JP2003160790A - Photocatalyst unit for use in fuel tank - Google Patents

Photocatalyst unit for use in fuel tank

Info

Publication number
JP2003160790A
JP2003160790A JP2001361387A JP2001361387A JP2003160790A JP 2003160790 A JP2003160790 A JP 2003160790A JP 2001361387 A JP2001361387 A JP 2001361387A JP 2001361387 A JP2001361387 A JP 2001361387A JP 2003160790 A JP2003160790 A JP 2003160790A
Authority
JP
Japan
Prior art keywords
photocatalyst
tio
fuel tank
fuel
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001361387A
Other languages
Japanese (ja)
Inventor
Midori Mori
みどり 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001361387A priority Critical patent/JP2003160790A/en
Publication of JP2003160790A publication Critical patent/JP2003160790A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Catalysts (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalyst unit used in a fuel tank of e.g. an automobile and being capable of efficiently removing sulfur from a fuel. <P>SOLUTION: The photocatalyst unit is one for use in the fuel tank and provided with a photocatalyst and a light source, wherein the photocatalyst contains at least one semiconductor photocatalyst selected from among TiO<SB>2</SB>, ZnO, WO<SB>3</SB>and SnO<SB>2</SB>and at least one cocatalyst carried by the photocatalyst and selected from among Mo, Ni, Co and Re. Desirably, the ratio, the cocatalyst/the semiconductor catalyst, is 0.001-0.1 by mass. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料中の硫黄分を
低減させるための光触媒ユニット、より詳しくは、自動
車等の輸送機関の燃料タンクに装備され、燃料タンク内
で燃料中の硫黄分を低減させるのに適する光触媒ユニッ
トに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst unit for reducing the sulfur content in fuel, and more particularly, it is installed in a fuel tank of a transportation system such as an automobile, and the sulfur content in the fuel is kept in the fuel tank. It relates to a photocatalytic unit suitable for reducing.

【0002】[0002]

【従来の技術】ガソリンや軽油のような自動車等の輸送
機関に使用される燃料には、微量ながら硫黄分が含まれ
ており、この硫黄分は、燃料室で酸化されてSOxとな
って環境汚染の原因になり、また、排気ガス浄化用触媒
を被毒させたり、エンジンピストンリングを消耗させる
原因にもなる。
2. Description of the Related Art Fuel such as gasoline and light oil used for vehicles such as automobiles contains a small amount of sulfur, which is oxidized in a fuel chamber to become SO x. This may cause environmental pollution, poison the exhaust gas purification catalyst, and wear the engine piston ring.

【0003】このため、燃料中の硫黄分を出来るだけ低
減させることが望まれており、この硫黄分の除去は、主
として、特開平11−189776号公報に記載のよう
に、大型の石油精製プラント内で高温高圧の触媒反応を
利用して行われている。
Therefore, it is desired to reduce the sulfur content in the fuel as much as possible, and the removal of the sulfur content is mainly performed in a large-scale oil refining plant as described in JP-A No. 11-189776. It is carried out by utilizing a high temperature and high pressure catalytic reaction.

【0004】[0004]

【発明が解決しようとする課題】しかるに、自動車等の
燃料タンクには、実際に使用される直前の燃料が一時的
に貯蔵されているため、かかる燃料タンクにおいても硫
黄分を除去することが可能であれば、上記の環境汚染、
触媒被毒等の問題をより効率的に抑制することができ
る。
However, since the fuel tank just before being actually used is temporarily stored in the fuel tank of an automobile or the like, it is possible to remove the sulfur content also in the fuel tank. If so, the above environmental pollution,
Problems such as catalyst poisoning can be suppressed more efficiently.

【0005】ところで、特開平10−176615号公
報に、燃料貯蔵槽中で光触媒を利用して燃料を改質する
こと、より詳しくは、燃料の炭化水素に活性酸素種を取
り込ませて燃焼効率を高めることが提案されている。し
かし、光触媒を利用した硫黄分の低減については記載さ
れていない。したがって、本発明は、自動車等の燃料タ
ンク内で効率よく燃料中の硫黄分を除去することができ
る光触媒ユニットを提供することを目的とする。
By the way, Japanese Patent Laid-Open No. 10-176615 discloses that a photocatalyst is used to reform a fuel in a fuel storage tank. More specifically, the combustion efficiency is improved by incorporating active oxygen species into hydrocarbon of the fuel. It is proposed to increase. However, there is no description about reduction of sulfur content using a photocatalyst. Therefore, it is an object of the present invention to provide a photocatalyst unit capable of efficiently removing sulfur content in fuel in a fuel tank of an automobile or the like.

