JP2003156100A - Damping device for rotor - Google Patents

Damping device for rotor

Info

Publication number
JP2003156100A
JP2003156100A JP2002005793A JP2002005793A JP2003156100A JP 2003156100 A JP2003156100 A JP 2003156100A JP 2002005793 A JP2002005793 A JP 2002005793A JP 2002005793 A JP2002005793 A JP 2002005793A JP 2003156100 A JP2003156100 A JP 2003156100A
Authority
JP
Japan
Prior art keywords
vibration
magnetic bearings
rotary shaft
magnetic
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002005793A
Other languages
Japanese (ja)
Other versions
JP4052433B2 (en
Inventor
Shuichi Kawasaki
秀一 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002005793A priority Critical patent/JP4052433B2/en
Publication of JP2003156100A publication Critical patent/JP2003156100A/en
Application granted granted Critical
Publication of JP4052433B2 publication Critical patent/JP4052433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a damping device for a rotor capable of absorbing minute vibration without transmitting it outside. SOLUTION: Upper and lower part fixing members 31, 32 are mounted in a casing 10, in one of which a magnetic bearing 11, a vibration sensor 3, a magnetic bearing for bias 35a, a magnetic bearing for thrust 33 are mounted, and in the other a motor 34, a vibration sensor 4, a magnetic bearing for bias 35b, a magnetic bearing 12 are mounted. These magnetic bearings support a rotary shaft 30. One ends of four arms 24-27 are attached to the rotary shaft 30, and the other ends are provided with four experimental boxes, and rotatably driven by the drive motor 34. The magnetic bearings for bias 35a, 35b hold the rotary shaft 30 at the center, lighten a position holding force with magnetic bearings 11, 12, and control vibration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は微小重力回転装置の
回転軸支持機構に関し、微小な回転軸の振動も外部へ伝
えることがなく、効果的に制振するようにしたものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary shaft support mechanism for a microgravity rotary device, and it is intended to effectively suppress vibration of a micro rotary shaft without transmitting it to the outside.

【0002】[0002]

【従来の技術】図12は現在宇宙で行なわれている回転
装置の一例を示す平面図であり、図において、モータ、
等の回転装置60には4本の支持部材61,62,6
3,64が取付けられ、放射状に伸びている。支持部材
61〜64の先端には実験ボックス70,71,72,
73が取付けられ、実験ボックス70〜73内には実験
対象物、例えば植物、等が入れられる。このような装置
は、無重力状態において回転装置60により0〜数十回
転/秒程度の回転が与えられ実験ボックス70〜73内
の対象物の実験が行なわれる。
2. Description of the Related Art FIG. 12 is a plan view showing an example of a rotating device currently used in space.
The rotating device 60 such as the above has four support members 61, 62, 6
3, 64 are attached and extend radially. At the tips of the support members 61 to 64, experimental boxes 70, 71, 72,
73 is attached, and an experiment object such as a plant is put in the experiment boxes 70 to 73. In such a device, rotation of about 0 to several tens of rotations / second is given by the rotating device 60 in the weightless state, and the experiment of the object in the experiment boxes 70 to 73 is performed.

【0003】上記のような回転装置では、支持部材61
〜64の先端に実験ボックス70〜73が取付けられて
おり、先端部が大きな形状である。又、実験ボックス7
0〜73内には種類の異なる実験対象物が収納され、実
験物の大きさも種々異なり、装置全体は回転軸中心に対
称な配置ではあるが、収納される実験対象物はアンバラ
ンスである。従って、回転により支持部材61〜64及
び実験ボックス70〜73には振動が発生し、振動が発
生すると実験対象物を変動させたり、悪影響を及ぼすこ
とになる。
In the rotating device as described above, the supporting member 61 is used.
Experimental boxes 70 to 73 are attached to the tips of ~ 64, and the tips have a large shape. Also, Experiment Box 7
0 to 73 accommodate different types of experimental objects, the sizes of the experimental objects also differ, and the entire apparatus is symmetrically arranged about the rotation axis, but the experimental objects to be accommodated are unbalanced. Therefore, the rotation causes vibrations in the support members 61 to 64 and the experiment boxes 70 to 73, and when the vibrations occur, the experiment object is changed or adversely affected.

【0004】[0004]

【発明が解決しようとする課題】上記に説明した回転装
置においては、宇宙における微小重力空間で実験ボック
ス内へ実験対象物を入れ、実験ボックスを回転させて実
験を行う際に、実験ボックス間のアンバランスに起因し
て回転軸に振動が発生する。この振動は、回転軸を介し
て周囲環境へ伝播し、周囲の宇宙機器へも影響を及ぼ
し、機器の制御、等にも影響を与えるが、このような振
動は本出願人が提案した微小重力回転装置により磁気軸
受を配設し、磁気軸受を制御することにより効果的に吸
収することができるようになった。次にこの概要を説明
する。
In the rotating device described above, when the experiment object is put in the experiment box in the microgravity space in the universe and the experiment box is rotated to perform the experiment, the experiment box Vibration occurs on the rotating shaft due to the imbalance. This vibration propagates to the surrounding environment via the rotating shaft and affects the surrounding space equipment as well, affecting the control of the equipment, etc., but such vibration is caused by the microgravity proposed by the applicant. By arranging the magnetic bearing by the rotating device and controlling the magnetic bearing, the magnetic bearing can be effectively absorbed. Next, this outline will be described.

【0005】図10は本発明の出願人が提案した特許出
願も了している先行技術に係る回転装置を示し、(a)
は側面図、(b)は(a)におけるC−C矢視図、
(c)はD−D断面図である。(a)図において10は
回転体全体を収納するケーシングであり、ケーシング1
0には上下に空間10a,10bが設けられている。上
下の空間10a,10b内の周囲には磁気軸受11,1
2が配設されている。
FIG. 10 shows a rotating device according to the prior art for which a patent application proposed by the applicant of the present invention has been completed.
Is a side view, (b) is a C-C arrow view in (a),
(C) is DD sectional drawing. In FIG. 1A, reference numeral 10 denotes a casing that houses the entire rotating body.
0 is provided with spaces 10a and 10b at the top and bottom. Magnetic bearings 11, 1 are provided around the upper and lower spaces 10a, 10b.
2 are provided.

【0006】磁気軸受11,12は、それぞれ空間10
a,10b内の周囲に励磁用のコイル1,2を配設して
磁気軸受を構成している。3,4はそれぞれ空間10
a,10b内のコイル1,2の内側に配設された振動セ
ンサであり、後述するように回転軸30の振動又は変位
を検出し、この変位より回転軸30の振動が検出できる
ものである。振動センサ3,4は(c)図に示すように
周囲に対称に複数個(図示の例では4個)が配置され、
±X,±Y方向の回転軸30の振動変位を検出する構成
である。30は前記した回転軸であり、両端がそれぞれ
空間10a,10b内に配置され、モータ13に連結
し、磁気軸受11,12で両端部が軸支される。従っ
て、回転軸30はコイル1,2とは、それぞれ所定の隙
間を保って磁力により空間部に支持されモータ13で回
転される。回転軸30の周囲には(b)図にも示すよう
に、X、Y軸方向に4本のアーム24,25,26,2
7で固定され、水平に伸び先端には実験ボックス20,
21,22,23が取付けられている。
The magnetic bearings 11 and 12 each have a space 10
Exciting coils 1 and 2 are arranged around the insides of a and 10b to form a magnetic bearing. Spaces 3 and 4 are 10
The vibration sensor is arranged inside the coils 1 and 2 in a and 10b, and can detect the vibration or displacement of the rotary shaft 30 as described later, and can detect the vibration of the rotary shaft 30 from this displacement. . A plurality of vibration sensors 3 and 4 (four in the illustrated example) are arranged symmetrically around the periphery as shown in FIG.
The vibration displacement of the rotary shaft 30 in the ± X and ± Y directions is detected. Reference numeral 30 denotes the above-described rotary shaft, both ends of which are arranged in the spaces 10a and 10b, respectively, which are connected to the motor 13, and both ends of which are axially supported by the magnetic bearings 11 and 12. Therefore, the rotating shaft 30 is supported by the space by magnetic force with a predetermined gap maintained between the rotating shaft 30 and the coils 1 and 2, and is rotated by the motor 13. As shown in (b) figure, around the rotary shaft 30, four arms 24, 25, 26, 2 are arranged in the X and Y axis directions.
It is fixed at 7 and extends horizontally, and the experiment box 20,
21, 22, 23 are attached.

【0007】上記構成において、回転軸30の軸受は磁
気軸受11,12であり、回転軸30はケーシング10
の支持部には接触せず、磁力により支持する構成とし、
回転軸30に振動が発生すると、その振動は回転軸30
両端周囲のX、Y軸に配置した複数個の振動センサ3,
4で検出する。振動センサ3,4では、後述するよう
に、回転軸30の振動又は変位を検出して、その信号を
制御装置へ入力し、制御装置ではギャップが小さくなる
と、このギャップを元の隙間に戻すように対応するコイ
ル1,2の位置の電流を制御し、振動を能動的に吸収す
るものである。
In the above structure, the bearing of the rotary shaft 30 is the magnetic bearings 11 and 12, and the rotary shaft 30 is the casing 10.
It is configured to support by magnetic force without contacting the support part of
When vibration is generated on the rotating shaft 30, the vibration is generated on the rotating shaft 30.
A plurality of vibration sensors 3 arranged on the X and Y axes around both ends
Detect in 4. As will be described later, the vibration sensors 3 and 4 detect the vibration or displacement of the rotary shaft 30 and input the signal to the control device. When the control device reduces the gap, the gap is returned to the original gap. The current at the positions of the coils 1 and 2 corresponding to is controlled to actively absorb the vibration.

【0008】コイル1,2としては、図示省略するが、
例えば、コイルを独立した複数個(図示の例では4個)
の巻線を、それぞれX軸、Y軸の4方向へ磁力が作用す
るように配設しておき、回転軸30の振動や変位に応じ
て変位が大きく、コイルとのギャップの変動が一番大き
い個所のコイルの励磁を制御し、回転軸30との反発
力、もしくは吸引力を調整し、振動による変位を吸収す
るような構成とする。
Although the coils 1 and 2 are not shown,
For example, multiple independent coils (4 in the example shown)
Windings are arranged so that magnetic forces act in the four directions of the X-axis and the Y-axis, respectively, and the displacement is large in accordance with the vibration and displacement of the rotating shaft 30, and the fluctuation of the gap with the coil is the largest. The excitation of the coil at a large portion is controlled to adjust the repulsive force with the rotating shaft 30 or the attractive force to absorb the displacement due to vibration.

