JP2003149167A - Reflectivity measuring device - Google Patents

Reflectivity measuring device

Info

Publication number
JP2003149167A
JP2003149167A JP2001343829A JP2001343829A JP2003149167A JP 2003149167 A JP2003149167 A JP 2003149167A JP 2001343829 A JP2001343829 A JP 2001343829A JP 2001343829 A JP2001343829 A JP 2001343829A JP 2003149167 A JP2003149167 A JP 2003149167A
Authority
JP
Japan
Prior art keywords
light
light receiving
wavelength
measured
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001343829A
Other languages
Japanese (ja)
Inventor
Katsuhiko Tani
克彦 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001343829A priority Critical patent/JP2003149167A/en
Publication of JP2003149167A publication Critical patent/JP2003149167A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reflectivity measuring device for estimating the roughness of surface/interface with respect to the film thickness of several μm to several tens μm order of an electrophotographic photoreceptive layer or the like on the basis of the surface/interface roughness of a minute area of about 1 μm ϕ. SOLUTION: The device comprises a probe light guide 1 for guiding a light source for laser beams to a surface under measurement, a radial slit 4 for guiding reflection light from the surface under measurement by light flux irradiated from the tip end 5 of the probe light guide 1, plural photoreceptive elements 3 for phtotelectrically converting the reflection light from the slit 4, and a support member 2 for semi-circularly supporting the plural photoreceptive elements 3. The photoreceptive elements 3 are fixed to the inner surface of the semi-circular support member 2 having a predetermined diameter, and the probe light guide 1 is mounted at the substantially center position of the support member 2 integrally with the support member 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、反射率測定装置に
関し、さらに詳しくは、電子写真感光体およびその素管
などの表面/界面状態の定量的評価を行う反射率測定装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflectance measuring apparatus, and more particularly to a reflectance measuring apparatus for quantitatively evaluating the surface / interface state of an electrophotographic photosensitive member and its tube.

【0002】[0002]

【従来の技術】従来から超薄膜や多層膜の試料の解析を
行う方法の1つとして、X線反射率を利用したX線反射
率測定方法がよく用いられている。このX線反射率測定
方法では、波長が1Å程度のX線を試料の表面に照射
し、照射したX線を試料の表面で光学的に鏡面反射させ
る。このように試料にX線を照射した状態で、例えば試
料を回転させ、試料の表面で反射されたX線の強度の角
度依存性、すなわち、入射角あるいは出射角の依存性を
測定する。そして、複素屈折率およびフレネルの式を基
に、試料の、X線を照射した部分についての解析が行わ
れている。この方法により、厚さが1nmから数100
nmまでの薄膜を非破壊で評価することができる。特開
平11−337507号公報には、試料の表面にX線を
照射し、その試料の表面で反射されたX線の反射率を測
定して試料の構造を評価する際、試料の微小領域の構造
を評価することができるX線反射率測定装置について開
示されている。これによると、測定試料の表面には、粒
子径の揃った粉末から成る結晶体が散布されている。測
定試料の表面側に配置されたX線発生装置からのX線
が、スリットから成るコリメーターを介して結晶体に照
射される。結晶体に照射されたX線は結晶体により回折
され、回折されたX線が、測定試料の表面で全反射する
ように測定試料の表面に対して小さい角度で測定試料の
表面に入射する。ここで、結晶体で回折したX線を測定
試料に入射させることにより、測定試料表面でのX線の
照射領域の幅が小さくなる。測定試料の表面で反射され
たX線は、スリットおよびモノクロメーターを経てX線
検出器で検出される。図8は、従来の正反射による反射
率の入射角依存性を説明するための図である。図に示さ
れるように、従来の正反射では入射角が変わるとその点
の深さ方向の種々の周期の変動を観測することになる。
図示されている実線30は、入射角が大きい場合で、同
じ角度で反射して反射光32となり、周期の小さい変動
成分を観測している。破線31で示した周期の大きい変
動成分は入射角が小さい場合で、同じ角度で反射して反
射光33となり、周期の大きい変動成分を観測してい
る。
2. Description of the Related Art Conventionally, an X-ray reflectance measuring method utilizing X-ray reflectance has been often used as one of the methods for analyzing a sample of an ultrathin film or a multilayer film. In this X-ray reflectance measuring method, the surface of the sample is irradiated with X-rays having a wavelength of about 1Å, and the irradiated X-rays are optically specularly reflected on the surface of the sample. With the sample thus irradiated with X-rays, for example, the sample is rotated, and the angular dependence of the intensity of the X-ray reflected on the surface of the sample, that is, the dependence of the incident angle or the exit angle is measured. Then, based on the complex index of refraction and the Fresnel's equation, analysis of the portion of the sample irradiated with X-ray is performed. By this method, the thickness is from 1 nm to several hundreds.
Thin films up to nm can be evaluated nondestructively. In Japanese Patent Laid-Open No. 11-337507, when the surface of a sample is irradiated with X-rays and the reflectance of X-rays reflected on the surface of the sample is measured to evaluate the structure of the sample, An X-ray reflectance measuring device capable of evaluating the structure is disclosed. According to this, the crystal body made of powder having a uniform particle diameter is scattered on the surface of the measurement sample. The crystal body is irradiated with X-rays from an X-ray generator arranged on the surface side of the measurement sample through a collimator composed of slits. The X-rays irradiated on the crystal are diffracted by the crystal, and the diffracted X-rays are incident on the surface of the measurement sample at a small angle with respect to the surface of the measurement sample so as to be totally reflected on the surface of the measurement sample. Here, by making X-rays diffracted by the crystal body incident on the measurement sample, the width of the X-ray irradiation region on the measurement sample surface becomes smaller. The X-ray reflected on the surface of the measurement sample passes through the slit and the monochromator and is detected by the X-ray detector. FIG. 8: is a figure for demonstrating the incident angle dependence of the reflectance by the conventional regular reflection. As shown in the figure, in the conventional specular reflection, when the incident angle changes, changes in various cycles in the depth direction of the point are observed.
The solid line 30 shown in the figure shows a case where the incident angle is large, and the reflected light 32 is reflected at the same angle, and a fluctuation component having a small period is observed. When the incident angle is small, the fluctuation component with a large period indicated by the broken line 31 is reflected at the same angle to become the reflected light 33, and the fluctuation component with a large period is observed.