【0006】[0006]

【課題を解決するための手段】上記目的は、燃料タンク
内に光触媒と光源を備えた光触媒ユニットであって、前
記光触媒が、TiO2、ZnO、WO3、及びSnO2
ら選択された少なくとも1種の半導体光触媒と、前記半
導体光触媒に担持されたMo、Ni、Co、及びReか
ら選択された少なくとも1種の助触媒を含むことを特徴
とする光触媒ユニットによって達成される。
The above object is a photocatalyst unit having a photocatalyst and a light source in a fuel tank, wherein the photocatalyst is at least one selected from TiO 2 , ZnO, WO 3 , and SnO 2. And a semiconductor photocatalyst of at least one kind and at least one promoter selected from Mo, Ni, Co, and Re supported on the semiconductor photocatalyst.

【0007】即ち、本発明の光触媒は、特定の半導体光
触媒と助触媒を含んで構成される。こうした光触媒が硫
黄分を除去するメカニズムは以下のように推察される。
例えば、石油中の硫黄化合物には、表1に挙げたように
数多くのものがあり、中でも、環状硫黄化合物のチオフ
ェン類が多く含まれる。
That is, the photocatalyst of the present invention comprises a specific semiconductor photocatalyst and a promoter. The mechanism by which such photocatalyst removes sulfur is presumed as follows.
For example, there are many sulfur compounds in petroleum as listed in Table 1, and among them, a large amount of thiophenes, which are cyclic sulfur compounds, are included.

【0008】ここで、半導体光触媒に固有の波長以下の
光を照射すると、特定のエネルギー準位の電子と正孔が
発生する。このため、石油に接触する半導体光触媒が光
照射されると、電子と正孔が存在する状態で、電子吸引
性の助触媒にチオフェン等の環状化合物のS原子が吸着
し、触媒上に固定される。その後、半導体光触媒上に生
じた正孔によりチオフェンの電子が吸引され、チオフェ
ンからS原子を脱離させる。
When the semiconductor photocatalyst is irradiated with light having a wavelength equal to or shorter than a specific wavelength, electrons and holes having specific energy levels are generated. For this reason, when the semiconductor photocatalyst in contact with petroleum is irradiated with light, the S atom of a cyclic compound such as thiophene is adsorbed on the electron-withdrawing cocatalyst in the state where electrons and holes are present and is fixed on the catalyst. It After that, the electrons of thiophene are attracted by the holes generated on the semiconductor photocatalyst, and the S atom is desorbed from the thiophene.

【0009】助触媒に吸着し、チオフェン等から脱離し
たS原子は、燃料中のH+等と反応してH2Sとなり、一
方で硫黄化合物からS原子が脱離して生成した炭化水素
ラジカルは、燃料中のH+等と反応して安定化する。図
1は、このように推察されるメカニズムをチオフェンに
ついてモデル的に示すものである。
The S atom adsorbed on the cocatalyst and desorbed from thiophene or the like reacts with H + or the like in the fuel to become H 2 S, while the hydrocarbon radical generated by desorption of the S atom from the sulfur compound. Is stabilized by reacting with H + and the like in the fuel. FIG. 1 shows the mechanism inferred in this way as a model for thiophene.

【0010】[0010]

【発明の実施の形態】本発明は、燃料タンク内に光触媒
と光源を備えた光触媒ユニットであって、前記光触媒
が、TiO2、ZnO、WO3、及びSnO2から選択さ
れた少なくとも1種の半導体光触媒と、前記半導体光触
媒に担持されたMo、Ni、Co、及びReから選択さ
れた少なくとも1種の助触媒を含むことを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a photocatalyst unit having a photocatalyst and a light source in a fuel tank, wherein the photocatalyst is at least one selected from TiO 2 , ZnO, WO 3 , and SnO 2 . It is characterized by containing a semiconductor photocatalyst and at least one cocatalyst selected from Mo, Ni, Co and Re supported on the semiconductor photocatalyst.

【0011】TiO2、ZnO、WO3、及びSnO2
ら選択された少なくとも1種の半導体光触媒は、好まし
くは、数nm〜数100nm(ナノメートル)の平均粒子
径を有するものが使用される。
At least one semiconductor photocatalyst selected from TiO 2 , ZnO, WO 3 , and SnO 2 is preferably used, which has an average particle diameter of several nm to several 100 nm (nanometer).

