JP2003157516A - Perpendicular magnetic recording medium and magnetic recorder - Google Patents

Perpendicular magnetic recording medium and magnetic recorder

Info

Publication number
JP2003157516A
JP2003157516A JP2001358205A JP2001358205A JP2003157516A JP 2003157516 A JP2003157516 A JP 2003157516A JP 2001358205 A JP2001358205 A JP 2001358205A JP 2001358205 A JP2001358205 A JP 2001358205A JP 2003157516 A JP2003157516 A JP 2003157516A
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetic recording
recording medium
perpendicular magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001358205A
Other languages
Japanese (ja)
Inventor
Kazuyuki Hikosaka
和志 彦坂
Soichi Oikawa
壮一 及川
Futoshi Nakamura
太 中村
Takayuki Iwasaki
剛之 岩崎
Hiroshi Sakai
浩志 酒井
Akira Sakawaki
彰 坂脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Toshiba Corp filed Critical Showa Denko KK
Priority to JP2001358205A priority Critical patent/JP2003157516A/en
Priority to SG200205345A priority patent/SG98071A1/en
Priority to US10/234,719 priority patent/US20030096127A1/en
Publication of JP2003157516A publication Critical patent/JP2003157516A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/674Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having differing macroscopic or microscopic structures, e.g. differing crystalline lattices, varying atomic structures or differing roughnesses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/672Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having different compositions in a plurality of magnetic layers, e.g. layer compositions having differing elemental components or differing proportions of elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize magnetic recording having good durability to the fluctuation of heat and high medium SNR (signal to noise ratio). SOLUTION: The epitaxial crystal growth of magnetic particles in a perpendicular magnetic recording layer is interrupted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】磁気ディスク装置における記
録媒体、特に垂直磁気記録方式に用いられる垂直磁気記
録媒体に関わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recording medium in a magnetic disk device, particularly a perpendicular magnetic recording medium used in a perpendicular magnetic recording system.

【0002】[0002]

【従来の技術】従来より、磁気記録装置には、磁気記録
層の磁化方法が面内を向いた、面内磁気記録方式が使用
されてきた。しかし、面内磁気記録方式で、さらに記録
密度を向上させようとした場合、媒体SNRを向上させ
るために、記録層の磁性粒子を小さくしてゆくと、熱揺
らぎのために、記録した情報が消えて行くということが
問題になってきている。媒体SNRを向上し、熱揺らぎ
を防止するために、これまでは、記録層の磁気異方性を
高める方法で対応してきた。しかしながら、記録ヘッド
による記録のしやすさの点で、これ以上、磁気異方性を
高めることができず、媒体ノイズを低減による媒体SN
Rの向上、熱揺らぎ耐性を向上させるということの両立
が、困難になってきている。
2. Description of the Related Art Conventionally, an in-plane magnetic recording method has been used in a magnetic recording apparatus, in which the method of magnetizing a magnetic recording layer is in-plane. However, in the in-plane magnetic recording method, when it is attempted to further improve the recording density, if the magnetic particles in the recording layer are reduced in order to improve the medium SNR, the recorded information will be lost due to thermal fluctuation. Disappearing is becoming a problem. In order to improve the medium SNR and prevent thermal fluctuation, a method of increasing the magnetic anisotropy of the recording layer has been used so far. However, in terms of easiness of recording by the recording head, the magnetic anisotropy cannot be further increased, and the medium SN is reduced by reducing the medium noise.
It is becoming difficult to achieve both the improvement of R and the resistance to thermal fluctuation.

【0003】これに対して、磁気記録層の磁化方向を垂
直にする垂直磁気記録方式では、磁化の遷移領域で、磁
化を安定化させるような磁界が互いに働くため、急峻な
遷移領域が形成され、高密度化ができる。また、このた
め、面内磁気記録媒体と比較して、同じ記録分解能を得
るために記録層の膜厚を厚くできる。このことは、記録
層の磁性粒子体積を大きく出来ることから、熱揺らぎに
対しても有利となる。記録密度が小さいビットの場合
に、記録ビット内での反磁界が大きく、この際に、熱揺
らぎが厳しくなるが、面内磁気記録媒体と異なり高密度
では安定である。
On the other hand, in the perpendicular magnetic recording method in which the magnetization direction of the magnetic recording layer is made perpendicular, magnetic fields that stabilize the magnetization work in the magnetization transition region, so that a sharp transition region is formed. , High density is possible. Therefore, as compared with the in-plane magnetic recording medium, the thickness of the recording layer can be increased to obtain the same recording resolution. This is advantageous for thermal fluctuations because the volume of magnetic particles in the recording layer can be increased. In the case of a bit having a small recording density, the demagnetizing field in the recording bit is large and the thermal fluctuation becomes severe at this time, but unlike a longitudinal magnetic recording medium, it is stable at a high density.

【0004】さらに、垂直磁気記録層の下に、軟磁性膜
を設けた垂直2層膜媒体の場合、面内磁気記録と比較し
て、ヘッド磁界を大きくすることができるため、より大
きな異方性材料を媒体として用いることができる。
Further, in the case of a perpendicular double-layered film medium having a soft magnetic film provided under the perpendicular magnetic recording layer, the head magnetic field can be increased as compared with the in-plane magnetic recording, so that a larger anisotropic property can be obtained. Material can be used as a medium.

【0005】このような点から、最近、垂直磁気記録方
式に対して、注目が集まっている。
From this point of view, the perpendicular magnetic recording system has recently attracted attention.

【0006】上記のように、垂直磁気記録では、面内磁
気記録と比較して、記録層の膜厚を厚くできるが、この
膜厚が厚すぎる場合には、ヘッドの書き込み能力が充分
でなくなるので、高記録密度を達成できないという問題
があった。しかしながら、現状以降の記録密度を考えた
場合、記録層の膜厚は、少なくとも50nm以下、好ま
しくは30nm以下とすることが必要であると考えられ
る。
As described above, in perpendicular magnetic recording, the film thickness of the recording layer can be increased as compared with in-plane magnetic recording, but if this film thickness is too thick, the write capability of the head becomes insufficient. Therefore, there is a problem that a high recording density cannot be achieved. However, in consideration of the recording density after the present situation, it is considered that the film thickness of the recording layer needs to be at least 50 nm or less, preferably 30 nm or less.

【0007】記録媒体の高SNR化は、面内磁気記録媒
体と同様、重要な特性であるが、面内磁気記録媒体で
は、記録層を形成している磁性粒子を微細化することが
有効である。また、面内方向の結晶粒径を微細化すると
ともに、非磁性層を記録層の間に入れることによって、
高SNR化に効果があることが知られている。垂直磁気
記録媒体でも、例えば特開平7-176027号公報に記載され
ているように、記録層の間に非磁性中間層を用い、各層
がエピタキシャル成長しているものが知られている。し
かし、垂直磁気記録媒体では、磁性層を各々エピタキシ
ャル成長させた場合、ノイズ成分も各層で揃ってしまう
ために、低ノイズ化が出来ないという問題があった。こ
の上下の磁性層でノイズ成分が揃ってしまう影響は、理
想的な垂直磁気記録ができる垂直2層膜媒体でより顕著
となっていた。また、非磁性中間層を磁性層間に設ける
ことにより、上下の磁性層が磁気的に分断されているの
で、磁化反転単位が膜厚方向に小さく、熱揺らぎに弱く
なってしまっていた。また、中間層を用いない積層構成
の垂直媒体として、特公平03-57535号公報には、CoC
rからなる垂直磁気記録媒体において、Crの組成分布
が膜厚方向に変化している磁性層を、複数層積層するこ
とと、リング記録ヘッドとの組み合わせで、SN比の向
上した記録媒体が得られることが記載されている。しか
し、この磁気記録層の膜厚は、l00nm〜1000n
mと厚く、もし、磁気記録層が例えば50nmのように
薄い場合には、Crの組成分布が膜厚方向に充分変化し
ない。このため、SNRの向上ができないという問題が
あった。
The high SNR of the recording medium is an important characteristic as in the in-plane magnetic recording medium, but in the in-plane magnetic recording medium, it is effective to miniaturize the magnetic particles forming the recording layer. is there. Further, by making the crystal grain size in the in-plane direction finer and inserting the non-magnetic layer between the recording layers,
It is known to be effective in increasing SNR. Also in the perpendicular magnetic recording medium, as described in, for example, Japanese Patent Laid-Open No. 7-176027, a nonmagnetic intermediate layer is used between recording layers, and each layer is epitaxially grown. However, in the perpendicular magnetic recording medium, when the magnetic layers are epitaxially grown, the noise components are also uniform in each layer, so that there is a problem that noise cannot be reduced. The effect of the noise components being aligned in the upper and lower magnetic layers is more remarkable in the perpendicular double-layer film medium capable of ideal perpendicular magnetic recording. Further, since the upper and lower magnetic layers are magnetically separated by providing the non-magnetic intermediate layer between the magnetic layers, the magnetization reversal unit is small in the film thickness direction and is weak against thermal fluctuation. Further, Japanese Patent Publication No. 03-57535 discloses a vertical medium having a laminated structure not using an intermediate layer as CoC.
In a perpendicular magnetic recording medium composed of r, a recording medium having an improved SN ratio is obtained by stacking a plurality of magnetic layers in which the composition distribution of Cr changes in the film thickness direction and by combining with a ring recording head. It is described that it is done. However, the film thickness of this magnetic recording layer is 100 nm to 1000 n.
When the magnetic recording layer is as thick as m and the magnetic recording layer is as thin as 50 nm, the Cr composition distribution does not change sufficiently in the film thickness direction. Therefore, there is a problem that the SNR cannot be improved.

