JP2003165744A - Conductive paste - Google Patents

Conductive paste

Info

Publication number
JP2003165744A
JP2003165744A JP2001359226A JP2001359226A JP2003165744A JP 2003165744 A JP2003165744 A JP 2003165744A JP 2001359226 A JP2001359226 A JP 2001359226A JP 2001359226 A JP2001359226 A JP 2001359226A JP 2003165744 A JP2003165744 A JP 2003165744A
Authority
JP
Japan
Prior art keywords
conductive paste
solar cell
electrode
powder
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001359226A
Other languages
Japanese (ja)
Inventor
Hiroshi Nagakubo
博 長久保
Hirohisa Oya
裕久 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001359226A priority Critical patent/JP2003165744A/en
Publication of JP2003165744A publication Critical patent/JP2003165744A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive paste which forms the back side electrode of a solar battery having a good design capable of maintaining silver color of aluminum powder. <P>SOLUTION: The conductive paste contains aluminum powder, glass frits which are composed of elements except for boron, and an organic vehicle for forming the back side electrode of solar batteries. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、シリコン(Si)
太陽電池の裏面電極に好適な導電性ペーストに関するも
のである。 【0002】 【従来の技術】Si太陽電池1は、例えば図1(a)の
断面構造に示すように、p−Si層2aとn−Si層2
bとからなるSiウエハ2と、Siウエハ2のn−Si
層2b側に形成された受光面電極3及び反射防止膜4
と、Siウエハのp−Si層2a側に形成された裏面電
極5とを有する構造となっている。 【0003】従来より、Si太陽電池1の裏面電極5と
しては、特に電極形成に伴う加工性を顧慮した場合、ア
ルミニウム(Al)粉末とガラスフリットとを有機ビヒ
クル中に分散させたAlの導電性ペーストを使用したも
のが知られている。 【0004】Alの導電性ペーストによる裏面電極5
は、次のように形成される。すなわち、Siウエハ2の
P−Si層2a側の表面上に、図1(b)に示すよう
に、Al粉末5aとガラスフリットを有機ビヒクル中に
分散させた導電性ペーストを用いて電極膜を形成し、こ
れを乾燥させ、大気雰囲気中の近赤外線炉にてAl粉末
5aの融点、すなわち660℃以上の温度で焼成し、有
機成分を除去してAl粉末5aを焼結させて裏面電極5
が得られる。 【0005】この焼成の際に、裏面電極5付近を拡大し
た図1(b)に示すように、裏面電極5はp−Si層2
aと反応して、接合界面のp−Si層2a側の表面にA
l−Si合金層2cが形成され、さらにAl−Si合金
層2cを介してp−Si層2aの内部にAlイオンが拡
散し、p+ 電解層2dが形成される。 【0006】Al−Si合金層2cおよびp+ 電解層2
dは、裏面電極5のp−Si層2aに対するオーミック
接触性を確保するとともに、長波長光反射効果、電子再
結合防止効果、内部電解向上効果等によって、Si太陽
電池1の特性を向上させる働きを備えている。 【0007】Si太陽電池1の裏面電極5に用いられる
導電性ペーストは、Al粉末とガラスフリットとを有機
ビヒクル中に分散させたものが用いられているが、その
中のガラスフリットとして、Al粉末の焼成時の焼結性
を調整することによるSi太陽電池1の特性を向上させ
る目的、及び、ガラスフリットの軟化点を調整すること
による電極形成性向上の目的でホウ素を含有するガラス
フリットが用いられている(特開平7−73731号公
報)。 【0008】さらに、従来のSi太陽電池モジュールと
しては、受光面への太陽光の有効な照射が重要視されて
おり、図2に示すように、Si太陽電池の裏面部は不透
明のパネル6bで覆われたものが一般的である。従っ
て、Si太陽電池の裏面電極としては上述したp−Si
層に対するオーミック接触性を確保するとともに、長波
長光反射効果、電子再結合防止効果、内部電解向上効果
等のSi太陽電池特性を向上させる特性、及び電極形成
性のみが注目されていた。 【0009】 【発明が解決しようとする課題】近年、Si太陽電池の
有効活用、更なる普及を目的のために、ビルの壁等の建
材向けとしてガラス窓部、ガラスのひさし部等の通常透
明ガラスとなっている部分へのSi太陽電池セルを組み
込んだモジュールが検討されている。 【0010】このようなガラス窓部に対応したSi太陽
電池モジュールの場合、太陽光を内部に採光する必要が
あるため、図3に示すように、隣り合う各Si太陽電池
セル7のそれぞれに間隔を設け、2重の透明ガラス6
a、8間に挟み込んだ構造のモジュールとなっている。 【0011】このような構造の場合、Si太陽電池セル
7の裏面が内側から見えるため、これらのSi太陽電池
セル7に使用される裏面電極用途のAlペーストには太
陽電池特性を向上させる特性の他に必然的に意匠的要
素、すなわちSi太陽電池セル7の裏面電極における電
極焼成後の色彩が良好なものが必要になっている。 【0012】しかしながら、従来のAlペーストでは太
陽電池特性を向上させる特性、電極形成性に特化したA
lペースト設計を行なっていたため、裏面電極形成後の
意匠的要素の検討がなされていない。 【0013】すなわち、上記従来の裏面電極では、形成
後の裏面電極の色彩が茶褐色と、意匠的に良好でなく、
Si太陽電池セル7の有効活用、更なる普及を目的とし
た、ビルの壁等の建材向けとしてのガラス窓部、ガラス
のひさし部等の通常ガラスとなっている部分へのSi太
陽電池セル7を組み込んだモジュールが採用されにくい
状況となっている。 【0014】本発明の目的は、上述の問題点を解消すべ
くなされたもので、Si太陽電池セル7の効率を維持し
た上で裏面電極形成後の意匠的要素、すなわち電極形成
後の色彩を、電極に含まれるAl粉末の色合いに近い銀
灰色にすることにある。 【0015】 【課題を解決するための手段】上記目的を達成するため
に、本発明のSi太陽電池の裏面電極に用いられる導電
性ペーストは、Al粉末、ガラスフリット及び有機ビヒ
クルを含有し、太陽電池の裏面電極形成に用いられる導
電性ペーストであって、ガラスフリットは、ホウ素を除
く元素からなっていることを特徴としている。 【0016】ところで、導電性ペーストのガラスフリッ
ト成分中のホウ素は焼成過程での500℃から600℃
付近にて酸化ホウ素の形で溶融してガラス状態となる。
この際に酸化ホウ素が他の酸化物より多量の酸素を奪う
還元作用を示す。 【0017】Alを主成分とする導電性ペーストにおい
ては、Alの融点以上の700℃から800℃付近にて
焼成されるため、この酸化ホウ素の還元作用より焼成前
のAl粉末表面層に存在する酸化皮膜に対するエッチン
グ作用が起こり、Al粉末の焼結性を助長する一方で酸
化皮膜のエッチング作用により生成したAl粉末の清浄
な表面が酸化する事を繰り返し、最終的にAl表面の酸
化被膜が厚く成長していく。 【0018】更に、このAl粉末の逐次表面酸化進行に
よりガラスフリット成分中に含まれる酸化鉛の還元が進
行し、焼成電極内に鉛(Pb)が析出する。この酸化皮
膜の成長したAl粉末の焼結物と析出したPbにより、
Alを主成分とする導電性ペーストによる電極面の色彩
は、A1粉末の単体の色合いに近い銀灰色から顕著に茶
褐色化する。 【0019】ここで、Al粉末は単体であってもAlの
融点を大きく上回る800℃を越えるような高温状態で
は顕著な酸化被膜の成長が進行し、ガラスフリット成分
中の酸化鉛も同様に還元し焼成電極内にPbが析出し、
電極焼成面色として茶褐色化していくが、700℃から
800℃における温度範囲においては上述した酸化ホウ
素の還元作用が支配的であり、茶褐色化が上記ホウ素の
存在によって促進される。さらに、この酸化ホウ素の還