【0003】[0003]

【発明が解決しようとする課題】前記従来のX線反射率
測定方法や特開平11−337507号公報に開示され
ているX線反射率測定装置では、図8で説明した通り、
測定試料試料表面スレスレにプローブ光を入射(視斜角
入射)し、視射角が臨界角を超えて増加すると、反射率
が急激に低減するが、この落ち方が、表面/界面の粗さ
に関係するので、反射率の視射角依存性をシミュレーシ
ョン曲線とフィッテングし、表面/界面の粗さを定量的
に評価するものである。しかしながら、X線反射率測定
で評価できる膜厚や表面/界面粗さは、X線の波長程度
のÅオーダーである。電子写真感光体層は数μm〜10
数μm程度であり、このオーダーの膜厚での表面/界面
粗さの評価には適さない。また、X線反射率は臨界角近
傍での入射角の測定になるので、通常臨界角は1°以内
の微小角のためプローブ光は極端な斜入射となり、測定
試料面の照射面積は広がり、微小領域の評価はできない
欠点があった。本発明は、かかる課題に鑑み、電子写真
感光体層などの数μm〜10数μmオーダーの膜厚に対
する表面/界面の粗さの評価を、1μmφ程度の微小領
域の表面/界面粗さで評価できる反射率測定装置を提供
することを目的とする。
In the conventional X-ray reflectance measuring method and the X-ray reflectance measuring apparatus disclosed in Japanese Patent Laid-Open No. 11-337507, as described with reference to FIG.
Measurement sample When the probe light is incident on the surface of the sample surface (oblique angle incidence) and the glancing angle increases beyond the critical angle, the reflectance decreases sharply, but this decrease is due to the roughness of the surface / interface. Therefore, the glancing angle dependence of the reflectance is fitted with a simulation curve to quantitatively evaluate the surface / interface roughness. However, the film thickness and surface / interface roughness that can be evaluated by X-ray reflectance measurement are on the order of Å, which is approximately the wavelength of X-rays. Electrophotographic photoreceptor layer is several μm to 10
It is about several μm, which is not suitable for evaluation of surface / interface roughness at a film thickness of this order. Further, since the X-ray reflectance is a measurement of an incident angle in the vicinity of the critical angle, since the critical angle is usually a small angle within 1 °, the probe light is extremely obliquely incident, and the irradiation area of the measurement sample surface is widened. There was a drawback that it was not possible to evaluate minute areas. In view of the above problems, the present invention evaluates the roughness of the surface / interface with respect to the film thickness on the order of several μm to several tens of μm, such as the electrophotographic photoreceptor layer, by evaluating the surface / interface roughness of a minute region of about 1 μmφ. It is an object of the present invention to provide a reflectance measuring device that can be used.

【0004】[0004]

【課題を解決するための手段】本発明はかかる課題を解
決するために、請求項1は、被測定面に光を照射してそ
の反射光量から前記被測定面の表面粗さを測定する反射
率測定装置において、前記被測定面を照射する光源と、
該光源からの光を前記被測定面に導くための導波路と、
該導波路の先端から照射された光束により前記被測定面
からの反射光を導く放射状のスリットと、該スリットに
より導かれた反射光を光電変換する受光素子とを備え、
前記受光素子は、所定の径を有する半円状の支持部材に
より固定され、前記導波路が前記被測定面に対して略垂
直に、しかも前記導波路先端が前記被測定面近傍に位置
するように前記支持部材の半円周の略中心位置に一体化
されて設置されていることを特徴とする。本発明の反射
率測定装置は、特定の波長を持つ光源からの光を被測定
面に垂直に照射するところに特徴がある。そして、被測
定面に照射された光は測定面の凹凸に応じて乱反射を起
こし、その反射光が半円状に拡散する。この反射光を半
円状の面に設置された受光素子で光電変換して、あるア
ルゴリズムに従って、そのデータを処理することにより
被測定面の凹凸を測定することができる。また、受光素
子が反射光を正確に検出するために、放射状に設けられ
たスリットにより迷光を抑制する構造になっている。そ
して、これらが有機的に一体化され、一つのモジュール
として機能する。かかる発明によれば、受光素子は、所
定の径を有する半円状の支持部材により固定され、前記
導波路が前記支持部材の略中心位置に前記支持部材と一
体化されて設置されているので、被測定面からの反射光
を効率よく受光でき、測定が正確に、しかも迅速に行う
ことができる。請求項2は、前記スリットは、前記導波
路の先端から等間隔に前記支持部材の全円周方向に放射
状に形成され、前記スリット間に対応する前記支持部材
に前記受光素子が少なくとも1つ以上それぞれ配置され
ていることも本発明の有効な手段である。スリットの役
目は、隣接する光が回り込むことにより発生する迷光を
防止するために設けられる。従って、各スリットで囲ま
れた範囲には、受光素子が複数個配置され一定方向から
の反射光のみを受光するようになっている。かかる技術
手段によれば、スリットは、前記導波路の先端から等間
隔に前記支持部材の全円周方向に放射状に形成され、前
記スリット間に対応する前記支持部材に前記受光素子が
少なくとも1つ以上それぞれ配置されているので、迷光
の影響の少ない正確な測定が可能となる。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a reflection method for irradiating a surface to be measured with light and measuring the surface roughness of the surface to be measured from the amount of reflected light. In the rate measuring device, a light source for irradiating the surface to be measured,
A waveguide for guiding light from the light source to the surface to be measured,
A radial slit for guiding the reflected light from the surface to be measured by the luminous flux emitted from the tip of the waveguide, and a light receiving element for photoelectrically converting the reflected light guided by the slit,
The light receiving element is fixed by a semicircular support member having a predetermined diameter so that the waveguide is positioned substantially perpendicular to the surface to be measured and the tip of the waveguide is located near the surface to be measured. And is integrally installed at a substantially central position of a semicircle of the support member. The reflectance measuring device of the present invention is characterized in that light from a light source having a specific wavelength is applied perpendicularly to the surface to be measured. Then, the light applied to the surface to be measured causes irregular reflection according to the unevenness of the measurement surface, and the reflected light diffuses in a semicircular shape. The reflected light is photoelectrically converted by a light receiving element installed on a semicircular surface, and the data is processed according to an algorithm, whereby the unevenness of the surface to be measured can be measured. Further, in order for the light receiving element to accurately detect the reflected light, it has a structure in which stray light is suppressed by the slits provided radially. Then, these are organically integrated and function as one module. According to the invention, the light receiving element is fixed by the semicircular support member having a predetermined diameter, and the waveguide is integrally installed with the support member at a substantially central position of the support member. The reflected light from the surface to be measured can be efficiently received, and the measurement can be performed accurately and quickly. According to a second aspect of the present invention, the slits are radially formed in a circumferential direction of the support member at equal intervals from a tip of the waveguide, and at least one light receiving element is provided on the support member corresponding to the slits. The arrangement of each is also an effective means of the present invention. The role of the slit is provided to prevent stray light that is generated by adjacent light coming around. Therefore, a plurality of light receiving elements are arranged in the area surrounded by each slit so that only the reflected light from a certain direction is received. According to this technical means, the slits are radially formed at equal intervals from the tip of the waveguide in the entire circumferential direction of the support member, and at least one light receiving element is provided on the support member corresponding to the slits. Since they are respectively arranged as described above, accurate measurement with less influence of stray light is possible.