【0008】以上のように、垂直磁気記録媒体には、良
好な熱揺らぎ耐性及びSNRを両立し、かつ磁気記録層
の厚さを薄くすることが望ましいという課題があった。
As described above, the perpendicular magnetic recording medium has a problem that it is desirable to satisfy both good thermal fluctuation resistance and SNR and to make the thickness of the magnetic recording layer thin.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記課題を
解決するためになされたものであり、熱揺らぎ耐性が良
好であり、かつ媒体SNRが高い磁気記録を実現するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to realize magnetic recording having good resistance to thermal fluctuation and high medium SNR.

【0010】[0010]

【課題を解決するための手段】本発明の垂直磁気記録媒
体は、基板と、該基板上に形成され、そのエピタキシャ
ル成長が中断された垂直磁気記録層とを具備することを
特徴とする。
A perpendicular magnetic recording medium of the present invention is characterized by comprising a substrate and a perpendicular magnetic recording layer formed on the substrate and whose epitaxial growth is interrupted.

【0011】本発明の磁気記録再生装置は、基板、及び
該基板上に形成され、そのエピタキシャル成長が中断さ
れた垂直磁気記録層を有する垂直磁気記録媒体と、前記
磁気記録媒体を支持及び回転駆動する駆動手段と、前記
磁気記録媒体に対して情報の記録を行う単磁極記録ヘッ
ドとを具備する特徴とする
A magnetic recording / reproducing apparatus of the present invention supports a substrate, and a perpendicular magnetic recording medium having a perpendicular magnetic recording layer formed on the substrate and whose epitaxial growth is interrupted, and a magnetic recording medium for supporting and rotating the perpendicular recording medium. A driving means and a single-pole recording head for recording information on the magnetic recording medium.

【0012】[0012]

【発明の実施の形態】本発明の垂直磁気記録媒体は、基
板と、基板上に形成され垂直磁気記録層を有し、この垂
直磁気記録層は、その磁性粒子のエピタキシャル結晶成
長が中断された構成を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The perpendicular magnetic recording medium of the present invention has a substrate and a perpendicular magnetic recording layer formed on the substrate. In this perpendicular magnetic recording layer, epitaxial crystal growth of its magnetic grains is interrupted. Have a configuration.

【0013】本発明によれば、垂直磁気記録層が、膜厚
方向に、その磁性粒子のエピタキシャル結晶成長が中断
された部分を有することにより、中断された部分を境に
一方で発生するノイズと、もう一方で発生させるノイズ
との一致を防ぎ、媒体シグナルノイズレート(SNR)
を向上させることが可能となる。また、本発明に用いら
れる垂直磁気記録層は、膜厚方向に、エピタキシャル結
晶成長は中断されていても、磁気的には分断されない。
このため、磁化反転単位の膜厚方向の厚みが十分とな
り、良好な熱揺らぎ耐性が得られる。
According to the present invention, since the perpendicular magnetic recording layer has a portion where the epitaxial crystal growth of the magnetic grains is interrupted in the film thickness direction, noise generated on the other hand at the interrupted portion is generated. , Media signal noise rate (SNR) by preventing matching with noise generated on the other side
It becomes possible to improve. Further, the perpendicular magnetic recording layer used in the present invention is not magnetically divided even if the epitaxial crystal growth is interrupted in the film thickness direction.
Therefore, the thickness of the magnetization reversal unit in the film thickness direction is sufficient, and good thermal fluctuation resistance can be obtained.

【0014】垂直磁気記録層は、好ましくは二層以上の
構成を有する。
The perpendicular magnetic recording layer preferably has a structure of two or more layers.

【0015】また、垂直磁気記録層は、その厚さが好ま
しくは50nmないし5nm、さらに好ましくは30n
mないし10nmである。5nm未満であると、記録層
の磁化量が十分でなくなり、ヘッド出力が小さくなっ
て、これを用いて装置を組み立てた際にエラーレートが
とれなくなる傾向があり、50nmを超えると、ヘッド
の書き込み能力が十分でなくなり、記録分解能も低下す
る傾向がある。
The thickness of the perpendicular magnetic recording layer is preferably 50 nm to 5 nm, more preferably 30 n.
m to 10 nm. If it is less than 5 nm, the amount of magnetization of the recording layer becomes insufficient, the head output becomes small, and when the device is assembled using this, the error rate tends to be unobtainable. The capacity tends to be insufficient and the recording resolution tends to decrease.

【0016】エピタキシャル結晶成長が中断された構成
の一例として、基板上に、順に、第1の磁性層及び第2
の磁性層を有する垂直磁気記録層において、第1の磁性
層の磁性粒子の結晶の磁化容易軸が、第2の磁性層の磁
性粒子の結晶の磁化容易軸と一致しない場合があげられ
る。
As an example of the structure in which the epitaxial crystal growth is interrupted, the first magnetic layer and the second magnetic layer are sequentially formed on the substrate.
In the perpendicular magnetic recording layer having the magnetic layer of No. 1, the easy magnetization axis of the crystal of the magnetic particles of the first magnetic layer does not coincide with the easy magnetization axis of the crystal of the magnetic particles of the second magnetic layer.

【0017】図1に、互いに磁化容易軸の異なる二層の
磁性層を有する磁気記録媒体を表すモデル図を示す。
FIG. 1 is a model diagram showing a magnetic recording medium having two magnetic layers having different axes of easy magnetization.

【0018】図示するように、この磁気記録媒体は、基
板1上に、例えばバイアス付与層2、例えば軟磁性層
3、及び磁気記録層6が順に積層された構成を有する。
図中、矢印は、磁化容易軸を表す。この磁気記録層6
は、図示するように互いにその磁化容易軸が異なる第1
の磁性層4及び第2の磁性層5から構成される。なお、
第1の磁性層4及び第2の磁性層5中の複数の区画は、
各々膜厚方向にエピキシャル結晶成長された磁性粒子の
結晶断面を概略的に表す。
As shown in the figure, this magnetic recording medium has a structure in which, for example, a bias applying layer 2, a soft magnetic layer 3, and a magnetic recording layer 6 are sequentially laminated on a substrate 1.
In the figure, the arrow indicates the easy axis of magnetization. This magnetic recording layer 6
As shown in the figure,
Of the magnetic layer 4 and the second magnetic layer 5. In addition,
The plurality of sections in the first magnetic layer 4 and the second magnetic layer 5 are
The crystal cross-sections of the magnetic particles that are each epitaxially grown in the film thickness direction are schematically shown.

【0019】エピタキシャル成長が中断された構成の他
の例として、第1の磁性層と第2の磁性層において、そ
の磁性粒子の結晶粒径が互いに異なる場合があげられ
る。このとき、結晶粒径は、好ましくは5nmないし2
0nmである。また、結晶粒径の違いは、好ましくは2
nmないし5nmである。
Another example of the structure in which the epitaxial growth is interrupted is that the crystal grain sizes of the magnetic particles in the first magnetic layer and the second magnetic layer are different from each other. At this time, the crystal grain size is preferably 5 nm to 2 nm.
It is 0 nm. The difference in crystal grain size is preferably 2
nm to 5 nm.

【0020】図2に、互いに結晶粒径の異なる二層の磁
性層を有する磁気記録媒体を表すモデル図を示す。
FIG. 2 is a model diagram showing a magnetic recording medium having two magnetic layers having different crystal grain sizes.

【0021】図示するように、この磁気記録媒体は、磁
気記録層6の代わりに、互いに結晶粒径の異なる第1の
磁性層7及び第2の磁性層8からなる磁気記録層9を設
けること以外は、図1と同様の構成を有する。
As shown in the figure, in this magnetic recording medium, instead of the magnetic recording layer 6, a magnetic recording layer 9 composed of a first magnetic layer 7 and a second magnetic layer 8 having different crystal grain sizes is provided. Except for this, the configuration is the same as that of FIG.

【0022】このようなエピタキシャル結晶成長が中断
された構成を得るには、例えば第2の磁性層の格子定数
を、第1の磁性層の格子定数に対し4%以上小さいか、
あるいは2%以上大きくすることができる。
To obtain such a structure in which the epitaxial crystal growth is interrupted, for example, the lattice constant of the second magnetic layer is smaller than the lattice constant of the first magnetic layer by 4% or more, or
Alternatively, it can be increased by 2% or more.

【0023】第2の磁性層の格子定数が第1の磁性層の
格子定数に対し、−4より大きく+2より小さい場合、
第2の磁性層と第1の磁性層の界面に発生する歪みエネ
ルギーが大きくなり、第2の磁性層と第1の磁性層の磁
化容易軸が傾いて一致しない傾向がある。
When the lattice constant of the second magnetic layer is larger than -4 and smaller than +2 with respect to the lattice constant of the first magnetic layer,
The strain energy generated at the interface between the second magnetic layer and the first magnetic layer becomes large, and the easy magnetization axes of the second magnetic layer and the first magnetic layer tend to be tilted and do not match.