【0012】このようなTiO2等の半導体光触媒とM
o等の助触媒は、好ましくは、図2に示すように、ガラ
ス又はプラスチック製の中空ビーズの基材に層状に固定
される。中空ビーズに固定すれば、中空ビーズの気固界
面で光の屈折と散乱が生じ、また、燃料の液面に光触媒
が浮遊することから、光源からの光を効率よく光触媒に
照射することができるためである。この中空ビーズの直
径は、0.1〜10mmが一応の目安である。
A semiconductor photocatalyst such as TiO 2 and M
The cocatalyst such as o is preferably fixed in a layer form on a substrate of hollow beads made of glass or plastic, as shown in FIG. When fixed to the hollow beads, light is refracted and scattered at the gas-solid interface of the hollow beads, and since the photocatalyst floats on the liquid surface of the fuel, the light from the light source can be efficiently irradiated to the photocatalyst. This is because. The diameter of the hollow beads is 0.1 to 10 mm as a rough standard.

【0013】TiO2等の半導体光触媒の粉末を中空ビ
ーズの基材に固定するのは、限定されるものではない
が、TiO2等の粉末を中空ビーズにコーティングした
後、そのガラス又はプラスチックの溶融温度内で加熱す
ることにより行うことができる。あるいは、TiO2
の粉末を高速で基材に衝突させて、基材に部分的に埋設
させることによって固定することができる。
Fixing the semiconductor photocatalyst powder such as TiO 2 to the base material of the hollow beads is not limited, but the powder such as TiO 2 is coated on the hollow beads and then the glass or plastic is melted. It can be carried out by heating within the temperature. Alternatively, the powder can be fixed by colliding powder such as TiO 2 with the base material at high speed and partially embedding it in the base material.

【0014】また、Ti(OC37)4等のアルコキシド
化合物からTiO2粒子を調製しつつガラス基板等に固
定することもできる。この場合、Ti(OC37)4等の
アルコキシド化合物のエタノール等の溶液で希釈し、ガ
ラスビーズを浸漬する。その後、ガラスビーズを溶液か
ら取り出して室温で放置等することによってアルコキシ
ド化合物を加水分解させ、次いで、大気雰囲気中で40
0〜700℃の焼成に供することによって、TiO2
に粒子化させると同時に基材に固定することもできる。
It is also possible to fix TiO 2 particles on a glass substrate or the like while preparing TiO 2 particles from an alkoxide compound such as Ti (OC 3 H 7 ) 4 . In this case, the glass beads are immersed by diluting with a solution of an alkoxide compound such as Ti (OC 3 H 7 ) 4 such as ethanol. Then, the glass beads are taken out of the solution and left at room temperature to hydrolyze the alkoxide compound, and then the alkoxide compound is hydrolyzed in an atmosphere of 40%.
By subjecting it to calcination at 0 to 700 ° C., it is possible to make it into particles such as TiO 2 and at the same time fix it to the substrate.

【0015】Mo、Ni、Co、及びReから選択され
た少なくとも1種の助触媒が、このTiO2等の半導体
光触媒に担持される。これらの助触媒は、酸化物ではな
い金属の形態又は金属酸化物の形態のいずれでもよい。
At least one promoter selected from Mo, Ni, Co, and Re is supported on the semiconductor photocatalyst such as TiO 2 . These cocatalysts may be in the form of metals that are not oxides or in the form of metal oxides.

【0016】これらの助触媒の担持は、例えば、上記の
ようにして中空ビーズに固定されたTiO2等の半導体
光触媒に、通常の蒸発乾固法で担持することでよく、よ
り詳しくは、Mo又はMoO等のアンモニウム塩等をT
iO2等の半導体光触媒に含浸し、次いで乾燥すること
によって行うことができる。
The supporting of these co-catalysts may be carried out, for example, on a semiconductor photocatalyst such as TiO 2 fixed to the hollow beads as described above by a usual evaporation dry solidification method. Alternatively, ammonium salt such as MoO may be used as T
It can be carried out by impregnating a semiconductor photocatalyst such as io 2 and then drying.

