JP2003148884A - Loop heat pipe - Google Patents

Loop heat pipe

Info

Publication number
JP2003148884A
JP2003148884A JP2001347507A JP2001347507A JP2003148884A JP 2003148884 A JP2003148884 A JP 2003148884A JP 2001347507 A JP2001347507 A JP 2001347507A JP 2001347507 A JP2001347507 A JP 2001347507A JP 2003148884 A JP2003148884 A JP 2003148884A
Authority
JP
Japan
Prior art keywords
flow path
parallel
heat pipe
flow
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001347507A
Other languages
Japanese (ja)
Inventor
Takahiro Shimura
隆広 志村
Masaaki Yamamoto
雅章 山本
Hitoshi Shiyou
仁 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2001347507A priority Critical patent/JP2003148884A/en
Publication of JP2003148884A publication Critical patent/JP2003148884A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a loop heat pipe of high performance provided with an evaporating part or a condensing part with low heat resistance and low passage resistance and stably circulating an operating fluid in a fixed direction in a closed loop while completely preventing the contraflow of steam. SOLUTION: This loop heat pipe comprises: a condensing part formed of a plurality of parallel-connected passages thermally connected to a cooling means; an evaporating part thermally connected to a cooled body; a steam passage communicating the evaporating part with the condensing part and allowing steam to flow inside; a condensate passage communicating the condensing part with the evaporating part and allowing condensate to flow inside; an operating fluid filled inside; and a contraflow preventing mechanism making it easy for the operating fluid to flow in one direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内部に閉ループか
らなる空間を有し、作動液を閉ループ内の一定方向に循
環させる、熱抵抗が小さく流路抵抗が小さい蒸発部また
は凝縮部を備えたループヒートパイプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises an evaporation section or a condensation section having a closed loop space therein and circulating a working fluid in a fixed direction in the closed loop and having a small thermal resistance and a small flow path resistance. Regarding loop heat pipe.

【0002】[0002]

【従来の技術】ループヒートパイプは、内部に作動液が
封入されたパイプが閉ループを構成するように配置さ
れ、被冷却体の熱によって作動液を蒸発させ、蒸気が凝
縮部に導かれて凝縮し、凝縮した作動液が蒸発部に循環
するヒートパイプである。図8は、従来のループヒート
パイプを概略示す図である。図8に示すように、従来の
ループヒートパイプにおいては、被冷却体104に接続
して蒸発部102が設けられ、冷却手段としてのヒート
シンク105に接続して凝縮部103が設けられ、蒸発
部102と凝縮部103とを連絡して、蒸気が流れる蒸
気流路106が設けられ、そして、凝縮部103と蒸発
部102とを連絡して、凝縮液が流れる凝縮液流路10
8が設けられている。上述した蒸気流路106および凝
縮液流路108によって閉ループを構成している。
2. Description of the Related Art A loop heat pipe is a pipe in which a working fluid is enclosed so as to form a closed loop. The heat of the object to be cooled evaporates the working fluid, and steam is introduced into a condenser to condense. The heat pipe circulates the condensed working fluid to the evaporation section. FIG. 8 is a diagram schematically showing a conventional loop heat pipe. As shown in FIG. 8, in the conventional loop heat pipe, the evaporation unit 102 is connected to the object to be cooled 104, the condenser unit 103 is connected to the heat sink 105 as a cooling unit, and the evaporation unit 102 is provided. And a condensation section 103 are connected to each other, and a steam flow path 106 through which steam flows is provided, and the condensation section 103 and the evaporation section 102 are connected to each other and a condensate flow path 10 through which a condensed liquid flows.
8 are provided. The vapor flow path 106 and the condensate flow path 108 described above form a closed loop.

【0003】図8に示すように、パイプ内に封入された
作動液は、ヒートパイプを構成する容器(コンテナ)の
材質中を熱伝導して伝わってきた被冷却体の発する熱に
より、ヒートパイプ内の被冷却体に対応する位置の近傍
において作動液が蒸発して、点線で示すように、蒸気流
路106内を蒸気流107として、凝縮部に向かって流
れる。このように流れた蒸気流は凝縮部においてフィン
等が取り付けられたヒートシンク105によって、作動
液の蒸気が冷却されて再び液相状態に戻り(凝縮)、重
力によって実線で示すように蒸発部102に向かって凝
縮液流として流れる(還流)。
As shown in FIG. 8, the working fluid enclosed in the pipe is generated by the heat of the object to be cooled, which is conducted by heat conduction in the material of the container constituting the heat pipe. The working liquid evaporates in the vicinity of the position corresponding to the object to be cooled, and flows as a steam flow 107 in the steam flow path 106 toward the condensing portion as shown by the dotted line. The vapor flow thus flowing cools the vapor of the working fluid by the heat sink 105 to which fins or the like are attached in the condensing section and returns to the liquid phase state (condensation) again, and then flows to the evaporating section 102 by gravity as shown by the solid line. Flow towards the condensate stream (reflux).

【0004】上述したように、作動液が一方向に安定し
て流れて循環しないと、ループヒートパイプとしての性
能が充分に得られない。図9は、凝縮部を拡大して示す
図である。蒸発部または凝縮部の接触熱抵抗を低減する
ために、蒸発部内表面積、凝縮部の内表面積を増やす必
要がある。その方法として、例えば、流路を蛇行させる
ことによって熱接触させる面積を増やす方法が知られて
いる。図9に示すように、凝縮部103において、蒸気
流路116が蛇行させて配置されている。凝縮部には冷
却デバイス等の冷却手段が熱的に接続されている。この
ように蒸気流路116を蛇行させて配置することによっ
て、冷却デバイスとの接触面積を増大することができ
る。
As described above, unless the working fluid stably flows in one direction and circulates, sufficient performance as a loop heat pipe cannot be obtained. FIG. 9: is a figure which expands and shows a condensation part. In order to reduce the contact thermal resistance of the evaporation section or the condensation section, it is necessary to increase the inner surface area of the evaporation section and the inner surface of the condensation section. As a method therefor, for example, a method is known in which the flow path is made to meander to increase the area of thermal contact. As shown in FIG. 9, in the condenser 103, the vapor flow paths 116 are arranged in a meandering manner. A cooling device such as a cooling device is thermally connected to the condenser. By arranging the steam flow path 116 in a meandering manner in this manner, the contact area with the cooling device can be increased.

【0005】[0005]

【発明が解決しょうとする課題】上述したように、蒸気
流路を蛇行させて配置することによって、冷却デバイス
との接触面積を増大するができるけれども、蒸気流路が
長くなり、流路抵抗が大きくなるという問題がある。即
ち、ループヒートパイプにおいては、作動液が一方向に
安定して流れて循環するための仕組みが重要であり、そ
のために流路抵抗を必然的に生じてしまうので、他の部
位、特に、凝縮部、蒸発部等の各部分における流路抵抗
を小さくする必要がある。
As described above, the contact area with the cooling device can be increased by arranging the steam flow path in a meandering manner, but the steam flow path becomes long and the flow path resistance increases. There is a problem of getting bigger. That is, in the loop heat pipe, a mechanism for the working fluid to stably flow and circulate in one direction is important, and therefore, flow path resistance is inevitably generated, so that the other parts, particularly the condensation It is necessary to reduce the flow path resistance in each part such as the heating section and the evaporation section.

