JP2003160091A - Friction reducer for ship - Google Patents

Friction reducer for ship

Info

Publication number
JP2003160091A
JP2003160091A JP2001358659A JP2001358659A JP2003160091A JP 2003160091 A JP2003160091 A JP 2003160091A JP 2001358659 A JP2001358659 A JP 2001358659A JP 2001358659 A JP2001358659 A JP 2001358659A JP 2003160091 A JP2003160091 A JP 2003160091A
Authority
JP
Japan
Prior art keywords
air
hull
ship
air duct
outer plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001358659A
Other languages
Japanese (ja)
Inventor
Shiyouichi Higaki
祥市 檜垣
Chiharu Kawakita
千春 川北
Akira Ishikawa
暁 石川
Shinichi Takano
真一 高野
Takahito Takahashi
孝仁 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN SHIPBUILDING RES ASS
SHIPBUILD RES ASSOC JAPAN
Mitsubishi Heavy Industries Ltd
National Maritime Research Institute
Original Assignee
JAPAN SHIPBUILDING RES ASS
SHIPBUILD RES ASSOC JAPAN
Mitsubishi Heavy Industries Ltd
National Maritime Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN SHIPBUILDING RES ASS, SHIPBUILD RES ASSOC JAPAN, Mitsubishi Heavy Industries Ltd, National Maritime Research Institute filed Critical JAPAN SHIPBUILDING RES ASS
Priority to JP2001358659A priority Critical patent/JP2003160091A/en
Publication of JP2003160091A publication Critical patent/JP2003160091A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a friction reducer for ship which can be easily set with fewer work man-hours without directly manufacturing a fine bubble forming mechanism including an air jet orifice onto an outside plate of a ship body, prevents the strength of the ship body from decreasing, and improves friction reducing effects thereof. <P>SOLUTION: In the friction reducer for ship which reduces friction resistance on ship surfaces with fine bubbles formed by spurting air from the ship surfaces into seawater, an air passage is formed inside and an air duct is also installed on the outside plate of the ship body. The air duct spurts the air inside of the air passage through a number of air jet holes formed at an exterior surface plate part into the seawater outside of the ship body in order to form bubbles. In addition, a flow straitening device for straitening the seawater flow in the vicinity of the air jet device by connecting the exterior surface plate part of the air duct and the outside plate of the ship body to each other at both upstream and downstream sides of the air duct. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、船体の表面から海
水中に空気を噴出させることによって形成される微細な
気泡により船体表面の摩擦抵抗を低減する船舶の摩擦低
減装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ship friction reducing device for reducing frictional resistance on the surface of a hull by fine bubbles formed by ejecting air from the surface of the hull into seawater.

【0002】[0002]

【従来の技術】船舶の航行時においては、喫水線下の船
体表面に流体(海水)の粘性によって該船体表面沿って
乱流境界層が発達することにより船体表面に摩擦抵抗が
作用し、船舶の推進性能を低下させる。かかる船体表面
の摩擦抵抗を低減する手段として、船体外板に設けた小
孔から該船体外板に垂直あるいは船体の斜め後方に向け
て微細な気泡を噴出する手段、小孔の部分に多孔質部材
を配設した構造による手段等が提案されている。
2. Description of the Related Art During navigation of a ship, a turbulent boundary layer develops along the surface of the hull below the waterline due to the viscosity of a fluid (seawater), which causes frictional resistance on the surface of the hull and Decrease propulsion performance. As means for reducing the frictional resistance on the surface of the hull, means for ejecting fine bubbles from a small hole provided in the hull outer plate perpendicularly to the hull outer plate or obliquely rearward of the hull, and a porous part in the small hole portion Means and the like having a structure in which members are arranged have been proposed.

【0003】前記のように船体外板部から微細な気泡を
噴出する手段の1つに特開平11−59561号の発明
がある。かかる発明においては、船体外板から突出した
流線形状の層流凸部を設けるとともに該層流凸部の頂部
に前記流線形状に直交する方向に開口する複数の気体噴
出口を穿孔し、吹き出し空気量が増加しても船体の摩擦
低減を有効に行うようにしている。
As one of the means for ejecting fine bubbles from the outer plate portion of the hull as described above, there is the invention of JP-A-11-59561. In the invention, a streamline-shaped laminar flow convex portion protruding from the hull outer plate is provided, and a plurality of gas ejection ports opened in a direction orthogonal to the streamline shape are provided at the top of the laminar flow convex portion, Even if the amount of air blown out increases, the friction of the hull is effectively reduced.

【0004】[0004]

【発明が解決しようとする課題】前記特開平11−59
561号の発明においては、船体外板に直接に流線形状
の層流凸部を形成するとともに微細気泡形成用の気体噴
出口を穿孔しているため、船体外板に直接に気体噴出口
を穿孔することにより該気体噴出口周辺の船体強度が低
下するとともに、該気体噴出口を起点として船体の腐食
が発生し易く船体寿命短縮の一因となる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the invention of No. 561, since the streamline-shaped laminar flow convex portion is formed directly on the hull skin and the gas jet port for forming fine bubbles is bored, the gas jet port is directly formed on the hull skin. The perforation lowers the strength of the hull around the gas ejection port, and tends to cause corrosion of the hull from the gas ejection port as a starting point, which contributes to shortening the life of the hull.

【0005】また、かかる従来技術にあっては、船体外
板に直接に微細気泡形成用の気体噴出口を穿孔するた
め、新規建造船舶の場合は建造時に前記気体噴出口を比
較的容易に加工可能であるが、既成の船舶の場合は小径
の気体噴出口を多数穿孔することを要することから該気
体噴出口の加工が困難であり、またかかる加工を行うと
しても加工作業に多大な工数及び時間を要する、等の問
題点を有している。
Further, in the above-mentioned prior art, since the gas ejection port for forming fine bubbles is directly bored in the outer plate of the hull, in the case of a newly constructed ship, the gas ejection port is relatively easily processed at the time of construction. Although it is possible, in the case of an off-the-shelf vessel, it is difficult to process the gas outlets because it is necessary to drill a large number of small-diameter gas outlets. It has a problem that it takes time.

【0006】本発明はかかる従来技術の課題に鑑み、気
体噴出口を含む微細気泡形成機構を船体外板に直接加工
することなく容易にかつ少ない作業工数でもって設置可
能とするとともに、船体強度の低下を防止し、船体摩擦
の低減効果を向上した船舶の摩擦低減装置を提供するこ
とを目的とする。
In view of the above problems of the prior art, the present invention enables a fine bubble forming mechanism including a gas jet port to be installed easily and with a small number of man-hours without directly processing on the outer plate of a hull, and at the same time, the hull strength can be improved. An object of the present invention is to provide a ship friction reducing device that prevents the deterioration of the hull and improves the hull friction reducing effect.