【0005】請求項3は、前記光源は10μm〜0.0
1μm以内の単色光の1つの波長、若しくは選択された
複数の波長から構成されていることも本発明の有効な手
段である。測定器の光源の波長は、測定対象物の表面粗
さにより決定される。例えば、感光体の表面粗さは数μ
m〜から10数μmである。また、光はその色により波
長が異なる。一般に赤色は波長が長く、青色は波長が短
い。この性質を利用して多層構造の被測定面を複数の波
長を同時に照射して測定することが可能である。かかる
技術手段によれば、光源は10μm〜0.01μm以内
の単色光の1つの波長、若しくは選択された複数の波長
から構成されているので、感光体表面、あるいは多層構
造の測定面の測定を行うことができる。請求項4は、前
記受光素子は、フォトダイオードアレイにより構成さ
れ、該フォトダイオードアレイの間隔が等間隔に配置さ
れていることも本発明の有効な手段である。受光素子は
各種存在するが、比較的安く、感度が高く、温度特性が
安定している受光素子として、フォトダイオードアレイ
がある。フォトダイオードアレイは一定の電圧をアノー
ドとカソード間に印加し、光量に応じてダイオードに流
れる電流値が変化することを利用するものである。そし
て予め決められた間隔に配置することにより、各フォト
ダイオードからの情報を処理して表面の凹凸を測定する
ことができる。かかる技術手段によれば、受光素子は、
フォトダイオードアレイにより構成され、該フォトダイ
オードアレイの間隔が等間隔に配置されているので、装
置を安価に構成でき、測定データを正確に処理すること
ができる。
According to a third aspect of the present invention, the light source has a size of 10 μm to 0.0 μm.
It is also an effective means of the present invention that one wavelength of monochromatic light within 1 μm or a plurality of selected wavelengths is used. The wavelength of the light source of the measuring device is determined by the surface roughness of the measuring object. For example, the surface roughness of the photoconductor is several μ.
It is from m to 10 and several μm. The wavelength of light varies depending on its color. Generally, red has a long wavelength and blue has a short wavelength. By utilizing this property, it is possible to irradiate a surface to be measured having a multilayer structure with a plurality of wavelengths at the same time for measurement. According to this technical means, since the light source is composed of one wavelength of monochromatic light within 10 μm to 0.01 μm or a plurality of selected wavelengths, it is possible to measure the surface of the photoconductor or the measurement surface of the multilayer structure. It can be carried out. According to a fourth aspect of the present invention, it is an effective means of the present invention that the light receiving element is composed of a photodiode array, and the photodiode arrays are arranged at equal intervals. Although there are various types of light receiving elements, there is a photodiode array as a light receiving element that is relatively inexpensive, has high sensitivity, and has stable temperature characteristics. The photodiode array utilizes a fact that a constant voltage is applied between the anode and the cathode and the value of the current flowing through the diode changes according to the amount of light. By arranging them at a predetermined interval, it is possible to process the information from each photodiode and measure the surface irregularities. According to such technical means, the light receiving element is
Since the photodiode arrays are formed and the photodiode arrays are arranged at equal intervals, the device can be constructed at low cost and the measurement data can be processed accurately.

【0006】請求項5は、前記導波路に複数の波長の単
色光を混合して導き、該混合単色光を前記被測定面に照
射することも本発明の有効な手段である。ある単色光は
その色特有の波長を有し、長い波長ほど深い部分を測定
することができる。従って、複数の単色光を混合するこ
とにより、多層の測定面を同時に測定が可能となる。か
かる技術手段によれば、前記導波路に複数の波長の単色
光を混合して導き、該混合単色光を前記被測定面に照射
するので、多層構造の測定面を個別に測定することがで
きる。請求項6は、前記受光素子は、前記光源が複数波
長の単色光を選択した場合、前記各波長ごとに感度を有
するフィルターを備えた受光素子を交互に配列し、前記
各波長の反射率スペクトルを交互に分離することも本発
明の有効な手段である。複数波長の単色光を被測定面に
照射した場合、そこからの反射光は各異なる波長が混合
されて反射される。この混合した波長を選別する方法と
して、各波長にそれぞれ感度を持つフィルターによる方
法が最適である。そこで、各波長ごとに受光素子の前面
にフィルターを設け、それを交互に配置する。かかる技
術手段によれば、受光素子は、前記光源が複数波長の単
色光を選択した場合、前記各波長ごとに感度を有するフ
ィルターを備えた受光素子を交互に配列し、前記各波長
の反射率スペクトルを交互に分離するので、複数の波長
による1次元の測定が同時に可能となる。
According to a fifth aspect of the present invention, it is also an effective means of the present invention to mix and guide monochromatic light of a plurality of wavelengths to the waveguide and irradiate the mixed monochromatic light on the surface to be measured. A certain monochromatic light has a wavelength peculiar to that color, and a longer wavelength can measure a deeper portion. Therefore, by mixing a plurality of monochromatic lights, it is possible to measure the measurement surfaces of multiple layers at the same time. According to such a technical means, the monochromatic lights having a plurality of wavelengths are mixed and guided to the waveguide, and the mixed monochromatic lights are applied to the surface to be measured, so that the measurement surfaces having the multilayer structure can be individually measured. . According to a sixth aspect of the present invention, in the light receiving element, when the light source selects monochromatic light having a plurality of wavelengths, the light receiving elements provided with filters having sensitivity for each wavelength are alternately arranged, and the reflectance spectrum of each wavelength is provided. Is also an effective means of the present invention. When a surface to be measured is irradiated with monochromatic light of a plurality of wavelengths, the reflected light from the surface is reflected by mixing different wavelengths. As a method of selecting the mixed wavelength, a method using a filter having sensitivity to each wavelength is most suitable. Therefore, a filter is provided on the front surface of the light receiving element for each wavelength, and the filters are alternately arranged. According to this technical means, when the light source selects monochromatic light having a plurality of wavelengths, the light receiving elements are arranged alternately with light receiving elements provided with a filter having sensitivity for each of the wavelengths, and the reflectance of each of the wavelengths. Since the spectra are separated alternately, one-dimensional measurement with a plurality of wavelengths is possible at the same time.