元作用はその存在量が少量であっても顕著である。 【0020】従って、Alを主成分とする導電性ペース
トからの焼成時の焼成面色の茶褐色化を抑制し、含まれ
るA1粉末単体の色合いに近い銀灰色の状態を保つため
にはAlを主成分とする導電性ペーストにホウ素を含ま
ない(つまり、ホウ素を除く元素からなる)ガラスフリ
ットを使用することが効果的である。 【0021】本発明の導電性ペーストのガラスフリット
としては、PbO−SiO2 系、PbO−SiO2 −B
2 3 系が挙げられる。 【0022】本発明の導電性ペーストのAl粉末として
は、平均粒子径が2μm〜10μmの範囲内のものが好
適に用いられる。平均粒子径が2μm〜10μmのAl
粉末を用いることで、太陽電池の例えばSiウエハの表
面における凹凸構造に関わらず、より多くのAl−Si
接触点が確保できるため、界面方向に均一な合金層を形
成でき、合金層の被覆率を高めることが可能となる。 【0023】一方、Al粉末の平均粒子径が2μm未満
の場合、Al粉末中に占める酸化物の体積比率が高くな
るため、電極固有抵抗の上昇に伴い太陽電池の配線抵抗
が増加し、太陽電池特性が劣化するので好ましくない。
他方、Al粉末の平均粒子径が10μmを越える場合、
Al−Si接触点が十分には確保できず、合金層の被覆
率が低下する。 【0024】本発明の導電性ペーストに含まれる有機ビ
ヒクルは、エチルセルロースやニトロセルロース等の繊
維素系樹脂やアルキッド樹脂、アクリル樹脂を、ターピ
ネオールやカルビトール、セルソルブ等の溶媒に溶解し
たもの等を適宜用いることができるが、特に限定される
ものではない。 【0025】 【発明の実施の形態】本発明の導電性ペーストに用いら
れるAl粉末形状、有機ビヒクル種についてはAlを主
成分とする導電性ペーストとして一般に用いられている
ものであれば特に制限されるものではない。即ち、ガラ
スフリット成分中ににホウ素が含まれていないものであ
れば適宜使用できる。 【0026】 【実施例】まず、表1に示す平均粒子径が1μmで組成
成分が異なる各種ガラスフリットを準備し、これらを実
施例、比較例に用いるガラスフリットとした。 【0027】次に、平均粒径が5μmのAl粉末70重
量%と、表1に示した実施例1〜3ならびに比較例1〜
3に記載のガラスフリット3重量%と、エチルセルロー
ス樹脂とアルキッド樹脂をα−テルピネオールに溶解し
てなる有機ビヒクル27重量%とを調合し、3本ロール
ミルで混練して、実施例1〜3ならびに比較例1〜3の
導電性ペーストを得た。なお、ガラスフリット、Al粉
末の平均粒子径の測定は、エタノールとイソプロピルア
ルコールの混合溶剤を分散媒体として、レーザー回折散
乱式の粒度分布計を用いて行なった。 【0028】 【表1】【0029】次に、所定の寸法にカットしたSiウエハ
上に、実施例1〜3ならびに比較例1〜3の導電性ペー
ストを用いてスクリーン印刷法により電極膜を、pn接
合で構成される40mm×20mmのSiウエハの、p
−Si側表面上に、裏面電極の厚みが50μmとなるよ
う略全面に印刷塗布し、150℃で乾燥させた後、近赤
外炉において最高温度700℃で焼成して裏面電極を形
成し、実施例1〜3ならびに比較例1〜3の試験サンプ
ルをそれぞれ作製した。 【0030】焼成して作製した試験サンプルの裏面電極
の焼成面色状態を目視にて観察し、また、測色計を用い
て明度(L値)の比較を行った。これらの結果を表2に
まとめた。 【0031】 【表2】 【0032】表2より、実施例1〜3に示すホウ素を含
まないガラスフリットを用いた、Alを含む導電性ペー
ストの電極焼成面色は、含まれるAl粉末の単体の色合
いに近い銀灰色を示すのに対して、比較例1〜3に示す
ホウ素を含んだガラスフリットを用いたAlを含む導電
性ペーストの電極焼成面色は、上記各実施例1〜3と比
べて、明度の低い、くすんだ茶褐色に変色する事が確認
された。 【0033】更に、比較例1〜3の各導電性ペーストで
はガラスフリット成分中のホウ素の含有量がそれぞれ異
なるが、電極焼成面色の茶褐色への変色度合いに顕著な
差が認められない。この事より、ガラスフリット成分中
のホウ素の還元作用による電極焼成面色の茶褐色への変
色作用はホウ素の存在量が少量であっても顕著である事
が確認できた。 【0034】以上の事より、本発明の導電性ペーストを
用いることによって、Alを含む導電性ペーストを焼成
する時の焼成面色の茶褐色化を抑制でき、含まれるAl
粉末の単体の色合いに近い銀灰色の状態を維持できるこ
とが分かった。 【0035】 【発明の効果】以上のように本発明の導電性ペースト
は、太陽電池の裏面電極に用いられ、Al粉末、ガラス
フリット及び有機ビヒクルを含有し、ガラスフリット
は、ホウ素を除く元素からなっている構成である。 【0036】それゆえ、上記構成は、ガラスフリット
は、ホウ素を除く元素からなっていることから、太陽電
池の効率を維持した上で裏面電極形成後の意匠的要素、
すなわち電極形成後の色彩を含まれるAl粉末の単体の
色合いに近い銀灰色にすることを達成できる。 【0037】それによって、上記構成においては、裏面
電極を外観に優れ、意匠性も改善されるので、太陽電池
の有効活用、更なる普及としてのビルの壁等の建材向け
としてガラス窓部、ガラスのひさし部等の通常透明ガラ
スとなっている部分への太陽電池モジュールに適応した
太陽電池セルを提供する事ができるという効果を奏す
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to silicon (Si)
The present invention relates to a conductive paste suitable for a back electrode of a solar cell. 2. Description of the Related Art A Si solar cell 1 has, for example, a p-Si layer 2a and an n-Si layer 2 as shown in the sectional structure of FIG.
b, and n-Si of the Si wafer 2
Light receiving surface electrode 3 and antireflection film 4 formed on layer 2b side
And a back electrode 5 formed on the p-Si layer 2a side of the Si wafer. [0003] Conventionally, as the back electrode 5 of the Si solar cell 1, especially when workability accompanying electrode formation is taken into consideration, aluminum (Al) powder and glass frit are dispersed in an organic vehicle so that the conductivity of Al is reduced. One using a paste is known. Back electrode 5 made of Al conductive paste
Is formed as follows. That is, as shown in FIG. 1B, an electrode film is formed on the surface of the Si wafer 2 on the P-Si layer 2a side using a conductive paste in which Al powder 5a and glass frit are dispersed in an organic vehicle. The aluminum powder 5a is formed, dried and baked in a near-infrared furnace in an air atmosphere at a temperature equal to or higher than the melting point of the Al powder 5a, that is, at a temperature of 660 ° C. or higher.
Is obtained. In this firing, as shown in FIG. 1B in which the vicinity of the back electrode 5 is enlarged, the back electrode 5 is
reacts with the surface of the p-Si layer 2a at the junction interface.
An l-Si alloy layer 2c is formed, and Al ions diffuse into the p-Si layer 2a via the Al-Si alloy layer 2c, thereby forming a p + electrolytic layer 2d. Al-Si alloy layer 2c and p + electrolytic layer 2