【0009】図11は制御の系統図であり、回転軸30
上端周囲に配設された振動センサ3a,3b,3c,3
d及び下端の振動センサ4a,4b,4c,4dからの
各検出信号は制御装置14へ入力される。制御装置14
はモータ13を駆動させて回転軸30を回転させると共
に、各振動センサ3,4のX、Y軸4方向の回転軸端の
振動に伴う変位を監視し、センサと回転軸間のギャップ
が要求値よりも小さくなるか又は大きくなるとX、Y軸
の対応する個所のコイル1,2の巻線の励磁電流を制御
し、この間の回転軸30とコイル間の反発力又は吸引力
を強めギャップを元の位置へ戻すように作動させる。
FIG. 11 is a control system diagram, in which the rotary shaft 30 is shown.
Vibration sensors 3a, 3b, 3c, 3 arranged around the upper end
The detection signals from the vibration sensors 4a, 4b, 4c, and 4d at d and the lower end are input to the control device 14. Controller 14
Drives the motor 13 to rotate the rotary shaft 30 and monitors the displacement of each vibration sensor 3, 4 due to the vibration of the rotary shaft end in the X and Y axis directions, and the gap between the sensor and the rotary shaft is required. When the value becomes smaller or larger than the value, the exciting currents of the windings of the coils 1 and 2 at the corresponding points on the X and Y axes are controlled, and the repulsive force or the attractive force between the rotating shaft 30 and the coil between them is strengthened to form a gap. Operate to return to the original position.

【0010】15は記憶装置であり、予め振動周波数に
対する振幅又は加速度の要求値のパターンや振動モード
がデータとして記憶されており、制御装置14では、振
動センサ3,4からの回転軸30の振動を監視するに当
り、この要求値と比較し、回転軸が変位し、振動が大き
くなり、かつ要求値を超える振動であると、コイルの励
磁電流を制御して振動を吸収し、回転軸30の振動が要
求値以下となるように絶えず制御する。
Reference numeral 15 denotes a storage device in which a pattern of a required value of amplitude or acceleration with respect to a vibration frequency and a vibration mode are stored in advance as data. In the control device 14, vibration of the rotary shaft 30 from the vibration sensors 3 and 4 is stored. When the vibration is compared with the required value, the rotating shaft is displaced, the vibration becomes large, and if the vibration exceeds the required value, the exciting current of the coil is controlled to absorb the vibration and the rotating shaft 30 Is controlled continuously so that the vibration of is below the required value.

【0011】上記の回転装置の磁気軸受で制振制御を行
う際には、磁気軸受で回転軸を支持するバイアス制御
と、能動制振制御を同時に行っている。バイアスと能動
制振制御を同時に行うと、微小な振動を制振する場合に
能動制御のため微小電流を通電するが、この場合に能動
制御が不可能となることが起こる。又、能動制振制御の
励磁電流の制御によってはバイアス能力が失われること
も起こり得る。バイアス制御では回転軸を中心にセット
するために、比較的強い電力で磁力を調整し、回転軸の
バランスを取っており、そのために磁力による弾性支持
力が固い支持力となり、回転軸の振動が微小な振動で
も、磁気軸受を介して振動がケーシング側へ伝播される
ことが起こり、これら問題に対して何らかの対策が望ま
れていた。
When the vibration control is performed by the magnetic bearing of the rotating device, the bias control for supporting the rotating shaft by the magnetic bearing and the active vibration control are simultaneously performed. When the bias and the active vibration suppression control are performed at the same time, when a small vibration is to be suppressed, a small current is passed for the active control, but in this case, the active control may become impossible. Further, the bias capability may be lost depending on the control of the exciting current in the active vibration suppression control. In the bias control, the magnetic force is adjusted with a comparatively strong electric power to balance the rotary shaft in order to set the rotary shaft as the center. Therefore, the elastic supporting force by the magnetic force becomes a solid supporting force, and the vibration of the rotating shaft is Even small vibrations may be propagated to the casing side via the magnetic bearings, and some countermeasures against these problems have been desired.

【0012】そこで本発明では、回転装置の磁気軸受に
工夫を行い、能動制振用の磁気軸受と、バイアス用の磁
気軸受とを別体とすることにより、磁気軸受を介してケ
ーシングへ振動が伝播しないようにして、微小振動を効
果的に吸収し、ケーシングの外部機器へ悪影響を及ぼさ
ないようにすることが可能な回転体制御装置を提供する
ことを課題としてなされたものである。
Therefore, in the present invention, the magnetic bearing of the rotating device is devised so that the active damping magnetic bearing and the biasing magnetic bearing are separated from each other, so that vibration is transmitted to the casing through the magnetic bearing. It is an object of the present invention to provide a rotating body control device capable of effectively absorbing small vibrations without propagating and not adversely affecting external equipment of the casing.

【0013】[0013]

【課題を解決するための手段】本発明は前述の課題を解
決するために次の手段を提供する。
The present invention provides the following means for solving the above-mentioned problems.

【0014】(1)ケーシング内で両端が磁気軸受で支
持されモータにより回転駆動される回転軸を有し、同回
転軸の周囲に重力を付加する対象物を入れる複数のボッ
クスを取付けて構成される回転体制御装置であって、前
記回転軸の両端の各磁気軸受は、それぞれ制振用の磁気
軸受と、前記回転軸の位置保持を行うバイアス用磁気軸
受の2個からなることを特徴とする回転体制御装置。
(1) The casing has a rotary shaft supported at both ends by magnetic bearings and driven to rotate by a motor, and a plurality of boxes for accommodating objects to which gravity is applied are attached around the rotary shaft. According to another aspect of the present invention, there is provided a rotating body control device, wherein each of the magnetic bearings at both ends of the rotary shaft includes a magnetic bearing for vibration damping and a magnetic bearing for bias for holding a position of the rotary shaft. Rotating body control device.

【0015】(2)ケーシング内で両端が磁気軸受で支
持されモータにより回転駆動される回転軸を有し、同回
転軸の周囲に重力を付加する対象物を入れる複数のボッ
クスを取付けて構成される回転体制振装置であって、前
記回転軸の両端の各磁気軸受は、それぞれ2個の制振用
の磁気軸受の間にバイアス用磁気軸受を配列した3個か
らなることを特徴とする回転体制振装置。
(2) The casing has a rotary shaft, both ends of which are supported by magnetic bearings and is driven to rotate by a motor, and a plurality of boxes for accommodating an object to which gravity is applied are attached around the rotary shaft. A rotary oscillatory vibration device according to claim 1, wherein each magnetic bearing at each end of the rotary shaft is composed of three magnetic bearings for bias arranged between two magnetic bearings for vibration control. System shaker.

【0016】(3)ケーシング内で両端が磁気軸受で支
持されモータにより回転駆動される回転軸を有し、同回
転軸の周囲に重力を付加する対象物を入れる複数のボッ
クスを取付けて構成される回転体制振装置であって、前
記回転軸の両端の各磁気軸受は、それぞれ前記回転軸の
位置保持を行う2個のバイアス用磁気軸受の間に制振用
の磁気軸受を配列した3個からなることを特徴とする回
転体制振装置。
(3) The casing has a rotary shaft, both ends of which are supported by magnetic bearings and is driven to rotate by a motor, and a plurality of boxes for accommodating objects to which gravity is applied are attached around the rotary shaft. A rotary vibration damping device, wherein each magnetic bearing at both ends of the rotary shaft has three magnetic bearings for vibration suppression arranged between two magnetic bearings for bias for holding the position of the rotary shaft. A rotating system vibration device characterized by comprising.

【0017】(4)前記制振用の磁気軸受は制振の制御
のみを行い、前記バイアス用磁気軸受は前記回転軸の位
置保持を行うと共に、前記制振用の磁気軸受が制振制御
を行っている間は前記位置保持力を緩和させるように回
転軸の位置制御を行うことを特徴とする請求項1から3
のいずれかに記載の回転体制振装置。
(4) The vibration damping magnetic bearing controls only vibration damping, the bias magnetic bearing holds the position of the rotary shaft, and the vibration damping magnetic bearing controls vibration damping. 4. The position control of the rotating shaft is performed so as to reduce the position holding force during the operation.
The rotary system vibration device according to any one of 1.

【0018】(5)ケーシング内で両端が磁気軸受で支
持されモータにより回転駆動される回転軸を有し、同回
転軸の周囲に重力を付加する対象物を入れる複数のボッ
クスを取付けて構成される回転体制振装置であって、前
記回転軸の両端の磁気軸受は、それぞれ複数の制振を行
う磁気軸受からなることを特徴とする回転体制振装置。
(5) The casing has a rotating shaft supported at both ends by magnetic bearings and driven to rotate by a motor, and a plurality of boxes for accommodating objects to which gravity is applied are attached around the rotating shaft. A rotary oscillatory vibration device according to claim 1, wherein the magnetic bearings at both ends of the rotary shaft are magnetic bearings for damping a plurality of vibrations.

【0019】(6)前記両端の複数の磁気軸受に加え、
更に、回転軸の中央部にも複数の制振用磁気軸受を設け
たことを特徴とする(5)記載の回転体制振装置。
(6) In addition to the plurality of magnetic bearings at both ends,
Further, the rotary vibration damping device according to (5), wherein a plurality of magnetic bearings for vibration damping are also provided in the central portion of the rotary shaft.

【0020】(7)前記中央部の制振用磁気軸受に代え
て、複数のバイアス用磁気軸受を配設したことを特徴と
する(6)記載の回転体制振装置。
(7) The rotational vibration damping device according to (6), wherein a plurality of bias magnetic bearings are provided in place of the central vibration damping magnetic bearing.

【0021】(8)前記複数の制振用及びバイアス用磁
気軸受は、それぞれ複数のうち1個のみ作動させてお
き、回転軸の振動の増大に応じて順次作動する個数を増
加させるように制御することを特徴とする(5)から
(7)のいずれかに記載の回転体制振装置。
(8) The plurality of damping and biasing magnetic bearings are each operated only one of the plurality, and the number of sequentially operating is increased as the vibration of the rotary shaft increases. The rotary motion vibrating device according to any one of (5) to (7).