【0007】[0007]

【課題を解決するための手段】本発明はかかる課題を解
決するため、請求項1記載の発明として、船体の表面か
ら海水中に空気を噴出させることによって形成される微
細な気泡により船体表面の摩擦抵抗を低減する船舶の摩
擦低減装置において、内部に空気通路が形成されるとと
もに該空気通路内の空気を外面板部に形成された多数の
空気噴出孔から船体外部の海中に噴出して気泡を形成す
る空気ダクトを前記船体の外板に取り付けてなる空気噴
出装置を備えたことを特徴とする船舶の摩擦低減装置を
提案する。
In order to solve the above problems, the present invention provides an invention as set forth in claim 1, in which the surface of the hull is formed by fine air bubbles formed by ejecting air from the surface of the hull into seawater. In a ship friction reducing device for reducing frictional resistance, an air passage is formed inside, and the air in the air passage is ejected from a large number of air ejection holes formed in an outer surface plate portion into the sea outside the hull to form bubbles. A friction reducing device for a ship is provided, which is provided with an air ejecting device in which an air duct that forms the above is attached to an outer plate of the hull.

【0008】請求項1において、好ましくは請求項2の
ように、前記空気ダクトは、船体外板に沿って延設され
た4角形パイプ等からなり、その内面板部を前記船体外
板に固着し該内面板部に対向する前記外面板部に前記空
気噴出孔を穿孔してなるのがよい。
In the first aspect of the present invention, preferably, as in the second aspect of the present invention, the air duct is formed of a quadrangular pipe or the like extending along the outer plate of the hull, and an inner plate portion thereof is fixed to the outer plate of the hull. It is preferable that the air ejection hole is bored in the outer surface plate portion facing the inner surface plate portion.

【0009】請求項1、2記載の発明によれば、内部に
空気通路が形成され外面板部に多数の空気噴出孔を形成
してなる空気ダクト、好ましくは請求項2のような4角
形パイプ等からなる空気ダクトを船体外板に溶接等によ
り取り付けて空気噴出装置を構成したので、従来技術の
ような船体外板に空気噴出孔の穿孔を含む機械加工を一
切不要として、船体外板とは別部材により、かつ船体外
板に容易に取付け可能に空気噴出装置を設けることがで
きる。従って既製の船舶に対しても、船体外板に空気噴
出装置を取り付けるのみで、船体摩擦の低減を実現でき
る。
According to the first and second aspects of the invention, an air duct in which an air passage is formed inside and a large number of air ejection holes are formed in the outer surface plate portion, preferably a quadrangular pipe. Since the air ejection device was constructed by attaching an air duct consisting of etc. to the hull outer plate by welding etc., it is possible to eliminate the need for machining such as the conventional technique including the perforation of air ejection holes in the hull outer plate, The air ejection device can be provided by a separate member and can be easily attached to the outer plate of the hull. Therefore, even for a ready-made ship, the hull friction can be reduced only by attaching the air jetting device to the outer plate of the hull.

【0010】従ってかかる発明によれば、船体外板に空
気噴出孔の穿孔を含む機械加工を一切不要としたことに
より、空気噴出装置の設置作業工数を低減できるととも
に、船体強度の低下や気体噴出口近傍の船体腐食の発生
を防止できて船体寿命を延長することができる。
Therefore, according to the present invention, the machining work including the perforation of the air ejection holes on the outer plate of the hull is not required at all, so that the man-hours for installing the air ejection device can be reduced and the strength of the hull and the gas ejection can be reduced. It is possible to prevent the corrosion of the hull near the exit and extend the life of the hull.

【0011】請求項3記載の発明は、請求項2に加え
て、前記空気噴出装置は、前記空気ダクトの上流側及び
下流側に該空気ダクトの外面板部と前記船体外板とを接
続し該空気噴出装置近傍の海水流を整流する整流装置を
備えてなる。
According to a third aspect of the present invention, in addition to the second aspect, the air ejection device connects an outer surface plate portion of the air duct and the hull outer plate to the upstream side and the downstream side of the air duct. A rectifying device for rectifying the seawater flow in the vicinity of the air ejection device is provided.

【0012】請求項4ないし7記載の発明は前記整流装
置の具体的構成に係り、請求項4記載の発明は請求項3
において、前記整流装置は、平面方向における外郭線が
前記空気ダクトの外面板部から船体外板に向けて直線状
に延設されてなることを特徴とする。請求項4におい
て、好ましくは請求項5記載のように、前記外郭線の前
記船体外板表面とのなす傾斜角を、上流側の整流装置の
方が下流側の整流装置よりも大きく構成するのがよい。
The invention according to claims 4 to 7 relates to a specific configuration of the rectifying device, and the invention according to claim 4 is claim 3
In the above, the rectifying device is characterized in that a contour line in a plane direction is linearly extended from an outer surface plate portion of the air duct toward a hull outer plate. In claim 4, preferably, the inclination angle formed by the outer line with the surface of the hull outer plate is made larger in the upstream side rectifying device than in the downstream side rectifying device. Is good.

【0013】請求項6記載の発明は請求項3において、
前記整流装置は、平面方向における外郭線が前記空気ダ
クトの外面板部から船体外板に向けて円弧状に延設され
てなることを特徴とする。
According to a sixth aspect of the present invention, in the third aspect,
The straightening device is characterized in that an outer contour line in a plane direction is extended in an arc shape from an outer surface plate portion of the air duct toward a hull outer plate.

【0014】請求項7記載の発明は請求項3において、
前記整流装置は、平面方向における外郭線が前記空気ダ
クトの外面板部から船体外板に向けて翼形形状に延設さ
れ少なくとも下流側の整流装置と前記船体の外板とが連
続的に接続されてなることを特徴とする。
According to the invention of claim 7, in claim 3,
In the rectifying device, an outer line in a plane direction is extended in a wing shape from the outer surface plate portion of the air duct toward the hull outer plate, and at least the downstream rectifying device and the outer plate of the hull are continuously connected. It is characterized by being done.

【0015】請求項4ないし7記載の発明によれば、空
気ダクトの上流側及び下流側に整流装置を設けて該整流
装置により空気ダクトの上流側及び下流側を船体外板に
滑らかに接続したので、船体表面に沿った海水流は上流
側整流装置の外郭面に沿って整流されながら空気ダクト
の外面板部に流動し、該外面板部の空気噴出孔から噴出
される気泡が前記上流側整流装置にて整流された海水流
に乗って下流側整流装置外郭面に沿って整流されながら
船体外板に向けて流れ、該下流側整流装置の下流部にお
いて船体外板の表面境界層に滑らかに流入する。
According to the invention described in claims 4 to 7, rectifying devices are provided on the upstream side and the downstream side of the air duct, and the upstream side and the downstream side of the air duct are smoothly connected to the hull skin by the rectifying device. Therefore, the seawater flow along the surface of the hull flows into the outer surface plate portion of the air duct while being rectified along the outer surface of the upstream side rectifying device, and the bubbles ejected from the air ejection holes of the outer surface plate portion are the upstream side. Riding on the seawater flow rectified by the rectifying device, it flows toward the outer plate of the hull while being rectified along the outer surface of the downstream rectifying device, and smooths to the surface boundary layer of the hull outer plate in the downstream part of the downstream rectifying device. Flow into.