【0007】請求項7は、前記受光素子は、前記光源が
複数波長の単色光を選択した場合、前記各波長ごとに感
度を有するフィルターを備えた受光素子を複数列配置
し、前記各波長の反射率スペクトルを列ごとに分離する
ことも本発明の有効な手段である。前記請求項6では、
交互に異なる波長のフィルターを備えた受光素子を1列
には配置するため、1つの波長の受光素子数が減少し
て、測定精度と感度が低下する。そこで、異なる波長の
フィルターを備えた受光素子を並列に配置する。かかる
技術手段によれば、受光素子は、前記光源が複数波長の
単色光を選択した場合、前記各波長ごとに感度を有する
フィルターを備えた受光素子を複数列配置し、前記各波
長の反射率スペクトルを列ごとに分離するので、測定精
度と感度の低下を防止することができる。請求項8は、
前記受光素子は、前記光源が複数波長の単色光を選択し
た場合、前記各波長ごとに感度を有するフィルターを備
え、該フィルターを測定ごとに交換して前記各波長の反
射率スペクトルを分離することも本発明の有効な手段で
ある。前記請求項7では、受光素子を複数列配置するた
め、受光素子の数が増加し、コスト的に不利である。ま
た、受光素子が複数列になるため、2次元的な配置とな
り測定に誤差がでる可能性がある。そこで、配列は1次
元的に1列に配置し、フィルターを各波長ごとに交換す
る。かかる技術手段によれば、受光素子は、前記光源が
複数波長の単色光を選択した場合、前記各波長ごとに感
度を有するフィルターを備え、該フィルターを測定ごと
に交換して前記各波長の反射率スペクトルを分離するの
で、安価なコストで多層構造の測定が可能となる。
According to a seventh aspect of the present invention, in the light receiving element, when the light source selects monochromatic light having a plurality of wavelengths, a plurality of light receiving elements having a filter having sensitivity for each wavelength are arranged in a plurality of rows, and Separating the reflectance spectrum for each column is also an effective means of the present invention. In the claim 6,
Since the light receiving elements having filters of different wavelengths are arranged in a row, the number of light receiving elements of one wavelength is reduced, and the measurement accuracy and sensitivity are lowered. Therefore, light receiving elements having filters of different wavelengths are arranged in parallel. According to such a technical means, when the light source selects monochromatic light of a plurality of wavelengths, the light receiving element has a plurality of rows of light receiving elements provided with a filter having sensitivity for each wavelength, and the reflectance of each wavelength. Since the spectrum is separated for each column, it is possible to prevent deterioration of measurement accuracy and sensitivity. Claim 8
When the light source selects monochromatic light of a plurality of wavelengths, the light receiving element includes a filter having sensitivity for each wavelength, and the filter is replaced for each measurement to separate the reflectance spectrum of each wavelength. Is also an effective means of the present invention. According to the seventh aspect, since the light receiving elements are arranged in a plurality of rows, the number of light receiving elements increases, which is disadvantageous in cost. In addition, since the light receiving elements are arranged in a plurality of rows, there is a possibility that the arrangement becomes two-dimensional and an error may occur in measurement. Therefore, the array is arranged one-dimensionally in one row, and the filters are exchanged for each wavelength. According to this technical means, when the light source selects monochromatic light having a plurality of wavelengths, the light receiving element includes a filter having sensitivity for each wavelength, and the filter is exchanged for each measurement to reflect the wavelengths. Since the rate spectra are separated, it is possible to measure the multilayer structure at low cost.

【0008】[0008]

【発明の実施の形態】以下、本発明を図に示した実施形
態を用いて詳細に説明する。但し、この実施形態に記載
される構成要素、種類、組み合わせ、形状、その相対配
置などは特定的な記載がない限り、この発明の範囲をそ
れのみに限定する主旨ではなく単なる説明例に過ぎな
い。図1は、本発明の第1の実施形態の反射率測定装置
のヘッドモジュールの図であり、(a)はその正面図、
(b)は平面図である。このヘッドモジュール50の構
成は、図示しないレーザ光の光源を図示しない被測定面
に導くプローブ光導波路1と、このプローブ光導波路1
の先端5から照射された光束により、被測定面からの反
射光を導く放射状のスリット4と、このスリット4によ
り導かれた反射光を光電変換する複数の受光素子3と、
この複数の受光素子3を半円状に支持する支持部材2に
より構成されている。また、図1(b)のように前記受
光素子3は、所定の径を有する半円状の支持部材2によ
りその内面に固定されており、前記プローブ光導波路1
が支持部材2の略中心位置に一体化されて設置されてい
る。また、光源には波長0.1nm程度のX線ではな
く、650nm程度の波長のレーザ光を用いる。また、
受光素子3にはフォトダイオードアレイが使われる。そ
して、測定面に垂直にプローブ光を照射させ、検出器は
プローブ光照射点を中心とする立体角あるいは少なくと
も1次元的に周囲への散乱光をカバーするものとする。
このような配置をコンパクトに実現するために、プロー
ブ光導波路1とフォトダイオードアレイ3などの支持部
材2を一体化した測定ヘッドモジュール50とする。図
2は、図1のヘッドモジュール50を使用した本発明の
反射率測定装置のブロック図であり、同じ構成要素には
同じ参照番号が付されている。この構成は、プローブ光
導波路1の一端に接続されたレーザダイオード6と、こ
のレーザダイオード6の光量を一定に制御するLDコン
トローラ7と、支持部材2上に配置されたフォトダイオ
ードアレイ3からのアナログ信号をデジタル信号に変換
するA/Dコンバータ9と、このA/Dコンバータ9か
らのデータに基づき、所定のアルゴリズムにより被測定
面の凹凸データを演算するCPU10から構成される。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the embodiments shown in the drawings. However, the constituent elements, types, combinations, shapes, relative arrangements, and the like described in this embodiment are merely explanatory examples, not the gist of limiting the scope of the present invention thereto, unless specifically stated. .. FIG. 1 is a diagram of a head module of a reflectance measuring device according to a first embodiment of the present invention, in which (a) is a front view thereof,
(B) is a plan view. This head module 50 has a configuration in which a probe optical waveguide 1 for guiding a laser light source (not shown) to a surface to be measured (not shown) and the probe optical waveguide 1 are provided.
A radial slit 4 that guides the reflected light from the surface to be measured by the light flux emitted from the tip 5 of the optical disc, and a plurality of light receiving elements 3 that photoelectrically convert the reflected light guided by the slit 4.
The support member 2 supports the plurality of light receiving elements 3 in a semicircular shape. Further, as shown in FIG. 1B, the light receiving element 3 is fixed to the inner surface of the probe optical waveguide 1 by a semicircular support member 2 having a predetermined diameter.
Are integrally installed at a substantially central position of the support member 2. Further, as the light source, laser light having a wavelength of about 650 nm is used instead of X-rays having a wavelength of about 0.1 nm. Also,
A photodiode array is used for the light receiving element 3. Then, the measurement surface is irradiated with the probe light perpendicularly, and the detector covers the scattered light to the surroundings in a solid angle centered on the probe light irradiation point or at least one-dimensionally.
In order to realize such an arrangement compactly, the probe head 1 and the supporting member 2 such as the photodiode array 3 are integrated into a measuring head module 50. FIG. 2 is a block diagram of a reflectance measuring apparatus of the present invention using the head module 50 of FIG. 1, and the same components are designated by the same reference numerals. This configuration has a laser diode 6 connected to one end of the probe optical waveguide 1, an LD controller 7 for controlling the light amount of the laser diode 6 at a constant level, and an analog from a photodiode array 3 arranged on the support member 2. It is composed of an A / D converter 9 for converting a signal into a digital signal, and a CPU 10 for calculating unevenness data of a surface to be measured by a predetermined algorithm based on the data from the A / D converter 9.