【0017】好ましくは、TiO2等の半導体光触媒に
Mo等の助触媒を担持したものを、上記の中空ビーズに
固定する。より詳しくは、Mo又はMoO等のアンモニ
ウム塩等をTiO2等の半導体光触媒の粉末に含浸し、
次いで乾燥と例えば300〜800℃×1〜5時間の焼
成を行った後、この助触媒を担持したTiO2等の粉末
を、上記の中空ビーズについて示した仕方で固定する。
Preferably, a semiconductor photocatalyst such as TiO 2 carrying a promoter such as Mo is fixed to the hollow beads. More specifically, a powder of a semiconductor photocatalyst such as TiO 2 is impregnated with an ammonium salt such as Mo or MoO,
Then, after drying and calcining at, for example, 300 to 800 ° C. for 1 to 5 hours, the powder of TiO 2 or the like carrying the co-catalyst is fixed in the manner described above for the hollow beads.

【0018】これにより、TiO2等の半導体光触媒に
Mo又はMoO等の助触媒がより強固に担持された光触
媒を得ることができる。また、上記のようにTi(OC3
7)4等のアルコキシド化合物を用いた場合、Mo等の
アンモニウム塩等の化合物をアルコキシド化合物の溶液
中に添加し、次いで、上記と同様にしてTiO2等に粒
子化させることで、TiO2等を基材に固定すると同時
にTiO2等にMo等を担持することもできる。
This makes it possible to obtain a photocatalyst in which a promoter such as Mo or MoO is more strongly supported on a semiconductor photocatalyst such as TiO 2 . In addition, as described above, Ti (OC 3
When using H 7) alkoxide compounds such as 4, compounds such as ammonium salts such as Mo was added to a solution of an alkoxide compound, then, by the particles of the TiO 2 or the like in the same manner as described above, TiO 2 It is also possible to support Mo etc. on TiO 2 etc. at the same time as fixing them etc. to the substrate.

【0019】あるいは、このようなTiO2等の半導体
光触媒とMo又はMoO等の助触媒は、膜の状態で固定
されて、図3のように燃料タンク内に配置されることも
できる。より詳しくは、ガラス、プラスチック、金属等
の板状材料を基材として、上記のビーズについて示した
ようにして、基材の表面に層状に半導体光触媒を固定し
た後、助触媒を担持する、又は助触媒を担持した半導体
光触媒を固定し、その板状材料を燃料タンクの光源に曝
される位置に配置することができる。
Alternatively, such a semiconductor photocatalyst such as TiO 2 and a cocatalyst such as Mo or MoO can be fixed in the form of a film and placed in the fuel tank as shown in FIG. More specifically, glass, plastic, a plate-shaped material such as metal is used as a substrate, and after fixing the semiconductor photocatalyst in a layered manner on the surface of the substrate as described above for the beads, the cocatalyst is supported, or The semiconductor photocatalyst carrying the co-catalyst can be fixed, and the plate-shaped material can be arranged at a position of the fuel tank exposed to the light source.

【0020】なお、金属の板状材料に半導体光触媒を固
定するのは、粉末を高温高圧で溶射する等の各種手段を
採用することができる。このようにして基材に固定され
る助触媒/半導体光触媒の質量比は、好ましくは0.0
01〜0.1、より好ましくは0.003〜0.05であ
る。
The semiconductor photocatalyst may be fixed to the metal plate material by various means such as thermal spraying of powder at high temperature and high pressure. The mass ratio of the cocatalyst / semiconductor photocatalyst thus fixed to the substrate is preferably 0.0.
It is 01 to 0.1, and more preferably 0.003 to 0.05.

【0021】光源は、使用される半導体光触媒に見合っ
たもの、即ち、電子が価電子帯から伝導帯に励起される
波長の光源が使用され、TiO2であれば390nm以
下、ZnOであれば360nm以下、WO3であれば4
70nm以下、及びSnO2であれば350nm以下の
波長を有する紫外線光源が使用される。
As the light source, a light source suitable for the semiconductor photocatalyst used, that is, a light source having a wavelength at which electrons are excited from the valence band to the conduction band is used, 390 nm or less for TiO 2 and 360 nm for ZnO. Below, if WO 3 is 4
An ultraviolet light source having a wavelength of 70 nm or less and 350 nm or less for SnO 2 is used.