【0016】従ってかかる発明によれば、空気ダクトの
上流側に設けた上流側整流装置により空気ダクトの上流
側船体外板から空気ダクトの外面板部に向う海水流を整
流することにより渦流や乱流のない海水流として空気ダ
クトの外面板部に送り込むことができるとともに、多数
の空気噴出孔から噴出される気泡を前記海水流に載せ下
流側整流装置によってこれの外郭面に沿って流動せしめ
ることにより、多数の気泡が剥離を発生することなくか
つ渦流を発生することなく空気ダクトの下流側船体外板
の境界層を崩すことなく滑らかに流入せしめることがで
き、該気泡による摩擦抵抗の大幅な低減を実現できる。
According to this invention, therefore, a vortex or a turbulence is generated by rectifying the seawater flow from the upstream hull skin of the air duct to the outer plate portion of the air duct by the upstream rectification device provided on the upstream side of the air duct. It can be sent to the outer plate part of the air duct as a non-flowing seawater flow, and the bubbles ejected from many air ejection holes are placed on the seawater flow and made to flow along the outer surface of the seawater flow by the downstream rectification device. This allows a large number of bubbles to flow smoothly without causing separation and without causing eddy currents without breaking the boundary layer of the hull skin on the downstream side of the air duct, resulting in a large friction resistance due to the bubbles. Reduction can be realized.

【0017】特に、請求項4のように構成すれば、空気
ダクトよりも下流側の整流装置の外郭面流路長さが長く
なって傾斜がなだらかになり連続的にかつ滑らかに船体
外板に接続されるので、多数の気泡は下流側の整流装置
と船体外板との接続部近傍における剥離や渦流の発生が
確実に防止される。
According to the fourth aspect of the invention, in particular, the flow path length of the outer surface of the rectifying device downstream of the air duct becomes long, the slope becomes gentle, and the outer skin of the hull is continuously and smoothly formed. Since the multiple bubbles are connected, it is possible to reliably prevent the separation and the eddy current from occurring in the vicinity of the connection portion between the rectifying device on the downstream side and the hull outer plate.

【0018】[0018]

【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
ている構成部品の寸法、材質、形状、その相対配置など
は特に特定的な記載がない限り、この発明の範囲をそれ
のみに限定する趣旨ではなく、単なる説明例にすぎな
い。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are not intended to limit the scope of the present invention thereto, unless there is a specific description, and are merely illustrative examples. Nothing more.

【0019】図1は本発明の第1実施例に係る船舶の摩
擦低減装置を示し、(A)は空気噴出装置の平面構成
図、(B)は空気ダクト部の拡大平面図である。図2は
前記第1実施例における空気噴出装置の斜視構造図であ
る。図3は前記第1実施例における整流装置の有無比較
図である。図4は整流装置の効果を示す摩擦抵抗線図で
ある。図5は前記第1実施例における整流装置の傾斜に
よる摩擦抵抗変化の説明図である。図6は第2実施例を
示す図1(A)対応図である。図7は前記第2実施例に
おける整流装置の効果を示す摩擦抵抗線図である。図8
は第3実施例を示す図1(A)対応図である。図9は前
記第1ないし第3実施例における摩擦抵抗低減効果の説
明図である。図10は本発明にかかる空気噴出装置を装
備した船舶の概略側面図である。
1A and 1B show a ship friction reducing device according to a first embodiment of the present invention, wherein FIG. 1A is a plan view of an air jetting device, and FIG. 1B is an enlarged plan view of an air duct portion. FIG. 2 is a perspective structural view of the air ejection device in the first embodiment. FIG. 3 is a comparison diagram of the presence or absence of the rectifying device in the first embodiment. FIG. 4 is a frictional resistance diagram showing the effect of the rectifying device. FIG. 5 is an explanatory diagram of a change in frictional resistance due to the inclination of the rectifying device in the first embodiment. FIG. 6 corresponds to FIG. 1A showing the second embodiment. FIG. 7 is a frictional resistance diagram showing the effect of the rectifying device in the second embodiment. Figure 8
It is a figure corresponding to FIG. 1 (A) which shows 3rd Example. FIG. 9 is an explanatory diagram of the frictional resistance reduction effect in the first to third embodiments. FIG. 10 is a schematic side view of a ship equipped with the air ejection device according to the present invention.

【0020】本発明が適用される船舶100の概略側面
を示す図10において、101は船体、103は船舶1
00の喫水線で、本発明に係る空気噴出装置110は前
記船体101の船首側寄りの両側船体外板に取り付けら
れている。Sは船舶100の航行方向、Vは海水流の方
向を示す。ただし、この取り付け位置は一例であり、そ
の取り付け位置を船首端寄りに限定するものではない。
また、装置を左右舷にそれぞれ1つずつ設置した例を示
しているが、設置個数についても、これを限定するもの
では無い。すなわち、左右舷に必要に応じて複数個の装
置を設置することもありうる。さらに、取り付け位置に
ついて図10においては船側部のみの設置した例を表示
しているが、この範囲に限定するものではない。船体の
前後中央位置などに設置する場合などは、必要に応じて
同装置を船底面にまで延長して配置することもありう
る。また、図10は、装置を深さ方向に鉛直に設置した
例を示しているが、この設置方向もこれに限定するもの
ではい。必要に応じて傾斜配置、水平配置あるいはこれ
らの組み合わせた配管配置を実施する場合もあり得る。
In FIG. 10 showing a schematic side view of a ship 100 to which the present invention is applied, 101 is a hull and 103 is a ship 1.
The air jet device 110 according to the present invention is attached to both sides of the hull 101 at the waterline of 00 on both sides of the hull. S indicates the navigation direction of the vessel 100, and V indicates the direction of seawater flow. However, this mounting position is an example, and the mounting position is not limited to the vicinity of the bow end.
Further, an example in which one device is installed on each of the left and right sides is shown, but the number of installed devices is not limited to this. That is, a plurality of devices may be installed on the left and right sides as needed. Further, regarding the mounting position, in FIG. 10, an example in which only the side part of the ship is installed is displayed, but the mounting position is not limited to this range. In the case where it is installed in the center position in the front and rear of the hull, etc., the device may be extended to the bottom of the ship as necessary. Further, although FIG. 10 shows an example in which the device is vertically installed in the depth direction, the installation direction is not limited to this. If necessary, a tilted arrangement, a horizontal arrangement, or a piping arrangement combining these may be implemented.

【0021】図1ないし図3に示す第1実施例におい
て、110は空気噴出装置で次のように構成されてい
る。1は4角形パイプからなる空気供給ダクトで、内部
に空気通路01が形成され船体外板102に沿って延設
されている。該空気供給ダクト1はその内面板06を前
記船体船体外板102に溶接によって固着し、該内面板
06に対向する外面板6の前記喫水線103よりも深い
部位つまり没水部に、海中に空気を噴出するための多数
の空気噴出孔2を穿孔している。なお、図1には4角パ
イプからなる空気供給ダクトを示したが、その断面形状
を4角計に限定するものではない。すなわち、例えば内
面板06およびこれに対向する外面板6は4角パイプと
同様平面で構成されるが、これらと隣り合う面が円筒面
あるいは楕円筒面で構成されるいわゆる楕円パイプでも
かまわない。
In the first embodiment shown in FIGS. 1 to 3, 110 is an air ejecting device which is constructed as follows. Reference numeral 1 denotes an air supply duct made of a quadrangular pipe, which has an air passage 01 formed therein and extends along the hull outer plate 102. The air supply duct 1 has its inner surface plate 06 fixed to the outer plate 102 of the hull by welding, and the air supply duct 1 is located at a portion deeper than the water line 103 of the outer surface plate 6 facing the inner surface plate 06, i.e., submerged air. A large number of air ejection holes 2 for ejecting air are formed. In addition, although the air supply duct which consists of a square pipe was shown in FIG. 1, the cross-sectional shape is not limited to a square meter. That is, for example, the inner face plate 06 and the outer face plate 6 facing the inner face plate 06 are formed in the same plane as the square pipe, but a so-called elliptical pipe in which the surface adjacent to them is a cylindrical surface or an elliptic cylindrical surface may be used.