【0022】本発明の(1)においては、回転軸を支持
する軸受は両端にそれぞれ能動制振を行う制振用の磁気
軸受と、位置保持を行うバイアス用磁気軸受から構成さ
れているので、バイアス用磁気軸受は回転軸を中心に位
置させるように磁気力で回転軸を保持する。制振用の磁
気軸受は回転軸に振動が発生すると、まず、バイアス用
磁気軸受の位置保持力を弱めるような磁力を発生してバ
イアス用磁気軸受が発生している位置保持力を所定量弱
め、位置保持力を緩和するように制御する。同時に振動
を吸収するような能動制振の制御を行うので、微小な振
動が生じてもバイアス用磁気軸受の固い支持力で振動を
外部へ伝播するようなことがなく、制振も効果的になさ
れる。
In (1) of the present invention, the bearing for supporting the rotating shaft is composed of a magnetic bearing for vibration damping for active damping at both ends and a magnetic bearing for bias for holding the position. The bias magnetic bearing holds the rotating shaft by a magnetic force so that the rotating shaft is centered. When vibration occurs on the rotating shaft, the magnetic bearing for vibration control first generates a magnetic force that weakens the position holding force of the bias magnetic bearing to weaken the position holding force generated by the bias magnetic bearing by a predetermined amount. , The position holding force is controlled to be relaxed. At the same time, active damping control that absorbs vibration is performed, so even if a minute vibration occurs, it does not propagate to the outside due to the hard bearing force of the magnetic bearing for bias, and effective damping is also achieved. Done.

【0023】本発明の(2)においては、回転軸両端の
各磁気軸受は、バイアス用磁気軸受を挟んで両側に制振
用磁気軸受を配列して構成されるので、上記(1)の発
明と同様に回転軸に発生する振動をケーシングの外部へ
伝播させずに制振を効果的に行うことができ、更に、制
振用の磁気軸受が両端において、それぞれ2個がバラン
ス良く配置されているので、より効果的な制振が可能と
なる。
In (2) of the present invention, since the magnetic bearings at both ends of the rotary shaft are constituted by arranging the magnetic bearings for bias between the magnetic bearings for damping, the magnetic bearings for damping are arranged on both sides. The vibration can be effectively suppressed without propagating the vibration generated on the rotary shaft to the outside of the casing in the same manner as the above. Furthermore, two magnetic bearings for vibration damping are arranged at both ends in a well-balanced manner. Therefore, more effective vibration control is possible.

【0024】本発明の(3)においては、回転軸両端の
磁気軸受は、制振用磁気軸受を挟んで両側にバイアス用
磁気軸受を配列して構成するので、上記(1)の発明と
同様に回転軸に発生する振動をケーシングの外部へ伝播
させずに制振を効果的に行うことができ、更に、バイア
ス用磁気軸受が両端において、それぞれ2個がバランス
良く配置されておるので、回転軸の位置保持が正確にな
されると共に、より効果的な制振がなされる。
In (3) of the present invention, since the magnetic bearings at both ends of the rotary shaft are constituted by arranging the bias magnetic bearings on both sides of the magnetic damping vibration bearing, the same as in the above (1) invention. The vibration can be effectively suppressed without propagating the vibration generated on the rotating shaft to the outside of the casing. Furthermore, the two magnetic bearings for bias are arranged at both ends in a well-balanced manner. The position of the shaft is accurately maintained and more effective vibration is suppressed.

【0025】本発明の(4)では、バイアス用磁気軸受
は、制振用の磁気軸受が制振制御を行っている間は、回
転軸の位置保持力を所定量だけ弱めるように励磁電流を
制御し、バイアス用磁気軸受の回転軸の位置保持力を緩
和する。そのために回転軸の振動はバイアス用磁気軸受
において自由度が高まり、振動がバイアス用磁気軸受を
介してケーシングへ伝播されることがなく、この振動は
制振用の軸受により効果的に制振される。
In (4) of the present invention, the bias magnetic bearing applies an exciting current so as to weaken the position holding force of the rotary shaft by a predetermined amount while the vibration suppressing magnetic bearing is performing the vibration suppression control. The position holding force of the rotating shaft of the magnetic bearing for bias is controlled and relaxed. Therefore, the degree of freedom of the vibration of the rotating shaft is increased in the bias magnetic bearing, and the vibration is not propagated to the casing via the bias magnetic bearing. This vibration is effectively damped by the vibration damping bearing. It

【0026】本発明の(5)においては、回転軸の両端
の磁気軸受は、それぞれ複数の磁気軸受で構成されてい
るので、その支持力が強固となり、故障する磁気軸受が
あったとしても機能を失うことがなく、多種ある振動モ
ードに対しても、広範囲に即応可能となる。又、本発明
の(6)においては、回転軸の中央部にも複数の磁気軸
受を設けたので、回転軸の首振りを含む振動がより確実
に制振することができる。
In the item (5) of the present invention, since the magnetic bearings at both ends of the rotary shaft are each composed of a plurality of magnetic bearings, the supporting force is strong and the magnetic bearings function even if there is a failure. It is possible to quickly respond to a wide range of vibration modes without losing the energy. Further, in the aspect (6) of the present invention, since a plurality of magnetic bearings are also provided in the central portion of the rotary shaft, vibration including swinging of the rotary shaft can be more reliably suppressed.

【0027】本発明の(7)では、回転軸の中央部は、
複数のバイアス用磁気軸受で位置保持されるので、回転
軸の首振り振動は両端の複数の制振用の磁気軸受で制御
され、回転軸の中心位置への制御は中央部の複数のバイ
アス用磁気軸受で確実になされる。
In (7) of the present invention, the central portion of the rotary shaft is
Since the position is held by multiple magnetic bearings for bias, the swing vibration of the rotating shaft is controlled by multiple magnetic bearings for damping at both ends, and the control to the center position of the rotating shaft is for multiple biases in the center. Made sure with magnetic bearings.

【0028】本発明の(8)では、両端部及び中央部の
複数の磁気軸受は、回転軸の振動の強さに応じて、作動
させる個数を適正に制御するので、振動の種類に応じて
磁気軸受を最適な数に設定して運転することができ、上
記(5)から(7)の発明の振動制御の信頼性が向上す
るものである。
In the item (8) of the present invention, the plurality of magnetic bearings at both ends and the central part are properly controlled in the number to be operated in accordance with the strength of vibration of the rotary shaft, and therefore in accordance with the type of vibration. The number of magnetic bearings can be set to an optimum number to operate, and the reliability of the vibration control according to the inventions of (5) to (7) is improved.

【0029】[0029]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面に基いて具体的に説明する。図1は本発明の実
施の第1形態に係る回転体制振装置を示す内部の断面図
である。図においてケーシング10内には、図10の先
行技術の例と同じく空間10a,10bが形成され、空
間10aには円筒状の上部固定材31が、空間10bに
は円筒状の下部固定材32が固定されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is an internal cross-sectional view showing a rotary vibration exciter according to a first embodiment of the present invention. In the figure, in the casing 10, spaces 10a and 10b are formed as in the example of the prior art of FIG. 10, a cylindrical upper fixing member 31 is provided in the space 10a, and a cylindrical lower fixing member 32 is provided in the space 10b. It is fixed.

【0030】上部固定材31には磁気軸受11、振動セ
ンサ3が図10の例と同じく複数個配設され、更に、バ
イアス用磁気軸受35a、スラスト用の磁気軸受33が
取付けられ、下部固定材32にも振動センサ4、バイア
ス用磁気軸受35b、磁気軸受12が、それぞれ取付け
られている。これら各磁気軸受11,35a,33で回
転軸30の一端部が、磁気軸受12,35bで回転軸3
0の他端部が、それぞれ磁力の作用により非接触で支持
される。この回転軸30は下部固定材32に取付けられ
たモータ34により回転駆動される。
A plurality of magnetic bearings 11 and vibration sensors 3 are arranged on the upper fixing member 31, as in the example of FIG. 10, and further, a magnetic bearing for bias 35a and a magnetic bearing for thrust 33 are attached, and a lower fixing member. The vibration sensor 4, the magnetic bearing for bias 35 b, and the magnetic bearing 12 are also attached to 32. One end of the rotary shaft 30 is formed by the magnetic bearings 11, 35a, 33, and the rotary shaft 3 is formed by the magnetic bearings 12, 35b.
The other end of 0 is supported in a non-contact manner by the action of magnetic force. The rotating shaft 30 is rotationally driven by a motor 34 attached to the lower fixing member 32.

【0031】回転軸30には、図10で示す例と同様
に、アーム24,25,26,27の一端が放射状に伸
びて取付けられ、他端に実験ボックス20,21,2
2,23が支持されており、各実験ボックス20〜23
内へは微小重力環境において重力を付加するための対象
物が入れられ、回転駆動される。
Similar to the example shown in FIG. 10, arms 24, 25, 26, 27 are attached to the rotary shaft 30 so that one ends of the arms 24, 25, 26, 27 extend radially, and the other ends are attached to the experiment boxes 20, 21, 2, respectively.
2 and 23 are supported, and each experiment box 20-23
An object for adding gravity in a microgravity environment is put into the inside and is driven to rotate.

【0032】なお、上記の例では4本のアーム24〜2
7により4個の実験ボックス20〜23を支持する例で
説明したが、アームを4本以上、例えば8本を放射状に
配置し、8個の実験ボックスを配置するような構成でも
良く、この個数は実験対象物の種類や大きさ、等により
適宜設定すれば良いものである。
In the above example, the four arms 24-2
Although an example of supporting four experimental boxes 20 to 23 by 7 has been described, a configuration in which four or more arms, for example, eight arms are radially arranged and eight experimental boxes are arranged may be used. Can be appropriately set according to the type and size of the experimental object.

【0033】図2は図1におけるA−A断面図、(b)
はB−B断面図である。(a)に示すように、ケーシン
グ10内には円筒状の上部固定材31が固定されてお
り、上部固定材31には円環状の磁気軸受のコイルが取
付けられ、回転軸30が挿通している。又、(b)に示
すように、下部固定材32には、直交するX−Y座標軸
に複数個(図示の例では4個)の振動センサ4が取付け
られており、振動センサ4の下方にはバイアス用磁気軸
受35bが配置され、下部固定材32に取付けられてい
る。なお、上部固定材31に取付けられる振動センサ
3、バイアス用磁気軸受35aも同様な配置となってい
る。
FIG. 2 is a sectional view taken along line AA in FIG. 1, (b).
FIG. 6 is a sectional view taken along line BB. As shown in (a), a cylindrical upper fixing member 31 is fixed in the casing 10, an annular magnetic bearing coil is attached to the upper fixing member 31, and the rotary shaft 30 is inserted therethrough. There is. Further, as shown in (b), a plurality of (four in the illustrated example) vibration sensors 4 are attached to the lower fixing member 32 on orthogonal X-Y coordinate axes, and below the vibration sensor 4. A bias magnetic bearing 35b is arranged and attached to the lower fixing member 32. The vibration sensor 3 and the bias magnetic bearing 35a attached to the upper fixing member 31 have the same arrangement.