【0009】次に図1と図2を併せて参照しながら、そ
の概略動作について説明する。CPU10はLDコント
ローラ7に対してレーザダイオード6を点灯する信号を
発生する。LDコントローラ7は図示しないレーザダイ
オード6からの帰還信号を監視しながら、発行パワーが
常に一定になるように制御する。そのレーザ光はプロー
ブ光導波路1を介して導かれ、先端5から図示しない被
測定面に垂直に照射される(詳細は後述する)。照射さ
れたレーザ光は被測定面の凹凸に応じていろいろな角度
で反射され、放射状のスリット4により迷光を抑制さ
れ、支持部材2の内面に配置された受光素子3の方向に
放射状に反射する。受光素子3は支持部材2の全面に1
次元的に等間隔に配置されているので、各受光素子から
の信号(以下、チャネルと記す)は到達する反射光の強
弱に応じて電流が増減する。各チャネルの信号は信号線
8によりA/Dコンバータ9に導かれ、アナログ信号か
らデジタル信号に変換される。そして、デジタル信号は
CPU10により各チャネルごとに内部のアルゴリズム
に従って処理され、被測定面の凹凸情報として出力され
る。図3は、このヘッドモジュールで感光体ドラム20
の膜表面/界面の凹凸の検査に応用した例である。感光
体ドラムの感光体層は数μm〜10数μm程度であり、
本発明のレーザ光源波長には最適な測定対象である。
Next, with reference to FIG. 1 and FIG. 2 together, the general operation thereof will be described. The CPU 10 generates a signal for turning on the laser diode 6 to the LD controller 7. The LD controller 7 monitors the feedback signal from the laser diode 6 (not shown) and controls so that the issuing power is always constant. The laser light is guided through the probe optical waveguide 1 and is irradiated perpendicularly from the tip 5 to a measurement surface (not shown) (details will be described later). The irradiated laser light is reflected at various angles according to the unevenness of the surface to be measured, stray light is suppressed by the radial slits 4, and is reflected radially toward the light receiving element 3 arranged on the inner surface of the support member 2. . The light receiving element 3 is provided on the entire surface of the support member 2 by 1
Since the signals are dimensionally arranged at equal intervals, a signal (hereinafter, referred to as a channel) from each light receiving element has a current that increases or decreases depending on the intensity of reflected light that reaches it. The signal of each channel is guided to the A / D converter 9 by the signal line 8 and converted from an analog signal to a digital signal. Then, the digital signal is processed by the CPU 10 for each channel according to an internal algorithm, and is output as unevenness information of the surface to be measured. FIG. 3 shows this head module with the photosensitive drum 20.
It is an example applied to the inspection of the unevenness of the film surface / interface. The photosensitive layer of the photosensitive drum is about several μm to several tens of μm,
It is an optimum measurement target for the laser light source wavelength of the present invention.

【0010】図4は、本発明による反射率の散乱角依存
性を示す図である。微小領域の評価に適するようにプロ
ーブ光21、22は評価面25に垂直に照射し、あらゆ
る方向の散乱を検出するために、1次元の円周上で測定
できるようになっている。例えば、散乱角が26のよう
な場合、実線の散乱角で検出される凹凸変動の成分は2
3のようになり、破線の散乱角の場合に検出される凹凸
変動の成分は24のようになる。本発明によると、従来
例のような深さ方向の変化成分だけでなく、傾いた方向
すなわち変動の面内成分も評価できることが特徴であ
る。これは、図3の感光体ドラムのような塗膜表面の凹
凸評価に非常に適していることになる。図5は、本発明
の第2の実施形態の反射率測定装置のヘッドモジュール
の図であり、(a)はその正面図、(b)は平面図であ
る。同じ構成要素には同じ参照番号が付されているの
で、重複する説明は省略する。このヘッドモジュール5
1が図1と異なる点は、受光素子が異なる波長のフィル
ターを備えて交互に配列されている点である。例えば2
種類の波長をプローブ光導波路1から導入し、先端5か
ら照射されると、その混合された反射光は受光素子1
1、12に到達する。受光素子11、12の前面には2
種類の波長の何れかを通過するフィルターを備えてあ
り、例えば、受光素子11が赤色のフィルター、受光素
子12が青色のフィルターであれば、その色のみに感度
を有する。そのような受光素子を交互に配列する。以上
のように、複数波長の単色光を被測定面に照射した場
合、そこからの反射光は各異なる波長が混合されて反射
される。この混合した波長を選別する方法として、各波
長にそれぞれ感度を持つフィルターによる方法が最適で
ある。そこで、各波長ごとに受光素子の前面にフィルタ
ーを設け、それを交互に配置する。これにより、複数の
波長による1次元の測定が同時に可能となる。
FIG. 4 is a diagram showing the scattering angle dependence of the reflectance according to the present invention. The probe beams 21 and 22 are applied perpendicularly to the evaluation surface 25 so as to be suitable for the evaluation of a minute area, and can be measured on a one-dimensional circle in order to detect scattering in all directions. For example, when the scattering angle is 26, the component of the unevenness variation detected by the scattering angle of the solid line is 2
3 is obtained, and the component of the unevenness variation detected when the scattering angle of the broken line is 24. According to the present invention, not only the change component in the depth direction as in the conventional example, but also the in-plane component of the tilt direction, that is, the variation can be evaluated. This is very suitable for the evaluation of the unevenness of the coating film surface such as the photosensitive drum of FIG. 5A and 5B are diagrams of a head module of a reflectance measuring device according to a second embodiment of the present invention, FIG. 5A is a front view thereof, and FIG. 5B is a plan view thereof. Since the same components are designated by the same reference numerals, duplicate description will be omitted. This head module 5
1 is different from FIG. 1 in that the light receiving elements are provided with filters having different wavelengths and are alternately arranged. Eg 2
When different kinds of wavelengths are introduced from the probe optical waveguide 1 and irradiated from the tip 5, the mixed reflected light is received by the light receiving element 1.
Reach 1,12. 2 in front of the light receiving elements 11 and 12.
If the light receiving element 11 is a red filter and the light receiving element 12 is a blue filter, for example, the light receiving element 11 is sensitive to only that color. Such light receiving elements are arranged alternately. As described above, when the surface to be measured is irradiated with monochromatic light having a plurality of wavelengths, the reflected light from the surface is mixed with different wavelengths and reflected. As a method of selecting the mixed wavelength, a method using a filter having sensitivity to each wavelength is most suitable. Therefore, a filter is provided on the front surface of the light receiving element for each wavelength, and the filters are alternately arranged. This enables one-dimensional measurement at a plurality of wavelengths at the same time.