【0022】3は上流側整流装置で、前記空気供給ダク
ト1の外面板6と該空気供給ダクト1よりも海水流Vの
上流側の船体外板102とを、平面方向における外郭線
33が前記空気供給ダクト1の外面板6から船体外板1
02に向けて直線状になるように接続している。また、
前記上流側整流装置3の船体外板102との接続部35
及び外面板6との接続部36は滑らかに接続されてい
る。4は下流側整流装置で、前記空気供給ダクト1の外
面板6と該空気供給ダクト1よりも海水流Vの下流側の
船体外板102とを、平面方向における外郭線43が前
記空気供給ダクト1の外面板6から船体外板102に向
けて直線状になるように接続している。また、前記下流
側整流装置4の船体外板102との接続部45及び外面
板6との接続部46は滑らかに接続されている。
Reference numeral 3 denotes an upstream side rectifying device, which connects an outer surface plate 6 of the air supply duct 1 and a hull outer plate 102 on the upstream side of the seawater flow V with respect to the air supply duct 1 with an outer contour line 33 in the plane direction. From the outer surface plate 6 of the air supply duct 1 to the hull outer plate 1
It connects so that it may become a straight line toward 02. Also,
Connection part 35 of the upstream side rectifying device 3 with the hull skin 102
The connection portion 36 with the outer surface plate 6 is smoothly connected. Reference numeral 4 denotes a downstream side rectification device, which connects the outer surface plate 6 of the air supply duct 1 and the hull outer plate 102 on the downstream side of the seawater flow V with respect to the air supply duct 1, and the outer line 43 in the plane direction is the air supply duct. The outer surface plate 6 of No. 1 is connected in a straight line toward the hull outer plate 102. Further, the connection portion 45 of the downstream side rectification device 4 with the hull outer plate 102 and the connection portion 46 with the outer surface plate 6 are smoothly connected.

【0023】前記上流側整流装置3及び下流側整流装置
4は、図2に示すように、略3角形状の外郭部を構成す
る外板31及び41の内部に形成された中空部に複数枚
のリブ32及び42を溶接してなり、該外板31及び4
1を船体外板102及び空気供給ダクト1に夫々溶接し
てなる。尚、該上流側整流装置3及び下流側整流装置4
の内部構造は前記に限られることなく適宜選択できる。
As shown in FIG. 2, a plurality of the upstream side rectifying device 3 and the downstream side rectifying device 4 are provided in the hollow portions formed inside the outer plates 31 and 41 forming the outer portion of the substantially triangular shape. Ribs 32 and 42 are welded to form the outer plates 31 and 4
1 is welded to the hull skin 102 and the air supply duct 1 respectively. The upstream side rectification device 3 and the downstream side rectification device 4
The internal structure of is not limited to the above and can be appropriately selected.

【0024】かかる第1実施例において、船体外板10
2に沿って流れる海水流Vは上流側整流装置3の外板3
1表面に沿って整流されながら空気供給ダクト1の外面
板6表面に流動する。一方、空気供給手段(図示省略)
から送給された加圧空気は空気供給ダクト1内の空気通
路01内を通り水中に開口している多数の空気噴出孔2
から前記外面板6に沿って流れる海水流V中に噴出され
て多数の気泡5が形成される。この気泡5は前記上流側
整流装置3にて整流された海水流Vに乗って下流側整流
装置4へと流れ、該下流側整流装置4の外板41表面に
沿って整流されながら船体外板に向けて流れ、該下流側
整流装置4の下流部において船体外板102の表面境界
層に滑らかに流入し、該船体外板102の表面境界層に
沿って流れることにより船体101の摩擦抵抗を低減す
る。
In the first embodiment, the hull skin 10
The seawater flow V flowing along 2 is the outer plate 3 of the upstream side rectifier 3.
It flows to the surface of the outer surface plate 6 of the air supply duct 1 while being rectified along the surface 1. On the other hand, air supply means (not shown)
The pressurized air sent from the air passes through the air passage 01 in the air supply duct 1 and has a large number of air ejection holes 2 opened in the water.
From the above, a large number of bubbles 5 are formed by being ejected into the seawater flow V flowing along the outer surface plate 6. The bubbles 5 ride on the seawater flow V rectified by the upstream rectifying device 3 and flow to the downstream rectifying device 4, and are rectified along the surface of the outer plate 41 of the downstream rectifying device 4 while being hulled. Toward the surface of the hull skin 102 smoothly flowing into the surface boundary layer of the hull skin 102 in the downstream portion of the downstream side rectifying device 4 and flowing along the surface boundary layer of the hull skin 102 to reduce the frictional resistance of the hull 101. Reduce.

【0025】従ってかかる実施例によれば、空気供給ダ
クト1の上流側に設けた上流側整流装置3により該空気
供給ダクト1の上流側の船体外板102から該空気供給
ダクト1の外面板6に向う海水流Vを整流することによ
り渦流や乱流のない海水流として空気供給ダクト1の外
面板6表面部に送り込むことができる。また、多数の空
気噴出孔2から噴出される気泡5を前記海水流Vに乗せ
前記下流側整流装置4の外板41表面(外郭面)に沿っ
て流動せしめることにより、多数の気泡5が剥離を発生
することなくかつ渦流を発生することなく空気供給ダク
ト1の下流側船体外板102の境界層に滑らかに流入せ
しめることができ、該気泡5による摩擦抵抗の大幅な低
減を実現できる。
Therefore, according to this embodiment, the upstream side rectifying device 3 provided on the upstream side of the air supply duct 1 moves the hull outer plate 102 on the upstream side of the air supply duct 1 to the outer surface plate 6 of the air supply duct 1. By rectifying the seawater flow V toward the seawater, the seawater flow can be sent to the surface portion of the outer surface plate 6 of the air supply duct 1 as a seawater flow having no vortex or turbulence. Further, the bubbles 5 ejected from the large number of air ejection holes 2 are placed on the seawater flow V and caused to flow along the surface (outer surface) of the outer plate 41 of the downstream side rectifying device 4, whereby the large numbers of bubbles 5 are separated. Can be made to flow smoothly into the boundary layer of the downstream side hull outer plate 102 of the air supply duct 1 without generating vortices, and the frictional resistance due to the bubbles 5 can be significantly reduced.