【0034】上記構成の実施の第1形態において、回転
軸30が回転すると、実験対象物の重量のアンバランス
により回転中に各実験ボックス20〜23間に加速度の
アンバランスが生じ、回転軸30が振動しようとする
が、この振動又は変位は、図10,図11の例で説明し
たように、回転軸30両端周囲のX、Y軸に配置した複
数個の振動センサ3,4で検出する。振動センサ3,4
では、後述するように、回転軸30の振動や変位を検出
して、その信号を制御装置へ入力し、制御装置ではギャ
ップが小さくなると、このギャップを元の隙間に戻すよ
うに対応するコイル1,2の位置の電流を制御し、振動
を能動的に吸収するように制御するものである。
In the first embodiment of the above-mentioned structure, when the rotary shaft 30 rotates, an imbalance of acceleration occurs between the experimental boxes 20 to 23 during the rotation due to the unbalance of the weight of the experimental object, and the rotary shaft 30 is rotated. The vibration or displacement is detected by a plurality of vibration sensors 3 and 4 arranged on the X and Y axes around both ends of the rotary shaft 30, as described in the examples of FIGS. 10 and 11. . Vibration sensor 3, 4
Then, as will be described later, when the vibration or displacement of the rotating shaft 30 is detected and the signal is input to the control device, and when the gap becomes small, the corresponding coil 1 returns the gap to the original gap. , 2 to control the current at the positions so as to actively absorb the vibration.

【0035】一方、回転軸30は、振動が発生しない時
には軸受部とは非接触で支持する必要があるので、バイ
アス用磁気軸受35a,35bのコイルへ励磁電流を流
し、回転軸30が常時中心位置を保持するように設定さ
れている。図10に示す例では回転軸30を中心に保持
するのは能動制御用の磁気軸受11,12で能動制御と
同時に行っており、このためバイアス用の電流で回転軸
30が磁気力により強固な支持となり、微小な振動でも
磁気軸受を介してケーシング10側へ振動が伝播した
り、又、微小な振動の制振が効果的になされなかった。
On the other hand, since the rotary shaft 30 needs to be supported in a non-contact manner with the bearing portion when no vibration occurs, an exciting current is passed through the coils of the bias magnetic bearings 35a and 35b so that the rotary shaft 30 is always centered. Set to hold position. In the example shown in FIG. 10, the rotary shaft 30 is held at the center simultaneously with the active control magnetic bearings 11 and 12 simultaneously with the active control. Therefore, the rotary current is biased to make the rotary shaft 30 strong by the magnetic force. It serves as a support, and even a small vibration does not propagate to the casing 10 side via the magnetic bearing, or the small vibration is not effectively damped.

【0036】本実施の第1形態では、まず、第1の方法
としてバイアス用磁気軸受35a,35bには回転軸3
0を中心位置へ保持するために、一定の位置保持用の励
磁電流を加えておき、回転軸30に振動が発生すると、
能動制振用の磁気軸受11,12のみを制御し、バイア
ス用磁気軸受35a,35bの振動に対応する個所のコ
イルの磁気力を弱めるように制御して位置保持力を弱め
て自由度を高め、振動がバイアス用磁気軸受35a,3
5bを介してケーシング10側へ伝播しないようにす
る。同時に、磁気軸受11,12は発生した振動を弱め
られた位置保持力の状態で、図10,図11で説明した
ように励磁電流を制御して振動を吸収する。
In the first embodiment of the present invention, first, as the first method, the rotating shaft 3 is attached to the bias magnetic bearings 35a and 35b.
In order to hold 0 at the center position, a constant exciting current for holding the position is applied in advance, and when vibration occurs in the rotating shaft 30,
Only the magnetic bearings 11 and 12 for active vibration control are controlled, and the magnetic force of the coil at the position corresponding to the vibration of the magnetic bearings for bias 35a and 35b is controlled to be weakened to weaken the position holding force and increase the degree of freedom. , Vibration is bias magnetic bearings 35a, 3
It does not propagate to the casing 10 side via 5b. At the same time, the magnetic bearings 11 and 12 absorb the vibration by controlling the exciting current as described with reference to FIGS. 10 and 11 in a state of the position holding force in which the generated vibration is weakened.

【0037】次に、第2の方法としては、バイアス用磁
気軸受35a,35bには位置保持用の電流を加えてお
き、回転軸30に振動が発生すると、まず、バイアス用
磁気軸受35a,35bの電流を制御してバイアス用磁
気軸受35a,35bによる位置保持力を弱めて自由度
を高めると共に、同時に能動制振用の磁気軸受11,1
2で同様に振動を吸収するような制御を行う。
Next, as a second method, a bias current is applied to the bias magnetic bearings 35a and 35b, and when vibration is generated in the rotary shaft 30, first, the bias magnetic bearings 35a and 35b. Current is controlled to weaken the position holding force by the bias magnetic bearings 35a and 35b to increase the degree of freedom, and at the same time, the active vibration damping magnetic bearings 11 and 1
In step 2, the control is similarly performed to absorb the vibration.

【0038】本実施の第1形態においては、上記の第1
の方法によりバイアス用磁気軸受35a,35bは制振
のための制御は行なわず、位置保持の作用のみを行い、
能動制振用の磁気軸受11,12で制振と位置保持力を
弱める両方の作用を行ない、微小な振動も効果的に制振
してケーシングの外部へ振動を伝播しないようにするこ
とができる。又、上記の第2の方法により、バイアス用
磁気軸受35a,35bにより位置保持力を弱める制御
を行うと共に、同時に能動制振用の磁気軸受11,12
により制振の制御のみを行うようにしても、上記と同様
に外部へ振動を伝播させずに、微小な振動でも効果的に
制振することができるものである。
In the first embodiment, the above-mentioned first
The magnetic bearings for bias 35a and 35b do not perform control for damping but perform only the function of holding the position by
The magnetic bearings 11 and 12 for active vibration control both perform vibration control and weaken the position holding force, and it is possible to effectively control even minute vibrations and prevent the vibrations from propagating to the outside of the casing. . Further, according to the above-mentioned second method, the position holding force is weakened by the bias magnetic bearings 35a and 35b, and at the same time, the active vibration damping magnetic bearings 11 and 12 are simultaneously controlled.
Even if only the vibration control is performed by means of the above, it is possible to effectively suppress even a small vibration without propagating the vibration to the outside as in the above.

【0039】図3は上記の制御の状態を示す信号のタイ
ミング図を示し、磁気軸受11,12及びバイアス用磁
気軸受35a,35bの複数のコイルのうち、1つのコ
イルを代表して示しており、(a)は上記の第1の方
法、(b)は第2の方法の例である。(a)において、
(1)は回転軸30に生じた振動波形であり、So は基
準値を示している。(2)はバイアス用磁気軸受35
a,35bに加えられる位置保持用の電流であり、
(3)は能動制御用の磁気軸受11,12に加えられる
位置保持力を緩和するための電流であり、振動が基準値
So を超える間出力される。(4)は同じく磁気軸受1
1,12に加えられる能動制振用の電流で、同じく振動
(1)が基準値So を超える間に出力される。このよう
に(a)の方法では、バイアス用磁気軸受35a,35
bは常時位置保持用の電流(2)を加えておき、磁気軸
受11,12に位置保持緩和用の電流(3)及び能動制
振用の電流(4)を加え、(5)に示すように振動
(1)が基準値So を超えると、磁気軸受11,12が
位置保持力を弱めると共に、制振を行い、振動(1)を
基準値以内に抑えるようにする。
FIG. 3 is a timing chart of signals showing the above control state, and shows one of the plurality of coils of the magnetic bearings 11 and 12 and the bias magnetic bearings 35a and 35b as a representative. , (A) is an example of the first method, and (b) is an example of the second method. In (a),
(1) is a vibration waveform generated on the rotary shaft 30, and So is a reference value. (2) is a magnetic bearing for bias 35
a position-holding current applied to a and 35b,
(3) is a current for relaxing the position holding force applied to the magnetic bearings 11 and 12 for active control, and is output while the vibration exceeds the reference value So. (4) is also magnetic bearing 1
A current for active vibration control applied to 1 and 12 is also output while the vibration (1) exceeds the reference value So. Thus, in the method (a), the magnetic bearings for bias 35a, 35
For b, a current (2) for position holding is always added, and a current (3) for relaxing position holding and a current (4) for active vibration damping are added to the magnetic bearings 11 and 12, as shown in (5). When the vibration (1) exceeds the reference value So, the magnetic bearings 11 and 12 weaken the position holding force and suppress the vibration to suppress the vibration (1) within the reference value.

【0040】(b)は第2の方法であり、(1)の振動
に対し、基準値So を超えると、超えた間はバイアス用
磁気軸受35a,35bには常時加えられる位置保持の
電流を減少させ、この部分の位置保持力を緩和するよう
に制御される。この状態で、磁気軸受11,12には能
動制振用の電流(4)が加えられ、(5)に示すように
基準値So を超えた間の振動を抑えることができる。
(B) is the second method. When the reference value So is exceeded for the vibration of (1), the position holding current constantly applied to the bias magnetic bearings 35a and 35b is exceeded while exceeding the reference value So. It is controlled so as to reduce the position holding force of this portion. In this state, a current (4) for active vibration damping is applied to the magnetic bearings 11, 12 to suppress vibration while exceeding the reference value So as shown in (5).

【0041】図4は本発明の実施の第2形態に係る回転
体制振装置を示す内部の断面図である。図において、本
実施の第2形態においては、図1に示す実施の第1形態
の回転軸30の軸受支持構造の構成に加え、更に能動制
振を行う磁気軸受36a,36bを追加した構成であ
り、その他の構成は図1に示す実施の第1形態と同じで
あるので詳しい説明は省略する。
FIG. 4 is an internal cross-sectional view showing a rotary vibration oscillating device according to a second embodiment of the present invention. In the figure, in the second embodiment of the present invention, in addition to the configuration of the bearing support structure of the rotating shaft 30 of the first embodiment shown in FIG. 1, magnetic bearings 36a and 36b for active damping are further added. Since the other configurations are the same as those of the first embodiment shown in FIG. 1, detailed description thereof will be omitted.