【0011】図6は、本発明の第3の実施形態の反射率
測定装置のヘッドモジュールの図であり、(a)はその
正面図、(b)は平面図である。同じ構成要素には同じ
参照番号が付されているので、重複する説明は省略す
る。このヘッドモジュール52が図1と異なる点は、各
波長ごとに感度を有するフィルターを備えた受光素子を
複数列配置されている点である。例えば2種類の波長を
プローブ光導波路1から導入し、先端5から照射される
と、その混合された反射光は受光素子13、14に到達
する。受光素子13、14の前面には2種類の波長の何
れかを通過するフィルターを備えてあり、例えば、受光
素子13が赤色のフィルター、受光素子14が青色のフ
ィルターであれば、その色のみに感度を有する。そのよ
うな受光素子を2列に配列する。前記図5では、交互に
異なる波長のフィルターを備えた受光素子を1列には配
置するため、1つの波長の受光素子数が減少して、測定
精度と感度が低下することがあった。そこで、異なる波
長のフィルターを備えた受光素子を並列に配置すること
で、測定精度と感度の低下を防止することができる。
6A and 6B are views of a head module of a reflectance measuring apparatus according to a third embodiment of the present invention, FIG. 6A is a front view thereof, and FIG. 6B is a plan view thereof. Since the same components are designated by the same reference numerals, duplicate description will be omitted. The head module 52 is different from that of FIG. 1 in that a plurality of light receiving elements each having a filter having sensitivity for each wavelength are arranged in a row. For example, when two kinds of wavelengths are introduced from the probe optical waveguide 1 and irradiated from the tip 5, the mixed reflected light reaches the light receiving elements 13 and 14. The front surface of each of the light receiving elements 13 and 14 is provided with a filter that passes one of two types of wavelengths. For example, if the light receiving element 13 is a red filter and the light receiving element 14 is a blue filter, only that color Has sensitivity. Such light receiving elements are arranged in two rows. In FIG. 5, since the light receiving elements having filters with different wavelengths are alternately arranged in one row, the number of light receiving elements with one wavelength may decrease, and the measurement accuracy and sensitivity may decrease. Therefore, by arranging the light receiving elements provided with filters of different wavelengths in parallel, it is possible to prevent the measurement accuracy and the sensitivity from decreasing.

【0012】図7は、本発明の第4の実施形態の反射率
測定装置のヘッドモジュールの図であり、(a)はその
正面図、(b)は平面図である。同じ構成要素には同じ
参照番号が付されているので、重複する説明は省略す
る。このヘッドモジュール53が図1と異なる点は、各
波長ごとに感度を有するフィルターを備え、このフィル
ターを測定ごとに交換する点である。例えば2種類の波
長をプローブ光導波路1から導入し、先端5から照射さ
れると、その混合された反射光は受光素子3に到達す
る。受光素子3の前面には2種類の波長の何れかを通過
するフィルター15を備えてあり、例えば、青色のフィ
ルターであれば、その色のみに感度を有して、その信号
が取り出せる。また、フィルター15を赤色に代えれ
ば、赤色の信号が取り出せる。前記図6では、受光素子
を複数列配置するため、受光素子の数が増加し、コスト
的に不利であった。また、受光素子が複数列になるた
め、2次元的な配置となり測定に誤差がでる可能性があ
る。そこで、配列は1次元的に1列に配置し、フィルタ
ーを各波長ごとに交換することにより、安価なコストで
多層構造の測定が可能となる。
FIG. 7 is a diagram of a head module of a reflectance measuring apparatus according to a fourth embodiment of the present invention, (a) is its front view and (b) is a plan view. Since the same components are designated by the same reference numerals, duplicate description will be omitted. The difference between this head module 53 and FIG. 1 is that a filter having a sensitivity for each wavelength is provided and this filter is replaced for each measurement. For example, when two kinds of wavelengths are introduced from the probe optical waveguide 1 and irradiated from the tip 5, the mixed reflected light reaches the light receiving element 3. The front surface of the light receiving element 3 is provided with a filter 15 that passes one of two types of wavelengths. For example, a blue filter has sensitivity only to that color and can extract the signal. If the filter 15 is replaced with red, a red signal can be taken out. In FIG. 6, since the light receiving elements are arranged in a plurality of rows, the number of light receiving elements increases, which is disadvantageous in terms of cost. In addition, since the light receiving elements are arranged in a plurality of rows, there is a possibility that the arrangement becomes two-dimensional and an error may occur in measurement. Therefore, by arranging the arrays one-dimensionally in one row and exchanging the filters for each wavelength, it is possible to measure the multilayer structure at low cost.

【0013】[0013]