【0026】図3は前記第1実施例のもの(図の
(A))と該第1実施例から上流側整流装置3及び下流
側整流装置4を除去したもの(図の(B))との気泡5
の流動状況の比較図、図4は前記第1実施例のもの(図
のA)と前記整流装置3、4を除去したもの(図のB)
との、摩擦抵抗比C/Cf0の空気流量に対する変化
を示す線図である。ここで、 C:この実施例のように空気供給ダクト1から気
泡5を放出した場合の摩擦抵抗 C0:前記気泡の放出がない場合の摩擦抵抗
FIG. 3 shows the first embodiment ((A) in the figure) and the first embodiment without the upstream side rectifying device 3 and the downstream side rectifying device 4 ((B) in the figure). Bubbles 5
FIG. 4 is a comparative view of the flow state of FIG. 4, FIG. 4 is the one of the first embodiment (A in the figure) and the rectifying devices 3 and 4 are removed (B in the figure).
FIG. 6 is a graph showing changes in the frictional resistance ratio C f / C f0 with respect to the air flow rate. Here, C f : Friction resistance when air bubbles 5 are discharged from the air supply duct 1 as in this embodiment C f 0: Friction resistance when no air bubbles are discharged

【0027】図4に明らかなように、上流側整流装置3
及び下流側整流装置4を備えた前記第1実施例のもの
(図のA)は、空気流量の増大に従い前記摩擦抵抗比C
/C f0が直線的に小さくなる。即ち、かかる実施例
によれば前記整流装置3、4を装着することにより、空
気噴出孔2から噴出される空気流量を増大して摩擦抵抗
低減効果を向上することが可能となる。
As is apparent from FIG. 4, the upstream side rectifier 3
And the one of the first embodiment provided with the downstream side rectifying device 4.
(A in the figure) shows the frictional resistance ratio C as the air flow rate increases.
f/ C f0Becomes smaller linearly. That is, such an embodiment
According to the above, by installing the rectifiers 3 and 4,
Friction resistance is increased by increasing the flow rate of air ejected from the air ejection holes 2.
It is possible to improve the reduction effect.

【0028】図5は前記第1実施例のものにおける、前
記上流側整流装置3及び下流側整流装置4の傾斜角α
及びαと前記摩擦抵抗比C/Cf0との関係のシミ
ュレーション結果を示している。 図5において、tanα=H/L tanα=H/L H:空気供給ダクト1の全高 L:上流側整流装置3の水平長さ L:下流側整流装置4の水平長さ
FIG. 5 is a front view of the first embodiment.
The inclination angle α of the upstream side rectifying device 3 and the downstream side rectifying device 41
And αTwoAnd the frictional resistance ratio Cf/ Cf0Relationship stains
The simulation results are shown. In FIG. 5, tan α1= H / L1 tan αTwo= H / LTwo H: Overall height of the air supply duct 1 L1: Horizontal length of the upstream rectifier 3 LTwo: Horizontal length of the downstream rectifier 4

【0029】図5に明らかなように、上流側整流装置3
及び下流側整流装置4を備えた前記空気噴出装置110
は、図5(A)のように、前記上流側整流装置3の傾斜
角α がおおむねtanα=H/L=1/10より
も大きくなると前記摩擦抵抗比C/Cf0が急激に増
大し、また図5(B)のように、前記下流側整流装置4
の傾斜角αがおおむねtanα=H/L=1/2
0よりも大きくなると前記摩擦抵抗比C/Cf0が急
激に増大する。図5においてCはこの限界摩擦抵抗比
である。
As is apparent from FIG. 5, the upstream side rectifier 3
And the air ejection device 110 including the downstream side rectification device 4
Is the inclination of the upstream side rectifier 3 as shown in FIG.
Angle α 1Is almost tan α1= H / L1= From 1/10
Becomes larger, the frictional resistance ratio Cf/ Cf0Rapidly increases
Further, as shown in FIG. 5B, the downstream side rectification device 4
Tilt angle αTwoIs almost tan αTwo= H / LTwo= 1/2
When it becomes larger than 0, the frictional resistance ratio Cf/ Cf0Is sudden
Increase dramatically. C in FIG.1Is the limit frictional resistance ratio
Is.

【0030】即ち、前記上流側整流装置3の長さL
空気供給ダクト1の全高Hのおおむね10倍(L=1
0H)以下になると前記限界摩擦抵抗比C以上になっ
て空気噴出孔2から噴出される気泡5による摩擦低減効
果が激減し、また下流側整流装置4の長さLが空気供
給ダクト1の全高Hのおおむね20倍(L=20H)
以下になると前記限界摩擦抵抗比C以上になって空気
噴出孔2から噴出される気泡5による摩擦低減効果が激
減する。これは、空気噴出孔2から噴出される空気の流
量が多くなると該空気噴出孔2からの空気の噴出エネル
ギが増大し、前記下流側整流装置4側の傾斜角αをな
だらかにして下流側整流装置4の長さLを大きくす
る、即ち前記H/L=tanα)を大きくしなけれ
ば気泡5の剥離を起こし易いことから、前記H/L
(=tanα)を前記1/20よりも大きくして、
前記摩擦抵抗比C/C f0を前記限界摩擦抵抗比C
以下に抑える必要があることによる。
That is, the length L of the upstream side rectifier 31But
Overall height H of air supply duct 1 is approximately 10 times (L1= 1
0H) or less, the limit frictional resistance ratio C1Is over
The effect of reducing the friction by the bubbles 5 ejected from the air ejection holes 2
The fruit is drastically reduced, and the length L of the downstream rectifier 4 is L.TwoIs an air attendant
Overall height H of supply duct 1 is approximately 20 times (LTwo= 20H)
When it becomes the following, the above-mentioned limit frictional resistance ratio C1Air over
The bubble 5 ejected from the ejection hole 2 has a great effect of reducing friction.
Decrease. This is the flow of air ejected from the air ejection holes 2.
When the amount becomes large, the air jetting energy from the air jetting hole 2
And the inclination angle α on the downstream side rectifying device 4 side increases.TwoI
Length L of the straightening device 4 on the downstream sideTwoTo increase
That is, the above H / LTwo= Tan αTwo) Must be large
If the bubbles 5 are easily peeled off, the above H / L
Two(= Tan αTwo) Is larger than 1/20,
The frictional resistance ratio Cf/ C f0Is the limit frictional resistance ratio C1
It depends on what needs to be kept below.

【0031】従って、前記下流側整流装置4の長さL
(L=20H)を前記上流側整流装置3の長さL
(L=10H)の2倍程度に長く形成することによ
り、気泡5による摩擦低減効果を安定的に保持すること
ができる。これにより、空気供給ダクト1よりも下流側
整流装置4の外郭面流路長さを長くすることにより傾斜
がなだらかになり連続的にかつ滑らかに船体外板102
に接続されるので、多数の気泡5により該下流側整流装
置4と船体外板102との接続部近傍における剥離や渦
流の発生が確実に防止される。
Therefore, the length L 2 of the downstream side rectifying device 4
(L 2 = 20H) is the length L of the upstream side rectifier 3
By forming it to be twice as long as 1 (L 1 = 10H), the friction reducing effect of the bubbles 5 can be stably maintained. As a result, by increasing the outer surface flow path length of the rectifying device 4 on the downstream side of the air supply duct 1, the slope becomes gentle and the hull skin 102 is continuously and smoothly formed.
Therefore, the large number of bubbles 5 reliably prevent the occurrence of separation and eddy current in the vicinity of the connecting portion between the downstream side rectifying device 4 and the hull outer plate 102.