【0006】従って、この発明の目的は、蒸気の逆流を
完全に防止して、作動液を閉ループ内の一定方向に安定
させて循環させることができると共に、熱抵抗が小さく
流路抵抗が小さい蒸発部または凝縮部を備えた性能の高
いループヒートパイプを提供することにある。
Therefore, the object of the present invention is to completely prevent the reverse flow of steam and to stably circulate the working liquid in a fixed direction in the closed loop, and at the same time, to evaporate the thermal resistance and the flow path resistance to be small. It is to provide a high-performance loop heat pipe having a heating section or a condensation section.

【0007】[0007]

【課題を解決するための手段】発明者は、上述した従来
の問題点を解決するために鋭意研究を重ねた。その結
果、凝縮部および/または蒸発部を、複数の並列に接続
された流路によって形成することによって、冷却手段ま
たは被冷却体との接触面積を増大すると共に流路抵抗を
小さくすることができることを見出した。即ち、複数の
並列に接続された流路を平板状の多穴管によって形成す
る、複数のパイプおよびそれらを連通するT字形および
十字形パイプ継手によって形成する、または、平板状の
多穴管および連通ヘッダによって形成することによっ
て、冷却手段または被冷却体との接触面積を増大すると
共に流路抵抗を小さくすることができることを見出し
た。
The inventor has conducted extensive studies to solve the above-mentioned conventional problems. As a result, by forming the condensing part and / or the evaporating part by a plurality of flow paths connected in parallel, it is possible to increase the contact area with the cooling means or the object to be cooled and reduce the flow path resistance. Found. That is, a plurality of flow paths connected in parallel are formed by a flat-plate multi-hole pipe, formed by a plurality of pipes and T-shaped and cross-shaped pipe joints that connect them, or a flat-plate multi-hole pipe and It was found that the contact area with the cooling means or the object to be cooled can be increased and the flow path resistance can be reduced by forming the communication header.

【0008】この発明は、上述した研究結果に基づいて
なされたものであって、この発明のループヒートパイプ
の第1の態様は、冷却手段に熱的に接続された複数の並
列に接続された流路からなる凝縮部と、被冷却体に熱的
に接続された蒸発部と、前記蒸発部と前記凝縮部とを連
絡し内部を蒸気が流れる蒸気流路と、前記凝縮部と前記
蒸発部とを連絡し内部を凝縮液が流れる凝縮液流路と、
内部に封入された作動液と、前記作動液を一方向に流れ
易くする逆流防止機構とからなるループヒートパイプで
ある。
The present invention has been made based on the above-mentioned research results, and the first aspect of the loop heat pipe of the present invention is connected in parallel to a plurality of cooling means. A condensing part formed of a flow path, an evaporating part thermally connected to the object to be cooled, a vapor flow path through which the evaporating part and the condensing part communicate with each other, and the condensing part and the evaporating part. And a condensate flow path through which the condensate flows through,
A loop heat pipe comprising a working fluid enclosed inside and a backflow prevention mechanism for facilitating the working fluid to flow in one direction.

【0009】この発明のループヒートパイプの第2の態
様は、冷却手段に熱的に接続された凝縮部と、被冷却体
に熱的に接続された複数の並列に接続された流路からな
る蒸発部と、前記蒸発部と前記凝縮部とを連絡し内部を
蒸気が流れる蒸気流路と、前記凝縮部と前記蒸発部とを
連絡し内部を凝縮液が流れる凝縮液流路と、内部に封入
された作動液と、前記作動液を一方向に流れ易くする逆
流防止機構とからなるループヒートパイプである。
A second aspect of the loop heat pipe of the present invention comprises a condensing section thermally connected to the cooling means and a plurality of parallel connected flow paths thermally connected to the cooled object. An evaporation part, a vapor flow path that connects the evaporation part and the condensation part and through which steam flows, a condensate flow path that connects the condensation part and the evaporation part, and through which a condensate flows, It is a loop heat pipe including a sealed working fluid and a backflow prevention mechanism that facilitates the working fluid to flow in one direction.

【0010】この発明のループヒートパイプの第3の態
様は、冷却手段に熱的に接続された複数の並列に接続さ
れた流路からなる凝縮部と、被冷却体に熱的に接続され
た複数の並列に接続された流路からなる蒸発部と、前記
蒸発部と前記凝縮部とを連絡し内部を蒸気が流れる蒸気
流路と、前記凝縮部と前記蒸発部とを連絡し内部を凝縮
液が流れる凝縮液流路と、内部に封入された作動液と、
前記作動液を一方向に流れ易くする逆流防止機構とから
なるループヒートパイプである。
In a third aspect of the loop heat pipe of the present invention, a condensing section composed of a plurality of flow paths connected in parallel, which is thermally connected to a cooling means, and is thermally connected to an object to be cooled. An evaporating section formed of a plurality of flow paths connected in parallel, a vapor flow path that connects the evaporating section and the condensing section, and through which steam flows, and condenses the inner section by connecting the condensing section and the evaporating section. A condensate flow path through which the liquid flows, the working fluid enclosed inside,
A loop heat pipe comprising a backflow prevention mechanism for facilitating the hydraulic fluid to flow in one direction.

【0011】この発明のループヒートパイプの第4の態
様は、前記複数の並列に接続された流路が、多穴管によ
って形成されている、ループヒートパイプである。
A fourth aspect of the loop heat pipe of the present invention is a loop heat pipe in which the plurality of flow paths connected in parallel are formed by multi-hole pipes.

【0012】この発明のループヒートパイプの第5の態
様は、前記冷却手段および/または前記被冷却体が円筒
形状からなっており、前記複数の並列に接続された流路
が、前記円筒形状に対応する曲面部を有する1対の複数
の並列に接続された流路からなっており、前記1対の複
数の並列に接続された流路の前記曲面部が前記円筒形状
の前記冷却手段または前記被冷却体を覆うように配置さ
れている、ループヒートパイプである。
In a fifth aspect of the loop heat pipe of the present invention, the cooling means and / or the object to be cooled has a cylindrical shape, and the flow paths connected in parallel have the cylindrical shape. The pair of a plurality of parallel-connected flow paths having corresponding curved surface portions, wherein the curved surface portions of the pair of a plurality of parallel-connected flow paths are the cylindrical cooling means or It is a loop heat pipe arranged so as to cover the object to be cooled.

【0013】この発明のループヒートパイプの第6の態
様は、前記1対の複数の並列に接続された流路に連絡す
る分岐手段を備えている、ループヒートパイプである。
A sixth aspect of the loop heat pipe of the present invention is a loop heat pipe provided with a branching means communicating with the pair of flow paths connected in parallel.