【0024】また、エピタキシャル成長が中断された構
成を得るには、例えば第2の磁性層は、第1の磁性層を
形成した後、第1の磁性層表面に酸素を暴露し、第1の
磁性層の酸化層を形成し、その上に、第2の酸化層を形
成することができる。酸化層は、その深さが4nm以
下、好ましくは2nmないし0.5nmである。4nm
より大きい場合は、第1の磁性層と第2の磁性層の磁気
的結合が弱くなって熱揺らぎに弱くなり、0.5nm未
満である場合は、エピタキシャル成長となる傾向があ
る。
In order to obtain a structure in which the epitaxial growth is interrupted, for example, the second magnetic layer is formed by forming the first magnetic layer and then exposing the surface of the first magnetic layer to oxygen to form the first magnetic layer. An oxide layer of the layer can be formed and a second oxide layer can be formed thereon. The oxide layer has a depth of 4 nm or less, preferably 2 nm to 0.5 nm. 4 nm
When it is larger, the magnetic coupling between the first magnetic layer and the second magnetic layer is weakened and weak against thermal fluctuation, and when it is less than 0.5 nm, epitaxial growth tends to occur.

【0025】第2の磁性層の格子定数を、第1の磁性層
の格子定数に対し4%以上小さいか、あるいは2%以上
大きくする例としては、第1及び第2の磁性層を、コバ
ルト系磁性層とし、第1の磁性層にプラチナを5at%
以下、第2の磁性層にプラチナを24at%以上、好ま
しくは25ないし40at%添加することができる。
As an example of increasing the lattice constant of the second magnetic layer by 4% or more or by 2% or more with respect to the lattice constant of the first magnetic layer, the first and second magnetic layers are formed of cobalt. 5 at% of platinum in the first magnetic layer as the system magnetic layer
Hereinafter, platinum can be added to the second magnetic layer at 24 at% or more, preferably 25 to 40 at%.

【0026】また、このような例として、磁気記録層を
3つのコバルト系磁性層の積層体にして、第1及び第3
の磁性層はプラチナを24at%以上、好ましくは25
ないし75at%、第2の磁性層はプラチナを5at%
以下添加することができる。
In this example, the magnetic recording layer is a laminated body of three cobalt-based magnetic layers, and the first and third magnetic recording layers are formed.
The magnetic layer of platinum is at least 24 at%, preferably 25
To 75 at%, the second magnetic layer contains 5 at% platinum.
The following can be added.

【0027】図3に、3層の磁性層を積層した磁気記録
層を有する磁気記録媒体の一例を表す図を示す。
FIG. 3 shows an example of a magnetic recording medium having a magnetic recording layer in which three magnetic layers are laminated.

【0028】図示するように、この磁気記録媒体は、磁
気記録層6の代わりに、互いに結晶粒径の異なる第1の
磁性層14、第2の磁性層15及び第3の磁性層16か
らなる磁気記録層17を設けること以外は、図1と同様
の構成を有する。
As shown in the figure, this magnetic recording medium is composed of a first magnetic layer 14, a second magnetic layer 15 and a third magnetic layer 16 having different crystal grain sizes instead of the magnetic recording layer 6. The structure is the same as that of FIG. 1 except that the magnetic recording layer 17 is provided.

【0029】さらに、本発明によれば、2層以上の磁性
層の任意の層間に中間層を設けることができる。
Furthermore, according to the present invention, an intermediate layer can be provided between any two or more magnetic layers.

【0030】中間層としては、例えば第1及び第2の磁
性層をコバルト系磁性層とし、各々プラチナを20at
%以下、好ましくは5ないし20at%含み、かつ第1
及び第2の磁性層の間に、例えばルテニウムチタン、及
びハフニウムからなる群から選択される金属を含む中間
層をさらに設けることができる。これにより、磁気記録
層では、第2の記録層は、第1の記録層の磁化容易軸に
対し、その磁化容易軸が傾いて成長される。
As the intermediate layer, for example, the first and second magnetic layers are cobalt-based magnetic layers, and each platinum is 20 at.
% Or less, preferably 5 to 20 at%, and the first
An intermediate layer containing a metal selected from the group consisting of ruthenium titanium and hafnium can be further provided between the second magnetic layer and the second magnetic layer. As a result, in the magnetic recording layer, the second recording layer is grown with the easy axis of magnetization inclined to the easy axis of the first recording layer.

【0031】図4に、第1及び第2の磁性層間に中間層
を設けた磁気記録媒体の一例を表す図を示す。
FIG. 4 is a diagram showing an example of a magnetic recording medium in which an intermediate layer is provided between the first and second magnetic layers.

【0032】図示するように、この磁気記録媒体は、磁
気記録層6の代わりに、例えばCo−66at%,Pt
−18at%,Cr−16at%からなる第1の磁性層
10、例えばハフニウムからなる中間層11、及び第1
の磁性層10と同組成の第2の磁性層12から構成され
る磁気記録層13を設ける以外は、図1と同様の構成を
有する。
As shown in the figure, this magnetic recording medium has, for example, Co-66 at%, Pt instead of the magnetic recording layer 6.
-18 at% and Cr-16 at% of the first magnetic layer 10, for example, hafnium intermediate layer 11, and the first magnetic layer 10.
The magnetic recording layer 13 has the same structure as that of FIG. 1 except that the magnetic recording layer 13 including the second magnetic layer 12 having the same composition as that of

【0033】また、例えば第1及び第2の磁性層を、H
CP相コバルト系磁性層とし、各々プラチナを20at
%以上、好ましくは20ないし30at%含み、かつ第
1及び第2の磁性層の間にbcc相クロムを含む中間層
をさらに設けることができる。これにより、磁気記録層
は、第2の磁性層は、第1の磁性層の磁化容易軸に対
し、その磁化容易軸が傾いて成長される。
In addition, for example, the first and second magnetic layers are made to be H
CP phase cobalt-based magnetic layer, platinum at 20 at each
% Or more, preferably 20 to 30 at%, and an intermediate layer containing bcc phase chromium can be further provided between the first and second magnetic layers. As a result, the magnetic recording layer and the second magnetic layer are grown with the easy axis of magnetization inclined to the easy axis of the first magnetic layer.

【0034】第1及び第2の磁性層の間に例えば炭素等
の非晶質の中間層をさらに設けることができる。これに
より、磁気記録層は第2の磁性層は、第1の磁性層の磁
化容易軸に対し、その磁化容易軸が傾いて成長される。
An amorphous intermediate layer of, for example, carbon can be further provided between the first and second magnetic layers. As a result, the magnetic recording layer and the second magnetic layer are grown with the easy axis of magnetization inclined to the easy axis of the first magnetic layer.

【0035】また、本発明に使用される垂直磁気記録層
の材料としては、例えばCoCrPt系合金、CoCr
PtO系合金、FePt規則合金、及びCo/PdCo/
PtFe/Ptの人工格子等があげられる。
The material of the perpendicular magnetic recording layer used in the present invention is, for example, a CoCrPt-based alloy or CoCr.
PtO-based alloy, FePt ordered alloy, and Co / PdCo /
An artificial lattice of PtFe / Pt and the like can be given.

【0036】また、本発明の垂直磁気記録媒体では、基
板と磁気記録層との間に、基板上に設けられたバイアス
付与層及びバイアス付与層上に設けられた軟磁性層をさ
らに設けることができる。
In the perpendicular magnetic recording medium of the present invention, a bias applying layer provided on the substrate and a soft magnetic layer provided on the bias applying layer are further provided between the substrate and the magnetic recording layer. it can.

【0037】バイアス付与層としては、例えばCoCr
Pt合金、CoSn合金、CoPtO合金、及びFeP
t合金があげられる。
As the bias applying layer, for example, CoCr
Pt alloy, CoSn alloy, CoPtO alloy, and FeP
An example is t-alloy.

【0038】基板とバイアス付与層との間には、例えば
NiAl、TiN、銅、及びMgO等のシード層、及び
例えばCr合金、V合金、及びRu合金等の下地層を設
けることができる。
A seed layer of, for example, NiAl, TiN, copper, and MgO, and an underlayer of, for example, Cr alloy, V alloy, and Ru alloy can be provided between the substrate and the bias applying layer.

【0039】また、垂直磁気記録層を形成する前に、例
えばTi、銅、MgO等のシード層、及び例えばRu、
及び非磁性CoCr等の下地層を設けることができる。
Before forming the perpendicular magnetic recording layer, a seed layer of, for example, Ti, copper, MgO, etc., and, for example, Ru,
And an underlayer of non-magnetic CoCr or the like can be provided.

【0040】また、本発明の磁気記録再生装置は、上述
の垂直磁気記録体と、磁気記録媒体を支持及び回転駆動
する駆動手段と、磁気記録媒体に対して情報の記録を行
う単磁極記録ヘッドとを具備する。
Further, the magnetic recording / reproducing apparatus of the present invention comprises the above-mentioned perpendicular magnetic recording body, a driving means for supporting and rotating the magnetic recording medium, and a single magnetic pole recording head for recording information on the magnetic recording medium. And.

【0041】図5に、本発明にかかる磁気記録再生装置
の一例を一部分解した斜視図を示す。
FIG. 5 is a partially exploded perspective view of an example of the magnetic recording / reproducing apparatus according to the present invention.

【0042】本発明に係る情報を記録するための剛構成
の磁気ディスク121はスピンドル122に装着されて
おり、図示しないスピンドルモータによって一定回転数
で回転駆動される。磁気ディスク121にアクセスして
情報の記録行う単磁極型記録ヘッド及び情報の再生を行
うためのMRヘッドを搭載したスライダー123は、薄
板状の板ばねからなるサスペンション124の先端に取
付けられている。サスペンション124は図示しない駆
動コイルを保持するボビン部等を有するアーム125の
一端側に接続されている。
A rigid magnetic disk 121 for recording information according to the present invention is mounted on a spindle 122 and is rotationally driven at a constant rotational speed by a spindle motor (not shown). A slider 123 having a single magnetic pole type recording head for accessing the magnetic disk 121 to record information and an MR head for reproducing information is attached to the tip of a suspension 124 made of a thin plate spring. The suspension 124 is connected to one end side of an arm 125 having a bobbin portion for holding a drive coil (not shown).