【0032】図6に示す第2実施例においては、前記空
気供給ダクト1の外面板6と該空気供給ダクト1よりも
海水流Vの上流側の船体外板102とを、平面方向にお
ける外郭線33が前記空気供給ダクト1の外面板6から
船体外板102に向けて円弧状になるように接続してい
る。また、前記上流側整流装置3の船体外板102との
接続部35及び外面板6との接続部36は滑らかに接続
されている。
In the second embodiment shown in FIG. 6, the outer surface plate 6 of the air supply duct 1 and the hull outer plate 102 on the upstream side of the seawater flow V with respect to the air supply duct 1 are contoured in the plane direction. 33 is connected from the outer surface plate 6 of the air supply duct 1 toward the hull outer plate 102 in an arc shape. Further, the connecting portion 35 of the upstream side rectifying device 3 with the hull outer plate 102 and the connecting portion 36 with the outer surface plate 6 are smoothly connected.

【0033】またかかる実施例においては、前記空気供
給ダクト1の外面板6と該空気供給ダクト1よりも海水
流Vの下流側の船体外板102とを、平面方向における
外郭線43が前記空気供給ダクト1の外面板6から船体
外板102に向けて円弧状になるように接続している。
そして、前記下流側整流装置4の船体外板102との接
続部45及び外面板6との接続部46は滑らかに接続さ
れている。その他の構成は前記第1実施例と同様であ
り、これと同一の部材は同一の符号で示す。
In this embodiment, the outer surface plate 6 of the air supply duct 1 and the hull outer plate 102 on the downstream side of the seawater flow V with respect to the air supply duct 1 are surrounded by the outline 43 in the plane direction. The outer surface plate 6 of the supply duct 1 is connected to the hull outer plate 102 in an arc shape.
The connecting portion 45 of the downstream side rectifying device 4 with the hull outer plate 102 and the connecting portion 46 with the outer surface plate 6 are smoothly connected. The other structure is the same as that of the first embodiment, and the same members as these are denoted by the same reference numerals.

【0034】図7はかかる第2実施例のもの(図のA)
とこの第2実施例から前記上流側整流装置3及び下流側
整流装置4を除去したもの(図のB)との、前記摩擦抵
抗比C/Cf0の空気流量に対する変化を示す線図で
ある。図7に明らかなように、上流側整流装置3及び下
流側整流装置4を備えた前記第2実施例のもの(図の
A)は、空気流量の増大に従い前記摩擦抵抗比C/C
f0が直線的に小さくなる。即ち、かかる実施例によれ
ば、前記第1実施例と同様に、前記整流装置3、4を装
着することにより、空気噴出孔2から噴出される空気流
量を増大して摩擦抵抗低減効果を向上することが可能と
なる。
FIG. 7 shows the second embodiment (A in the figure).
And from this second embodiment, the upstream side rectifying device 3 and the downstream side
The friction resistance with that without the rectifying device 4 (B in the figure)
Anti ratio Cf/ Cf0Is a diagram showing the change of
is there. As is clear from FIG. 7, the upstream side rectifying device 3 and the lower side
According to the second embodiment having the flow side rectifier 4 (see the figure
A) shows the frictional resistance ratio C as the air flow rate increases.f/ C
f0Becomes smaller linearly. That is, according to such an embodiment
For example, as in the first embodiment, the rectification devices 3 and 4 are installed.
Air flow ejected from the air ejection holes 2 by wearing
It is possible to increase the amount and improve the frictional resistance reduction effect.
Become.

【0035】図8に示す第3実施例においては、前記空
気供給ダクト1の外面板6と該空気供給ダクト1よりも
海水流Vの上流側の船体外板102とを、また前記空気
供給ダクト1の外面板6と該空気供給ダクト1よりも海
水流Vの下流側の船体外板102とを、平面方向におけ
る外郭線33、43が連続した翼形形状に形成されて構
成される。そして前記上流側整流装置3及び下流側整流
装置4の船体外板102との接続部35及び45、並び
に前記外面板6と上流側整流装置3及び下流側整流装置
4との接続部36及び46は夫々滑らかに接続されてい
る。その他の構成は図1に示す第1実施例と同様であ
り、これと同一の部材は同一の符号で示す。
In the third embodiment shown in FIG. 8, the outer surface plate 6 of the air supply duct 1 and the hull outer plate 102 on the upstream side of the seawater flow V with respect to the air supply duct 1 and the air supply duct. The outer plate 6 of No. 1 and the hull outer plate 102 on the downstream side of the seawater flow V with respect to the air supply duct 1 are formed in a wing shape in which outer contour lines 33 and 43 in the plane direction are continuous. Then, the connecting portions 35 and 45 of the upstream side rectifying device 3 and the downstream side rectifying device 4 with the hull outer plate 102, and the connecting portions 36 and 46 of the outer surface plate 6 with the upstream side rectifying device 3 and the downstream side rectifying device 4. Are connected smoothly. The other structure is the same as that of the first embodiment shown in FIG. 1, and the same members are designated by the same reference numerals.

【0036】図9は前記第1、第2、第3実施例におけ
る前記摩擦抵抗比C/Cf0の空気流量に対する変化
を示す比較線図である。図9においてAは第1実施例、
Bは第2実施例、Cは第3実施例を夫々示す。図9に明
らかなように、前記第1、第2、第3実施例ともに、空
気流量の増大に従い前記摩擦抵抗比C/Cf0が直線
的に小さくなる。そして、空気流量の増加に対する前記
摩擦抵抗比C/Cf0の減少率即ち抵抗減少率は第3
実施例が最も大きく、次いで第2実施例、第1実施例の
順となる。即ち、前記空気供給ダクト1の外面板6と船
体外板102とを接続する上流側整流装置3及び下流側
整流装置4の平面方向における外郭線33、43を前記
第2、第3実施例のように円弧状あるいは翼形形状に形
成した方が、第1実施例のように直線状に形成したもの
よりも空気噴出孔2から噴出される空気流量の増大によ
る摩擦抵抗低減効果が向上する。
FIG. 9 is a comparative diagram showing changes in the frictional resistance ratio C f / C f0 with respect to the air flow rate in the first, second and third embodiments. In FIG. 9, A is the first embodiment,
B shows the second embodiment, and C shows the third embodiment. As is apparent from FIG. 9, in all of the first, second, and third embodiments, the frictional resistance ratio C f / C f0 linearly decreases as the air flow rate increases. Then, the decreasing rate of the frictional resistance ratio C f / C f0 with respect to the increase of the air flow rate, that is, the resistance decreasing rate is the third.
The embodiment is the largest, followed by the second embodiment and the first embodiment. That is, the outlines 33 and 43 in the plane direction of the upstream side rectifying device 3 and the downstream side rectifying device 4 that connect the outer surface plate 6 of the air supply duct 1 and the hull outer plate 102 are defined by The arc-shaped or airfoil-shaped structure is more effective in reducing the frictional resistance due to the increase in the flow rate of the air ejected from the air ejection holes 2 than the linearly-formed structure as in the first embodiment.