【0014】この発明のループヒートパイプのその他の
態様は、前記複数の並列に接続された流路が、複数のパ
イプおよびそれらを連通するT字形および十字形パイプ
継手によって形成されている、ループヒートパイプであ
る。
Another aspect of the loop heat pipe of the present invention is that the plurality of parallel-connected flow paths are formed by a plurality of pipes and a T-shaped and cruciform pipe joint that connects them. It is a pipe.

【0015】この発明のループヒートパイプのその他の
態様は、前記複数の並列に接続された流路が、多穴管お
よび連通ヘッダによって形成されている、ループヒート
パイプである。
Another aspect of the loop heat pipe of the present invention is the loop heat pipe in which the plurality of flow paths connected in parallel are formed by a multi-hole pipe and a communication header.

【0016】この発明のループヒートパイプのその他の
態様は、前記冷却手段および/または前記被冷却体が曲
面を備えており、前記複数の並列に接続された流路が、
前記冷却手段または前記被冷却体の前記曲面に対応する
曲面部を備えている、ループヒートパイプである。
In another aspect of the loop heat pipe of the present invention, the cooling means and / or the object to be cooled has a curved surface, and the plurality of flow paths connected in parallel are
It is a loop heat pipe provided with a curved surface portion corresponding to the curved surface of the cooling means or the cooled object.

【0017】[0017]

【発明の実施の形態】この発明のループヒートパイプを
図面を参照しながら説明する。先ず、この発明のループ
ヒートパイプの主要な態様について説明する。この発明
のループヒートパイプは、冷却手段に熱的に接続された
複数の並列に接続された流路からなる凝縮部と、被冷却
体に熱的に接続された複数の並列に接続された流路から
なる蒸発部と、前記蒸発部と前記凝縮部とを連絡し内部
を蒸気が流れる蒸気流路と、前記凝縮部と前記蒸発部と
を連絡し内部を凝縮液が流れる凝縮液流路と、内部に封
入された作動液と、前記作動液を一方向に流れ易くする
逆流防止機構とからなるループヒートパイプである。凝
縮部、蒸発部の何れか1方のみが上述した複数の並列に
接続された流路を備えていてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION A loop heat pipe of the present invention will be described with reference to the drawings. First, the main aspects of the loop heat pipe of the present invention will be described. The loop heat pipe according to the present invention includes a condensing section including a plurality of parallel-connected flow paths that are thermally connected to a cooling means, and a plurality of parallel-connected flow paths that are thermally connected to an object to be cooled. An evaporating part formed of a passage, a vapor flow path that connects the evaporating part and the condensing part and through which steam flows, and a condensate flow path that connects the condensing part and the evaporating part and through which a condensate flows. , A loop heat pipe comprising a working fluid sealed inside and a backflow prevention mechanism for facilitating the working fluid to flow in one direction. Only one of the condensing part and the evaporating part may have the above-mentioned plurality of flow paths connected in parallel.

【0018】図1は、この発明のルートヒートパイプを
示す図である。図1に示すように、この発明のルートヒ
ートパイプ1は、冷却手段5に熱的に接続された複数の
並列に接続された流路からなる凝縮部3と、被冷却体4
に熱的に接続された複数の並列に接続された流路からな
る蒸発部2と、蒸発部2と凝縮部3とを連絡し内部を蒸
気7が流れる蒸気流路6と、凝縮部3と蒸発部2とを連
絡し内部を凝縮液9が流れる凝縮液流路8と、内部に封
入された(図示しない)作動液と、作動液を一方向に流
れ易くする逆流防止機構10とからなっている。
FIG. 1 is a diagram showing a root heat pipe of the present invention. As shown in FIG. 1, a root heat pipe 1 according to the present invention includes a condensing section 3 including a plurality of flow paths connected in parallel and thermally connected to a cooling unit 5, and an object to be cooled 4.
An evaporating section 2 formed of a plurality of flow paths connected in parallel to each other, a vapor flow path 6 which connects the evaporating section 2 and the condensing section 3 and through which steam 7 flows, and a condensing section 3. It comprises a condensate flow path 8 which communicates with the evaporator 2 and through which a condensate 9 flows, a working fluid (not shown) sealed inside, and a backflow prevention mechanism 10 for facilitating the one-way flow of the working fluid. ing.

【0019】逆流防止機構10は、液だまり部を形成
し、液だまり部が周期的に開閉するバルブを備えてお
り、バルブによって、凝縮液流路を完全に閉塞するよう
に凝縮液を垂直方向に沿って集め、垂直方向に沿って放
出する。更に、逆流防止機構として、周期的に開閉する
バルブとして、所定の温度より高い温度のときに凝縮液
流路を閉塞させ、所定の温度より低い温度のときに凝縮
液流路を開放する形状記憶合金製の弁が設けられていて
もよい。弁の開閉によって、凝縮液流路を完全に閉塞す
るように凝縮液を垂直方向に沿って集め、垂直方向に沿
って放出して、蒸気の逆流を完全に防止する。
The backflow prevention mechanism 10 is provided with a valve that forms a liquid pool, and the liquid pool opens and closes periodically. The valve causes the condensate to flow vertically so as to completely close the condensate flow path. Collect along and emit along the vertical direction. Further, as a backflow prevention mechanism, as a valve that periodically opens and closes, a shape memory that closes the condensate flow passage when the temperature is higher than a predetermined temperature and opens the condensate flow passage when the temperature is lower than the predetermined temperature. A valve made of alloy may be provided. By opening and closing the valve, the condensate is collected along the vertical direction so as to completely close the condensate flow path, and is discharged along the vertical direction to completely prevent the reverse flow of vapor.

【0020】更に、逆流防止機構として、液だまり部の
下端部に、毛管力によって凝縮液を吸い込むフィルター
を備えていてもよい。フィルターによって、凝縮液流路
を完全に閉塞するように凝縮液を垂直方向に沿って集
め、垂直方向に沿って放出する。更に、逆流防止機構と
して、凝縮液流路の外側面に取り付けられるペルチェ素
子を備えてもよい。ペルチェ素子によって、凝縮液流路
68を通過する凝縮液が冷却されて、凝縮液流路の閉塞
が容易になる。
Further, as a backflow prevention mechanism, a filter for sucking the condensate by a capillary force may be provided at the lower end of the liquid pool. The filter collects the condensate along the vertical direction and completely discharges it along the vertical direction so as to completely block the condensate flow path. Furthermore, a Peltier element attached to the outer surface of the condensate flow path may be provided as the backflow prevention mechanism. The Peltier element cools the condensate passing through the condensate flow path 68, and facilitates blocking of the condensate flow path.