【0043】アーム125の他端側には、リニアモータ
の一種であるボイスコイルモータ126が設けられてい
る。ボイスコイルモータ126は、アーム125のボビ
ン部に巻き上げられた図示しない駆動コイルと、それを
挟み込むように対向して配置された永久磁石および対向
ヨークにより構成される磁気回路とから構成されてい
る。
At the other end of the arm 125, a voice coil motor 126, which is a kind of linear motor, is provided. The voice coil motor 126 is composed of a drive coil (not shown) wound around a bobbin of the arm 125, and a magnetic circuit composed of a permanent magnet and a facing yoke that are arranged to face each other so as to sandwich the drive coil.

【0044】アーム125は、固定軸127の上下2カ
所に設けられた図示しないボールベアリングによって保
持され、ボイスコイルモータ126によって回転揺動駆
動される。すなわち、磁気ディスク121上におけるス
ライダー123の位置は、ボイスコイルモータ126に
よって制御される。なお、図5中、128は蓋体を示し
ている。
The arm 125 is held by ball bearings (not shown) provided at two positions above and below the fixed shaft 127, and is rotated and rocked by the voice coil motor 126. That is, the position of the slider 123 on the magnetic disk 121 is controlled by the voice coil motor 126. In FIG. 5, reference numeral 128 denotes a lid.

【0045】以下、実施例を示し、本発明をより具体的
に説明する。
Hereinafter, the present invention will be described more specifically by showing examples.

【0046】[0046]

【実施例】実施例1 まず、2.5インチ結晶化ガラス基板を用意した。この
2.5インチ結晶化ガラス基板上に、NiAlのシード
層、Cr合金下地膜、及びCo68Cr12Pt20合金面内
硬磁性膜を順にスパッタにより、各々、5nm、10n
m、及び30nm形成した。その後、CoCrPt合金
面内硬磁性膜上に、CoZrNb軟磁性膜をスパッタに
より150nm形成した。この上に、垂直記録層用Ti
合金シード層、及びRu合金下地層を形成し、Co73P
t5Cr22合金膜よりなる第1の垂直磁性層を15nm
スパッタにより形成し、さらにこの上に、第1の垂直磁
性層とは格子定数が2%以上大きくなるようにターゲッ
トのPt組成を選んだ第2の垂直磁性層をCo64Pt24
Cr12組成ターゲットを用いて、酸素を含むArガス雰
囲気中で15nm厚形成した。さらにこの上に、CDV
カーボンを6nm形成し、パーフロロポリエーテル潤滑
剤をディップして、垂直磁気記録媒体を作製した。最後
に、得られた面内硬磁性膜を半径方向に着磁した。
Example 1 First, a 2.5 inch crystallized glass substrate was prepared. On this 2.5 inch crystallized glass substrate, a NiAl seed layer, a Cr alloy underlayer, and a Co68Cr12Pt20 alloy in-plane hard magnetic film were sequentially sputtered to 5 nm and 10 n, respectively.
m and 30 nm. Then, a CoZrNb soft magnetic film having a thickness of 150 nm was formed on the CoCrPt alloy in-plane hard magnetic film by sputtering. On top of this, Ti for the perpendicular recording layer
An alloy seed layer and a Ru alloy underlayer are formed, and Co73P
The first perpendicular magnetic layer of t5Cr22 alloy film is 15 nm thick.
A second perpendicular magnetic layer, which is formed by sputtering and on which a Pt composition of the target is selected so that the lattice constant of the first perpendicular magnetic layer is larger than 2%, is Co64Pt24.
A Cr12 composition target was used to form a film having a thickness of 15 nm in an Ar gas atmosphere containing oxygen. On top of this, CDV
A perpendicular magnetic recording medium was manufactured by forming carbon to a thickness of 6 nm and dipping a perfluoropolyether lubricant. Finally, the obtained in-plane hard magnetic film was magnetized in the radial direction.

【0047】図6に、得られた磁気記録媒体の構成を表
す概略断面図を示す。
FIG. 6 is a schematic sectional view showing the structure of the obtained magnetic recording medium.

【0048】図示するように、この磁気記録媒体は、
2.5インチ結晶化ガラス基板21上に、NiAlシー
ド層22、Cr合金下地層23、CoCrPt合金バイ
アス付与層24、CoZrNb軟磁性層25、Ti合金
シード層26、Ru合金下地層27、Co73Pt5Cr2
2合金からなる第1の垂直磁性層28、Co64Pt24C
r12からなる第2の垂直磁性層29、及び保護層30を
スパッタリングにより順に積層し、CDVカーボンから
なる保護層30上にパーフロロポリエーテル潤滑層51
がディップコーティング法により形成された構成を有す
る。
As shown, this magnetic recording medium is
On a 2.5 inch crystallized glass substrate 21, a NiAl seed layer 22, a Cr alloy underlayer 23, a CoCrPt alloy bias applying layer 24, a CoZrNb soft magnetic layer 25, a Ti alloy seed layer 26, a Ru alloy underlayer 27, Co73Pt5Cr2.
First perpendicular magnetic layer 28 made of 2 alloy, Co64Pt24C
A second perpendicular magnetic layer 29 made of r12 and a protective layer 30 are sequentially stacked by sputtering, and a perfluoropolyether lubricating layer 51 is formed on the protective layer 30 made of CDV carbon.
Has a structure formed by a dip coating method.

【0049】第1及び第2の垂直磁性層からなる磁気記
録層の断面構造を透過型電子顕微鏡(TEM)により、
観察した。第1及び第2の垂直磁性層の境界が明確であ
り、膜厚方向のエピタキシャル成長がこの境界で中断し
ていた。この場合、第2の垂直磁性層のHCP構造粒子
と第1の垂直磁性層のHCP構造粒子のC軸の成長方向
すなわち結晶磁化容易軸に違いが見られた。
The cross-sectional structure of the magnetic recording layer composed of the first and second perpendicular magnetic layers was observed by a transmission electron microscope (TEM).
I observed. The boundary between the first and second perpendicular magnetic layers was clear, and the epitaxial growth in the film thickness direction was interrupted at this boundary. In this case, a difference was observed in the growth direction of the C-axis of the HCP structure particles of the second perpendicular magnetic layer and the HCP structure particles of the first perpendicular magnetic layer, that is, the easy axis of crystal magnetization.

【0050】得られた磁気記録媒体に、記録トラック幅
0.4umの単磁極記録ヘッドと再生トラック幅0.3
μmのGMR再生ヘッドで記録・再生を行なった。40
0kFCIの媒体ノイズ(Nmrms)と再生孤立波(S
O)の比SNRは、23.0(dB)であった。得られ
た結果を下記表1に示す。
On the obtained magnetic recording medium, a single magnetic pole recording head having a recording track width of 0.4 μm and a reproducing track width of 0.3 were used.
Recording and reproduction were performed with a μm GMR reproducing head. 40
0 kFCI medium noise (Nmrms) and reproduced solitary wave (S
The specific SNR of O) was 23.0 (dB). The obtained results are shown in Table 1 below.

【0051】比較例1 比較として、第2の垂直磁性層を形成せず、第1の垂直
磁性層のみを膜厚30nm形成する以外は、実施例1と
同様にして垂直磁気記録媒体を作製した。
Comparative Example 1 For comparison, a perpendicular magnetic recording medium was prepared in the same manner as in Example 1 except that the second perpendicular magnetic layer was not formed and only the first perpendicular magnetic layer was formed to a thickness of 30 nm. .

【0052】この膜の断面構造を観察したところ、記録
層の膜厚方向のエピタキシャル成長の中断はなかった。
SNRは、20.5(dB)と低かった。得られた結果
を下記表1に示す。
Observation of the cross-sectional structure of this film showed that the epitaxial growth in the film thickness direction of the recording layer was not interrupted.
The SNR was as low as 20.5 (dB). The obtained results are shown in Table 1 below.

【0053】比較例2 比較として、第1の垂直磁性層を形成せず、第2の垂直
磁性層のみを膜厚30nm形成する以外は、実施例1と
同様にして垂直磁気記録媒体を作製した。
Comparative Example 2 For comparison, a perpendicular magnetic recording medium was prepared in the same manner as in Example 1 except that the first perpendicular magnetic layer was not formed and only the second perpendicular magnetic layer was formed to a thickness of 30 nm. .

【0054】この膜の断面構造を観察したところ、記録
層の膜厚方向のエピタキシャル成長の中断はなかった。
SNRは、20.3(dB)と低かった。得られた結果
を下記表1に示す。
Observation of the sectional structure of this film revealed that the epitaxial growth in the film thickness direction of the recording layer was not interrupted.
The SNR was as low as 20.3 (dB). The obtained results are shown in Table 1 below.

【0055】比較例3 比較として、第2の垂直磁性層とその格子定数をほぼ一
致させるように、第1の垂直磁性層として、Co73Pt
15Cr12合金層をスパッタにより形成した以外は、実施
例1と同様にして垂直磁気記録媒体を作製した。
Comparative Example 3 As a comparison, Co73Pt was used as the first perpendicular magnetic layer so that the lattice constants of the second perpendicular magnetic layer and the second perpendicular magnetic layer were substantially the same.
A perpendicular magnetic recording medium was produced in the same manner as in Example 1 except that the 15Cr12 alloy layer was formed by sputtering.