d serves to secure the ohmic contact of the back electrode 5 with the p-Si layer 2a and to improve the characteristics of the Si solar cell 1 by a long-wavelength light reflection effect, an electron recombination prevention effect, an internal electrolysis improvement effect, and the like. It has. As the conductive paste used for the back electrode 5 of the Si solar cell 1, an Al powder and a glass frit dispersed in an organic vehicle are used. The glass frit containing boron is used for the purpose of improving the characteristics of the Si solar cell 1 by adjusting the sinterability at the time of firing, and for the purpose of improving the electrode formability by adjusting the softening point of the glass frit. (JP-A-7-73731). Further, in the conventional Si solar cell module, effective irradiation of sunlight to the light receiving surface is regarded as important. As shown in FIG. 2, the back surface of the Si solar cell is an opaque panel 6b. Covered ones are common. Therefore, the above-described p-Si
Attention has been paid only to the characteristics for improving the characteristics of the Si solar cell such as the long-wavelength light reflection effect, the effect of preventing electron recombination, the effect of improving internal electrolysis, and the electrode formability, while ensuring the ohmic contact with the layer. [0009] In recent years, for the purpose of effective utilization and further spread of Si solar cells, glass transparent portions such as glass windows and eaves of glass have been used for building materials such as walls of buildings. A module in which a Si solar cell is incorporated into a glass part is being studied. In the case of the Si solar cell module corresponding to such a glass window, since it is necessary to collect sunlight therein, as shown in FIG. 3, a space is provided between each adjacent Si solar cell 7. And a double transparent glass 6
The module has a structure sandwiched between a and 8. In the case of such a structure, since the back surface of the Si solar cell 7 can be seen from the inside, the Al paste used for the back electrode used for these Si solar cells 7 has a property of improving the solar cell characteristics. In addition, it is necessary to provide a design element, that is, a back electrode of the Si solar cell 7 having a good color after firing the electrode. However, in the conventional Al paste, the characteristics of improving the solar cell characteristics and the characteristics of A, which are specialized in the electrode forming property, are used.
Since the l-paste design was performed, no design element has been studied after the formation of the back electrode. In other words, in the above-mentioned conventional back electrode, the color of the back electrode after formation is brownish, which is not good in design.
For the purpose of effective use and further popularization of the Si solar cell 7, the Si solar cell 7 is used for a portion of a glass that is normally made of glass such as a building window such as a wall of a building or an eaves portion of a glass. It is difficult to adopt a module that incorporates. An object of the present invention is to solve the above-mentioned problems, and to maintain the efficiency of the Si solar cell 7 and to change the design element after the back electrode is formed, that is, the color after the electrode is formed. Another object of the present invention is to make silver gray close to the color of the Al powder contained in the electrode. [0015] In order to achieve the above object, a conductive paste used for a back electrode of a Si solar cell according to the present invention contains Al powder, glass frit and an organic vehicle. A conductive paste used for forming a back electrode of a battery, wherein the glass frit is made of an element other than boron. Incidentally, boron in the glass frit component of the conductive paste is changed from 500 ° C. to 600 ° C. during the firing process.
In the vicinity, it melts in the form of boron oxide and becomes a glassy state.