【0021】図1に示すように、パイプ内に封入された
作動液は、ヒートパイプを構成する容器(コンテナ)の
材質中を熱伝導して伝わってきた被冷却体4の発する熱
により、ヒートパイプ内の被冷却体4に対応する位置の
近傍において作動液が蒸発して、点線で示すように、蒸
気流路6内を蒸気流7として、凝縮部3に向かって流れ
る。このように流れた蒸気流7は凝縮部3において冷却
手段(例えば、フィン等が取り付けられたヒートシン
ク)5によって、冷却されて再び液相状態に戻り(凝
縮)、重力によって実線で示すように蒸発部2に向かっ
て凝縮液流路8内を水平部、垂直部を通って凝縮流9と
して流れる。
As shown in FIG. 1, the working fluid enclosed in the pipe is heated by the heat generated by the object to be cooled 4 which is thermally conducted through the material of the container (container) constituting the heat pipe. The working liquid evaporates in the vicinity of the position in the pipe corresponding to the object to be cooled 4 and flows toward the condensing portion 3 as the steam flow 7 in the steam flow path 6 as shown by the dotted line. The vapor stream 7 flowing in this way is cooled by the cooling means (for example, a heat sink to which fins or the like are attached) 5 in the condensing unit 3 and returns to the liquid state again (condensation), and is evaporated by gravity as shown by the solid line. A condensate flow 9 flows in the condensate flow path 8 toward the portion 2 through the horizontal portion and the vertical portion.

【0022】ループヒートパイプのコンテナの材料は、
銅、アルミニウム、または、それらの合金、クラッド材
等の熱伝導性に優れた材料が好ましい。作動液は、コン
テナの材料との適合性にすぐれた流体を使用する。作動
液として、二酸化炭素、水、炭化水素が好ましい。な
お、例えば、冷凍機内の熱交換用途など水が固体化して
しまう低温下を考慮する場合、作動液として二酸化炭素
が好ましい。また、クラッド材を用いる場合には、クラ
ッド材のコンテナの内面側を形成する材料には、優れた
作動液である水との適合性の高い材料、例えば、銅を用
い、外面側を形成する材料には、機械的強度および外観
の要求に応じて、高強度・安価・軽量などの材料、例え
ば、アルミニウムを用いることができる。
The material of the loop heat pipe container is
A material having excellent thermal conductivity such as copper, aluminum, an alloy thereof, or a clad material is preferable. As the hydraulic fluid, a fluid that is highly compatible with the material of the container is used. As the working fluid, carbon dioxide, water and hydrocarbon are preferable. Note that, for example, carbon dioxide is preferable as the working liquid when considering the low temperature where water solidifies such as heat exchange in a refrigerator. When a clad material is used, the material forming the inner surface side of the clad material container is highly compatible with water, which is an excellent hydraulic fluid, for example, copper, and the outer surface side is formed. As the material, a material having high strength, low cost, and light weight, for example, aluminum can be used depending on the requirements of mechanical strength and appearance.

【0023】この発明のループヒートパイプの1つの態
様の、冷却手段に熱的に接続された複数の並列に接続さ
れた流路からなる凝縮部における、複数の並列に接続さ
れた流路が、複数のパイプおよびそれらを連通するT字
形および十字形パイプ継手によって形成されている。図
2は、この発明のループヒートパイプの凝縮部を示す図
である。図2に示すように、凝縮部13には冷却デバイ
ス等の冷却手段5が熱的に接続されている。凝縮部13
は、複数の並列に接続されたパイプからなる流路17か
らなっている。
According to one aspect of the loop heat pipe of the present invention, the plurality of parallel-connected flow paths in the condensing section composed of the plurality of parallel-connected flow paths thermally connected to the cooling means are: It is formed by a plurality of pipes and T-shaped and cruciform pipe joints that connect them. FIG. 2 is a diagram showing a condenser of the loop heat pipe of the present invention. As shown in FIG. 2, a cooling device 5 such as a cooling device is thermally connected to the condenser 13. Condensing part 13
Is composed of a flow path 17 composed of a plurality of pipes connected in parallel.

【0024】蒸気流路16は、凝縮部の入口側におい
て、T字形14および十字形パイプ継手12によって、
並列に配置された複数のパイプ17に接続され、同様に
出口側において、T字形14および十字形パイプ継手1
2によって凝縮液流路18に接続されている。蒸気流路
16内を流れてきた蒸気流は、矢印に示すように、T字
形14および十字形パイプ継手12を通って、並列に配
置された複数のパイプ17内に流れ、冷却手段との接触
面積を増大しつつ、小さい流路抵抗で凝縮部の出口側向
かってに進んで凝縮液となり、出口側において、T字形
14および十字形パイプ継手12を通って、凝縮液流路
18内を(図示しない)蒸発部に向かって流れる。
The steam flow path 16 is formed by a T-shaped pipe 14 and a cruciform pipe joint 12 on the inlet side of the condenser.
Connected to a plurality of pipes 17 arranged in parallel, also on the outlet side, a T-shaped 14 and cruciform pipe fitting 1
It is connected to the condensate flow path 18 by 2. The steam flow that has flowed in the steam passage 16 flows through the T-shaped pipe 14 and the cross-shaped pipe joint 12 into a plurality of pipes 17 arranged in parallel as shown by the arrow, and contacts the cooling means. While increasing the area, the flow advances toward the outlet side of the condensing section with a small flow resistance to become a condensed liquid, and at the outlet side, through the T-shaped 14 and the cross pipe joint 12, the inside of the condensed liquid flow path 18 ( It flows toward the evaporation part (not shown).

【0025】上述したように、凝縮部は、冷却手段に熱
的に接続された、複数のパイプおよびそれらを連通する
T字形および十字形パイプ継手によって形成されている
複数の並列に接続された流路を備えているので、流路抵
抗が小さい。更に、冷却手段との接触面積が大きいの
で、熱抵抗が小さい。
As mentioned above, the condenser section is provided with a plurality of parallel connected streams which are thermally connected to the cooling means and which are formed by a plurality of pipes and T-shaped and cruciform pipe joints connecting them. Since it has a channel, the flow channel resistance is small. Further, since the contact area with the cooling means is large, the thermal resistance is small.

【0026】この発明のループヒートパイプの他の1つ
の態様の、冷却手段に熱的に接続された複数の並列に接
続された流路からなる凝縮部における、複数の並列に接
続された流路が、多穴管および連通ヘッダによって形成
されている。
According to another aspect of the loop heat pipe of the present invention, a plurality of parallel-connected flow passages in a condensing section composed of a plurality of parallel-connected flow passages thermally connected to a cooling means. Is formed by the multi-hole pipe and the communication header.