【0056】この膜の断面構造を観察したところ、記録
層の膜厚方向のエピタキシャル成長の中断はなかった。
SNRは、20.2(dB)と低かった。得られた結果
を下記表1に示す。
Observation of the cross-sectional structure of this film showed that the epitaxial growth in the film thickness direction of the recording layer was not interrupted.
The SNR was as low as 20.2 (dB). The obtained results are shown in Table 1 below.

【0057】比較例4 比較として、第2の垂直磁性層の格子定数とその格子定
数をほぼ一致させるように、第1の垂直磁性層として、
Co68Pt20Cr12合金層をスパッタにより形成した以
外は、実施例1と同様にして垂直磁気記録媒体を作製し
た。
Comparative Example 4 As a comparison, as the first perpendicular magnetic layer, the second perpendicular magnetic layer was made to have a lattice constant substantially equal to that of the second perpendicular magnetic layer.
A perpendicular magnetic recording medium was produced in the same manner as in Example 1 except that the Co68Pt20Cr12 alloy layer was formed by sputtering.

【0058】この膜の断面構造を観察したところ、記録
層の膜厚方向のエピタキシャル成長の中断はなかった。
SNRは、20.4(dB)と低かった。得られた結果
を下記表1に示す。
Observation of the cross-sectional structure of this film showed that the epitaxial growth in the film thickness direction of the recording layer was not interrupted.
The SNR was as low as 20.4 (dB). The obtained results are shown in Table 1 below.

【0059】実施例2 第1の垂直磁性層に対してその格子定数が+2%以上に
なるように第2の垂直磁性層材料からCrを除いて第2
の垂直磁性層を形成する以外は実施例1と同様にして、
垂直磁気記録媒体を作製した。
Example 2 The second perpendicular magnetic layer was prepared by removing Cr from the second perpendicular magnetic layer material so that the lattice constant of the first perpendicular magnetic layer would be + 2% or more.
In the same manner as in Example 1 except that the perpendicular magnetic layer of
A perpendicular magnetic recording medium was produced.

【0060】この膜の断面構造を観察したところ、記録
層の膜厚方向のエピタキシャル成長の中断がみられた。
SNRは、23.3(dB)であった。得られた結果を
下記表1に示す。
When the cross-sectional structure of this film was observed, the epitaxial growth in the film thickness direction of the recording layer was interrupted.
The SNR was 23.3 (dB). The obtained results are shown in Table 1 below.

【0061】実施例3 第1の垂直磁性層に対してその格子定数が+2%以上に
なるように第2の垂直磁性層中のCr添加量を18at
%とする以外は実施例1と同様にして、垂直磁気記録媒
体を作製した。
Example 3 The amount of Cr added in the second perpendicular magnetic layer was 18 at so that the lattice constant of the first perpendicular magnetic layer was + 2% or more.
A perpendicular magnetic recording medium was produced in the same manner as in Example 1 except that the percentage was changed.

【0062】この膜の断面構造を観察したところ、記録
層の膜厚方向のエピタキシャル成長の中断がみられた。
SNRは、23.5(dB)であった。得られた結果を
下記表1に示す。
When the cross-sectional structure of this film was observed, the epitaxial growth in the film thickness direction of the recording layer was interrupted.
The SNR was 23.5 (dB). The obtained results are shown in Table 1 below.

【0063】実施例4 2.5インチ結晶化ガラス基板を用意した。この基板上
に、NiAlのシード層、Cr合金下地層、及びCo66
Cr18Pt16合金面内硬磁性膜をスパッタにより、順
次、各々、5nm、5nm、及び40nm形成した。得
られた面内硬磁性膜を半径方向に着磁した。その後、得
られた面内硬磁性膜上にCoZrNb軟磁性膜をスパッ
タにより150nm形成した。この上に、垂直記録層用
Ti合金シード層、Ru合金下地層を形成し、Co64P
t20Cr16合金組成のターゲットを用いて酸素を含むA
rガス雰囲気中でスパッタし、CoPtCrO膜よりな
る第1垂直記録膜を15nm形成した。さらに、この上
に、中間層として、第1の磁性膜の格子定数に対し、そ
の格子定数が2%以上大きいRu90Ti10合金中間層を
3nm弱形成した。この上に、第2の垂直磁性層とし
て、Co62Pt20Cr18合金膜を15nm直接形成し
た。中間層の格子定数に対し第2の垂直磁性膜の格子定
数は4.05%小さかった。さらに、この上に、CDV
カーボンを6nmスパッタ形成し、最後にパーフロロポ
リエーテル潤滑剤をディップコーティングして、垂直磁
気記録媒体を作製した。
Example 4 A 2.5 inch crystallized glass substrate was prepared. On this substrate, a NiAl seed layer, a Cr alloy underlayer, and Co66
In-plane hard magnetic films of Cr18Pt16 alloy were sequentially formed by sputtering to have respective thicknesses of 5 nm, 5 nm, and 40 nm. The obtained in-plane hard magnetic film was magnetized in the radial direction. Then, a CoZrNb soft magnetic film having a thickness of 150 nm was formed on the obtained in-plane hard magnetic film by sputtering. A Ti alloy seed layer for the perpendicular recording layer and a Ru alloy underlayer are formed on this, and Co64P
A containing oxygen using a target of t20Cr16 alloy composition
Sputtering was performed in an r gas atmosphere to form a first perpendicular recording film of CoPtCrO film with a thickness of 15 nm. Further, a Ru90Ti10 alloy intermediate layer having a lattice constant larger than the lattice constant of the first magnetic film by 2% or more was formed thereon as an intermediate layer with a thickness of less than 3 nm. A Co62Pt20Cr18 alloy film having a thickness of 15 nm was directly formed thereon as a second perpendicular magnetic layer. The lattice constant of the second perpendicular magnetic film was 4.05% smaller than the lattice constant of the intermediate layer. Furthermore, on this, CDV
Carbon was sputtered to a thickness of 6 nm, and finally a perfluoropolyether lubricant was dip-coated to prepare a perpendicular magnetic recording medium.

【0064】図7に、得られた磁気記録媒体の構成を表
す概略断面図を示す。
FIG. 7 is a schematic sectional view showing the structure of the obtained magnetic recording medium.

【0065】図示するように、この磁気記録媒体は、R
u合金下地層27上に、第1及び第2の垂直磁性層2
8,29のかわりに、Co64Pt20Cr16合金からなる
第1の垂直磁性層31、Ru90Ti10合金中間層32、
及びCo68Pt20Cr18合金からなる第2の垂直磁性層
33が設けられる以外は、実施例1と同様の構成を有す
る。
As shown, this magnetic recording medium has an R
On the u alloy underlayer 27, the first and second perpendicular magnetic layers 2 are formed.
Instead of 8, 29, a first perpendicular magnetic layer 31 made of a Co64Pt20Cr16 alloy, a Ru90Ti10 alloy intermediate layer 32,
And the second perpendicular magnetic layer 33 made of Co68Pt20Cr18 alloy is provided, and the structure is the same as that of the first embodiment.

【0066】この膜の断面構造をTEMで観察したとこ
ろ、第1磁性膜と第2磁性膜との境界と考えられる膜厚
位置で、結晶の境界が明白となっており、上下の磁性膜
はエピタキシャル結晶成長が中断している様子が見られ
た。
When the cross-sectional structure of this film was observed by TEM, the boundaries of crystals became clear at the film thickness position considered to be the boundary between the first magnetic film and the second magnetic film, and the upper and lower magnetic films were It was observed that the epitaxial crystal growth was interrupted.

【0067】400kFCIの媒体ノイズ(Nmrms)
と再生孤立波(SO)の比SNRは、23.3(dB)
であった。得られた結果を下記表2に示す。
Medium noise of 400 kFCI (Nmrms)
The ratio SNR of the reproduced solitary wave (SO) is 23.3 (dB)
Met. The obtained results are shown in Table 2 below.

【0068】比較例5 比較例として、中間層の格子定数が第1の垂直磁性層の
1%以内、第2の垂直磁性層の格子定数が中間層の4%
以内となるように、Ru90Ti10合金中間層の代わりに
Cu中間層を用いた以外は、実施例4と同様にして垂直
磁気記録媒体を作製した。
Comparative Example 5 As a comparative example, the lattice constant of the intermediate layer is within 1% of that of the first perpendicular magnetic layer, and the lattice constant of the second perpendicular magnetic layer is 4% of that of the intermediate layer.
A perpendicular magnetic recording medium was produced in the same manner as in Example 4 except that a Cu intermediate layer was used in place of the Ru90Ti10 alloy intermediate layer so that the content was within the range.

【0069】この膜の断面構造をTEMで観察したとこ
ろ、第1磁性膜と第2磁性膜がエピタキシャル成長して
いた。
When the cross-sectional structure of this film was observed by TEM, the first magnetic film and the second magnetic film were epitaxially grown.

【0070】400kFCIの媒体ノイズ(Nmrm
s)と再生孤立波(SO)の比SNRは、20.6(d
B)と低かった。得られた結果を下記表2に示す。
Medium noise of 400 kFCI (Nmrm
The ratio SNR between the s) and the reproduced solitary wave (SO) is 20.6 (d
B) was low. The obtained results are shown in Table 2 below.