At this time, boron oxide exhibits a reducing action of removing more oxygen than other oxides. Since the conductive paste containing Al as a main component is baked at about 700 ° C. to 800 ° C., which is higher than the melting point of Al, it is present in the surface layer of the Al powder before firing due to the reducing action of the boron oxide. The etching action on the oxide film occurs, promoting the sinterability of the Al powder, while the clean surface of the Al powder generated by the etching action of the oxide film repeatedly oxidizes, and finally the oxide film on the Al surface becomes thicker. Growing up. Furthermore, the reduction of lead oxide contained in the glass frit component progresses due to the successive surface oxidation of the Al powder, and lead (Pb) precipitates in the fired electrode. Due to the sintered product of Al powder with the oxide film grown and Pb precipitated,
The color of the electrode surface due to the conductive paste containing Al as a main component is remarkably browned from silver gray, which is close to the color of the simple substance of the A1 powder. Here, even if the Al powder is a simple substance, a remarkable oxide film grows in a high temperature state exceeding 800 ° C., which is much higher than the melting point of Al, and lead oxide in the glass frit component is similarly reduced. Pb precipitates in the fired electrode,
The electrode firing surface color becomes brownish, but in the temperature range of 700 ° C. to 800 ° C., the above-described reduction action of boron oxide is dominant, and browning is promoted by the presence of the boron. Furthermore, this reducing action of boron oxide is remarkable even if its abundance is small. Therefore, in order to suppress the browning of the sintering surface color during sintering from a conductive paste containing Al as a main component, and to maintain a silver-gray state close to the tint of the contained A1 powder alone, Al is used as a main component. It is effective to use a glass frit that does not contain boron (that is, is made of an element other than boron) in the conductive paste to be formed. As the glass frit of the conductive paste of the present invention, a PbO—SiO 2 system, PbO—SiO 2 —B
i 2 O 3 type. As the Al powder of the conductive paste of the present invention, those having an average particle diameter in the range of 2 μm to 10 μm are preferably used. Al having an average particle size of 2 μm to 10 μm
By using the powder, more Al-Si can be obtained regardless of the uneven structure on the surface of the solar cell, for example, the Si wafer.
Since a contact point can be secured, a uniform alloy layer can be formed in the interface direction, and the coverage of the alloy layer can be increased. On the other hand, when the average particle diameter of the Al powder is less than 2 μm, the volume ratio of the oxide in the Al powder increases, so that the wiring resistance of the solar cell increases with an increase in the specific resistance of the electrode. It is not preferable because the characteristics are deteriorated.
On the other hand, when the average particle diameter of the Al powder exceeds 10 μm,
Al-Si contact points cannot be sufficiently secured, and the coverage of the alloy layer decreases. As the organic vehicle contained in the conductive paste of the present invention, a material obtained by dissolving a fibrous resin such as ethyl cellulose or nitrocellulose, an alkyd resin, or an acrylic resin in a solvent such as terpineol, carbitol, or cellosolve is appropriately used. Although it can be used, it is not particularly limited. DESCRIPTION OF THE PREFERRED EMBODIMENTS The form of Al powder and the type of organic vehicle used for the conductive paste of the present invention are not particularly limited as long as they are generally used as a conductive paste containing Al as a main component. Not something. That is, as long as the glass frit component does not contain boron, it can be appropriately used. EXAMPLES First, various kinds of glass frits having an average particle diameter of 1 μm and different composition components shown in Table 1 were prepared, and these were used as glass frit used in Examples and Comparative Examples. Next, 70% by weight of Al powder having an average particle size of 5 μm was added to Examples 1 to 3 and Comparative Examples 1 to 3 shown in Table 1.