【0027】図3から図5は、この発明のループヒート
パイプの他の凝縮部を示す図である。図3は、冷却手段
が熱的に接続された凝縮部を示す図である。図4は、凝
縮部を示す図である。図5は、凝縮部を分解して示す図
である。図3から図5に示す凝縮部は、多穴管29およ
び連通ヘッダ24によって形成されている。即ち、多穴
管および多穴管の各穴を連通させる連通ヘッダを組合わ
せて並列流路を形成する。
3 to 5 are views showing another condensing part of the loop heat pipe of the present invention. FIG. 3 is a diagram showing a condensing unit to which a cooling unit is thermally connected. FIG. 4 is a diagram showing the condensation unit. FIG. 5: is a figure which decomposes | disassembles and shows a condensation part. The condenser section shown in FIGS. 3 to 5 is formed by the multi-hole pipe 29 and the communication header 24. That is, a parallel flow path is formed by combining a multi-hole pipe and a communication header that communicates each hole of the multi-hole pipe.

【0028】この態様の凝縮部においては、蒸気流路2
6は、連通ヘッダ24に気密に接続され、連通ヘッダを
通じて多穴管の各穴に連通される。蒸気流路26を通っ
て流れる蒸気流は、連通ヘッダ24によって分岐され多
穴管の各穴に流れ込む。多穴管の各穴に流れ込んだ蒸気
流は、多穴管の外表面に熱的に接続された冷却デバイス
等の冷却手段によって冷却されて凝縮液となり、多穴管
の出口側に設けられた連通ヘッダ24を通って凝縮液流
路28に流れ、(図示しない)蒸発部に向かって流れ
る。
In the condensing section of this aspect, the vapor flow path 2
6 is airtightly connected to the communication header 24 and communicates with each hole of the multi-hole pipe through the communication header. The steam flow flowing through the steam flow path 26 is branched by the communication header 24 and flows into each hole of the multi-hole pipe. The vapor flow flowing into each hole of the multi-hole tube was cooled by a cooling device such as a cooling device thermally connected to the outer surface of the multi-hole tube to become a condensate, which was provided on the outlet side of the multi-hole tube. It flows through the communication header 24 into the condensate flow path 28, and flows toward the evaporator (not shown).

【0029】上述したように、凝縮部は、冷却手段に熱
的に接続された、多穴管および連通ヘッダによって形成
されている複数の並列に接続された流路を備えているの
で、流路抵抗が小さい。更に、多穴管の広い平面を利用
して、冷却手段と広い接触面積で接触するので、熱抵抗
が小さい。
As described above, the condensing section is provided with a plurality of flow channels connected in parallel, which are thermally connected to the cooling means and which are formed by the multi-hole pipe and the communication header. The resistance is small. Furthermore, since the large flat surface of the multi-hole tube is used to make contact with the cooling means in a large contact area, the thermal resistance is small.

【0030】この発明のループヒートパイプの他の1つ
の態様において、上述した冷却手段および/または被冷
却体が曲面を備えており、複数の並列に接続された流路
が、冷却手段または被冷却体の曲面に対応する曲面部を
備えている。図6は、複数の並列に接続された流路が、
冷却手段の曲面に対応する曲面部を備えている凝縮部を
示す図である。図6に示すように、凝縮部33は冷却デ
バイス等の冷却手段の形状に対応する曲面32を有して
いる。更に、凝縮部33は、冷却手段に熱的に接続され
る、多穴管および連通ヘッダによって形成されている複
数の並列に接続された流路を備えている。多穴管は、図
5に示したように複数の平行に配置された穴からなって
いる。
In another aspect of the loop heat pipe of the present invention, the above-mentioned cooling means and / or the object to be cooled has a curved surface, and the plurality of flow paths connected in parallel have the cooling means or the object to be cooled. It has a curved portion corresponding to the curved surface of the body. FIG. 6 shows that a plurality of flow paths connected in parallel are
It is a figure which shows the condensation part provided with the curved surface part corresponding to the curved surface of a cooling means. As shown in FIG. 6, the condensing part 33 has a curved surface 32 corresponding to the shape of a cooling device such as a cooling device. Furthermore, the condenser 33 comprises a plurality of flow paths connected in parallel, which are thermally connected to the cooling means and which are formed by a multi-hole tube and a communication header. The multi-hole tube consists of a plurality of holes arranged in parallel as shown in FIG.

【0031】この態様においては、多穴管は、平らな板
状部分31および曲面部分32からなっている。即ち、
2つの平らな板状部分およびその間に配置された曲面部
からなる多穴管および多穴管の各穴を連通させる連通ヘ
ッダを組合わせて並列流路を形成する。
In this embodiment, the multi-hole tube is composed of a flat plate portion 31 and a curved surface portion 32. That is,
A parallel flow path is formed by combining a multi-hole pipe composed of two flat plate-like portions and a curved surface portion arranged between the flat plate-like portions and a communication header for communicating each hole of the multi-hole pipe.

【0032】この態様の凝縮部においては、蒸気流路3
6は、連通ヘッダ34に気密に接続され、連通ヘッダを
通じて多穴管の各穴に連通される。蒸気流路36を通っ
て流れる蒸気流は、連通ヘッダ34によって分岐され多
穴管の各穴に流れ込む。多穴管の曲面部の外表面に曲面
部と対応した形状の冷却デバイス等の冷却手段が熱的に
接続される。多穴管の各穴に流れ込んだ蒸気流は、多穴
管の曲面部の外表面に熱的に接続された曲面部と対応し
た形状の冷却デバイス等の冷却手段によって冷却されて
凝縮液となり、多穴管の出口側に設けられた連通ヘッダ
34を通って凝縮液流路38に流れ、(図示しない)蒸
発部に向かって流れる。この態様は、冷却手段の形状に
対応して曲面部を自在に変化させることができる。
In the condensing section of this aspect, the vapor flow path 3
6 is airtightly connected to the communication header 34 and communicates with each hole of the multi-hole pipe through the communication header. The steam flow flowing through the steam flow path 36 is branched by the communication header 34 and flows into each hole of the multi-hole pipe. Cooling means such as a cooling device having a shape corresponding to the curved surface portion is thermally connected to the outer surface of the curved surface portion of the multi-hole tube. The steam flow flowing into each hole of the multi-hole pipe is cooled by a cooling means such as a cooling device having a shape corresponding to the curved surface portion thermally connected to the outer surface of the curved surface portion of the multi-hole tube to become a condensate, It flows into the condensate flow path 38 through the communication header 34 provided on the outlet side of the multi-hole pipe, and flows toward the evaporation section (not shown). In this aspect, the curved surface portion can be freely changed according to the shape of the cooling means.

【0033】上述したように、凝縮部は、冷却手段に熱
的に接続された、曲面部を有する多穴管および連通ヘッ
ダによって形成されている複数の並列に接続された流路
を備えているので、流路抵抗が小さい。更に、多穴管の
広い曲面部を利用して、曲面部と対応する形状の冷却手
段と広い接触面積で接触するので、熱抵抗が小さい。
As described above, the condenser section is provided with a plurality of parallel-connected flow paths formed by the multi-hole pipe having the curved surface section and the communication header, which are thermally connected to the cooling means. Therefore, the flow path resistance is small. Further, since the wide curved surface portion of the multi-hole pipe is used to make contact with the cooling means having a shape corresponding to the curved surface portion with a wide contact area, the thermal resistance is small.