【0022】本発明の光触媒ユニットは、上記に説明し
た光触媒と光源が燃料タンク内に配置されて構成され、
自動車等の各種の用途にユニットとして使用されること
ができる。この光触媒ユニットは、光を照射したときに
硫黄分除去の機能を提供するため、例えば、エンジン始
動時の一定時間のみ光を照射することで、燃料の使用に
応じた光源の消費電力とすることができる。以下、実施
例によって本発明をより具体的に説明する。
The photocatalyst unit of the present invention comprises the above-mentioned photocatalyst and a light source arranged in a fuel tank.
It can be used as a unit for various applications such as automobiles. This photocatalyst unit provides the function of removing sulfur when irradiated with light.For example, by irradiating light for a certain period of time when the engine is started, the power consumption of the light source is adjusted according to the use of fuel. You can Hereinafter, the present invention will be described more specifically with reference to Examples.

【0023】[0023]

【実施例】実施例1 半導体光触媒としてTiO2(平均粒子径10nm)を使
用し、助触媒をMoとして、以下のようにして本発明の
光触媒を調製した。TiO2粉末の20gをイオン交換
水の200gに分散させてスラリーにし、次いで、パラ
モリブデン酸アンモニウムの0.8gを加えて攪拌した
後、乾燥し、窒素雰囲気中で500℃×2時間の加熱を
行い、TiO2粉末にMoを担持した。
Example 1 A photocatalyst of the present invention was prepared as follows using TiO 2 (average particle diameter 10 nm) as a semiconductor photocatalyst and Mo as a cocatalyst. 20 g of TiO 2 powder was dispersed in 200 g of ion-exchanged water to form a slurry, then 0.8 g of ammonium paramolybdate was added and stirred, and then dried, and heated in a nitrogen atmosphere at 500 ° C. for 2 hours. Then, Mo was supported on the TiO 2 powder.

【0024】次いで、このMo担持TiO2粉末の10
gをイソプロピルアルコールの40gに分散させてスラ
リーにし、このスラリーに、図2に示すような外径10
mm×中空部外径6mmの中空ガラスビーズの10gを
投入して攪拌した後、ろ過・乾燥し、窒素雰囲気中で5
00℃×2時間の加熱を行い、Mo担持TiO2粉末を
ガラスビーズに固定した。得られたMo/TiO2/ガ
ラスビーズの質量比は3/100/1000であった。
Next, 10 parts of this TiO 2 powder supporting Mo are prepared.
g in 40 g of isopropyl alcohol to form a slurry, and the slurry was added to the outside diameter 10
mm × Hollow part 6 g of hollow glass beads with an outer diameter of 6 mm are added and stirred, then filtered and dried, and then 5 in a nitrogen atmosphere.
Heating was carried out at 00 ° C. for 2 hours to fix the Mo-supporting TiO 2 powder on the glass beads. The obtained Mo / TiO 2 / glass bead mass ratio was 3/100/1000.

【0025】次いで、このガラスビーズの10gを硫黄
分500ppmの軽油200gに加え、ガラスビーズを
軽油に浮かせた状態で、室温にて主波長360nm×出
力400Wの紫外線光源に5時間にわたって曝した。こ
の紫外線照射後の軽油中の硫黄分を測定したところ、1
90ppmに低下していた。
Next, 10 g of the glass beads were added to 200 g of light oil having a sulfur content of 500 ppm, and the glass beads were floated in the light oil and exposed to an ultraviolet light source having a main wavelength of 360 nm × output of 400 W for 5 hours at room temperature. When the sulfur content in the light oil after this ultraviolet irradiation was measured, it was 1
It had dropped to 90 ppm.

【0026】実施例2〜4 半導体光触媒としてTiO2の他にZnO、WO3を用
い、助触媒としてMoの他にCoを用いた以外は実施例
1と同様にして、表2に摘要を示す光触媒を調製し、紫
外線光源に5時間にわたって曝した後の軽油中の硫黄分
を測定した。助触媒/TiO2の質量比は、いずれも3
/100とした。この結果を表2にまとめて示す。
Examples 2 to 4 Table 2 shows a summary in the same manner as in Example 1 except that ZnO and WO 3 were used in addition to TiO 2 as the semiconductor photocatalyst, and Co was used in addition to Mo as the cocatalyst. A photocatalyst was prepared and the sulfur content in the gas oil was measured after exposure to a UV light source for 5 hours. The mass ratio of cocatalyst / TiO 2 is 3 in each case.
/ 100. The results are summarized in Table 2.