【発明の効果】以上記載のごとく本発明によれば、請求
項1は、受光素子は、所定の径を有する半円状の支持部
材により固定され、前記導波路が前記支持部材の略中心
位置に前記支持部材と一体化されて設置されているの
で、被測定面からの反射光を効率よく受光でき、測定が
正確に、しかも迅速に行うことができる。また請求項2
は、スリットは、前記導波路の先端から等間隔に前記支
持部材の全円周方向に放射状に形成され、前記スリット
間に対応する前記支持部材に前記受光素子が少なくとも
1つ以上それぞれ配置されているので、迷光の影響の少
ない正確な測定が可能となる。また請求項3は、光源は
10μm〜0.01μm以内の単色光の1つの波長、若
しくは選択された複数の波長から構成されているので、
感光体表面、あるいは多層構造の測定面の測定を行うこ
とができる。また請求項4は、受光素子は、フォトダイ
オードアレイにより構成され、該フォトダイオードアレ
イの間隔が等間隔に配置されているので、装置を安価に
構成でき、測定データを正確に処理することができる。
また請求項5は、前記導波路に複数の波長の単色光を混
合して導き、該混合単色光を前記被測定面に照射するの
で、多層構造の測定面を個別に測定することができる。
また請求項6は、受光素子は、前記光源が複数波長の単
色光を選択した場合、前記各波長ごとに感度を有するフ
ィルターを備えた受光素子を交互に配列し、前記各波長
の反射率スペクトルを交互に分離するので、複数の波長
による1次元の測定が同時に可能となる。また請求項7
は、受光素子は、前記光源が複数波長の単色光を選択し
た場合、前記各波長ごとに感度を有するフィルターを備
えた受光素子を複数列配置し、前記各波長の反射率スペ
クトルを列ごとに分離するので、測定精度と感度の低下
を防止することができる。また請求項8は、受光素子
は、前記光源が複数波長の単色光を選択した場合、前記
各波長ごとに感度を有するフィルターを備え、該フィル
ターを測定ごとに交換して前記各波長の反射率スペクト
ルを分離するので、安価なコストで多層構造の測定が可
能となる。
As described above, according to the present invention, in claim 1, the light receiving element is fixed by a semicircular support member having a predetermined diameter, and the waveguide is located at a substantially central position of the support member. Since it is integrated with the support member, the reflected light from the surface to be measured can be efficiently received, and the measurement can be performed accurately and quickly. Claim 2
The slits are radially formed at equal intervals from the tip of the waveguide in the circumferential direction of the supporting member, and at least one or more light receiving elements are arranged on the supporting member corresponding to the slits. As a result, accurate measurement with less influence of stray light is possible. In the third aspect, since the light source is composed of one wavelength of monochromatic light within 10 μm to 0.01 μm, or a plurality of selected wavelengths,
It is possible to measure the surface of the photoreceptor or the measurement surface having a multilayer structure. According to a fourth aspect of the present invention, since the light receiving element is composed of a photodiode array and the photodiode arrays are arranged at equal intervals, the device can be constructed at low cost and the measurement data can be accurately processed. .
Further, according to the present invention, the monochromatic lights having a plurality of wavelengths are mixed and guided to the waveguide, and the mixed monochromatic lights are applied to the surface to be measured, so that the measurement surfaces having the multilayer structure can be individually measured.
According to a sixth aspect of the present invention, in the light receiving element, when the light source selects monochromatic light having a plurality of wavelengths, the light receiving elements provided with filters having sensitivity for each wavelength are alternately arranged, and the reflectance spectrum of each wavelength is provided. Are alternately separated, so that one-dimensional measurement with a plurality of wavelengths is possible at the same time. Claim 7
When the light source selects monochromatic light of a plurality of wavelengths, the light receiving element is arranged in a plurality of rows of light receiving elements each having a filter having sensitivity for each wavelength, and the reflectance spectrum of each wavelength is arranged for each row. Since they are separated, it is possible to prevent a decrease in measurement accuracy and sensitivity. According to claim 8, the light receiving element is provided with a filter having sensitivity for each wavelength when the light source selects monochromatic light of a plurality of wavelengths, and the filter is exchanged for each measurement, and the reflectance of each wavelength is changed. Since the spectra are separated, it is possible to measure the multilayer structure at a low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態の反射率測定装置のヘ
ッドモジュールの図であり、(a)はその正面図、
(b)は平面図である。
FIG. 1 is a diagram of a head module of a reflectance measuring device according to a first embodiment of the present invention, in which FIG.
(B) is a plan view.

【図2】本発明のヘッドモジュールを使用した反射率測
定装置のブロック図である。
FIG. 2 is a block diagram of a reflectance measuring device using the head module of the present invention.

【図3】本発明のヘッドモジュールで感光体ドラムの膜
表面/界面の凹凸の検査に応用した例を説明する図であ
る。
FIG. 3 is a diagram illustrating an example in which the head module of the present invention is applied to inspect unevenness on a film surface / interface of a photosensitive drum.

【図4】本発明の反射率の散乱角依存性を示す図であ
る。
FIG. 4 is a diagram showing the scattering angle dependence of the reflectance of the present invention.

【図5】本発明の第2の実施形態の反射率測定装置のヘ
ッドモジュールの図であり、(a)はその正面図、
(b)は平面図である。
FIG. 5 is a diagram of a head module of a reflectance measuring device according to a second embodiment of the present invention, in which (a) is a front view thereof,
(B) is a plan view.

【図6】本発明の第3の実施形態の反射率測定装置のヘ
ッドモジュールの図であり、(a)はその正面図、
(b)は平面図である。
FIG. 6 is a diagram of a head module of a reflectance measuring device according to a third embodiment of the present invention, in which (a) is a front view thereof,
(B) is a plan view.

【図7】本発明の第4の実施形態の反射率測定装置のヘ
ッドモジュールの図であり、(a)はその正面図、
(b)は平面図である。
FIG. 7 is a diagram of a head module of a reflectance measuring device according to a fourth embodiment of the present invention, in which (a) is a front view thereof,
(B) is a plan view.

【図8】従来の正反射による反射率の入射角依存性を説
明するための図である。
FIG. 8 is a diagram for explaining the incident angle dependence of reflectance due to conventional specular reflection.

【符号の説明】[Explanation of symbols]

1 プローブ光導波路、2 支持部材、3 受光素子、
4 スリット、5 プローブ光導波路1の先端
1 probe optical waveguide, 2 support member, 3 light receiving element,
4 slits, 5 tip of probe optical waveguide 1