【0042】即ち、図4において、回転軸30の一端に
はバイアス用磁気軸受35aを挟んで能動制振用の磁気
軸受11と磁気軸受36aが配置され、他端にはバイア
ス用磁気軸受35bを挟んで能動制振用の磁気軸受12
と磁気軸受36bが配置されている。バイアス用磁気軸
受35a,35bは図10、図11で説明した先行技術
と同じように、回転軸30の位置保持の機能を有し、磁
気軸受11と36aは両方で回転軸30の一端の能動制
振の機能を有し、磁気軸受12と36bは両方で回転軸
30の他端の能動制振の機能を有するものである。その
具体的作用は図11で説明した内容がそのまま適用され
るので、詳しい説明は省略する。
That is, in FIG. 4, the magnetic bearing 11 for active vibration damping and the magnetic bearing 36a are arranged at one end of the rotary shaft 30 with the magnetic bearing for bias 35a interposed therebetween, and the magnetic bearing for bias 35b is provided at the other end. Magnetic bearing 12 for active vibration suppression
And a magnetic bearing 36b. The bias magnetic bearings 35a and 35b have a function of holding the position of the rotary shaft 30 as in the prior art described in FIGS. 10 and 11, and both the magnetic bearings 11 and 36a are active at one end of the rotary shaft 30. The magnetic bearings 12 and 36b both have a vibration damping function, and the magnetic bearings 12 and 36b both have an active vibration damping function at the other end of the rotary shaft 30. Since the specific operation is the same as that described with reference to FIG. 11, the detailed description will be omitted.

【0043】上記に説明した実施の第2形態において
は、バイアス用磁気軸受35a,35bの両側には同じ
機能を有する能動制振用の磁気軸受11と36a、及び
12と36bとがそれぞれ配置されているので、回転軸
30の制振制御のバランスが取れ、実施の第1形態と比
べて高精度な制御を可能とするものである。
In the second embodiment described above, active damping magnetic bearings 11 and 36a and 12 and 36b having the same function are arranged on both sides of the bias magnetic bearings 35a and 35b, respectively. Therefore, the vibration damping control of the rotary shaft 30 is balanced, and it is possible to perform highly accurate control as compared with the first embodiment.

【0044】図5は本発明の実施の第3形態に係る回転
体制振装置を示す内部の断面図である。図において、本
実施の第3形態においては、図1に示す実施の第1形態
の回転軸30の軸受支持構造の構成に加え、更に、回転
軸30の位置保持を行うバイアス用磁気軸受を追加した
構成であり、その他の構成は図1に示す実施の第1形態
と同じであるので詳しい説明は省略する。
FIG. 5 is an internal cross-sectional view showing a rotary vibration oscillating device according to a third embodiment of the present invention. In the figure, in the third embodiment of the present invention, in addition to the structure of the bearing support structure of the rotary shaft 30 of the first embodiment shown in FIG. 1, a magnetic bearing for bias for holding the position of the rotary shaft 30 is added. Since the other configurations are the same as those of the first embodiment shown in FIG. 1, detailed description thereof will be omitted.

【0045】即ち、図5において、回転軸30の一端に
は能動制振用の磁気軸受11を挟んでバイアス用磁気軸
受35cとバイアス用磁気軸受35dが配置され、他端
には能動制振用の磁気軸受12を挟んでバイアス用磁気
軸受35eと磁気軸受35fが配置されている。バイア
ス用磁気軸受35c〜35fは、それぞれの端部におい
て両方で図10、図11で説明したと同じように回転軸
30の位置保持の機能を有し、磁気軸受11は回転軸3
0の一端の能動制振の機能を有し、磁気軸受12は回転
軸30の他端の能動制振の機能を有するものである。そ
の具体的作用は図11で説明した内容がそのまま適用さ
れるので、詳しい説明は省略する。
That is, in FIG. 5, the magnetic bearing for bias 35c and the magnetic bearing for bias 35d are arranged at one end of the rotary shaft 30 with the magnetic bearing 11 for active vibration sandwiched therebetween, and the magnetic bearing for bias 35d is arranged at the other end. A magnetic bearing for bias 35e and a magnetic bearing 35f are arranged with the magnetic bearing 12 of FIG. The bias magnetic bearings 35c to 35f each have a function of holding the position of the rotary shaft 30 at both ends in the same manner as described with reference to FIGS.
The magnetic bearing 12 has an active damping function at one end of the rotary shaft 30 and the magnetic bearing 12 has an active damping function at the other end of the rotary shaft 30. Since the specific operation is the same as that described with reference to FIG. 11, the detailed description will be omitted.

【0046】上記に説明した実施の第3形態において
は、能動制振用の磁気軸受11,12の両側には同じ機
能を有する回転軸30の位置保持用の磁気軸受35cと
35d、及び35eと35fとがそれぞれ配置されてい
るので、回転軸30の制振制御及び位置保持のバランス
が取れ、実施の第1形態と比べて高精度な制御を可能と
するものである。
In the third embodiment described above, magnetic bearings 35c, 35d, and 35e for holding the position of the rotary shaft 30 having the same function are provided on both sides of the magnetic bearings 11 and 12 for active vibration damping. Since 35f and 35f are respectively arranged, the vibration damping control and the position holding of the rotary shaft 30 are balanced, and high-precision control is possible as compared with the first embodiment.

【0047】図6は本発明の実施の第4形態に係る回転
体制振装置を示す内部の断面図である。図において、本
実施の第4形態においては、回転軸30の両端部に磁気
軸受11,12を4個配置した構成である。なお、磁気
軸受11,12は図示の例では4個の例であるが4個に
限定されず任意の数を配置することができる。その他の
構成は図1に示す構成と同じである。
FIG. 6 is an internal cross-sectional view showing a rotary vibration oscillating device according to a fourth embodiment of the present invention. In the figure, in the fourth embodiment of the present invention, four magnetic bearings 11 and 12 are arranged at both ends of the rotary shaft 30. Note that the magnetic bearings 11 and 12 are four in the illustrated example, but the number is not limited to four, and any number can be arranged. Other configurations are the same as those shown in FIG.

【0048】即ち、図6に示すように、上部固定材31
には回転軸30の一端を能動的に制御して支持する磁気
軸受11が、図の例では4個が取付けられており、回転
軸30の振動に伴う変位を検出する振動センサ3が配置
されている。同様に、下部固定材32にも、回転軸30
の他端を能動的に支持する磁気軸受12が4個、及び振
動センサ4が配置されている。
That is, as shown in FIG. 6, the upper fixing member 31
A magnetic bearing 11 that actively controls and supports one end of the rotary shaft 30, and four magnetic bearings 11 in the example shown in the figure, is mounted to the vibration sensor 3 that detects displacement caused by vibration of the rotary shaft 30. ing. Similarly, the lower fixing member 32 also includes the rotary shaft 30.
4 magnetic bearings 12 that actively support the other end of the and the vibration sensor 4 are arranged.

【0049】上記構成の実施の第4形態においては、回
転軸30の両端は複数個の磁気軸受11,12を図9で
後述するように必要個数だけ作動させ、回転軸30が中
心位置となるように位置保持がなされると共に、回転軸
30に首振り等の振動が発生すると、前記したように振
動センサ3,4からの変位を検出し、図11で述べたよ
うに、制御装置14が、その振動の変位をなくすように
複数の磁気軸受11,12の励磁電流を制御して振動を
能動的に吸収する。従って、多種ある振動モードに対し
て即応が可能となり、振動が確実に制振されると共に、
仮に磁気軸受の一部が故障したとしても、安全な運転が
可能となる。
In the fourth embodiment of the above-mentioned structure, the rotary shaft 30 is at the center position on both ends of the rotary shaft 30 by operating a required number of magnetic bearings 11 and 12 as described later with reference to FIG. When the rotation shaft 30 is vibrated, such as swinging, the displacement from the vibration sensors 3 and 4 is detected as described above, and the control device 14 operates as described in FIG. , The excitation currents of the plurality of magnetic bearings 11 and 12 are controlled so as to eliminate the displacement of the vibration, and the vibration is actively absorbed. Therefore, it is possible to quickly respond to various vibration modes, and the vibration can be reliably suppressed,
Even if a part of the magnetic bearing fails, safe operation is possible.

【0050】図7は本発明の実施の第5形態に係る回転
体制振装置を示す内部の断面図である。図において、本
実施の第5形態においては、図6に示す実施の第4形態
において回転軸30の中央部にも複数の磁気軸受を追加
し、回転軸30の両端部と中央部において複数の磁気軸
受で支持する構成としたもので、その他の構成は図6と
同じである。
FIG. 7 is a cross-sectional view of the inside of a rotary oscillatory vibration device according to the fifth embodiment of the present invention. In the figure, in the fifth embodiment, a plurality of magnetic bearings are added to the central portion of the rotary shaft 30 in the fourth embodiment shown in FIG. The configuration is such that the magnetic bearing is used for supporting, and other configurations are the same as those in FIG.

【0051】即ち、図7において、上部固定材31の回
転軸30中央部に相当する位置に4個の磁気軸受37と
振動センサ38が追加されている。その他の構成は図6
と同じである。磁気軸受37は4個に限らず任意の複数
個を設置することができ、磁気軸受37は、図1,図2
で説明した構造の磁気軸受11,12と同じものであ
り、又、振動センサ38も図10で示したものと同じ配
置で振動センサ3,4と同じである。
That is, in FIG. 7, four magnetic bearings 37 and a vibration sensor 38 are added at a position corresponding to the center of the rotary shaft 30 of the upper fixing member 31. Other configurations are shown in FIG.
Is the same as. The number of magnetic bearings 37 is not limited to four, and any plural number can be installed.
The magnetic bearings 11 and 12 having the structure described in 1. and the vibration sensor 38 have the same arrangement as that shown in FIG. 10 and are the same as the vibration sensors 3 and 4.

【0052】上記構成の実施の第5形態においては、回
転軸30の両端部、及び中央部が、それぞれ複数個の磁
気軸受11,12,37で支持されており、図9で後述
するように振動の大きさ、強さに応じて必要な個数だけ
を作動させ、回転軸30が中心位置となるように位置保
持がなされる。更に、回転軸30に首振り等の振動が発
生すると、前記したように振動センサ3,4,38から
の変位を検出し、図11で述べたように、制御装置14
が、その振動の変位をなくすように複数の磁気軸受1
1,12,38の励磁電流を制御して振動を能動的に吸
収する。従って、多種ある振動モードに対して即応が可
能となり、振動が確実に制振されると共に、仮に磁気軸
受の一部が故障したとしても、安全な運転が可能とな
る。
In the fifth embodiment of the above construction, both ends and the center of the rotary shaft 30 are supported by a plurality of magnetic bearings 11, 12, 37, respectively, as will be described later with reference to FIG. Only the required number is operated according to the magnitude and strength of the vibration, and the position of the rotary shaft 30 is maintained so that it is at the center position. Furthermore, when vibration such as swinging occurs on the rotary shaft 30, the displacements from the vibration sensors 3, 4, 38 are detected as described above, and as described in FIG.
However, a plurality of magnetic bearings 1 so as to eliminate the displacement of the vibration
Vibrations are actively absorbed by controlling the exciting currents 1, 12, and 38. Therefore, it is possible to quickly respond to various vibration modes, the vibration is reliably suppressed, and even if a part of the magnetic bearing fails, safe operation becomes possible.