【0027】比較例1〜2 半導体光触媒としてTiO2の他にZnOを用い、助触
媒は用いない以外は実施例1と同様にして、表2に摘要
を示す光触媒を調製し、紫外線光源に5時間にわたって
曝した後の軽油中の硫黄分を測定した。この結果を表2
に併せて示す。表2に示した硫黄分の濃度より、本発明
による硫黄分低減の効果は明らかである。
Comparative Examples 1 and 2 A photocatalyst whose outline is shown in Table 2 was prepared in the same manner as in Example 1 except that ZnO was used as the semiconductor photocatalyst in addition to TiO 2 and no cocatalyst was used. The sulfur content in the gas oil after exposure over time was measured. The results are shown in Table 2.
Are also shown. From the concentration of sulfur content shown in Table 2, the effect of reducing the sulfur content according to the present invention is clear.

【0028】[0028]

【発明の効果】自動車等の燃料タンク内で効率よく燃料
中の硫黄分を除去する光触媒ユニットを提供することこ
とができる。
EFFECTS OF THE INVENTION It is possible to provide a photocatalyst unit that efficiently removes sulfur in fuel in a fuel tank of an automobile or the like.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光触媒の作用をモデル的に示す図であ
る。
FIG. 1 is a model view showing the action of the photocatalyst of the present invention.

【図2】本発明の光触媒が使用される態様を例示する図
である。
FIG. 2 is a diagram illustrating an embodiment in which the photocatalyst of the present invention is used.

【図3】本発明の光触媒ユニットの構成を例示する図で
ある。
FIG. 3 is a diagram illustrating a configuration of a photocatalytic unit of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 35/02 C10G 29/04 C10G 29/04 29/16 29/16 32/00 Z 32/00 F02M 21/02 F F02M 21/02 27/02 A 27/02 B01J 23/74 311M Fターム(参考) 4G069 AA03 AA08 BA04A BA04B BA48A BB04A BB04B BC22A BC35A BC35B BC59A BC59B BC60A BC60B BC64A BC67A BC67B BC68A CA03 CA12 DA08 EA02Y FA02 4H015 AA24 AA26 AB06 BA08 BB01─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01J 35/02 C10G 29/04 C10G 29/04 29/16 29/16 32/00 Z 32/00 F02M 21 / 02 F F02M 21/02 27/02 A 27/02 B01J 23/74 311M F term (reference) 4G069 AA03 AA08 BA04A BA04B BA48A BB04A BB04B BC22A BC35A BC35B BC59A BC59B BC60A BC60B BC64A BC67A BC67B FA08A CA02B02 CA02A AA26 AB06 BA08 BB01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料タンク内に光触媒と光源を備えた光
触媒ユニットであって、前記光触媒が、TiO2、Zn
O、WO3、及びSnO2から選択された少なくとも1種
の半導体光触媒と、前記半導体光触媒に担持されたM
o、Ni、Co、及びReから選択された少なくとも1
種の助触媒を含むことを特徴とする光触媒ユニット。
1. A photocatalyst unit comprising a photocatalyst and a light source in a fuel tank, wherein the photocatalyst is TiO 2 , Zn.
At least one semiconductor photocatalyst selected from O, WO 3 , and SnO 2 , and M supported on the semiconductor photocatalyst
at least one selected from o, Ni, Co, and Re
A photocatalytic unit comprising a seed co-catalyst.
【請求項2】 助触媒/半導体光触媒の質量比が0.0
01〜0.1である請求項1に記載の光触媒ユニット。
2. A mass ratio of cocatalyst / semiconductor photocatalyst is 0.0.
The photocatalytic unit according to claim 1, wherein the photocatalytic unit is from 01 to 0.1.
JP2001361387A 2001-11-27 2001-11-27 Photocatalyst unit for use in fuel tank Pending JP2003160790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361387A JP2003160790A (en) 2001-11-27 2001-11-27 Photocatalyst unit for use in fuel tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361387A JP2003160790A (en) 2001-11-27 2001-11-27 Photocatalyst unit for use in fuel tank

Publications (1)

Publication Number Publication Date
JP2003160790A true JP2003160790A (en) 2003-06-06

Family

ID=19172060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361387A Pending JP2003160790A (en) 2001-11-27 2001-11-27 Photocatalyst unit for use in fuel tank

Country Status (1)