【0071】実施例5 Ru90Ti10合金中間層の代わりに、中間層の格子定数
が第2の記録層より20%以上異なるHfを用いた以外
は、実施例4と同様にして垂直磁気記録媒体を作製し
た。
Example 5 A perpendicular magnetic recording medium was prepared in the same manner as in Example 4 except that Hf having a lattice constant of the intermediate layer different from that of the second recording layer by 20% or more was used in place of the Ru90Ti10 alloy intermediate layer. did.

【0072】この膜の断面構造をTEMで観察したとこ
ろ、上下の磁性膜の磁化容易軸方向は一致していなかっ
た。
When the cross-sectional structure of this film was observed by TEM, the easy magnetization axis directions of the upper and lower magnetic films did not match.

【0073】400kFCIの媒体ノイズ(Nmrm
s)と再生孤立波(SO)の比SNRは、23.9(d
B)であった。また、磁気記録層の保磁力の低下が顕著
となった。得られた結果を下記表2に示す。
Medium noise of 400 kFCI (Nmrm
The ratio SNR between the s) and the reproduced solitary wave (SO) is 23.9 (d
B). Further, the coercive force of the magnetic recording layer was significantly reduced. The obtained results are shown in Table 2 below.

【0074】実施例6 Ru90Ti10合金中間層の代わりに、中間層の格子定数
が第2の記録層より2.18%異なり、BCC構造を有
するCr2nmを形成した以外は、実施例4と同様にし
て垂直磁気記録媒体を作製した。
Example 6 In the same manner as in Example 4 except that the Ru90Ti10 alloy intermediate layer was replaced with Cr2nm having a BCC structure in which the intermediate layer had a lattice constant different from that of the second recording layer by 2.18%. A perpendicular magnetic recording medium was produced.

【0075】この膜の断面構造をTEMで観察したとこ
ろ、第1及び第2の垂直磁性層の細密面の法線方向すな
わち磁化容易軸が異なっていた。
When the cross-sectional structure of this film was observed by TEM, the normal direction of the close-packed surfaces of the first and second perpendicular magnetic layers, that is, the easy axis of magnetization was different.

【0076】400kFCIの媒体ノイズ(Nmrm
s)と再生孤立波(SO)の比SNRは、23.2(d
B)であった。得られた結果を下記表2に示す。
Medium noise of 400 kFCI (Nmrm
The ratio SNR between the s) and the reproduced solitary wave (SO) is 23.2 (d).
B). The obtained results are shown in Table 2 below.

【0077】実施例7 Ru90Ti10合金中間層の代わりに、スパッタにより形
成された非晶質のCを用いた以外は、実施例4と同様に
して垂直磁気記録媒体を作製した。
Example 7 A perpendicular magnetic recording medium was produced in the same manner as in Example 4 except that amorphous C formed by sputtering was used instead of the Ru90Ti10 alloy intermediate layer.

【0078】この膜の断面構造をTEMで観察したとこ
ろ、第1及び第2の垂直磁性層の結晶粒径が互いに異な
っていた。
When the cross-sectional structure of this film was observed by TEM, the crystal grain sizes of the first and second perpendicular magnetic layers were different from each other.

【0079】400kFCIの媒体ノイズ(Nmrm
s)と再生孤立波(SO)の比SNRは、23.6(d
B)であった。得られた結果を下記表2に示す。
Medium noise of 400 kFCI (Nmrm
The ratio SNR between the s) and the reproduced solitary wave (SO) is 23.6 (d
B). The obtained results are shown in Table 2 below.

【0080】中間層に非晶質材料を用いた場合には、第
1及び第2の磁性層の結晶粒径に違いが認められた。結
晶粒径に違いが見られる場合、磁化遷移のジグザグ形状
が第1及び第2の磁性層で異なってくるため、ノイズ成
分が一致せず、平均化されて、SNRが向上する。
When an amorphous material was used for the intermediate layer, a difference was found in the crystal grain sizes of the first and second magnetic layers. When there is a difference in the crystal grain size, the zigzag shape of the magnetization transition is different between the first and second magnetic layers, so the noise components do not match and are averaged, and the SNR is improved.

【0081】実施例8 第1の垂直磁性層を形成した後、酸素ガス雰囲気にさら
し、第1の垂直磁性層上に酸化層を形成した後、第1の
垂直磁性層と同様の組成を有する第2の垂直磁性層を形
成する以外は、実施例4と同様にして磁気記録媒体を得
た。
Example 8 After the first perpendicular magnetic layer was formed, it was exposed to an oxygen gas atmosphere to form an oxide layer on the first perpendicular magnetic layer, and then it had the same composition as the first perpendicular magnetic layer. A magnetic recording medium was obtained in the same manner as in Example 4 except that the second perpendicular magnetic layer was formed.

【0082】この膜の断面構造をTEMで観察したとこ
ろ、第1及び第2の垂直磁性層の磁化容易軸が互いに異
なっていた。
When the cross-sectional structure of this film was observed by TEM, the easy magnetization axes of the first and second perpendicular magnetic layers were different from each other.

【0083】400kFCIの媒体ノイズ(Nmrm
s)と再生孤立波(SO)の比SNRは、23.1(d
B)であった。得られた結果を下記表2に示す。
Medium noise of 400 kFCI (Nmrm
The ratio SNR between the s) and the reproduction solitary wave (SO) is 23.1 (d
B). The obtained results are shown in Table 2 below.

【0084】実施例9 2.5インチ結晶化ガラス基板上に、NiAlのシード
層、Cr合金下地層、及びCo64Cr20Pt16合金面内
硬磁性膜を、順次、各々、5nm、5nm、及び50n
m形成した。得られた面内硬磁性膜を半径方向に着磁し
た。得られた面内硬磁性膜上にCoZrNb軟磁性膜を
150nm形成した。この上に、垂直記録層用Ti合金
シード層、Ru合金下地層を形成した。次に、Co68P
t20Cr12合金組成のターゲットを用いてCoPtCr
合金膜よりなる第1垂直磁性層を12nm形成した。さ
らに、この上に、第2の磁性層としてCo74Pt5Cr2
0B1合金膜を5nm形成した。さらに、この上に、第3
の垂直磁性層として、Co55Cr21Pt24合金膜を12
nm形成した。最後に、この上に、CDVカーボンを6
nm形成し、パーフロロポリエーテル潤滑剤をディップ
して、垂直磁気記録媒体を作製した。
Example 9 A NiAl seed layer, a Cr alloy underlayer, and a Co64Cr20Pt16 alloy in-plane hard magnetic film were sequentially formed on a 2.5-inch crystallized glass substrate at 5 nm, 5 nm, and 50 n, respectively.
m formed. The obtained in-plane hard magnetic film was magnetized in the radial direction. A 150 nm CoZrNb soft magnetic film was formed on the obtained in-plane hard magnetic film. On top of this, a Ti alloy seed layer for a perpendicular recording layer and a Ru alloy underlayer were formed. Next, Co68P
CoPtCr using a target of t20Cr12 alloy composition
A first perpendicular magnetic layer made of an alloy film was formed to a thickness of 12 nm. Further, on top of this, a second magnetic layer of Co74Pt5Cr2 is formed.
A 0B1 alloy film was formed to a thickness of 5 nm. Furthermore, on top of this, the third
Co55Cr21Pt24 alloy film is used as the perpendicular magnetic layer of
nm formed. Finally, add 6 CDV carbons on top of this
nm, and a perfluoropolyether lubricant was dipped to prepare a perpendicular magnetic recording medium.

【0085】図8に、得られた磁気記録媒体の構成を表
す概略断面図を示す。
FIG. 8 is a schematic sectional view showing the structure of the obtained magnetic recording medium.

【0086】図示するように、この磁気記録媒体は、R
u合金下地層27上に、第1及び第2の垂直磁性層2
8,29のかわりに、第1ないし第3の垂直磁性層3
5,36,37が形成されている以外は、実施例4と同
様の構成を有する第2の垂直磁性層は第1の垂直磁性層
よりも、その格子定数が1.63%小さい、第3の垂直
磁性層は第2の垂直磁性層よりも、その格子定数が2.
10%大きい。
As shown in the figure, this magnetic recording medium has R
On the u alloy underlayer 27, the first and second perpendicular magnetic layers 2 are formed.
Instead of 8, 29, the first to third perpendicular magnetic layers 3
The second perpendicular magnetic layer having the same configuration as that of Example 4 except that Nos. 5, 36 and 37 are formed has a lattice constant smaller than that of the first perpendicular magnetic layer by 1.63%. The perpendicular magnetic layer of No. 2 has a lattice constant of 2. than the second perpendicular magnetic layer.
10% larger.

【0087】第1ないし第3の垂直磁性層の断面構造を
観察したところ、第1の記録層と第2の記録層との間に
は成長の中断がみられなかった。しかしながら、第2の
磁性膜と第3の磁性膜との間で、エピタキシャル成長の
中断が見られた。この結果を下記表3に示す。
Observation of the sectional structures of the first to third perpendicular magnetic layers revealed that no growth interruption was observed between the first recording layer and the second recording layer. However, interruption of epitaxial growth was observed between the second magnetic film and the third magnetic film. The results are shown in Table 3 below.

【0088】比較例6 比較として、第2の垂直磁性層の格子定数が第1の垂直
磁性層及び第3の垂直磁性層と2%以内となるように、
第1の垂直磁性層としてCo64Pt20Cr16合金層を使
用第2の垂直磁性層としてCo62Pt22Cr16合金層を
使用する以外は実施例9と同様にして垂直磁気記録媒体
を作製した。
Comparative Example 6 As a comparison, the lattice constant of the second perpendicular magnetic layer is kept within 2% of that of the first perpendicular magnetic layer and the third perpendicular magnetic layer.
A perpendicular magnetic recording medium was produced in the same manner as in Example 9 except that the Co64Pt20Cr16 alloy layer was used as the first perpendicular magnetic layer and the Co62Pt22Cr16 alloy layer was used as the second perpendicular magnetic layer.