【0037】[0037]

【発明の効果】以上記載の如く請求項1、2の発明によ
れば、気泡形成用の空気ダクト、好ましくは請求項2の
ような4角形パイプからなる空気ダクトを船体外板に溶
接等により取り付けて空気噴出装置を構成したので、空
気噴出孔の穿孔を含む船体外板の機械加工が一切不要と
なり、船体外板とは別部材により、かつ船体外板に容易
に取付け可能に空気噴出装置を設けることができる。こ
れにより、空気噴出装置の設置作業工数を低減できると
ともに、船体強度の低下や気体噴出口近傍の船体腐食の
発生を防止できて船体寿命を延長することができる。
As described above, according to the inventions of claims 1 and 2, an air duct for forming bubbles, preferably an air duct made of a quadrangular pipe as claimed in claim 2, is welded to the outer plate of the hull. Since the air jetting device is constructed by attaching the air jetting device, machining of the hull outer plate including drilling of air jet holes is not required at all, and the air jetting device can be easily attached to the hull outer plate by a member different from the hull outer plate. Can be provided. As a result, the number of man-hours for installing the air ejection device can be reduced, and the hull strength can be prevented from being lowered and the hull corrosion near the gas ejection port can be prevented, so that the hull life can be extended.

【0038】また、請求項4ないし7の発明によれば、
空気ダクトの上流側及び下流側に整流装置を設けて該整
流装置により空気ダクトの上流側及び下流側を船体外板
に滑らかに接続したので、空気ダクトの上流側に設けた
上流側整流装置によって空気ダクトの上流側船体外板か
ら空気ダクトの外面板部に向う海水流を整流することに
より渦流や乱流のない海水流として空気ダクトの外面板
部に送り込むことができるとともに、多数の空気噴出孔
から噴出される気泡を前記海水流に載せ下流側整流装置
によってこれの外郭面に沿って流動せしめることによ
り、多数の気泡が剥離を発生することなくかつ渦流を発
生することなく空気ダクトの下流側船体外板の境界層に
滑らかに流入せしめることができ、該気泡による摩擦抵
抗の大幅な低減を実現できる。
According to the inventions of claims 4 to 7,
Since rectifying devices are provided on the upstream side and the downstream side of the air duct and the upstream side and the downstream side of the air duct are smoothly connected to the hull skin by the rectifying device, the upstream rectifying device provided on the upstream side of the air duct is used. By rectifying the seawater flow from the hull skin on the upstream side of the air duct to the outer skin of the air duct, it can be sent to the outer skin of the air duct as a seawater flow without vortex or turbulence, and a large number of air jets The air bubbles ejected from the holes are placed on the seawater flow and made to flow along the outer surface of the seawater by the downstream side rectification device, so that a large number of bubbles do not separate and do not generate eddy currents, and thus downstream of the air duct. It is possible to smoothly flow into the boundary layer of the side hull skin, and it is possible to realize a great reduction in frictional resistance due to the bubbles.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例に係る船舶の摩擦低減装
置を示し、(A)は空気噴出装置の平面構成図、(B)
は空気ダクト部の拡大平面図である。
1A and 1B show a ship friction reducing device according to a first embodiment of the present invention, in which FIG. 1A is a plan view of an air ejection device, and FIG.
FIG. 4 is an enlarged plan view of an air duct section.

【図2】 前記第1実施例における空気噴出装置の斜視
構造図である。
FIG. 2 is a perspective structural view of the air ejection device in the first embodiment.

【図3】 前記第1実施例における整流装置の有無比較
図である。
FIG. 3 is a comparison diagram of the presence or absence of a rectifying device in the first embodiment.

【図4】 整流装置の効果を示す摩擦抵抗線図である。FIG. 4 is a friction resistance diagram showing the effect of the rectifying device.

【図5】 前記第1実施例における整流装置の傾斜によ
る摩擦抵抗変化の説明図である。
FIG. 5 is an explanatory diagram of a change in frictional resistance due to an inclination of the rectifying device in the first embodiment.

【図6】 第2実施例を示す図1(A)対応図である。FIG. 6 is a view corresponding to FIG. 1A showing a second embodiment.

【図7】 前記第2実施例における整流装置の効果を示
す摩擦抵抗線図である。
FIG. 7 is a frictional resistance diagram showing the effect of the rectifying device in the second embodiment.

【図8】 第3実施例を示す図1(A)対応図である。FIG. 8 is a view corresponding to FIG. 1A showing a third embodiment.

【図9】 前記第1ないし第3実施例における摩擦抵抗
低減効果の説明図である。
FIG. 9 is an explanatory diagram of a frictional resistance reduction effect in the first to third embodiments.

【図10】 本発明にかかる空気噴出装置を装備した船
舶の概略側面図である。
FIG. 10 is a schematic side view of a ship equipped with the air ejection device according to the present invention.

【符号の説明】[Explanation of symbols]

1 空気供給ダクト 01 空気通路 2 空気噴出孔 3 上流側整流装置 4 下流側整流装置 5 気泡 6 外面板 06 内面板 33、43 外郭線 35、36、45、46 接続部 31、41 外板 100 船舶 101 船体 102 船体外板 110 空気噴出装置 1 Air supply duct 01 Air passage 2 Air ejection holes 3 Upstream side rectifier 4 Downstream side rectifier 5 bubbles 6 outer plate 06 Inner surface plate 33,43 outline 35, 36, 45, 46 Connection 31, 41 outer plate 100 ships 101 hull 102 Hull skin 110 Air ejection device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 檜垣 祥市 長崎市深堀町五丁目717番1号 三菱重工 業株式会社長崎研究所内 (72)発明者 川北 千春 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 石川 暁 長崎市深堀町五丁目717番1号 三菱重工 業株式会社長崎研究所内 (72)発明者 高野 真一 長崎市深堀町五丁目717番1号 三菱重工 業株式会社長崎研究所内 (72)発明者 高橋 孝仁 東京都三鷹市新川6丁目38番1号 独立行 政法人海上技術安全研究所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Higaki Shoichi             5-717-1, Fukahori-cho, Nagasaki-shi Mitsubishi Heavy Industries             Business Nagasaki Institute (72) Inventor Chiharu Kawakita             2-5-3 Marunouchi, Chiyoda-ku, Tokyo             Hishi Heavy Industries Ltd. (72) Inventor Akira Ishikawa             5-717-1, Fukahori-cho, Nagasaki-shi Mitsubishi Heavy Industries             Business Nagasaki Institute (72) Inventor Shinichi Takano             5-717-1, Fukahori-cho, Nagasaki-shi Mitsubishi Heavy Industries             Business Nagasaki Institute (72) Inventor Takahito Takahito             6-38-1, Shinkawa, Mitaka City, Tokyo Independent line             Research Institute for Maritime Technology and Safety