Country Link
JP (1) JP2003160790A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121540A1 (en) * 2004-06-09 2005-12-22 Fuji Kihan Co., Ltd. Fuel reformer
WO2010004986A1 (en) * 2008-07-07 2010-01-14 株式会社 For-C Method for refining natural oil
WO2014056790A1 (en) * 2012-10-08 2014-04-17 Innano As Treatment of fuel
JP2016016337A (en) * 2014-07-04 2016-02-01 シャープ株式会社 Photocatalytic material
US10626829B2 (en) 2017-04-20 2020-04-21 Toyota Jidosha Kabushiki Kaisha Fuel reformer for vehicle
WO2023079766A1 (en) * 2021-11-03 2023-05-11 アンデス電気株式会社 Photocatalyst antibacterial deodorizing material, method for producing same, antibacterial deodorizing material, and antibacterial deodorizing filter

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121540A1 (en) * 2004-06-09 2005-12-22 Fuji Kihan Co., Ltd. Fuel reformer
JPWO2005121540A1 (en) * 2004-06-09 2008-04-10 株式会社不二機販 Fuel reformer
WO2010004986A1 (en) * 2008-07-07 2010-01-14 株式会社 For-C Method for refining natural oil
JP5534455B2 (en) * 2008-07-07 2014-07-02 株式会社 For−C Method for refining natural oil
WO2014056790A1 (en) * 2012-10-08 2014-04-17 Innano As Treatment of fuel
JP2016016337A (en) * 2014-07-04 2016-02-01 シャープ株式会社 Photocatalytic material
US10626829B2 (en) 2017-04-20 2020-04-21 Toyota Jidosha Kabushiki Kaisha Fuel reformer for vehicle
WO2023079766A1 (en) * 2021-11-03 2023-05-11 アンデス電気株式会社 Photocatalyst antibacterial deodorizing material, method for producing same, antibacterial deodorizing material, and antibacterial deodorizing filter
JP2023068678A (en) * 2021-11-03 2023-05-18 アンデス電気株式会社 Photocatalytic antibacterial deodorant, manufacturing method thereof, antibacterial deodorant, and antibacterial deodorant filter
JP7436992B2 (en) 2021-11-03 2024-02-22 アンデス電気株式会社 Photocatalytic antibacterial deodorizing material, its manufacturing method, antibacterial deodorizing material, and antibacterial deodorizing filter

Similar Documents

Publication Publication Date Title
US6060026A (en) Photoelectrochemical device containing a quantum confined silicon particle
US7150861B2 (en) Catalyst for purification of exhaust gases and process for purification of exhaust gases
CN108722464B (en) Pd three-way low-temperature catalyst with nitrogen-doped titanium dioxide as carrier and preparation method and application thereof
CN112934219A (en) Heteroatom-resistant combustion catalyst, and preparation method and application thereof
JP2003160790A (en) Photocatalyst unit for use in fuel tank
CN102985167B (en) Decomposition/elimination method using a photocatalytic material
JP2006007216A (en) Silver added catalyst for exhaust gas treatment
CN1256640A (en) Method for removing nitrogen oxides using natural manganese ores
KR100668926B1 (en) Method of regenerating scr catalyst
CN100337726C (en) Catalyst for purifying exhaust gases and process for producing the same
US3455843A (en) Hydrocarbon oxidation catalyst
JP2002210368A (en) Molten salt type catalyst
CN111871438B (en) Pt/TiN efficient photo-thermal synergistic catalyst and preparation method and application thereof
JP2003205238A (en) Exhaust gas treatment catalyst and exhaust gas treatment method
CN108993544B (en) Catalyst for removing NOx and VOCs in low-temperature high-sulfur tail gas and preparation and application thereof
CN111375304B (en) Method for treating organic waste gas containing low-carbon hydrocarbon
JPH0592125A (en) Waste gas purification
CN101367034B (en) Nano- floating type supported photocatalyst, low-temperature preparation method and uses thereof
JP3287473B2 (en) Exhaust purification catalyst for diesel engines
JP2003175317A (en) Exhaust gas treatment catalyst and exhaust gas treatment method
US3288558A (en) Internal combustion engine exhaust gas treating process
WO2024103556A1 (en) Method for changing pollutant degradation path of peroxymonosulfate by using copper distribution mode, and preparation method for and use of composite catalyst
JP2004209356A (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2004141739A (en) Nitrogen-containing titanium oxide-based photocatalyst and method for decontaminating environmentally-polluted gas by using the same
JPH05138026A (en) Catalyst for purifying exhaust gas of diesel engine