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 被測定面に光を照射してその反射光量か
ら前記被測定面の表面粗さを測定する反射率測定装置に
おいて、前記被測定面を照射する光源と、該光源からの
光を前記被測定面に導くための導波路と、該導波路の先
端から照射された光束により前記被測定面からの反射光
を導く放射状のスリットと、該スリットにより導かれた
反射光を光電変換する受光素子とを備え、 前記受光素子は、所定の径を有する半円状の支持部材に
より固定され、前記導波路が前記被測定面に対して略垂
直に、しかも、前記導波路先端が前記被測定面近傍に位
置するように前記支持部材の半円周の略中心位置に一体
化されて設置されていることを特徴とする反射率測定装
置。
1. A reflectance measuring apparatus for irradiating a surface to be measured with light and measuring the surface roughness of the surface to be measured from the amount of reflected light, a light source for irradiating the surface to be measured, and light from the light source. For guiding the light to the surface to be measured, a radial slit for guiding the reflected light from the surface to be measured by the light beam emitted from the tip of the waveguide, and photoelectric conversion of the light reflected by the slit. The light receiving element is fixed by a semicircular support member having a predetermined diameter, the waveguide is substantially perpendicular to the measured surface, and the waveguide tip is A reflectance measuring device, which is integrally installed at a substantially central position of a semicircle of the support member so as to be located near a surface to be measured.
【請求項2】 前記スリットは、前記導波路の先端から
等間隔に前記支持部材の全円周方向に放射状に形成さ
れ、前記スリット間に対応する前記支持部材に前記受光
素子が少なくとも1つ以上それぞれ配置されていること
を特徴とする反射率測定装置。
2. The slits are radially formed at equal intervals from the tip of the waveguide in the entire circumferential direction of the support member, and at least one light receiving element is provided in the support member corresponding to the slits. A reflectance measuring device characterized by being arranged respectively.
【請求項3】 前記光源は10μm〜0.01μm以内
の単色光の1つの波長、若しくは選択された複数の波長
から構成されていることを特徴とする請求項1、2記載
の反射率測定装置。
3. The reflectance measuring apparatus according to claim 1, wherein the light source is composed of one wavelength of monochromatic light within 10 μm to 0.01 μm or a plurality of selected wavelengths. .
【請求項4】 前記受光素子は、フォトダイオードアレ
イにより構成され、該フォトダイオードアレイの間隔が
等間隔に配置されていることを特徴とする請求項1、2
記載の反射率測定装置。
4. The light receiving element is composed of a photodiode array, and the photodiode arrays are arranged at equal intervals.
The reflectance measuring device described.
【請求項5】 前記導波路に複数の波長の単色光を混合
して導き、該混合単色光を前記被測定面に照射すること
を特徴とする請求項1〜4記載の反射率測定装置。
5. The reflectance measuring apparatus according to claim 1, wherein monochromatic light having a plurality of wavelengths is mixed and guided to the waveguide, and the mixed monochromatic light is applied to the surface to be measured.
【請求項6】 前記受光素子は、前記光源が複数波長の
単色光を選択した場合、前記各波長ごとに感度を有する
フィルターを備えた受光素子を交互に配列し、前記各波
長の反射率スペクトルを交互に分離することを特徴とす
る請求項1〜5記載の反射率測定装置。
6. The light receiving element, when the light source selects monochromatic light of a plurality of wavelengths, the light receiving elements provided with a filter having sensitivity for each wavelength are alternately arranged, and the reflectance spectrum of each wavelength is obtained. 6. The reflectance measuring device according to claim 1, wherein the reflectance measuring devices are alternately separated.
【請求項7】 前記受光素子は、前記光源が複数波長の
単色光を選択した場合、前記各波長ごとに感度を有する
フィルターを備えた受光素子を複数列配置し、前記各波
長の反射率スペクトルを列ごとに分離することを特徴と
する請求項1〜5記載の反射率測定装置。
7. When the light source selects monochromatic light having a plurality of wavelengths, the light receiving elements are arranged in a plurality of rows, each of which has a filter having a sensitivity for each wavelength, and a reflectance spectrum of each wavelength is provided. 6. The reflectance measuring device according to claim 1, wherein each of the columns is separated.
【請求項8】 前記受光素子は、前記光源が複数波長の
単色光を選択した場合、前記各波長ごとに感度を有する
フィルターを備え、該フィルターを測定ごとに交換して
前記各波長の反射率スペクトルを分離することを特徴と
する請求項1〜5記載の反射率測定装置。
8. The light receiving element comprises a filter having sensitivity for each wavelength when the light source selects monochromatic light of a plurality of wavelengths, and the filter is exchanged for each measurement, and the reflectance of each wavelength is changed. The reflectance measuring apparatus according to claim 1, wherein the spectra are separated.
JP2001343829A 2001-11-08 2001-11-08 Reflectivity measuring device Pending JP2003149167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001343829A JP2003149167A (en) 2001-11-08 2001-11-08 Reflectivity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001343829A JP2003149167A (en) 2001-11-08 2001-11-08 Reflectivity measuring device

Publications (1)

Publication Number Publication Date
JP2003149167A true JP2003149167A (en) 2003-05-21

Family

ID=19157447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001343829A Pending JP2003149167A (en) 2001-11-08 2001-11-08 Reflectivity measuring device

Country Status (1)

Country Link
JP (1) JP2003149167A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221266A (en) * 2004-02-03 2005-08-18 Shiseido Co Ltd Multangular reflected light measuring device
JP2008541592A (en) * 2005-05-11 2008-11-20 インゲニア・テクノロジー・リミテッド Verification of authenticity using light scattering
CN106736268A (en) * 2016-11-30 2017-05-31 鞍钢重型机械有限责任公司 The processing method for cutting box-like 180 ° of arched girders

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221266A (en) * 2004-02-03 2005-08-18 Shiseido Co Ltd Multangular reflected light measuring device
JP2008541592A (en) * 2005-05-11 2008-11-20 インゲニア・テクノロジー・リミテッド Verification of authenticity using light scattering
CN106736268A (en) * 2016-11-30 2017-05-31 鞍钢重型机械有限责任公司 The processing method for cutting box-like 180 ° of arched girders

Similar Documents

Publication Publication Date Title
US8594470B2 (en) Transmittting light with lateral variation
US7495762B2 (en) High-density channels detecting device
EP2499480B1 (en) Optical sensor system based on attenuated total reflection
CN101548162B (en) Compact catadioptric spectrometer
TWI494557B (en) Substrate analysis using surface acoustic wave metrology
JP2003042965A (en) Device for determining characteristic of reflector, and method therefor
JP2008046132A (en) Spectroscopy system
JP2005530144A (en) Single structure optical measurement
JP2008522160A (en) Reflectometer and associated light source for use in chemical analyzers
JP3187386B2 (en) Device for detecting fluorescent dye
JP2008522171A (en) Spectrophotometer
US7869034B2 (en) Multi-angle and multi-channel inspecting device
US7566894B2 (en) Device and method for the quantified evaluation of surface characteristics
JP2007225389A (en) Surface plasmon resonance measuring device and measuring method
JP5387979B2 (en) Linearity inspection apparatus and linearity inspection method
JP2005062192A (en) Method for obtaining angle spectrum, gonio spectrophotometer and method for inspecting product during machining
JP2003149167A (en) Reflectivity measuring device
US8541760B2 (en) Method for calibrating a deflection unit in a TIRF microscope, TIRF microscope, and method for operating the same
CN109716105B (en) Attenuated total reflection spectrometer
JP2006242902A (en) Bio-sensing device
JP4572244B2 (en) Surface plasmon sensor
US6856395B2 (en) Reflectometer arrangement and method for determining the reflectance of selected measurement locations of measurement objects reflecting in a spectrally dependent manner
JPS63295945A (en) Glossiness measuring apparatus
WO2018072766A1 (en) Apparatus for spectrum and intensity profile characterization of a beam, use thereof and method thereof
JP7348786B2 (en) automatic analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320