【0053】図8は本発明の実施の第5形態に係る回転
体制振装置を示す内部の断面図である。図において、本
実施の第6形態においては、図6に示す実施の第4形態
において回転軸30の中央部にも複数のバイアス用磁気
軸受を追加し、回転軸30の両端部と中央部において複
数の磁気軸受で支持する構成としたもので、その他の構
成は図6と同じである。
FIG. 8 is an internal cross-sectional view showing a rotary vibration oscillating device according to a fifth embodiment of the present invention. In the figure, in the sixth embodiment, a plurality of bias magnetic bearings are added to the central portion of the rotary shaft 30 in the fourth embodiment shown in FIG. The configuration is such that it is supported by a plurality of magnetic bearings, and other configurations are the same as in FIG.

【0054】即ち、図8において、上部固定材31の回
転軸30中央部に相当する位置に4個のバイアス用磁気
軸受39と振動センサ38が追加されている。その他の
構成は図6と同じである。バイアス用磁気軸受39は4
個に限らず任意の複数個を設置することができ、バイア
ス用磁気軸受39は、図2で説明した構造の磁気軸受3
5a、35bと同じものであり、又、振動センサ38も
図10で示したものと同じ配置で振動センサ3,4と同
じである。
That is, in FIG. 8, four bias magnetic bearings 39 and a vibration sensor 38 are added at a position corresponding to the center of the rotary shaft 30 of the upper fixing member 31. Other configurations are the same as those in FIG. Bias magnetic bearing 39 is 4
The number of bias magnetic bearings 39 is not limited to one, and the bias magnetic bearing 39 is the magnetic bearing 3 having the structure described in FIG.
5a and 35b, and the vibration sensor 38 has the same arrangement as that shown in FIG. 10 and is the same as the vibration sensors 3 and 4.

【0055】上記構成の実施の第6形態においては、回
転軸30の両端部が複数の能動制振用の磁気軸受11,
12で、及び中央部が複数個のバイアス用磁気軸受39
で支持されており、図9で後述するように振動の大き
さ、強さに応じて必要な個数だけを作動させる。回転軸
30はバイアス用磁気軸受39によって中心位置となる
ように位置保持がなされると共に、回転軸30に首振り
等の振動が発生すると、前記したように振動センサ3,
4,38からの変位を検出し、図11で述べたように、
制御装置14が、その振動の変位をなくすように複数の
磁気軸受11,12の励磁電流を制御して振動を能動的
に吸収する。従って、多種ある振動モードに対して即応
が可能となり、振動が確実に制振されると共に、仮に磁
気軸受の一部が故障したとしても、安全な運転が可能と
なる。
In the sixth embodiment having the above-mentioned structure, both ends of the rotary shaft 30 have a plurality of magnetic bearings 11 for active vibration damping,
12 and a plurality of magnetic bearings for bias 39 in the center
As described later with reference to FIG. 9, only a necessary number of actuators are operated according to the magnitude and strength of vibration. The rotating shaft 30 is held in the center position by the bias magnetic bearing 39, and when vibration such as swinging occurs on the rotating shaft 30, the vibration sensor 3, as described above, is generated.
The displacement from 4, 38 is detected, and as described in FIG.
The control device 14 controls the exciting currents of the plurality of magnetic bearings 11 and 12 so as to eliminate the displacement of the vibration, and actively absorbs the vibration. Therefore, it is possible to quickly respond to various vibration modes, the vibration is reliably suppressed, and even if a part of the magnetic bearing fails, safe operation becomes possible.

【0056】図9は本発明の実施の第4形態における複
数の磁気軸受11,12の駆動を制御する場合の制御の
フローチャートである。この磁気軸受の制御は図11で
説明した能動制振制御に加えて、制御装置14により行
なわれるものである。なお、このフローチャートは図6
に示す構成に基づいて説明するが、図7,図8に示す実
施の第5,第6形態の構成にも同様に適用されるもので
ある。
FIG. 9 is a flow chart of control for controlling the driving of the plurality of magnetic bearings 11 and 12 in the fourth embodiment of the invention. The control of this magnetic bearing is performed by the controller 14 in addition to the active vibration suppression control described in FIG. Note that this flowchart is shown in FIG.
Although the description will be given based on the configuration shown in FIG. 7, the same applies to the configurations of the fifth and sixth embodiments shown in FIGS.

【0057】図9において、回転装置の駆動が開始する
と、制御装置14は、まず、ステップS1において、振
動センサ3,4からの回転軸30の振動に伴う変位を検
出し、この信号を取込む。ここで、制御装置14には、
回転軸30の許容される下限の許容値を第1の許容値と
して設定しておき、更に第1の許容値よりもやや大きい
第2許容値、第2許容値よりもやや大きい第3許容値を
それぞれ設定し、記憶させておく。S2において、検出
した変位の大きさが下限の第1の許容値よりも大きい
と、S3へ進み、S3において、その範囲を調べる。
In FIG. 9, when the driving of the rotating device is started, the control device 14 first detects the displacement of the rotating shaft 30 from the vibration sensors 3 and 4 due to the vibration in step S1 and takes in this signal. . Here, the controller 14 has
The lower limit allowable value of the rotating shaft 30 is set as the first allowable value, and the second allowable value slightly larger than the first allowable value and the third allowable value slightly larger than the second allowable value. Set and memorize each. When the magnitude of the detected displacement is larger than the lower limit first allowable value in S2, the process proceeds to S3, and the range is examined in S3.

【0058】変位の大きさが、S3−1のように第1と
第2の許容値の間にある場合には、S4−1において複
数の磁気軸受11,12のうち、S4−1においてそれ
ぞれ1個の磁気軸受のみを作動させ、S3−2のよう
に、第2と第3の間にあり、振動の変位がある程度大き
い場合には、S4−2において、複数の磁気軸受のうち
予め定められた所定数、例えば、4個のうちの2個を作
動させ、S3−3のように第3の上限よりも大きい場合
には、S4−3において全部の磁気軸受、即ち、4個の
場合には全数の4個を作動させる。又、S2において、
センサからの信号が許容値よりも小さいと、S4−1へ
進み、1個のみの磁気軸受を作動させる。
When the magnitude of displacement is between the first and second allowable values as in S3-1, in S4-1, among the plurality of magnetic bearings 11 and 12, in S4-1, respectively. If only one magnetic bearing is operated and the vibration is between the second and the third as in S3-2 and the displacement of vibration is large to some extent, in S4-2, a predetermined number of magnetic bearings is determined. When a predetermined number, for example, two out of four are operated and is larger than the third upper limit as in S3-3, all magnetic bearings in S4-3, that is, four Activate all four. Also, in S2,
When the signal from the sensor is smaller than the allowable value, the process proceeds to S4-1 and only one magnetic bearing is operated.

【0059】S4において、作動させる磁気軸受が定ま
ると、S5において、図10,図11で説明したと同じ
ように能動制振の制御を行い、振動を吸収し、S6にお
いて運転継続であれば、S1へ戻り再び同様の制御を繰
り返し、運転終了であれば制御を終了する。このような
制御は、回転軸30のそれぞれの端部、中央部において
実施されるものである。
When the magnetic bearing to be operated is determined in S4, active damping control is performed in S5 in the same manner as described with reference to FIGS. 10 and 11, and the vibration is absorbed. If the operation is continued in S6, Returning to S1, the same control is repeated again, and if the operation ends, the control ends. Such control is performed at each end and center of the rotary shaft 30.

【0060】上記のように、回転軸30の両端におい
て、それぞれの端部において、振動センサ3,4からの
信号により、その振動の大きさに応じて、複数の磁気軸
受のうち、適正な数の磁気軸受のみを作動させ、振動の
大きさに応じて、1個の場合、中間数の場合、全数の場
合と、磁気軸受の作動数を制御する構成としたので、回
転装置の回転に伴う多様な振動モードに対しても広範囲
に即応が可能となるものである。
As described above, at the two ends of the rotary shaft 30, at each end, the signals from the vibration sensors 3 and 4 are used to select an appropriate number of magnetic bearings among a plurality of magnetic bearings according to the magnitude of the vibration. Only the magnetic bearings are operated, and the number of magnetic bearings is controlled according to the magnitude of vibration. It is possible to respond to a wide range of various vibration modes.

【0061】なお、回転軸30の中央部に磁気軸受を設
ける図7,図8の構成においても、同様に中央部におい
て、図7の構成においては4個の制振用磁気軸受37
を、図8の構成においては4個のバイアス用磁気軸受3
9を、それぞれ図9に示す制御のフローチャートに基い
て、作動を制御するものである。
7 and 8 in which a magnetic bearing is provided in the central portion of the rotary shaft 30, similarly, in the central portion, in the configuration of FIG.
In the configuration of FIG. 8, four bias magnetic bearings 3
9 is for controlling the operation based on the control flowchart shown in FIG.

【0062】又、上記に説明した図6,図7,図8の構
成の応用例として、回転軸30の両端部に複数のバイア
ス用磁気軸受を、中央部に複数の制振用磁気軸受を配置
する構成、又、一端部に複数のバイアス用磁気軸受を、
他端に複数の制振用磁気軸受を、中央部に複数の制振用
磁気軸受を、それぞれ配置する構成とすることもでき
る。又、更に、一端にのみ制振用磁気軸受を配置し、他
端と中央部には複数のバイアス用磁気軸受を、それぞれ
配置する構成とすることもできる。このように、回転軸
の一端、他端、中央部の3個所において磁気軸受の配置
を種々組合せて配置する構成としても同様の効果が得ら
れるものである。
Further, as an application example of the configuration of FIGS. 6, 7, and 8 described above, a plurality of bias magnetic bearings are provided at both ends of the rotary shaft 30, and a plurality of vibration damping magnetic bearings are provided at the center. Arrangement, or a plurality of magnetic bearings for bias at one end,
A plurality of vibration damping magnetic bearings may be arranged at the other end, and a plurality of vibration damping magnetic bearings may be arranged at the central portion. Further, it is also possible to dispose a vibration damping magnetic bearing only at one end and to dispose a plurality of bias magnetic bearings at the other end and the central portion. In this way, the same effect can be obtained even if the magnetic bearings are arranged in various combinations at one end, the other end, and the central portion of the rotary shaft.