3% by weight of the glass frit described in 3, and 27% by weight of an organic vehicle obtained by dissolving an ethylcellulose resin and an alkyd resin in α-terpineol, and kneading with a three-roll mill, and mixing with Examples 1 to 3. The conductive pastes of Examples 1 to 3 were obtained. The measurement of the average particle diameter of the glass frit and the Al powder was carried out using a mixed solvent of ethanol and isopropyl alcohol as a dispersion medium and using a laser diffraction scattering type particle size distribution meter. [Table 1] Next, an electrode film was formed on a Si wafer cut to a predetermined size by screen printing using the conductive pastes of Examples 1 to 3 and Comparative Examples 1 to 3 to form a 40 mm pn junction. P of a × 20 mm Si wafer
-On the Si-side surface, the back electrode is printed and coated on substantially the entire surface so as to have a thickness of 50 μm, dried at 150 ° C., and then fired at a maximum temperature of 700 ° C. in a near-infrared furnace to form a back electrode. Test samples of Examples 1 to 3 and Comparative Examples 1 to 3 were produced, respectively. The fired surface color state of the back electrode of the test sample produced by firing was visually observed, and the brightness (L value) was compared using a colorimeter. These results are summarized in Table 2. [Table 2] As shown in Table 2, the electrode firing surface color of the conductive paste containing Al using the glass frit containing no boron shown in Examples 1 to 3 is silver-gray, which is close to the color tone of the contained Al powder alone. On the other hand, the electrode firing surface color of the conductive paste containing Al using the glass frit containing boron shown in Comparative Examples 1 to 3 is lower in brightness than the above Examples 1 to 3, and has a dark brown color. It was confirmed that the color changed to. Further, in each of the conductive pastes of Comparative Examples 1 to 3, although the boron content in the glass frit component is different, no remarkable difference is observed in the degree of discoloration of the electrode firing surface color to brown. From this fact, it was confirmed that the reduction effect of boron in the glass frit component to the discoloration of the electrode firing surface color to brown was remarkable even when the amount of boron was small. As described above, by using the conductive paste of the present invention, it is possible to suppress the browning of the baked surface when the conductive paste containing Al is baked, and to suppress the contained Al
It was found that a silver-gray state close to the color of the powder alone could be maintained. As described above, the conductive paste of the present invention is used for the back electrode of a solar cell and contains Al powder, glass frit, and an organic vehicle. This is the configuration. Therefore, in the above structure, since the glass frit is made of an element other than boron, the design element after the back electrode is formed while maintaining the efficiency of the solar cell,
That is, it is possible to achieve a silver-gray color close to the color of the simple substance of the Al powder including the color after the electrode is formed. Thus, in the above configuration, the back electrode is excellent in appearance and the design is improved. Therefore, the glass window portion and the glass are used for building materials such as building walls and the like for effective use of solar cells and further spread. It is possible to provide a solar cell suitable for a solar cell module to a portion which is usually made of transparent glass such as an eaves portion.