【0034】図7は、図6に示す態様の曲面部を備えて
いる凝縮部を2組組合わせた凝縮部を示す図である。図
7に示すように、凝縮部43は、冷却デバイス等の冷却
手段の形状に対応する曲面42a、42bを有する2組
の多穴管および連通ヘッダが組合わされて形成されてい
る。即ち、凝縮部43は、冷却手段に熱的に接続され
る、多穴管および連通ヘッダによって形成されている1
対の複数の並列に接続された流路を備えている。多穴管
の細部は、図5に示したように複数の平行に配置された
穴29からなっている。
FIG. 7 is a view showing a condensing section in which two sets of condensing sections having the curved surface section shown in FIG. 6 are combined. As shown in FIG. 7, the condensing unit 43 is formed by combining two sets of multi-hole pipes having curved surfaces 42a and 42b corresponding to the shape of cooling means such as a cooling device and a communication header. That is, the condensing part 43 is formed by the multi-hole pipe and the communication header which are thermally connected to the cooling means 1.
A plurality of parallel connected flow paths are provided. The details of the multi-hole tube consist of a plurality of parallel arranged holes 29 as shown in FIG.

【0035】この態様においては、一方の多穴管は、平
らな板状部分41aおよび曲面部分42aからなってい
る。一方の多穴管の入口側および出口側には、それぞ
れ、連通ヘッダ44aが取り付けられている。他方の多
穴管は、平らな板状部分41bおよび曲面部分42bか
らなっている。他方の多穴管の入口側および出口側に
は、それぞれ、連通ヘッダ44bが取り付けられてい
る。即ち、1対の多穴管の各々は、2つの平らな板状部
分41a、41bおよびその間に配置された曲面部42
a、42bからなっており、上述した多穴管の各穴を連
通させる連通ヘッダが組合わされて並列流路を形成す
る。更に、蒸気流路46を1対の連通ヘッダ44a、4
4bに連絡するための分岐手段45が備えられている。
In this embodiment, one of the multi-hole pipes is composed of a flat plate portion 41a and a curved portion 42a. A communication header 44a is attached to each of the inlet side and the outlet side of the one multi-hole pipe. The other multi-hole tube is composed of a flat plate-shaped portion 41b and a curved surface portion 42b. A communication header 44b is attached to each of the inlet side and the outlet side of the other multi-hole pipe. That is, each of the pair of multi-hole pipes has two flat plate-like portions 41a and 41b and a curved surface portion 42 arranged therebetween.
a, 42b, and a communication header for communicating the holes of the multi-hole pipe described above is combined to form a parallel flow path. Further, the steam flow path 46 is connected to the pair of communication headers 44a, 4a, 4
A branching means 45 is provided for connecting to 4b.

【0036】この態様の凝縮部においては、蒸気流路4
6は、分岐手段45によって分岐され、それぞれの連通
ヘッダ44a、44bに気密に接続され、連通ヘッダ4
4a、44bを通じて多穴管43の各穴に連通される。
蒸気流路46を通って流れる蒸気流は、矢印に示すよう
に分岐手段45によって分岐され、次いで、連通ヘッダ
44a、44bによって分岐され多穴管の各穴に流れ込
む。1対の多穴管の曲面部を組合わせて形成される、例
えば、円筒形状の曲面部と対応した形状の円筒形状の冷
却デバイス等の冷却手段が熱的に接続される。
In the condensing section of this aspect, the vapor flow path 4
6 is branched by the branching means 45 and is hermetically connected to the respective communication headers 44a and 44b.
It is connected to each hole of the multi-hole pipe 43 through 4a and 44b.
The steam flow flowing through the steam flow path 46 is branched by the branching means 45 as shown by the arrow, and then branched by the communication headers 44a and 44b to flow into each hole of the multi-hole pipe. A cooling means such as a cylindrical cooling device having a shape corresponding to the cylindrical curved surface portion, which is formed by combining the curved surface portions of the pair of multi-hole tubes, is thermally connected.

【0037】多穴管の各穴に流れ込んだ蒸気流は、円筒
形状の曲面部と対応した形状の円筒形状の冷却デバイス
等の冷却手段によって冷却されて凝縮液となり、平らな
板状部分を通って多穴管の出口側に設けられた連通ヘッ
ダ44a、44bを通って凝縮液流路48に流れ、(図
示しない)蒸発部に向かって流れる。この態様は、円筒
形状等の冷却手段を利用して、凝縮部を効果的に冷却す
ることができる。更に、冷却手段の形状に対応して曲面
部を自在に変化させることができる。
The steam flow flowing into each hole of the multi-hole pipe is cooled by a cooling means such as a cylindrical cooling device having a shape corresponding to the curved surface of the cylindrical shape to become a condensate, and passes through a flat plate-shaped portion. Through the communication headers 44a and 44b provided on the outlet side of the multi-hole pipe to the condensate flow path 48, and toward the evaporation section (not shown). In this aspect, the condensing portion can be effectively cooled by utilizing a cooling means having a cylindrical shape or the like. Further, the curved surface portion can be freely changed according to the shape of the cooling means.

【0038】上述したように、凝縮部は、冷却手段に熱
的に接続された、曲面部を有する多穴管および連通ヘッ
ダによって形成されている1対の複数の並列に接続され
た流路を備えているので、流路抵抗が小さい。更に、1
対の多穴管の広い曲面部を利用して、曲面部と対応する
形状の冷却手段と広い接触面積で接触するので、熱抵抗
が小さい。なお、凝縮部について詳細に説明したが、蒸
発部に関しても上に述べたと同様のことが適用される。
As described above, the condensing section has a pair of a plurality of parallel-connected flow paths which are thermally connected to the cooling means and which are formed by the multi-hole pipe having the curved surface section and the communication header. Since it is provided, the flow path resistance is small. Furthermore, 1
Since the wide curved portions of the pair of multi-hole tubes are used to make contact with the cooling means having a shape corresponding to the curved portions with a wide contact area, the thermal resistance is small. Although the condensation section has been described in detail, the same applies to the evaporation section as described above.

【0039】次に、上述した逆流防止機構に関して、代
表例としてバルブについて説明する。図1に示すよう
に、凝縮液流路8の垂直部の所定位置には、バルブ10
が設けられており、バルブ10が閉じられて、凝縮液9
が垂直方向に沿って溜まり、凝縮液流路8が完全に閉塞
される(図示しない)液だまり部が形成される。所定の
量の凝縮液が液だまり部に溜まると、バルブ10が開か
れる。バルブ10が開かれると、凝縮液が垂直方向に沿
って放出され、重力の作用によって液だまり部の凝縮液
が蒸発部側に移動する。
Next, a valve will be described as a typical example of the above-described backflow prevention mechanism. As shown in FIG. 1, the valve 10 is provided at a predetermined position in the vertical portion of the condensate flow path 8.
Is installed, the valve 10 is closed, and the condensate 9
Are accumulated along the vertical direction to form a liquid pool (not shown) in which the condensate flow path 8 is completely closed. When a predetermined amount of condensate is accumulated in the liquid pool, the valve 10 is opened. When the valve 10 is opened, the condensate is discharged along the vertical direction, and the action of gravity moves the condensate in the liquid pool to the evaporator side.