【0063】又、図9において、S3で振動の大きさを
調べ、S4で作動する磁気軸受の数を設定する制御を行
ったが、これに代えて、S4において、各複数の磁気軸
受の制振用磁気軸受の位置保持用の電流、バイアス用磁
気軸受のバイアス電流を、それぞれ振動の大小に応じて
増減させるように制御することもできる。このように制
御しても上記と同様に回転軸の制振を行うことができ
る。
Further, in FIG. 9, the magnitude of the vibration is checked in S3 and the control for setting the number of magnetic bearings to be operated in S4 is performed. Instead of this, in S4, the control of each of the plurality of magnetic bearings is performed. It is also possible to control the position holding current of the vibration magnetic bearing and the bias current of the bias magnetic bearing so as to increase or decrease depending on the magnitude of vibration. Even with such control, vibration of the rotary shaft can be suppressed in the same manner as above.

【0064】[0064]

【発明の効果】本発明の回転体制振装置は、(1)ケー
シング内で両端が磁気軸受で支持されモータにより回転
駆動される回転軸を有し、同回転軸の周囲に重力を付加
する対象物を入れる複数のボックスを取付けて構成され
る回転体制振装置であって、前記回転軸の両端の各磁気
軸受は、それぞれ制振用の磁気軸受と、前記回転軸の位
置保持を行うバイアス用磁気軸受の2個からなることを
特徴としている。
EFFECTS OF THE INVENTION The rotary vibration oscillating device of the present invention includes (1) an object having both ends supported by magnetic bearings in a casing and rotationally driven by a motor, and gravity is applied to the periphery of the rotating shaft. A rotary vibration damping device configured by mounting a plurality of boxes for storing objects, wherein each magnetic bearing at each end of the rotary shaft is a magnetic bearing for vibration damping and a bias for holding the position of the rotary shaft. The feature is that it consists of two magnetic bearings.

【0065】上記構成により、バイアス用磁気軸受は回
転軸を中心に位置させるように磁気力で回転軸を保持す
る。制振用の磁気軸受は回転軸に振動が発生すると、ま
ず、バイアス用磁気軸受の位置保持力を弱めるような磁
力を発生してバイアス用磁気軸受が発生している位置保
持力を所定量弱め、位置保持力を緩和するように制御す
る。同時に振動を吸収するような能動制振の制御を行う
ので、微小な振動が生じてもバイアス用磁気軸受の固い
支持力で振動を外部へ伝播するようなことがなく、制振
も効果的になされる。
With the above structure, the bias magnetic bearing holds the rotating shaft by a magnetic force so that the rotating shaft is located at the center. When vibration occurs on the rotating shaft, the magnetic bearing for vibration control first generates a magnetic force that weakens the position holding force of the bias magnetic bearing to weaken the position holding force generated by the bias magnetic bearing by a predetermined amount. , The position holding force is controlled to be relaxed. At the same time, active damping control that absorbs vibration is performed, so even if a minute vibration occurs, it does not propagate to the outside due to the hard bearing force of the magnetic bearing for bias, and effective damping is also achieved. Done.

【0066】本発明の(2)においては、回転軸両端の
各磁気軸受は、バイアス用磁気軸受を挟んで両側に制振
用磁気軸受を配列して構成されるので、上記(1)の発
明と同様に回転軸に発生する振動をケーシングの外部へ
伝播させずに制振を効果的に行うことができ、更に、制
振用の磁気軸受が両端において、それぞれ2個がバラン
ス良く配置されているので、より効果的な制振が可能と
なる。
In (2) of the present invention, since the magnetic bearings at both ends of the rotary shaft are constituted by arranging the magnetic bearings for bias between them and the magnetic bearings for vibration damping arranged on both sides, the invention of (1) above is provided. The vibration can be effectively suppressed without propagating the vibration generated on the rotary shaft to the outside of the casing in the same manner as the above. Furthermore, two magnetic bearings for vibration damping are arranged at both ends in a well-balanced manner. Therefore, more effective vibration control is possible.

【0067】本発明の(3)においては、回転軸両端の
磁気軸受は、制振用磁気軸受を挟んで両側にバイアス用
磁気軸受を配列して構成するので、上記(1)の発明と
同様に回転軸に発生する振動をケーシングの外部へ伝播
させずに制振を効果的に行うことができ、更に、バイア
ス用磁気軸受が両端において、それぞれ2個がバランス
良く配置されておるので、回転軸の位置保持が正確にな
されると共に、より効果的な制振がなされる。
In (3) of the present invention, since the magnetic bearings at both ends of the rotary shaft are constituted by arranging the magnetic bearings for bias on both sides of the magnetic bearing for vibration damping, the magnetic bearings are the same as those of the invention of (1). The vibration can be effectively suppressed without propagating the vibration generated on the rotating shaft to the outside of the casing. Furthermore, the two magnetic bearings for bias are arranged at both ends in a well-balanced manner. The position of the shaft is accurately maintained and more effective vibration is suppressed.

【0068】本発明の(4)では、バイアス用磁気軸受
は、制振用の磁気軸受が制振制御を行っている間は、回
転軸の位置保持力を所定量だけ弱めるように励磁電流を
制御し、バイアス用磁気軸受の回転軸の位置保持力を緩
和する。そのために回転軸の振動はバイアス用磁気軸受
において自由度が高まり、振動がバイアス用磁気軸受を
介してケーシングへ伝播されることがなく、この振動は
制振用の軸受により効果的に制振される。
In (4) of the present invention, the bias magnetic bearing applies an exciting current so as to weaken the position holding force of the rotary shaft by a predetermined amount while the vibration suppressing magnetic bearing is performing the vibration suppression control. The position holding force of the rotating shaft of the magnetic bearing for bias is controlled and relaxed. Therefore, the degree of freedom of the vibration of the rotating shaft is increased in the bias magnetic bearing, and the vibration is not propagated to the casing via the bias magnetic bearing. This vibration is effectively damped by the vibration damping bearing. It

【0069】本発明の(5)においては、回転軸の両端
の磁気軸受は、それぞれ複数の磁気軸受で構成されてい
るので、その支持力が強固となり、故障する磁気軸受が
あったとしても機能を失うことがなく、多種ある振動モ
ードに対しても、広範囲に対応可能となる。又、本発明
の(6)においては、回転軸の中央部にも複数の磁気軸
受を設けたので、回転軸の首振りを含む振動がより確実
に制振することができる。
In (5) of the present invention, since the magnetic bearings at both ends of the rotary shaft are each composed of a plurality of magnetic bearings, the supporting force is strong, and the magnetic bearings function even if there is a failure. It is possible to deal with various vibration modes over a wide range without losing the noise. Further, in the aspect (6) of the present invention, since a plurality of magnetic bearings are also provided in the central portion of the rotary shaft, vibration including swinging of the rotary shaft can be more reliably suppressed.

【0070】本発明の(7)では、回転軸の中央部は、
複数のバイアス用磁気軸受で位置保持されるので、回転
軸の首振り振動は両端の複数の制振用の磁気軸受で制御
され、回転軸の中心位置への制御は中央部の複数のバイ
アス用磁気軸受で確実になされる。
In (7) of the present invention, the central portion of the rotary shaft is
Since the position is held by multiple magnetic bearings for bias, the swing vibration of the rotating shaft is controlled by multiple magnetic bearings for damping at both ends, and the control to the center position of the rotating shaft is for multiple biases in the center. Made sure with magnetic bearings.

【0071】本発明の(8)では、両端部及び中央部の
複数の磁気軸受は、回転軸の振動の強さに応じて、作動
させる個数を適正に制御するので、振動の種類に応じて
磁気軸受を最適な数に設定して運転することができ、上
記(5)から(7)の発明の振動制御の信頼性が向上す
るものである。
In (8) of the present invention, the plurality of magnetic bearings at both ends and the central portion are properly controlled in the number to be operated according to the strength of vibration of the rotating shaft. The number of magnetic bearings can be set to an optimum number to operate, and the reliability of the vibration control according to the inventions of (5) to (7) is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の第1形態に係る回転体制振装置
を示す内部の断面図である。
FIG. 1 is an internal cross-sectional view showing a rotary vibration exciter according to a first embodiment of the present invention.

【図2】図1に示す断面図で、(a)はA−A,(b)
はB−B断面図である。
FIG. 2 is a cross-sectional view shown in FIG. 1, in which (a) is AA and (b).
FIG. 6 is a sectional view taken along line BB.

【図3】本発明の実施の第1形態に係る制振機能を示す
信号のタイミング図であり、(a)はバイアス用磁気軸
受を制御しない方法、(b)はバイアス用磁気軸受を制
御する方法を、それぞれ示す。
3A and 3B are timing charts of signals showing a vibration damping function according to the first embodiment of the present invention, FIG. 3A is a method of not controlling a magnetic bearing for bias, and FIG. 3B is a magnetic bearing for bias. Each method will be described.

【図4】本発明の実施の第2形態に係る回転体制振装置
を示す内部の断面図である。
FIG. 4 is an internal cross-sectional view showing a rotary vibration exciter according to a second embodiment of the present invention.

【図5】本発明の実施の第3形態に係る回転体制振装置
を示す内部の断面図である。
FIG. 5 is an internal cross-sectional view showing a rotary vibration oscillating device according to a third embodiment of the present invention.

【図6】本発明の実施の第4形態に係る回転体制振装置
を示す内部の断面図である。
FIG. 6 is an internal cross-sectional view showing a rotary vibration oscillating device according to a fourth embodiment of the present invention.

【図7】本発明の実施の第5形態に係る回転体制振装置
を示す内部の断面図である。
FIG. 7 is an internal cross-sectional view showing a rotary vibration oscillating device according to a fifth embodiment of the present invention.

【図8】本発明の実施の第6形態に係る回転体制振装置
を示す内部の断面図である。
FIG. 8 is an internal cross-sectional view showing a rotary vibration oscillating device according to a sixth embodiment of the present invention.

【図9】本発明の実施の第4〜第6形態に係る磁気軸受
の作動を制御する制御のフローチャートである。
FIG. 9 is a flow chart of control for controlling the operation of the magnetic bearing according to the fourth to sixth embodiments of the present invention.