【図面の簡単な説明】 【図1】従来の導電性ペーストを用いて裏面電極を形成
したSi太陽電池の断面図であり、(a)はSi太陽電
池の全体的な説明図であり、(b)はp−Si層と裏面
電極の界面を拡大した説明図である。 【図2】従来のSi太陽電池モジュールの断面概要図の
一部分である。 【図3】本発明の導電性ペーストを用いたビルの壁等の
建材向けとしてのガラス窓部、ガラスのひさし部等の通
常ガラスとなっている部分へのSi太陽電池セルを組み
込んだモジュールの断面概要図の一部分である。 【符号の説明】 1 Si太陽電池 2 Siウエハ 2a n−Si層 2b p−Si層 3 受光面電極 4 反射防止膜 6 裏面電極 6a Si太陽電池モジュール表面透明ガラス 6b Si太陽電池モジュール裏面不透明パネル 7 Si太陽電池セル 8 Si太陽電池モジュール裏面透明ガラス
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a Si solar cell in which a back electrode is formed using a conventional conductive paste, (a) is an overall explanatory view of the Si solar cell, (b) is an explanatory diagram in which the interface between the p-Si layer and the back electrode is enlarged. FIG. 2 is a part of a schematic cross-sectional view of a conventional Si solar cell module. FIG. 3 shows a module in which Si solar cells are incorporated into a portion that is normally made of glass, such as a glass window or a glass eave, for building materials such as a building wall using the conductive paste of the present invention. It is a part of sectional schematic diagram. DESCRIPTION OF SYMBOLS 1 Si solar cell 2 Si wafer 2a n-Si layer 2b p-Si layer 3 Light receiving surface electrode 4 Antireflection film 6 Back electrode 6a Si solar cell module surface transparent glass 6b Si solar cell module back opaque panel 7 Si solar cell 8 Transparent glass on back of Si solar cell module

フロントページの続き Fターム(参考) 4G062 AA09 BB04 DA04 DB01 DC01 DD01 DE01 DF06 DF07 EA01 EA10 EB01 EC01 ED01 EE01 EF01 EG01 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GA04 GA05 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM23 MM31 NN34 NN40 PP12 PP13 PP15 PP16 5F051 AA02 BA03 DA03 FA10 FA21 HA01 5G301 DA04 DA34 DA42 DD01 DD10Continuation of front page    F term (reference) 4G062 AA09 BB04 DA04 DB01 DC01                       DD01 DE01 DF06 DF07 EA01                       EA10 EB01 EC01 ED01 EE01                       EF01 EG01 FA01 FA10 FB01                       FC01 FD01 FE01 FF01 FG01                       FH01 FJ01 FK01 FL01 GA01                       GA04 GA05 GA10 GB01 GC01                       GD01 GE01 HH01 HH03 HH05                       HH07 HH09 HH11 HH13 HH15                       HH17 HH20 JJ01 JJ03 JJ05                       JJ07 JJ10 KK01 KK03 KK05                       KK07 KK10 MM23 MM31 NN34                       NN40 PP12 PP13 PP15 PP16                 5F051 AA02 BA03 DA03 FA10 FA21                       HA01                 5G301 DA04 DA34 DA42 DD01 DD10

Claims (1)

【特許請求の範囲】 【請求項1】アルミニウム粉末、ガラスフリット及び有
機ビヒクルを含有し、太陽電池の裏面電極形成に用いら
れる導電性ペーストであって、 ガラスフリットは、ホウ素を除く元素からなっているこ
とを特徴とする導電性ペースト。
Claims 1. A conductive paste containing aluminum powder, glass frit and an organic vehicle and used for forming a back electrode of a solar cell, wherein the glass frit is made of an element other than boron. A conductive paste.
JP2001359226A 2001-11-26 2001-11-26 Conductive paste Pending JP2003165744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001359226A JP2003165744A (en) 2001-11-26 2001-11-26 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001359226A JP2003165744A (en) 2001-11-26 2001-11-26 Conductive paste

Publications (1)

Publication Number Publication Date
JP2003165744A true JP2003165744A (en) 2003-06-10

Family

ID=19170272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001359226A Pending JP2003165744A (en) 2001-11-26 2001-11-26 Conductive paste

Country Status (1)

Country Link
JP (1) JP2003165744A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319170A (en) * 2005-05-13 2006-11-24 Mitsubishi Electric Corp Solar cell and its manufacturing method
JP2007234884A (en) * 2006-03-01 2007-09-13 Mitsubishi Electric Corp Solar cell and its manufacturing method
JP2008520094A (en) * 2004-11-12 2008-06-12 フエロ コーポレーション Method for manufacturing solar cell contact
WO2010026952A1 (en) 2008-09-04 2010-03-11 日本電気硝子株式会社 Glass composition for electrode formation and electrode formation material
WO2010098167A1 (en) * 2009-02-25 2010-09-02 株式会社ノリタケカンパニーリミテド Paste composition for solar cell electrode
JP2010222238A (en) * 2009-02-24 2010-10-07 Nippon Electric Glass Co Ltd Glass composition for electrode formation and electrode-forming material
WO2012002143A1 (en) 2010-06-29 2012-01-05 セントラル硝子株式会社 Low-melting-point glass composition and conductive paste material using same
WO2012111479A1 (en) * 2011-02-16 2012-08-23 株式会社 村田製作所 Conductive paste, solar cell and method for manufacturing solar cell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520094A (en) * 2004-11-12 2008-06-12 フエロ コーポレーション Method for manufacturing solar cell contact
JP2013030804A (en) * 2004-11-12 2013-02-07 Ferro Corp Mixture for manufacturing solar cell contact and method for manufacturing solar cell contact
JP2006319170A (en) * 2005-05-13 2006-11-24 Mitsubishi Electric Corp Solar cell and its manufacturing method
JP2007234884A (en) * 2006-03-01 2007-09-13 Mitsubishi Electric Corp Solar cell and its manufacturing method
WO2010026952A1 (en) 2008-09-04 2010-03-11 日本電気硝子株式会社 Glass composition for electrode formation and electrode formation material
JP2010222238A (en) * 2009-02-24 2010-10-07 Nippon Electric Glass Co Ltd Glass composition for electrode formation and electrode-forming material
JP2010199334A (en) * 2009-02-25 2010-09-09 Noritake Co Ltd Paste composition for solar cell electrode
KR20110115620A (en) * 2009-02-25 2011-10-21 가부시키가이샤 노리타케 캄파니 리미티드 Paste composition for solar cell electrode
WO2010098167A1 (en) * 2009-02-25 2010-09-02 株式会社ノリタケカンパニーリミテド Paste composition for solar cell electrode
US8512601B2 (en) 2009-02-25 2013-08-20 Noritake Co., Limited Paste composition for solar cell electrode
KR101674233B1 (en) 2009-02-25 2016-11-08 가부시키가이샤 노리타케 캄파니 리미티드 Paste composition for solar cell electrode
WO2012002143A1 (en) 2010-06-29 2012-01-05 セントラル硝子株式会社 Low-melting-point glass composition and conductive paste material using same
US8808582B2 (en) 2010-06-29 2014-08-19 Central Glass Company, Limited Low-melting-point glass composition and conductive paste material using same
WO2012111479A1 (en) * 2011-02-16 2012-08-23 株式会社 村田製作所 Conductive paste, solar cell and method for manufacturing solar cell
JP5403304B2 (en) * 2011-02-16 2014-01-29 株式会社村田製作所 Conductive paste, solar cell, and method for manufacturing solar cell

Similar Documents

Publication Publication Date Title
US8383017B2 (en) Conductive compositions and processes for use in the manufacture of semiconductor devices
EP2980857B1 (en) Conductive paste for solar cell element surface electrodes and method for manufacturing solar cell element
KR102175305B1 (en) Electroconductive paste and method for producing crystalline silicon solar battery
JP4556886B2 (en) Conductive paste and solar cell element
JP4255460B2 (en) Conductive paste, electrode, solar cell, and method for manufacturing solar cell
WO2017154612A1 (en) Conductive paste and solar cell
JP3707715B2 (en) Conductive paste
JP2001118425A (en) Conductive paste
JP4714634B2 (en) Conductive paste for solar cell electrode
JP2008010527A (en) Conductive paste for solar cell electrode
JP6137852B2 (en) Conductive paste for solar cell electrode formation
EP2899761A1 (en) Conductive paste and solar cell
KR101649890B1 (en) Conductive paste and solar cell
JP2003165744A (en) Conductive paste
JP2013243279A (en) Conductive paste for forming solar cell electrode
CN112028494B (en) Glass composition, method for producing glass composition, conductive paste, and solar cell
JP6200128B2 (en) Conductive paste for solar cell electrode formation
JP6266079B2 (en) Conductive paste for electrode formation of solar cell and method for manufacturing solar cell
US10804003B2 (en) Conductive paste for forming solar cell electrode
WO2024100947A1 (en) Solar cell
KR20190066157A (en) Solar cell