【0040】この際、凝縮液流路の垂直部は、凝縮液で
満たされて、凝縮液流路は依然として完全に閉塞されて
いる。従って、蒸気流の逆流は完全に防止することがで
きる。凝縮液流路の水平部に到達した凝縮液は、水平方
向に方向変換して、蒸発部2に流れていく。水平部を逆
流する蒸気は、上述した凝縮液流路の垂直部に位置する
凝縮液によって阻止され、それ以上の蒸気の逆流は完全
に防止される。バルブ10は、凝縮液流路の閉塞部がな
くなる前に閉じられる。バルブの開閉の制御は、例え
ば、管径・管の形状等を考慮して所定時間で開閉を繰返
すことによって行う。
At this time, the vertical portion of the condensate flow path is filled with the condensate, and the condensate flow path is still completely closed. Therefore, backflow of the steam flow can be completely prevented. The condensate that has reached the horizontal part of the condensate flow path changes its direction to the horizontal direction and flows to the evaporator 2. The vapor flowing back in the horizontal portion is blocked by the condensate located in the vertical portion of the condensate flow path described above, and any further vapor backward flow is completely prevented. The valve 10 is closed before the condensate flow path is cleared. Control of opening / closing of the valve is performed by, for example, repeating opening / closing for a predetermined time in consideration of the pipe diameter, the shape of the pipe, and the like.

【0041】[0041]

【発明の効果】この発明によると、蒸発部、凝縮部が複
数の並列に接続された流路を備え、逆流防止機構を備え
ているので、蒸気の逆流を完全に防止して、作動液を閉
ループ内の一定方向に安定させて循環させることができ
ると共に、熱抵抗が小さく流路抵抗が小さい蒸発部また
は凝縮部を備えた性能の高いループヒートパイプを提供
するができる。
According to the present invention, since the evaporating section and the condensing section are provided with a plurality of flow paths connected in parallel and the backflow prevention mechanism is provided, the backflow of vapor is completely prevented and the working fluid is removed. It is possible to provide a highly efficient loop heat pipe including an evaporation part or a condensation part which can be stably circulated in a fixed direction in a closed loop and has a small thermal resistance and a small flow path resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、この発明のルートヒートパイプを示す
図である。
FIG. 1 is a diagram showing a root heat pipe of the present invention.

【図2】図2は、この発明のループヒートパイプの凝縮
部を示す図である。
FIG. 2 is a diagram showing a condenser of the loop heat pipe of the present invention.

【図3】図3は、冷却手段が熱的に接続された凝縮部を
示す図である。
FIG. 3 is a diagram showing a condensing unit to which a cooling unit is thermally connected.

【図4】図4は、凝縮部を示す図である。FIG. 4 is a diagram showing a condensing unit.

【図5】図5は、凝縮部を分解して示す図である。FIG. 5 is an exploded view of a condenser.

【図6】図6は、複数の並列に接続された流路が、冷却
手段の曲面に対応する曲面部を備えている凝縮部を示す
図である。
FIG. 6 is a diagram showing a condensing part in which a plurality of flow paths connected in parallel have a curved surface part corresponding to the curved surface of the cooling means.

【図7】図7は、図6に示す態様の曲面部を備えている
凝縮部を2組組合わせた凝縮部を示す図である。
FIG. 7 is a diagram showing a condensing unit in which two sets of condensing units each including the curved surface portion of the aspect shown in FIG. 6 are combined.

【図8】図8は、従来のループヒートパイプを概略示す
図である。
FIG. 8 is a diagram schematically showing a conventional loop heat pipe.

【図9】図9は、従来の凝縮部を拡大して示す図であ
る。
FIG. 9 is an enlarged view of a conventional condensing unit.

【符号の説明】[Explanation of symbols]

1.この発明のループヒートパイプ 2.蒸発部 3.凝縮部 4.被冷却体 5.冷却手段 6.蒸気流路 7.蒸気流 8.凝縮液流路 9.凝縮液 10.バルブ 12.十字形パイプ継手 14.T字形パイプ継手 23.多穴管 24.連通ヘッダ 27.凹部 32.曲面部 45.分岐手段 1. Loop heat pipe of this invention 2. Evaporator 3. Condensation part 4. Cooled object 5. Cooling means 6. Steam flow path 7. Steam flow 8. Condensate flow path 9. Condensate 10. valve 12. Cruciform pipe fitting 14. T-shaped pipe fitting 23. Multi-hole tube 24. Communication header 27. Recess 32. Curved surface 45. Branching means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尚 仁 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Naohito             2-6-1, Marunouchi, Chiyoda-ku, Tokyo             Kawa Electric Industry Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】冷却手段に熱的に接続された複数の並列に
接続された流路からなる凝縮部と、被冷却体に熱的に接
続された蒸発部と、前記蒸発部と前記凝縮部とを連絡し
内部を蒸気が流れる蒸気流路と、前記凝縮部と前記蒸発
部とを連絡し内部を凝縮液が流れる凝縮液流路と、内部
に封入された作動液と、前記作動液を一方向に流れ易く
する逆流防止機構とからなるループヒートパイプ。
Claim: What is claimed is: 1. A condenser section comprising a plurality of flow channels connected in parallel to cooling means, a vaporizer section thermally connected to the object to be cooled, the vaporizer section and the condenser section. And a steam flow path through which steam flows inside, a condensate flow path through which the condensate flows through the condensing part and the evaporating part, a working liquid sealed inside, and the working liquid. A loop heat pipe consisting of a backflow prevention mechanism that facilitates flow in one direction.
【請求項2】冷却手段に熱的に接続された凝縮部と、被
冷却体に熱的に接続された複数の並列に接続された流路
からなる蒸発部と、前記蒸発部と前記凝縮部とを連絡し
内部を蒸気が流れる蒸気流路と、前記凝縮部と前記蒸発
部とを連絡し内部を凝縮液が流れる凝縮液流路と、内部
に封入された作動液と、前記作動液を一方向に流れ易く
する逆流防止機構とからなるループヒートパイプ。
2. A condensing section thermally connected to a cooling means, an evaporating section composed of a plurality of flow paths connected in parallel thermally connected to an object to be cooled, the evaporating section and the condensing section. And a steam flow path through which steam flows inside, a condensate flow path through which the condensate flows through the condensing part and the evaporating part, a working liquid sealed inside, and the working liquid. A loop heat pipe consisting of a backflow prevention mechanism that facilitates flow in one direction.
【請求項3】冷却手段に熱的に接続された複数の並列に
接続された流路からなる凝縮部と、被冷却体に熱的に接
続された複数の並列に接続された流路からなる蒸発部
と、前記蒸発部と前記凝縮部とを連絡し内部を蒸気が流
れる蒸気流路と、前記凝縮部と前記蒸発部とを連絡し内
部を凝縮液が流れる凝縮液流路と、内部に封入された作
動液と、前記作動液を一方向に流れ易くする逆流防止機
構とからなるループヒートパイプ。
3. A condensing section including a plurality of flow channels connected in parallel to the cooling means and connected in parallel, and a plurality of flow channels connected in parallel to the object to be cooled. An evaporation part, a vapor flow path that connects the evaporation part and the condensation part and through which steam flows, a condensate flow path that connects the condensation part and the evaporation part, and through which a condensate flows, A loop heat pipe comprising a sealed working fluid and a backflow prevention mechanism that facilitates the working fluid to flow in one direction.
【請求項4】前記複数の並列に接続された流路が、多穴
管によって形成されている、請求項1から3の何れか1
項に記載のループヒートパイプ。
4. The flow path connected in parallel to each other is formed by a multi-hole pipe.
The loop heat pipe according to item.
【請求項5】前記冷却手段および/または前記被冷却体
が円筒形状からなっており、前記複数の並列に接続され
た流路が、前記円筒形状に対応する曲面部を有する1対
の複数の並列に接続された流路からなっており、前記1
対の複数の並列に接続された流路の前記曲面部が前記円
筒形状の前記冷却手段または前記被冷却体を覆うように
配置されている、請求項1から3の何れか1項に記載の
ループヒートパイプ。
5. The pair of a plurality of cooling means and / or the body to be cooled has a cylindrical shape, and the plurality of flow paths connected in parallel have a curved surface portion corresponding to the cylindrical shape. The flow path is connected in parallel,
The curved surface part of a pair of parallelly connected flow paths is arrange | positioned so that the said cooling means of the said cylindrical shape or the said to-be-cooled object may be arrange | positioned. Loop heat pipe.
【請求項6】前記1対の複数の並列に接続された流路に
連絡する分岐手段を備えている、請求項5に記載のルー
プヒートパイプ。
6. The loop heat pipe according to claim 5, further comprising branching means communicating with the pair of flow paths connected in parallel.
JP2001347507A 2001-11-13 2001-11-13 Loop heat pipe Pending JP2003148884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001347507A JP2003148884A (en) 2001-11-13 2001-11-13 Loop heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001347507A JP2003148884A (en) 2001-11-13 2001-11-13 Loop heat pipe