【0089】第1ないし第3の垂直磁性層の断面構造を
観察したところ、第1ないし第3の垂直磁性層との間
で、エピタキシャル成長していた。
When the cross-sectional structure of the first to third perpendicular magnetic layers was observed, epitaxial growth was found between the first and third perpendicular magnetic layers.

【0090】また、400kFCIの媒体ノイズ(Nm
rms)と再生孤立波(SO)の比SNRは、20.4
(dB)であった。
Also, the medium noise of 400 kFCI (Nm
rms) and reproduced solitary wave (SO) ratio SNR is 20.4
It was (dB).

【0091】この結果を下記表3に示す。The results are shown in Table 3 below.

【0092】[0092]

【表1】 [Table 1]

【0093】[0093]

【表2】 [Table 2]

【0094】[0094]

【表3】 [Table 3]

【0095】[0095]

【発明の効果】本発明によれば、熱揺らぎ耐性が良好で
あり、かつ媒体SNRを向上した磁気記録を行うことが
できる。また、本発明によれば、磁気記録層の膜厚が5
0nm以下と薄い場合においても、磁気記録媒体の良好
な熱揺らぎ耐性及び高い媒体SNRを実現できる。
According to the present invention, it is possible to perform magnetic recording having a good thermal fluctuation resistance and an improved medium SNR. Further, according to the present invention, the thickness of the magnetic recording layer is 5
Even when it is as thin as 0 nm or less, good thermal fluctuation resistance of the magnetic recording medium and high medium SNR can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の磁気記録媒体に用いられる磁気記録
層の結晶の状態の一例を表すモデル図
FIG. 1 is a model diagram showing an example of a crystal state of a magnetic recording layer used in a magnetic recording medium of the present invention.

【図2】 本発明の磁気記録媒体に用いられる磁気記録
層の結晶の状態の他の一例を表すモデル図
FIG. 2 is a model diagram showing another example of the crystal state of the magnetic recording layer used in the magnetic recording medium of the present invention.

【図3】 本発明の磁気記録媒体の構成の一例を表す断
面図
FIG. 3 is a sectional view showing an example of the configuration of a magnetic recording medium of the present invention.

【図4】 本発明の磁気記録媒体の構成の他の一例を表
す断面図
FIG. 4 is a sectional view showing another example of the configuration of the magnetic recording medium of the present invention.

【図5】 本発明の磁気記録再生装置の構成の一例を表
す概略図
FIG. 5 is a schematic diagram showing an example of the configuration of a magnetic recording / reproducing apparatus of the present invention.

【図6】 本発明の磁気記録媒体の構成のさらに他の一
例を表す断面図
FIG. 6 is a sectional view showing still another example of the configuration of the magnetic recording medium of the present invention.

【図7】 本発明の磁気記録媒体の構成のさらにまた他
の一例を表す断面図
FIG. 7 is a sectional view showing still another example of the configuration of the magnetic recording medium of the present invention.

【図8】 本発明の磁気記録媒体の構成のさらにまた他
の一例を表す断面図
FIG. 8 is a sectional view showing still another example of the configuration of the magnetic recording medium of the present invention.

【符号の説明】[Explanation of symbols]

1,21…基板、2,24…バイアス付与層、3,25
…軟磁性層,4,7,10,14,28,32,36…
第1の垂直磁性層、5,8,29,33,37…第2の
垂直磁性層、6,9,13,17…磁気記録層
1, 21 ... Substrate, 2, 24 ... Bias applying layer, 3, 25
... Soft magnetic layer, 4,7,10,14,28,32,36 ...
First perpendicular magnetic layer, 5, 8, 29, 33, 37 ... Second perpendicular magnetic layer, 6, 9, 13, 17 ... Magnetic recording layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 及川 壮一 東京都青梅市末広町2丁目9番地 株式会 社東芝青梅工場内 (72)発明者 中村 太 東京都青梅市末広町2丁目9番地 株式会 社東芝青梅工場内 (72)発明者 岩崎 剛之 東京都青梅市末広町2丁目9番地 株式会 社東芝青梅工場内 (72)発明者 酒井 浩志 千葉県市原市八幡海岸通5番の1 昭和電 工エイチ・ディー株式会社内 (72)発明者 坂脇 彰 千葉県市原市八幡海岸通5番の1 昭和電 工エイチ・ディー株式会社内 Fターム(参考) 5D006 BB01 BB08 CA03 CA06 DA03 DA08 FA09    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Soichi Oikawa             2-9 Suehiro-cho, Ome City, Tokyo Stock Market             Company Toshiba Ome Factory (72) Inventor Futoshi Nakamura             2-9 Suehiro-cho, Ome City, Tokyo Stock Market             Company Toshiba Ome Factory (72) Inventor Takeyuki Iwasaki             2-9 Suehiro-cho, Ome City, Tokyo Stock Market             Company Toshiba Ome Factory (72) Inventor Hiroshi Sakai             Showaden, 1-5, Hachiman Kaigan Dori, Ichihara, Chiba             Within KHD Co., Ltd. (72) Inventor Akira Sakawaki             Showaden, 1-5, Hachiman Kaigan Dori, Ichihara, Chiba             Within KHD Co., Ltd. F-term (reference) 5D006 BB01 BB08 CA03 CA06 DA03                       DA08 FA09

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 基板と、該基板上に形成され、そのエピ
タキシャル成長が中断された垂直磁気記録層とを具備す
ることを特徴とする垂直磁気記録媒体。
1. A perpendicular magnetic recording medium comprising a substrate and a perpendicular magnetic recording layer formed on the substrate and whose epitaxial growth is interrupted.
【請求項2】 前記垂直磁気記録層は、二層以上の磁性
層を含む請求項1に記載の垂直磁気記録媒体。
2. The perpendicular magnetic recording medium according to claim 1, wherein the perpendicular magnetic recording layer includes two or more magnetic layers.
【請求項3】 前記垂直磁気記録層は、第1の磁性層と
該第1の磁性層上に形成され、その磁性粒子の磁化容易
軸が、該第1の磁性層の磁性粒子の磁化容易軸と一致し
ない第2の磁性層とを含むことを特徴とする請求項2に
記載の垂直磁気記録媒体。
3. The perpendicular magnetic recording layer is formed on the first magnetic layer and the first magnetic layer, and the easy axis of magnetization of the magnetic particles of the perpendicular magnetic recording layer is easy to magnetize the magnetic particles of the first magnetic layer. The perpendicular magnetic recording medium according to claim 2, further comprising a second magnetic layer which is not aligned with the axis.
【請求項4】 前記垂直磁気記録層は、第1の磁性層と
該第1の磁性層上に形成され、その磁性粒子の結晶粒径
が、該第1の磁性層の磁性粒子の結晶粒径と異なる第2
の磁性層とを含むことを特徴とする請求項2に記載の垂
直磁気記録媒体。
4. The perpendicular magnetic recording layer is formed on a first magnetic layer and the first magnetic layer, and the crystal grain size of the magnetic grains is the crystal grain of the magnetic grains of the first magnetic layer. Second different from the diameter
3. The perpendicular magnetic recording medium according to claim 2, further comprising:
【請求項5】 前記第2の磁性層は、前記第1の磁性層
上に酸素を暴露した後に形成されることを特徴とする請
求項3または4に記載の垂直磁気記録媒体。
5. The perpendicular magnetic recording medium according to claim 3, wherein the second magnetic layer is formed after exposing the first magnetic layer to oxygen.
【請求項6】 前記第2の磁性層は、その格子定数が、
前記第1の磁性層の格子定数に対し4%以上小さいか、
あるいは2%以上大きいことを特徴とする請求項3に記
載の垂直磁気記録媒体。
6. The second magnetic layer has a lattice constant of
4% or more smaller than the lattice constant of the first magnetic layer,
Alternatively, the perpendicular magnetic recording medium according to claim 3, which is larger by 2% or more.
【請求項7】 前記第1及び第2の磁性層は、コバルト
系磁性層であって、さらに、前記第1の磁性層はプラチ
ナを5at%以下、前記第2の磁性層はプラチナを24
at%以上含むことを特徴とする請求項6に記載の垂直
磁気記録媒体。
7. The first and second magnetic layers are cobalt-based magnetic layers, and the first magnetic layer contains platinum at 5 at% or less, and the second magnetic layer contains platinum at 24%.
The perpendicular magnetic recording medium according to claim 6, wherein the perpendicular magnetic recording medium contains at% or more.
【請求項8】 前記第2の磁性層上に形成された第3の
磁性層をさらに含み、前記第1、第2及び第3の磁性層
はコバルト系磁性層であって、該第1及び第3の磁性層
はプラチナを24at%以上、該第2の磁性層はプラチ
ナを5at%以下含むことを特徴とする請求項6に記載
の垂直磁気記録媒体。
8. A third magnetic layer formed on the second magnetic layer is further included, wherein the first, second and third magnetic layers are cobalt type magnetic layers. 7. The perpendicular magnetic recording medium according to claim 6, wherein the third magnetic layer contains platinum at 24 at% or more and the second magnetic layer contains platinum at 5 at% or less.
【請求項9】 前記垂直磁気記録層は、第1の記録層
と、該第1の記録層上に形成された中間層と、該中間層
上に形成された第2の記録層とを具備することを特徴と
する請求項2に記載の垂直磁気記録媒体。
9. The perpendicular magnetic recording layer comprises a first recording layer, an intermediate layer formed on the first recording layer, and a second recording layer formed on the intermediate layer. The perpendicular magnetic recording medium according to claim 2, wherein
【請求項10】 前記第1及び第2の磁性層は、コバル
ト系磁性層であって、かつプラチナを20at%以下含
み、かつ第1及び第2の磁性層の間にルテニウムチタ
ン、及びハフニウムからなる群から選択される金属を含
む中間層をさらに有することを特徴とする請求項9に記
載の磁気記録媒体。
10. The first and second magnetic layers are cobalt-based magnetic layers, contain platinum at 20 at% or less, and include ruthenium titanium and hafnium between the first and second magnetic layers. The magnetic recording medium according to claim 9, further comprising an intermediate layer containing a metal selected from the group consisting of:
【請求項11】 前記第1及び第2の磁性層は、コバル
ト系磁性層であって、かつプラチナを20at%以上含
み、かつ第1及び第2の磁性層の間にクロムを含む中間
層をさらに有することを特徴とする請求項3または9に
記載の垂直磁気記録媒体。
11. The first and second magnetic layers are cobalt-based magnetic layers, include an intermediate layer containing 20 at% or more of platinum, and containing chromium between the first and second magnetic layers. The perpendicular magnetic recording medium according to claim 3 or 9, further comprising:
【請求項12】 第1及び第2の磁性層の間に非晶質の
中間層をさらに含む請求項4または9に記載の垂直磁気
記録媒体。
12. The perpendicular magnetic recording medium according to claim 4, further comprising an amorphous intermediate layer between the first and second magnetic layers.
【請求項13】 前記基板と前記磁性記録層との間に、
該基板上に設けられたバイアス付与層及び該バイアス付
与層上に設けられた軟磁性層をさらに有することを特徴
とする請求項1ないし12のいずれか1項に記載の垂直
磁気記録媒体。
13. Between the substrate and the magnetic recording layer,
13. The perpendicular magnetic recording medium according to claim 1, further comprising a bias applying layer provided on the substrate and a soft magnetic layer provided on the bias applying layer.
【請求項14】 請求項1ないし13のいずれか1に記
載の垂直磁気記録媒体と、 前記磁気記録媒体を支持及び回転駆動する駆動手段と、 前記磁気記録媒体に対して情報の記録を行う単磁極記録
ヘッドとを具備する特徴とする磁気記録再生装置。
14. A perpendicular magnetic recording medium according to claim 1, drive means for supporting and rotating the magnetic recording medium, and a unit for recording information on the magnetic recording medium. A magnetic recording / reproducing apparatus comprising a magnetic pole recording head.
JP2001358205A 2001-11-22 2001-11-22 Perpendicular magnetic recording medium and magnetic recorder Pending JP2003157516A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001358205A JP2003157516A (en) 2001-11-22 2001-11-22 Perpendicular magnetic recording medium and magnetic recorder
SG200205345A SG98071A1 (en) 2001-11-22 2002-09-05 Perpendicular magnetic recording medium and magnetic recording apparatus
US10/234,719 US20030096127A1 (en) 2001-11-22 2002-09-05 Perpendicular magnetic recording medium and magnetic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001358205A JP2003157516A (en) 2001-11-22 2001-11-22 Perpendicular magnetic recording medium and magnetic recorder