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 船体の表面から海水中に空気を噴出させ
ることによって形成される微細な気泡により船体表面の
摩擦抵抗を低減する船舶の摩擦低減装置において、内部
に空気通路が形成されるとともに該空気通路内の空気を
外面板部に形成された多数の空気噴出孔から船体外部の
海中に噴出して気泡を形成する空気ダクトを前記船体の
外板に取り付けてなる空気噴出装置を備えたことを特徴
とする船舶の摩擦低減装置。
1. A friction reducing device for a ship that reduces frictional resistance on the surface of a hull by means of fine bubbles formed by ejecting air from the surface of the hull into seawater. An air ejecting device is provided, in which an air duct for ejecting air in the air passage from a large number of air ejection holes formed in the outer surface plate into the sea outside the hull to form bubbles is attached to the outer plate of the hull. A ship friction reduction device characterized by:
【請求項2】 前記空気ダクトは、船体外板に沿って延
設された4角形パイプあるいはこれに類する断面形状を
有するパイプからなり、その内面板部を前記船体の外板
に固着し該内面板部に対向する前記外面板部に前記空気
噴出孔を穿孔してなることを特徴とする請求項1記載の
船舶の摩擦低減装置。
2. The air duct comprises a quadrangular pipe or a pipe having a cross-sectional shape similar to this extending along an outer plate of a hull, and an inner plate portion thereof is fixed to an outer plate of the hull. The friction reducing device for a ship according to claim 1, wherein the air ejection hole is formed in the outer surface plate portion facing the face plate portion.
【請求項3】 前記空気噴出装置は、前記空気ダクトの
上流側及び下流側に該空気ダクトの外面板部と前記船体
外板とを接続し該空気噴出装置近傍の海水流を整流する
整流装置を備えてなることを特徴とする請求項1記載の
船舶の摩擦低減装置。
3. The air blast device for rectifying seawater flow in the vicinity of the air jet device by connecting an outer surface plate portion of the air duct and the hull outer plate on the upstream side and the downstream side of the air duct. The friction reducing device for a marine vessel according to claim 1, further comprising:
【請求項4】 前記整流装置は、平面方向における外郭
線が前記空気ダクトの外面板部から船体外板に向けて直
線状に延設されてなることを特徴とする請求項3記載の
船舶の摩擦低減装置。
4. The marine vessel according to claim 3, wherein the straightening device has a contour line extending in a plane direction extending linearly from the outer surface plate portion of the air duct toward the outer plate of the hull. Friction reduction device.
【請求項5】 前記外郭線の前記船体外板表面とのなす
傾斜角を、上流側の整流装置の方が下流側の整流装置よ
りも大きく構成してなることを特徴とする請求項4記載
の船舶の摩擦低減装置。
5. The rectifying device on the upstream side is configured to have a larger inclination angle with respect to the outer surface of the hull of the outer contour line than the rectifying device on the downstream side. Friction reduction device for ships.
【請求項6】 前記整流装置は、平面方向における外郭
線が前記空気ダクトの外面板部から船体外板に向けて円
弧状に延設されてなることを特徴とする請求項3記載の
船舶の摩擦低減装置。
6. The marine vessel according to claim 3, wherein the rectifying device has an outer contour line in a plane direction extending in an arc shape from an outer surface plate portion of the air duct toward a hull outer plate. Friction reduction device.
【請求項7】 前記整流装置は、平面方向における外郭
線が前記空気ダクトの外面板部から船体外板に向けて翼
形形状に延設され少なくとも下流側の整流装置と前記船
体外板とが連続的に接続されてなることを特徴とする請
求項3記載の船舶の摩擦低減装置。
7. The straightening device according to claim 7, wherein a contour line in a plane direction extends in a wing shape from an outer surface plate portion of the air duct toward a hull outer plate, and at least a downstream straightening device and the hull outer plate are formed. The friction reducing device for a ship according to claim 3, wherein the friction reducing devices are connected continuously.
JP2001358659A 2001-11-26 2001-11-26 Friction reducer for ship Withdrawn JP2003160091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001358659A JP2003160091A (en) 2001-11-26 2001-11-26 Friction reducer for ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001358659A JP2003160091A (en) 2001-11-26 2001-11-26 Friction reducer for ship

Publications (1)

Publication Number Publication Date
JP2003160091A true JP2003160091A (en) 2003-06-03

Family

ID=19169801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001358659A Withdrawn JP2003160091A (en) 2001-11-26 2001-11-26 Friction reducer for ship

Country Status (1)

Country Link
JP (1) JP2003160091A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122736A1 (en) 2008-04-01 2009-10-08 独立行政法人海上技術安全研究所 Frictional resistance reduction device for ship
JP2013216321A (en) * 2013-06-28 2013-10-24 National Maritime Research Institute Friction resistance reduction device of ship
JP2013216320A (en) * 2013-06-28 2013-10-24 National Maritime Research Institute Friction resistance reduction device of ship
JP2013230814A (en) * 2013-06-28 2013-11-14 National Maritime Research Institute Frictional resistance reduction device for vessel
CN114889742A (en) * 2022-05-09 2022-08-12 江苏科技大学 Marine damping device that ventilates

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122736A1 (en) 2008-04-01 2009-10-08 独立行政法人海上技術安全研究所 Frictional resistance reduction device for ship
US9376167B2 (en) 2008-04-01 2016-06-28 National Maritime Research Institute Frictional resistance reduction device for ship
EP3441298A1 (en) 2008-04-01 2019-02-13 National Institute of Maritime, Port and Aviation Technology Frictional resistance reduction device for ship
JP2013216321A (en) * 2013-06-28 2013-10-24 National Maritime Research Institute Friction resistance reduction device of ship
JP2013216320A (en) * 2013-06-28 2013-10-24 National Maritime Research Institute Friction resistance reduction device of ship
JP2013230814A (en) * 2013-06-28 2013-11-14 National Maritime Research Institute Frictional resistance reduction device for vessel
CN114889742A (en) * 2022-05-09 2022-08-12 江苏科技大学 Marine damping device that ventilates
CN114889742B (en) * 2022-05-09 2023-03-14 江苏科技大学 Marine damping device that ventilates

Similar Documents

Publication Publication Date Title
US7219614B2 (en) Apparatus and method for reducing fluid drag on a submerged surface
JP2003160091A (en) Friction reducer for ship
KR20090106118A (en) Apparatus for control of separation flow around ships
JP2002002582A (en) Friction resistance reducing ship
JP2008247050A (en) Vessel drag reducing device and vessel
JPH10175588A (en) Frictional resistance reducing device for ship
JP2000296795A (en) Frictional resistance reducing ship
JP2001106173A (en) Frictional resistance reduced-ship
JP2008189197A (en) Stern form
JP5393160B2 (en) Stern shape of a displacement type ship
JP7064212B2 (en) Bubble generator
JP2000168673A (en) Frictional resistance reducing ship
US7281480B2 (en) Frictionally reduced hull
JP2007246041A (en) Low frictional resistance enlarged ship
JP2000296796A (en) Friction resistance reduced ship and gas exhaust device
JP2002079986A (en) Ship reduced in friction resistance
JP5653703B2 (en) Gas recovery device and frictional resistance reduction type ship
JP2000296797A (en) Friction resistance reduced ship
KR20130102135A (en) Apparatus and method for reducing fluid drag on a submerged surface
JP2008273493A (en) Minute bubble generating device and hull resistance reduction vessel
JP2000203485A (en) Friction resistance reducing ship
JPH09226673A (en) Friction resistance reducing ship
JP2001206276A (en) Frictional resistance reduced ship using magnetic field
JP3957210B2 (en) Auxiliary device
JP5634567B2 (en) Stern shape of a displacement type ship

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050201