Publications (1)

Publication Number Publication Date
JP2003148884A true JP2003148884A (en) 2003-05-21

Family

ID=19160501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001347507A Pending JP2003148884A (en) 2001-11-13 2001-11-13 Loop heat pipe

Country Status (1)

Country Link
JP (1) JP2003148884A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281696A (en) * 2005-04-04 2006-10-19 Mitsubishi Electric Corp Heat equalizer
JP2008051479A (en) * 2005-12-20 2008-03-06 Denso Corp Exhaust heat recovery device
WO2009086825A2 (en) * 2008-01-04 2009-07-16 Noise Limit Aps Condenser and cooling device
WO2010051811A2 (en) * 2008-11-04 2010-05-14 Noise Limit Aps Curved condenser and cooling device
EP2354744A1 (en) * 2010-01-20 2011-08-10 ABB Oy Cooling element
CN112611241A (en) * 2020-12-15 2021-04-06 山东大学 Separated heat pipe system capable of adjusting flow resistance and using method
TWI744984B (en) * 2020-07-15 2021-11-01 兆亮科技股份有限公司 Laminated heat sink structure
WO2022242165A1 (en) * 2021-05-20 2022-11-24 青岛海尔空调器有限总公司 Heating evaporative air cooler and control method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4553777B2 (en) * 2005-04-04 2010-09-29 三菱電機株式会社 Soaking equipment
JP2006281696A (en) * 2005-04-04 2006-10-19 Mitsubishi Electric Corp Heat equalizer
JP2008051479A (en) * 2005-12-20 2008-03-06 Denso Corp Exhaust heat recovery device
WO2009086825A2 (en) * 2008-01-04 2009-07-16 Noise Limit Aps Condenser and cooling device
WO2009086825A3 (en) * 2008-01-04 2009-09-03 Noise Limit Aps Condenser and cooling device
WO2010051811A3 (en) * 2008-11-04 2011-03-17 Noise Limit Aps Curved condenser and cooling device
WO2010051811A2 (en) * 2008-11-04 2010-05-14 Noise Limit Aps Curved condenser and cooling device
EP2354744A1 (en) * 2010-01-20 2011-08-10 ABB Oy Cooling element
US8462507B2 (en) 2010-01-20 2013-06-11 Abb Oy Cooling element
TWI744984B (en) * 2020-07-15 2021-11-01 兆亮科技股份有限公司 Laminated heat sink structure
CN112611241A (en) * 2020-12-15 2021-04-06 山东大学 Separated heat pipe system capable of adjusting flow resistance and using method
CN112611241B (en) * 2020-12-15 2021-11-02 山东大学 Separated heat pipe system capable of adjusting flow resistance and using method
WO2022242165A1 (en) * 2021-05-20 2022-11-24 青岛海尔空调器有限总公司 Heating evaporative air cooler and control method

Similar Documents

Publication Publication Date Title
US6990816B1 (en) Hybrid capillary cooling apparatus
EP0501736B1 (en) Evaporator
KR0136759B1 (en) Airconditioner
JPH10206041A (en) Evaporator/condenser for heat pump
JPH10176874A (en) Heat-exchanger
JP3866905B2 (en) Heat exchanger and refrigeration cycle equipment
JP2003148884A (en) Loop heat pipe
JP4953075B2 (en) heatsink
CN105556232B (en) Thermosyphons with unitary members
JP3644845B2 (en) High-efficiency steam condenser in vacuum equipment.
JP2003148882A (en) Loop heat pipe
US5857354A (en) Air-cooled absorption-type air conditioning apparatus with vertical heat-transfer fins
JP2756874B2 (en) Absorption refrigerator
JP3215248B2 (en) Refrigerant freezing prevention device for absorption chiller / heater / refrigerator
KR20100003499A (en) Flat bifacial evaporator of loop heat pipe, loop heat pipe having the same and heat transfer method using the same
JP4512596B2 (en) Cooling system
JPS6314058A (en) Condenser
JPH0552491A (en) Heat exchanging device
JPH0415424A (en) Heater
JP2000065454A (en) Ebullient cooler
JPH0814776A (en) Heat pipe type heat exchanger
KR0130652Y1 (en) Small absorption type cooling/heating device by heat pipe
JP3928573B2 (en) High heat transfer device for Stirling refrigerator
JPH04268171A (en) Absorption type heat source device
CN111426225A (en) Loop heat pipe structure