Publications (1)

Publication Number Publication Date
JP2003157516A true JP2003157516A (en) 2003-05-30

Family

ID=19169418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001358205A Pending JP2003157516A (en) 2001-11-22 2001-11-22 Perpendicular magnetic recording medium and magnetic recorder

Country Status (3)

Country Link
US (1) US20030096127A1 (en)
JP (1) JP2003157516A (en)
SG (1) SG98071A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273054A (en) * 2006-03-31 2007-10-18 Fujitsu Ltd Perpendicular magnetic recording medium and magnetic storage device
JP2008108395A (en) * 2006-10-27 2008-05-08 Hoya Corp Perpendicular magnetic recording medium and its manufacturing method
US7923135B2 (en) 2008-03-21 2011-04-12 Fuji Electric Device Technology Co., Ltd. Magnetic recording medium having a patterned exchange-coupling control layer and method of manufacturing same
US8329321B2 (en) 2004-07-05 2012-12-11 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004355716A (en) * 2003-05-29 2004-12-16 Hitachi Global Storage Technologies Netherlands Bv Magnetic recording medium
SG120182A1 (en) * 2004-08-30 2006-03-28 Agency Science Tech & Res A recording medium
JP2006286105A (en) * 2005-03-31 2006-10-19 Fujitsu Ltd Magnetic recording medium and magnetic storage device
JP2006294106A (en) * 2005-04-08 2006-10-26 Hitachi Global Storage Technologies Netherlands Bv Magnetic recording medium
US20070099032A1 (en) * 2005-11-02 2007-05-03 Heraeus, Inc., A Corporation Of The State Of Arizona Deposition of enhanced seed layer using tantalum alloy based sputter target
US20070190364A1 (en) * 2006-02-14 2007-08-16 Heraeus, Inc. Ruthenium alloy magnetic media and sputter targets
US7550210B2 (en) * 2006-03-09 2009-06-23 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium with multiple exchange-coupled magnetic layers having substantially similar anisotropy fields
US7488545B2 (en) * 2006-04-12 2009-02-10 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium with laminated recording layers formed of exchange-coupled ferromagnetic layers
US20070292721A1 (en) * 2006-04-25 2007-12-20 Berger Andreas K Perpendicular magnetic recording medium
JPWO2008126133A1 (en) * 2007-03-19 2010-07-15 昭和電工株式会社 Perpendicular magnetic recording medium
US7638210B2 (en) * 2007-04-16 2009-12-29 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium with exchange-coupled magnetic layers and improved coupling layer
US20090190267A1 (en) * 2008-01-25 2009-07-30 Xiaoping Bian RuTi AS A SEED LAYER IN PERPENDICULAR RECORDING MEDIA
US10361361B2 (en) * 2016-04-08 2019-07-23 International Business Machines Corporation Thin reference layer for STT MRAM

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767516A (en) * 1985-05-20 1988-08-30 Sanyo Electric Co., Ltd. Method for making magnetic recording media
JPS63228443A (en) * 1987-03-17 1988-09-22 Matsushita Electric Ind Co Ltd Production of magneto-optical recording material
EP0559412B1 (en) * 1992-03-02 1997-01-22 TDK Corporation Process for producing thin film by epitaxial growth
US5648885A (en) * 1995-08-31 1997-07-15 Hitachi, Ltd. Giant magnetoresistive effect sensor, particularly having a multilayered magnetic thin film layer
JP4219021B2 (en) * 1998-11-16 2009-02-04 独立行政法人科学技術振興機構 Oxide artificial superlattice thin film and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8329321B2 (en) 2004-07-05 2012-12-11 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium
JP2007273054A (en) * 2006-03-31 2007-10-18 Fujitsu Ltd Perpendicular magnetic recording medium and magnetic storage device
JP2008108395A (en) * 2006-10-27 2008-05-08 Hoya Corp Perpendicular magnetic recording medium and its manufacturing method
US7923135B2 (en) 2008-03-21 2011-04-12 Fuji Electric Device Technology Co., Ltd. Magnetic recording medium having a patterned exchange-coupling control layer and method of manufacturing same

Also Published As

Publication number Publication date
US20030096127A1 (en) 2003-05-22
SG98071A1 (en) 2003-08-20

Similar Documents

Publication Publication Date Title
JP4169663B2 (en) Perpendicular magnetic recording medium
US9728216B2 (en) Feromagnetically coupled magnetic recording media
US6942936B2 (en) Perpendicular magnetic recording medium and magnetic recording/reproduction apparatus
JP3755449B2 (en) Perpendicular magnetic recording medium
JP3730627B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP2008287829A (en) Vertical magnetic recording medium
JP2003157516A (en) Perpendicular magnetic recording medium and magnetic recorder
JP2009116930A (en) Vertical magnetic recording medium and magnetic recording and reproducing device using the same
JP2008140460A (en) Perpendicular magnetic recording medium and magnetic recording and reproducing device
JP2008117506A (en) Perpendicular magnetic recording medium
JP4557880B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP2004030767A (en) Vertical magnetic recording medium and magnetic recording device
JP4534711B2 (en) Perpendicular magnetic recording medium
JP2005032352A (en) Magnetic recording medium using particle dispersion type film for base, method for manufacturing the same, and magnetic recording/reproducing device
JP2004303377A (en) Vertical magnetic recording medium, and magnetic recording and reproducing device
JP3684231B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP2002269731A (en) Perpendicular magnetic recording medium
JP2004303375A (en) Perpendicular magnetic record medium and magnetic recording and reproducing device
JP2006302426A (en) Perpendicular magnetic recording medium and its manufacturing method
JP2008192249A (en) Vertical magnetic recording medium, method for manufacturing the same, and magnetic recording and reproducing device
US20040072027A1 (en) Intermediate layer for perpendicular magnetic recording media
JP2006099951A (en) Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
JP5782819B2 (en) Perpendicular magnetic recording medium
JP2004303376A (en) Perpendicular magnetic recording medium, and magnetic recording/reproducing device using the same
JP2001283428A (en) Perpendicular magnetic recording medium and perpendicular magnetic recording/reproducing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050426