP2012186242A (en) * 2011-03-04 2012-09-27 Railway Technical Research Institute Heat radiation substrate
JP2012186241A (en) * 2011-03-04 2012-09-27 Railway Technical Research Institute Heat conductive sheet
JP2015086398A (en) * 2013-10-30 2015-05-07 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Method of fabricating thermal conductive polymer
JPWO2013100123A1 (en) * 2011-12-28 2015-05-11 東洋紡株式会社 Insulating heat conductive sheet
JP2015164229A (en) * 2015-06-02 2015-09-10 公益財団法人鉄道総合技術研究所 heat conductive sheet
JP2016503639A (en) * 2012-10-11 2016-02-04 ディーエスエム アイピー アセッツ ビー.ブイ. Wireless power transmission system
KR20180064771A (en) * 2016-12-06 2018-06-15 광주과학기술원 Anisotropy polymer composite and method for manufacturing the same
JP2020033475A (en) * 2018-08-30 2020-03-05 株式会社クラレ Heat-radiating material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060501A (en) * 2007-09-03 2009-03-19 Fujifilm Corp Backing material, ultrasonic probe, ultrasonic endoscope, ultrasonic diagnostic device, and ultrasonic endoscope device
JP2012186242A (en) * 2011-03-04 2012-09-27 Railway Technical Research Institute Heat radiation substrate
JP2012186241A (en) * 2011-03-04 2012-09-27 Railway Technical Research Institute Heat conductive sheet
JPWO2013100123A1 (en) * 2011-12-28 2015-05-11 東洋紡株式会社 Insulating heat conductive sheet
JP2016503639A (en) * 2012-10-11 2016-02-04 ディーエスエム アイピー アセッツ ビー.ブイ. Wireless power transmission system
JP2015086398A (en) * 2013-10-30 2015-05-07 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Method of fabricating thermal conductive polymer
JP2015164229A (en) * 2015-06-02 2015-09-10 公益財団法人鉄道総合技術研究所 heat conductive sheet
KR20180064771A (en) * 2016-12-06 2018-06-15 광주과학기술원 Anisotropy polymer composite and method for manufacturing the same
JP2020033475A (en) * 2018-08-30 2020-03-05 株式会社クラレ Heat-radiating material
JP7252530B2 (en) 2018-08-30 2023-04-05 株式会社クラレ Heat dissipation material

Similar Documents

Publication Publication Date Title
Wu et al. Epoxy composites with high cross-plane thermal conductivity by constructing all-carbon multidimensional carbon fiber/graphite networks
CN105482435B (en) Three-dimensional drape shape graphene radiating slurry, its preparation method and application
US7027304B2 (en) Low cost thermal management device or heat sink manufactured from conductive loaded resin-based materials
JP2016026391A (en) Anisotropic thermal conduction element and manufacturing method
TW201736255A (en) Carbon nanotube composite material and manufacture method thereof
TW201128743A (en) Paper sheet radiator
JP2008512852A (en) Composite heat sink with metal base and graphite fins
JP6571000B2 (en) Thermally conductive composite and method for producing the same
JP2002080617A (en) Thermoconductive sheet
KR20040005940A (en) Thermal management material, devices and methods therefor
JP2003166178A (en) Heat-releasing sheet
CN106010469A (en) Carbon nanotube array/graphene paper heat-conducting composite material and preparation method
JP2010034422A (en) Method of manufacturing radiator sheet
WO2020067141A1 (en) Heat conductive sheet
CN106543979B (en) Graphite/carbon nanotube fibers beam/graphene thermally conductive laminated film preparation method
JP2017092345A (en) Heat conduction sheet and method of manufacturing the same, and semiconductor device
CN103966533B (en) A kind of diamond heat-conducting composite and preparation method thereof
CN109337291B (en) Surface-modified graphene-carbon nitride-epoxy resin thermal interface material and preparation method thereof
CN109346448A (en) A kind of compound cold plate of graphene and preparation method thereof
JP4443746B2 (en) Method for producing anisotropic heat transfer sheet
JP2020055961A (en) Resin sheet having controlled heat conductivity distribution, and method of manufacturing the same
CN207180103U (en) A kind of graphene condenser fins
JP2020074431A (en) Thermally conductive sheet
JP2013064224A (en) Method for producing heat-releasing sheet
KR102264097B1 (en) Heat radiation apparatus of display panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041129

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20050118

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Effective date: 20061204

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20061228

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070518

Free format text: JAPANESE INTERMEDIATE CODE: A02