【図10】本発明の先行技術に係る回転装置を示し、
(a)は内部の側面図、(b)は(a)におけるC−C
矢視図、(c)は(a)におけるD−D矢視図である。
FIG. 10 shows a rotating device according to the prior art of the present invention,
(A) is a side view of the inside, (b) is CC in (a)
FIG. 6C is a view on arrow, and FIG. 7C is a view on arrow DD in FIG.

【図11】図10に示す回転装置の制御系統図である。11 is a control system diagram of the rotating device shown in FIG.

【図12】宇宙における回転式実験装置の一例を示す平
面図である。
FIG. 12 is a plan view showing an example of a rotary experimental apparatus in space.

【符号の説明】[Explanation of symbols]

3,4,38 振動セン
サ 10 ケーシン
グ 11,12,33,36a,36b,37 磁気軸受 20〜23 実験ボッ
クス 24〜27 アーム 30 回転軸 31 上部固定
材 32 下部固定
材 34 モータ 35a,35b,35c,35d,35e,35f,3
9バイアス用磁気軸受
3, 4, 38 Vibration sensor 10 Casing 11, 12, 33, 36a, 36b, 37 Magnetic bearing 20-23 Experimental box 24-27 Arm 30 Rotating shaft 31 Upper fixing member 32 Lower fixing member 34 Motor 35a, 35b, 35c, 35d, 35e, 35f, 3
9 Bias magnetic bearing

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ケーシング内で両端が磁気軸受で支持さ
れモータにより回転駆動される回転軸を有し、同回転軸
の周囲に重力を付加する対象物を入れる複数のボックス
を取付けて構成される回転体制振装置であって、前記回
転軸の両端の各磁気軸受は、それぞれ制振用の磁気軸受
と、前記回転軸の位置保持を行うバイアス用磁気軸受の
2個からなることを特徴とする回転体制振装置。
1. A casing having a rotary shaft, both ends of which are supported by magnetic bearings and rotatably driven by a motor, and a plurality of boxes for accommodating an object to which gravity is applied are attached around the rotary shaft. In the rotary vibration oscillating device, each of the magnetic bearings at both ends of the rotary shaft is composed of two magnetic bearings for damping and a bias magnetic bearing for holding the position of the rotary shaft. Rotating system vibration device.
【請求項2】 ケーシング内で両端が磁気軸受で支持さ
れモータにより回転駆動される回転軸を有し、同回転軸
の周囲に重力を付加する対象物を入れる複数のボックス
を取付けて構成される回転体制振装置であって、前記回
転軸の両端の各磁気軸受は、それぞれ2個の制振用の磁
気軸受の間にバイアス用磁気軸受を配列した3個からな
ることを特徴とする回転体制振装置。
2. A casing having a rotary shaft, both ends of which are supported by magnetic bearings and driven to rotate by a motor, and a plurality of boxes for accommodating an object to which gravity is applied are attached around the rotary shaft. A rotating system vibration device, wherein each of the magnetic bearings at both ends of the rotating shaft is composed of three magnetic bearings for bias arranged between two magnetic bearings for damping. Shaking device.
【請求項3】 ケーシング内で両端が磁気軸受で支持さ
れモータにより回転駆動される回転軸を有し、同回転軸
の周囲に重力を付加する対象物を入れる複数のボックス
を取付けて構成される回転体制振装置であって、前記回
転軸の両端の各磁気軸受は、それぞれ前記回転軸の位置
保持を行う2個のバイアス用磁気軸受の間に制振用の磁
気軸受を配列した3個からなることを特徴とする回転体
制振装置。
3. A casing having a rotary shaft, both ends of which are supported by magnetic bearings and driven to rotate by a motor, and a plurality of boxes for accommodating objects to which gravity is applied are attached around the rotary shaft. In the rotary vibration vibration device, each of the magnetic bearings at both ends of the rotary shaft is composed of three magnetic bearings for vibration suppression arranged between two magnetic bearings for bias, each of which holds the position of the rotary shaft. A rotating system vibration device characterized in that
【請求項4】 前記制振用の磁気軸受は制振の制御のみ
を行い、前記バイアス用磁気軸受は前記回転軸の位置保
持を行うと共に、前記制振用の磁気軸受が制振制御を行
っている間は前記位置保持力を緩和させるように回転軸
の位置制御を行うことを特徴とする請求項1から3のい
ずれかに記載の回転体制振装置。
4. The vibration damping magnetic bearing only controls vibration damping, the bias magnetic bearing holds the position of the rotary shaft, and the vibration damping magnetic bearing performs vibration damping control. 4. The rotary vibration oscillating device according to claim 1, wherein the position control of the rotary shaft is performed so as to reduce the position holding force while the position is maintained.
【請求項5】 ケーシング内で両端が磁気軸受で支持さ
れモータにより回転駆動される回転軸を有し、同回転軸
の周囲に重力を付加する対象物を入れる複数のボックス
を取付けて構成される回転体制振装置であって、前記回
転軸の両端の磁気軸受は、それぞれ複数の制振を行う磁
気軸受からなることを特徴とする回転体制振装置。
5. A casing is provided with a rotary shaft, both ends of which are supported by magnetic bearings and is driven to rotate by a motor, and a plurality of boxes for accommodating objects to which gravity is applied are attached around the rotary shaft. A rotary vibration isolator, wherein the magnetic bearings at both ends of the rotary shaft are magnetic bearings for damping a plurality of vibrations.
【請求項6】 前記両端の複数の磁気軸受に加え、更
に、回転軸の中央部にも複数の制振用磁気軸受を設けた
ことを特徴とする請求項5記載の回転体制振装置。
6. The rotary vibration oscillating device according to claim 5, wherein, in addition to the plurality of magnetic bearings at both ends, a plurality of magnetic bearings for vibration damping are further provided in a central portion of the rotary shaft.
【請求項7】 前記中央部の複数の制振用磁気軸受に代
えて、複数のバイアス用磁気軸受を配設したことを特徴
とする請求項6記載の回転体制振装置。
7. The rotary vibration damping device according to claim 6, wherein a plurality of magnetic bearings for bias are arranged in place of the plurality of magnetic bearings for vibration suppression in the central portion.
【請求項8】 前記複数の制振用及びバイアス用磁気軸
受は、それぞれ複数のうち1個のみ作動させておき、回
転軸の振動の増大に応じて順次作動する個数を増加させ
るように制御することを特徴とする請求項5から7のい
ずれかに記載の回転体制振装置。
8. The vibration damping and biasing magnetic bearings are operated so that only one of the plurality of magnetic bearings is operated, and the number of sequentially operating is increased according to an increase in vibration of the rotary shaft. The rotary vibration oscillating device according to any one of claims 5 to 7, characterized in that.
JP2002005793A 2001-09-05 2002-01-15 Rotational system vibration device Expired - Fee Related JP4052433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002005793A JP4052433B2 (en) 2001-09-05 2002-01-15 Rotational system vibration device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-269398 2001-09-05
JP2001269398 2001-09-05
JP2002005793A JP4052433B2 (en) 2001-09-05 2002-01-15 Rotational system vibration device

Publications (2)

Publication Number Publication Date
JP2003156100A true JP2003156100A (en) 2003-05-30
JP4052433B2 JP4052433B2 (en) 2008-02-27

Family

ID=26621729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002005793A Expired - Fee Related JP4052433B2 (en) 2001-09-05 2002-01-15 Rotational system vibration device

Country Status (1)

Country Link
JP (1) JP4052433B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669145B1 (en) 2004-10-30 2007-01-15 한국전력공사 Rotation Device using Superconducting Levitation Force
JP2007113594A (en) * 2005-10-18 2007-05-10 Japan Atomic Energy Agency Magnetic bearing shaft system
JP2008309151A (en) * 2007-06-15 2008-12-25 Pfeiffer Vacuum Gmbh Drive method of device equipped with vacuum pump and the device equipped with vacuum pump
JP2010121714A (en) * 2008-11-19 2010-06-03 Kansai Tlo Kk Controller of magnetic bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669145B1 (en) 2004-10-30 2007-01-15 한국전력공사 Rotation Device using Superconducting Levitation Force
JP2007113594A (en) * 2005-10-18 2007-05-10 Japan Atomic Energy Agency Magnetic bearing shaft system
JP4709986B2 (en) * 2005-10-18 2011-06-29 独立行政法人 日本原子力研究開発機構 Magnetic bearing shaft system
JP2008309151A (en) * 2007-06-15 2008-12-25 Pfeiffer Vacuum Gmbh Drive method of device equipped with vacuum pump and the device equipped with vacuum pump
EP2003342A3 (en) * 2007-06-15 2017-07-12 Pfeiffer Vacuum Gmbh Method for operating an assembly with vacuum pump and assembly with a vacuum pump
JP2010121714A (en) * 2008-11-19 2010-06-03 Kansai Tlo Kk Controller of magnetic bearing

Also Published As

Publication number Publication date
JP4052433B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
JP6038506B2 (en) Vibration isolation
EP0409462B1 (en) Inertia force generating device
JPH01316541A (en) Active vibrator
WO2002042154A1 (en) Supporting mechanism of micro gravity rotating apparatus
JP2003156100A (en) Damping device for rotor
KR100371993B1 (en) Active electromagnetic damping system for spindle motors
JP2008082542A (en) Vibration reducing mechanism and its specification setting method
JP2000240718A (en) Vibration damping device for compressor
US9588524B2 (en) Vibration control device and control method therefor
JP2003166535A (en) Magnetic bearing damping mechanism of rotary apparatus
JP7064786B2 (en) Sample crusher
JP2003161321A (en) Posture control system of rotating device
JP2003072696A (en) Rotary shaft spring support structure for microgravity rotating device
JP2878802B2 (en) Dither device
JPH10138988A (en) Vibration preventing device for ship with thruster
JP2003079097A (en) Drive motor for microgravitational rotating device
JP2003072700A (en) Rotary shaft connecting mechanism for microgravity rotating device
JP2002173100A (en) Active damping system in small gravity environment
JP2002154500A (en) Microgravitational rotating device
JP3551795B2 (en) Flywheel battery support device with multiple elastic support structures
JP2004197764A (en) Apparatus support device, and apparatus support device equipped with vibration body
JP2002221256A (en) Minute gravity rotating apparatus
JP2000205332A (en) Vibrationproof supporting device
RU2249732C2 (en) Rotator supp0orting device in a gyration device
JP2002266935A (en) Fine gravity rotation body vibration isolating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees