JP2003148653A - Long stretching piece for marker - Google Patents

Long stretching piece for marker

Info

Publication number
JP2003148653A
JP2003148653A JP2001343492A JP2001343492A JP2003148653A JP 2003148653 A JP2003148653 A JP 2003148653A JP 2001343492 A JP2001343492 A JP 2001343492A JP 2001343492 A JP2001343492 A JP 2001343492A JP 2003148653 A JP2003148653 A JP 2003148653A
Authority
JP
Japan
Prior art keywords
pipeline
information
buried
tape
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001343492A
Other languages
Japanese (ja)
Other versions
JP4043761B2 (en
Inventor
Satoshi Ozawa
聡 小澤
Norio Kishi
則男 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2001343492A priority Critical patent/JP4043761B2/en
Publication of JP2003148653A publication Critical patent/JP2003148653A/en
Application granted granted Critical
Publication of JP4043761B2 publication Critical patent/JP4043761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a long stretching piece for a marker which simply acquires information about an embedded pipeline or cable at the site and confirming at the site the detailed information containing the maintenance and inspection history, the sort of cable, etc. SOLUTION: Wireless response tags such as an RFID tag 2, etc., are installed at a certain spacing on the long stretching piece 1 such as a tape, cord, etc., so that a marker tape is formed, which is laid in the pipeline or embedded between the pipeline and the ground surface. The embedding information of the cables, pipeline, etc., stored in the tags is touchlessly sensed by irradiating the tags with electromagnetic waves, and it is realized to simply acquire the information about the embedded pipeline or cables. Also it is realized to confirm detailed information about the maintenance and inspection history, the sort of cable, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、地中に埋設されて
いる管路やケーブルについての情報を、地上から検知す
る場合などに好適な標識用長尺体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an elongated sign body suitable for detecting information about a pipeline or a cable buried in the ground from the ground.

【0002】[0002]

【従来の技術】現在、新規に地中埋設管路を設置する場
合、既設の配管が敷設されている可能性があるため、事
前に道路管理者が記録している書類を調査したり、部分
的に試験掘削を行って、埋設物の有無や場所の確認を行
う必要があった。また、地中に埋設されている電力・通
信ケーブルを収納した管路に沿って、再掘削時の損傷防
止のため、例えば地上と管路の間に、ケーブル種類等を
明記した図5に示す樹脂製の標識シートを管路敷設と同
時に埋設することもある。このようにしておけば再度、
道路工事等により管路埋設部分を掘削した場合にも、掘
削過程において上記標識シートに引っかかることによ
り、管路が埋設してあることが判り、管路の損傷を防止
できる。また、地表面には管路の埋設ルートにそって一
定の間隔で、管路の管理者記号や管路種によって色分け
された埋設標を埋め込んでおき、埋設物の位置がわかる
ようにされていた。このような従来技術は電力や通信管
路に限らず、ガスや上下水道等の地中埋設設備・管路に
も適用されてきた。
2. Description of the Related Art Currently, when a new underground buried pipeline is installed, there is a possibility that existing pipelines have been installed. It was necessary to conduct a test excavation to check the presence and location of buried objects. In addition, to prevent damage during re-excavation along the pipeline that houses the power / communication cable buried in the ground, for example, the cable type is shown between the ground and the pipeline, as shown in Fig. 5. A resin marking sheet may be buried at the same time as the pipeline is laid. If you do this, again
Even when the portion where the pipeline is buried is excavated by road construction or the like, it can be understood that the pipeline is buried by being caught on the sign sheet in the excavation process, and damage to the pipeline can be prevented. In addition, on the ground surface, buried markers that are color-coded according to the manager symbol of the pipeline and the pipeline type are embedded at regular intervals along the buried route of the pipeline so that the position of the buried object can be known. It was Such conventional techniques have been applied not only to electric power and communication lines but also to underground buried facilities and lines such as gas and water and sewerage.

【0003】[0003]

【発明が解決しようとする課題】上記のように管路を新
設する場合には、事前調査や、試験掘削を行っている
が、試験採掘等で予想したルートと別のルートに管路が
敷設されていることが判明することもある。このような
場合、設計を再度やりなおしたり、大規模な試験掘削を
行わなくてはならず、非常に手間がかかる上に、工期が
遅れてしまう問題があった。埋設標識シートの場合も、
重機等で実際に掘削していき、シートにぶつからないと
管路が埋設されていることが判らず、シート上の情報も
目視できないため、管路敷設予定場所で見つかった場
合、管路敷設ルートの見直しが必要となった。また、埋
設標識シートに気づかず管路まで重機がとどいてしま
い、既設配管を傷つけてしまうこともあるのが実情であ
る。また、埋設標からは地上で管理者の記号や埋設位
置、管路種に関する情報は得られるが、それ以上の情
報、例えば埋設深さや管路条数、ケーブルの種類、敷設
時期、敷設業者など、メンテナンスや災害復旧等で緊急
に必要となる詳細な情報については得ることができず、
管理者の保管する書類を調べたりする必要があった。本
発明は上記事情に鑑みなされたものであって、本発明の
目的は、埋設管路やケーブルに関する情報を簡単に得る
ことができるようにするともに、保守点検履歴やケーブ
ルの種類等の詳細情報を現地で確認できようにすること
である。
[Problems to be Solved by the Invention] When a pipeline is newly constructed as described above, a preliminary survey and a test excavation are carried out, but the pipeline is laid on a route different from the route expected in the test mining. Sometimes it turns out that it has been. In such a case, the design must be redone and a large-scale test excavation must be performed, which is very time-consuming and there is a problem that the construction period is delayed. In the case of a buried sign sheet,
If you do not dig into the sheet without actually hitting it with a heavy machine, you cannot know that the pipeline is buried, and you cannot see the information on the sheet. Need to be reviewed. In addition, the fact is that the heavy equipment may reach the pipeline without noticing the buried sign sheet, and the existing piping may be damaged. In addition, although information about the manager's symbol, burial position, and pipeline type can be obtained from the burial mark on the ground, more information such as burial depth, number of pipelines, cable type, laying time, laying contractor, etc. We cannot get detailed information that is urgently needed for maintenance, disaster recovery, etc.
It was necessary to check the documents kept by the administrator. The present invention has been made in view of the above circumstances, and an object of the present invention is to make it possible to easily obtain information about a buried pipeline or a cable, and to provide detailed information such as a maintenance / inspection history and a cable type. Is to be able to be confirmed locally.

【0004】[0004]

【課題を解決するための手段】上述する課題を解決する
ため、本発明は、テープやひも等の長尺体上に無線応答
タグを所定の間隔で設置して標識用長尺体を構成した。
この無線応答タグに対して電磁波を照射することによ
り、非接触で無線応答タグに記憶させた情報、例えばケ
ーブルや埋設管路等の埋設情報、長尺体の一端からの距
離情報、あるいは標準情報を地上から検知できるように
したものである。無線応答タグとしては、RFID(Rad
io Frequency Identifcation) タグが知られている。上
記RFIDタグを用いる非接触式認識システムは、無線
(電磁波) でRFIDタグに内蔵されたICメモリと情
報のやりとりを行うシステムであり、非接触でデータの
読み出し、書き換えが可能であるため、これまで物流管
理等で用いられていたバーコードや、キャッシュカード
等に用いられてきた磁気テープにかわるものとして注目
されており、現在では量産化によって単価が下落し、急
激に普及し始めている。
In order to solve the above-mentioned problems, the present invention constructs a long body for marking by installing wireless response tags on a long body such as a tape or a string at predetermined intervals. .
By irradiating the wireless response tag with electromagnetic waves, information stored in the wireless response tag in a non-contact manner, for example, embedded information such as a cable or an embedded pipeline, distance information from one end of a long body, or standard information It can detect from the ground. As a wireless response tag, RFID (Rad
The io Frequency Identification) tag is known. The non-contact type recognition system using the above RFID tag is a system for exchanging information wirelessly (electromagnetic wave) with an IC memory built in the RFID tag, and can read and rewrite data without contact. It has attracted attention as a substitute for magnetic tapes used for barcodes and cash cards used for physical distribution management, etc. At present, the unit price has fallen due to mass production and it has begun to spread rapidly.

【0005】上記RFID非接触式認識システムの構成
は、個体管理の基となる「RFIDタグ」、通信の中継
を行う「アンテナ」、上記RFIDタグのID情報の読
み取り/書き込みを行う「リーダ」から構成され、RF
IDタグには、ID情報を格納するメモリと通信回路か
ら成るICチップと超小型アンテナが内蔵されている。
上記アンテナは、リーダーと組み合わせて効率的な通信
ができるように設計されている。リーダーはRFモジュ
ールとコントロールモジュールから成り、上記アンテナ
を通じてホストコンピュータからのデータをRFIDタ
グに書き込んだり、RFIDタグのID情報をホストコ
ンピュータに伝送したりする。また、RFIDタグは、
送信される電磁波により起動する無電源のものが主流と
なりつつある。さらに、電磁波によってタグと交信する
ため、土砂や水、コンクリートを介してもタグの読み書
きを行うことが可能である。
The configuration of the RFID non-contact type recognition system includes an "RFID tag" which is a basis for individual management, an "antenna" which relays communication, and a "reader" which reads / writes ID information of the RFID tag. Composed and RF
The ID tag has a built-in IC chip including a memory for storing ID information and a communication circuit, and a micro antenna.
The antenna is designed for efficient communication with a reader. The reader is composed of an RF module and a control module and writes data from the host computer to the RFID tag or transmits ID information of the RFID tag to the host computer through the antenna. In addition, RFID tags,
Non-powered devices that are activated by transmitted electromagnetic waves are becoming mainstream. Further, since the communication with the tag is performed by electromagnetic waves, it is possible to read and write the tag through the earth and sand, water, or concrete.

【0006】このRFIDタグに、例えば管理者名や埋
設位置、管路種や管路条数、ケーブルの種類、敷設時
期、敷設業者、作業内容履歴など、メンテナンスや災害
復旧等で必要となる詳細な情報を記録させ、例えば樹脂
製の長尺テープにある間隔でとりつけておき、これを前
記埋設標識シートと同様、管路と地上の間に埋設して設
置する、あるいは管路内にこのテープを通して敷設して
おけば、現地で送信回路によりアンテナから固有周波数
の電磁波を発信し、RFIDタグが受信してIDデータ
を格納したメモリに記憶させた上記情報が返信され、リ
ーダーによりリアルタイムで地上から地中に埋設してあ
る管路やケーブルの情報を得ることができるようにな
る。このRFIDタグは、データの書き換え作業が可能
であるため、最初に記憶させた情報を更新することが可
能であり、メンテナンスの履歴等を書き足したり、書き
換えたりすることが可能である。また、遠隔で情報の書
き込みが可能であるため、敷設前にデータを書き込まな
いで、敷設後にデータを書き込むことも可能である。
Details of the RFID tag, such as the name of the manager, the burial position, the type of pipe and the number of pipe lines, the type of cable, the laying time, the laying contractor, the work content history, etc., required for maintenance and disaster recovery, etc. Such information is recorded and attached, for example, to a long tape made of resin at a certain interval, and this is installed by embedding it between the pipeline and the ground as in the case of the above-mentioned embedded marker sheet, or the tape is placed in the pipeline. If you lay it through, the transmitting circuit will radiate electromagnetic waves of a natural frequency from the antenna on site, and the above information stored in the memory that stores the ID data received by the RFID tag will be returned, and the reader will send it from the ground in real time. You will be able to obtain information on pipelines and cables buried underground. Since this RFID tag is capable of rewriting data, it is possible to update the initially stored information, and it is possible to add or rewrite maintenance history and the like. Further, since information can be written remotely, it is possible to write data after laying, without writing data before laying.

【0007】既設の配管への対応としては、一管路内へ
の敷設が適している。このような敷設形態をとれば、再
掘削することなく、RFIDタグの敷設が可能となる。
このように、埋設物標識用長尺体を設置すれば、記録を
調査したり、試験掘削をすることなく、現地で地上から
埋設管路の情報がとれることから、新設の管路工事をス
ムースに進めることが可能になるし、メンテナンス作業
も容易になり、履歴等を残すことも簡単になる。また、
地震等の災害で管路に納められているケーブルに支障が
生じたとしても、無電源のRFIDタグを採用していれ
ば、すぐにケーブル種類等が現地で把握でき、早急な復
旧作業が可能になる。また、RFIDタグから返信され
る電磁波の受信強度をリーダーによって測定し、受信強
度と距離の関係を解析することにより、RFIDタグと
の距離を測定することもできる。この距離測定によっ
て、タグの埋設深さを知ることができるので、管路内に
標識用長尺体が敷設されていれば、管路の埋設深さが判
明することになり、掘削時にその深さ付近まで、いっぺ
んに開削しても管路を傷つける恐れもなくなる。
As a measure for the existing pipe, it is suitable to lay it in one pipeline. With such a laying configuration, the RFID tag can be laid without re-digging.
In this way, if a long body for marking buried objects is installed, information on buried pipelines can be obtained from the ground without investigating records or conducting test excavation. It becomes possible to proceed to the above, maintenance work becomes easy, and it becomes easy to keep a history. Also,
Even if the cable stored in the pipeline is damaged by a disaster such as an earthquake, if a non-powered RFID tag is used, the type of cable can be immediately grasped at the site, enabling quick recovery work. become. Further, the distance from the RFID tag can also be measured by measuring the reception intensity of the electromagnetic wave returned from the RFID tag with a reader and analyzing the relationship between the reception intensity and the distance. By measuring this distance, it is possible to know the burial depth of the tag, so if a long sign body is laid in the pipeline, the burial depth of the pipeline will be known, and the depth will be determined during excavation. There is no risk of damaging the pipeline even if it is opened up to the end.

【0008】[0008]

【発明の実施の形態】図1は本発明の実施例の標識用テ
ープの構成を示す図である。同図に示すように、長尺な
テープ1にRFIDタグ2を所定の間隔で取り付ける。
テープは例えばポリエチレンなどの樹脂製が長期使用の
点から望ましいが、金属製でもよい。なお、形状はテー
プ状でなく、ひも状でもかまわない。タグの間隔は0.
5〜5m間隔が望ましい。すなわち、現在、RFIDタ
グの通信距離は最大で6m程度であり、ルート上で常に
情報をモニタリングできることを考えると5m以下の間
隔が望ましく、また、間隔をつめすぎると安価とはいえ
コストアップになることから0.5m以上の間隔が望ま
しい。現在、市販されているRFIDタグは、ID情報
を格納したメモリと通信回路から成るICチップと超小
型アンテナを、樹脂製のシートに挟み込んで封止してあ
るものや、樹脂、シリコン製やガラス製のケースに収め
られているものがあり、これらをテープにとりつけてい
ってもかまわない。また、上記封止するための樹脂性の
シートを長尺テープ状にして、所定の間隔にICチップ
と小型アンテナを封止して、標識用テープとしてもよ
い。このようにすれば、あとからRFIDタグを設置す
る手間を省くことが可能になる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing the construction of a marking tape according to an embodiment of the present invention. As shown in the figure, RFID tags 2 are attached to a long tape 1 at predetermined intervals.
The tape is preferably made of resin such as polyethylene from the viewpoint of long-term use, but may be made of metal. It should be noted that the shape may not be a tape shape, but may be a string shape. The tag spacing is 0.
A distance of 5 to 5 m is desirable. That is, the communication distance of the RFID tag is currently about 6 m at the maximum, and an interval of 5 m or less is desirable considering that information can be constantly monitored on the route. Also, if the interval is too small, the cost will increase although it is cheap. Therefore, the interval of 0.5 m or more is desirable. RFID tags currently on the market are those in which an IC chip consisting of a memory that stores ID information and a communication circuit and a microminiature antenna are sandwiched and sealed in a resin sheet, resin, silicon, or glass. Some of them are housed in a case, and you can attach them to tape. Further, the resin sheet for sealing may be formed into a long tape shape, and the IC chip and the small antenna may be sealed at a predetermined interval to form a labeling tape. By doing so, it becomes possible to save the trouble of installing the RFID tag later.

【0009】図2に上記標識用テープの敷設方法の一例
を示す。敷設方法としては、図2に示すように埋設敷設
されている管路3内に、標識用テープ1を挿通して設置
する方法を採ることができる。通常、管路内には、線材
が残されていることが多く、この線材を利用すれば既設
の管路であっても標識用テープを容易に挿通させること
ができるが、テープ1の先端にパラシュートをつけて高
圧空気で管内に吹き込む、いわゆる吹き流し方式で挿通
させることもできる。この敷設方法であれば、既設管路
にも簡単に適用できるメリットがあり、万が一、標識用
テープを交換しなければならない場合にも、容易に交換
することができる。また、既設管路の埋設位置を確認す
る際にも、管路に標識用テープを挿通させれば、管路の
埋設位置を容易に確認することが可能となる。さらに、
RFIDタグから返信される電磁波の受信強度をリーダ
ーによって測定し、受信強度と距離の関係を解析するこ
とにより、RFIDタグとの距離を測定することも可能
であるため、例えば、図2に示したように、管内に埋設
物標識用テープを納めておけば、管路深さが判るので、
管路を傷つけずに掘削可能な深さをあらかじめ知ること
が可能になる。この標識用テープのRFIDタグに一方
から連続番号を書き込んでおけば、この番号をたよりに
マンホールからの管の長さをおおよそ知ることができ
る。
FIG. 2 shows an example of a method of laying the marking tape. As a laying method, it is possible to adopt a method in which the marking tape 1 is inserted into the buried pipeline 3 as shown in FIG. Usually, a wire is often left in the pipeline, and if this wire is used, the marking tape can be easily inserted even in an existing pipeline, but at the tip of the tape 1. A parachute may be attached and blown into the pipe with high-pressure air, which is a so-called wind-down method. This laying method has the advantage that it can be easily applied to existing pipelines, and even if the marking tape should be replaced, it can be easily replaced. Also, when confirming the buried position of the existing pipeline, it is possible to easily confirm the buried position of the pipeline by inserting the marking tape into the pipeline. further,
Since it is also possible to measure the distance from the RFID tag by measuring the reception intensity of the electromagnetic wave returned from the RFID tag with a reader and analyzing the relationship between the reception intensity and the distance, for example, as shown in FIG. Like this, if you put the tape for marking the buried object in the pipe, you can know the depth of the pipe,
It is possible to know beforehand the depth that can be excavated without damaging the pipeline. If the serial number is written from one side on the RFID tag of this marking tape, the length of the pipe from the manhole can be roughly known from this number.

【0010】図3に標識用テープの敷設方法の他の例を
示す。同図に示すように、従来の標識シートと同じよう
に、管路3と地表との間の任意の位置に埋設物標識用テ
ープ1を埋設する方法を採ることができる。この場合、
管路本数分の埋設物標識テープを埋設してもかまわない
が、複数本の管路に対し1本だけ埋設物標識用テープを
敷設して、RFIDタグに複数管路の情報をまとめて記
憶させておくことも可能である。RFIDタグに記憶さ
せる情報としては、例えば管理者名や埋設位置、管路種
や管路条数、ケーブルの種類、敷設時期、敷設業者のみ
ならず、情報の書き換えや書き加えも可能であるため、
保守点検履歴やケーブルの交換履歴など、メンテナンス
や災害復旧等で必要となる情報が考えられる。また、R
FIDタグは電池式のものと無電源式のものがあるが、
長期使用という観点から無電源式のものが望ましい。
FIG. 3 shows another example of the method of laying the marking tape. As shown in the figure, as in the case of the conventional marking sheet, a method of burying the buried object labeling tape 1 at an arbitrary position between the conduit 3 and the ground surface can be adopted. in this case,
It is possible to embed the embedded object labeling tape for the number of pipelines, but only one embedded object labeling tape is laid for multiple pipelines and the information of multiple pipelines is stored together in the RFID tag. It is also possible to leave it. As the information to be stored in the RFID tag, for example, not only the name of the manager, the burial position, the type of pipeline and the number of pipelines, the type of cable, the laying time, the laying company, but also the rewriting and addition of information is possible. ,
Information necessary for maintenance and disaster recovery, such as maintenance and inspection history and cable replacement history, can be considered. Also, R
There are battery type and non-power source type FID tag,
A non-power supply type is desirable from the viewpoint of long-term use.

【0011】埋設物標識用テープのその他の実施例を図
4に示す。同図に示すように、埋設物標識用テープに、
管路・ケーブル情報を文字や記号で記載しておくことに
より、掘削して掘り起こしたときに、管路等が埋設され
ていることを目視でも確認できるので便利である。な
お、上記の実施例は、電力・通信管路について述べた
が、同じように地中埋設されているガスや上下水道管路
に関しても適用することが可能である。
Another embodiment of the buried object marking tape is shown in FIG. As shown in the figure, the buried object labeling tape
By describing the pipeline / cable information in characters or symbols, it is convenient to visually confirm that the pipeline or the like is buried when excavating and digging up. Although the above embodiments have been described with respect to the power / communication pipeline, the same can be applied to the gas and water / sewerage pipelines buried in the ground.

【0012】[0012]

【発明の効果】以上説明したように、以下の効果を得る
ことができる。 (1)無線応答タグを取り付けた標識用長尺体を用いれ
ば、現地で埋設管路やケーブルに関する情報を正確に得
ることが可能となり、書類による事前調査や、試験掘削
が不要となり、掘削してからのルート変更等がなくな
り、正確に工事を進めることが可能となる。また、上記
標識用長尺体を既設管路中に挿通させれば、既設管路の
埋設位置を容易に確認することができ、試験掘削等も不
要となる。さらに、上記埋設物標識用長尺体を、管路等
の埋設物と地表面の間に埋設敷設しておけば、従来の標
識シートと同様な機能を持たせることもできる。 (2)メンテナンスや災害時の復旧に際しても、保守点
検履歴やケーブルの種類、敷設ルート等の詳細情報が現
地で確認できるため、早急な対応が可能となる。また、
電子情報として情報を保管、伝送できるため、リーダー
に携帯電話等の長距離通信手段を取り付けて、一括管理
を行うホストコンピューターと情報を交換し、例えば地
図情報等と組み合わせれば、管路網の管理システムにも
応用できる。
As described above, the following effects can be obtained. (1) By using a long sign body attached with a wireless response tag, it becomes possible to accurately obtain information on buried pipelines and cables on site, which eliminates the need for documentary preliminary surveys and test excavation. Since there is no need to change routes afterwards, it will be possible to proceed with the construction accurately. Further, if the elongated sign body is inserted into the existing pipeline, the buried position of the existing pipeline can be easily confirmed, and test excavation or the like becomes unnecessary. Furthermore, by laying the above-mentioned long body for buried object marking between a buried object such as a pipeline and the ground surface, the same function as that of a conventional marking sheet can be provided. (2) When performing maintenance or recovery from a disaster, detailed information such as maintenance and inspection history, cable types, and laying routes can be confirmed on-site, which enables immediate response. Also,
Since information can be stored and transmitted as electronic information, long-distance communication means such as a mobile phone can be attached to the reader, and information can be exchanged with a host computer that performs collective management. It can also be applied to management systems.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の標識用テープの構成を示す図
である。
FIG. 1 is a diagram showing a configuration of a marking tape according to an embodiment of the present invention.

【図2】標識用テープの敷設方法の1例を示す図であ
る。
FIG. 2 is a diagram showing an example of a method of laying a marking tape.

【図3】標識用テープの敷設方法の他の例を示す図であ
る。
FIG. 3 is a diagram showing another example of a method of laying a marking tape.

【図4】標識用テープの他の例を示す図である。FIG. 4 is a diagram showing another example of the marking tape.

【図5】従来から使用されていた標識シートの一例を示
す図である。
FIG. 5 is a diagram showing an example of a marker sheet that has been conventionally used.

【符号の説明】[Explanation of symbols]

1 テープ 2 RFIDタグ 3 管路 1 tape 2 RFID tag 3 pipelines

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G09F 3/02 G06K 19/00 Q H04B 1/59 H ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G09F 3/02 G06K 19/00 Q H04B 1/59 H

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 長尺体上に無線応答タグを所定の間隔で
設置した標識用長尺体。
1. A lengthy body for marking, in which wireless response tags are installed at predetermined intervals on the lengthy body.
【請求項2】 請求項1の標識用長尺体であって、上記
無線応答タグに対して、電磁波を照射することにより、
非接触で無線応答タグに記憶させたケーブルあるいは埋
設管路等の埋設情報を地上から検知できるようにしたこ
とを特徴とする標識用長尺体。
2. The elongated sign body according to claim 1, wherein the radio response tag is irradiated with an electromagnetic wave,
A long sign body characterized by being able to detect buried information such as a cable or a buried conduit stored in a wireless response tag in a contactless manner from the ground.
【請求項3】 上記長尺体は、管路等の埋設物と地表面
の間に埋設敷設されることを特徴とする請求項1の標識
用長尺体。
3. The elongated marker body according to claim 1, wherein the elongated body is buried between an embedded object such as a pipeline and the ground surface.
【請求項4】 上記長尺体は、管内に敷設されることを
特徴とする請求項1の標識用長尺体。
4. The elongated labeling body according to claim 1, wherein the elongated body is laid inside a pipe.
JP2001343492A 2001-11-08 2001-11-08 Detecting elongate body and method for detecting pipeline information Expired - Fee Related JP4043761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001343492A JP4043761B2 (en) 2001-11-08 2001-11-08 Detecting elongate body and method for detecting pipeline information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001343492A JP4043761B2 (en) 2001-11-08 2001-11-08 Detecting elongate body and method for detecting pipeline information

Publications (2)

Publication Number Publication Date
JP2003148653A true JP2003148653A (en) 2003-05-21
JP4043761B2 JP4043761B2 (en) 2008-02-06

Family

ID=19157170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001343492A Expired - Fee Related JP4043761B2 (en) 2001-11-08 2001-11-08 Detecting elongate body and method for detecting pipeline information

Country Status (1)

Country Link
JP (1) JP4043761B2 (en)

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004072989A1 (en) * 2003-02-12 2004-08-26 Fujikura Ltd Continuous long body and cable
JP2004265860A (en) * 2003-02-13 2004-09-24 Fujikura Ltd Cable and rfid elongated body
JP2007012038A (en) * 2005-06-01 2007-01-18 Semiconductor Energy Lab Co Ltd Information management method and information management system
US7197214B2 (en) 2004-05-24 2007-03-27 Corning Cable Systems Llc Methods and apparatus for facilitating cable locating
JP2007170865A (en) * 2005-12-19 2007-07-05 Chugoku Electric Power Co Inc:The System, apparatus, method and program for managing information of cable position
CN100435179C (en) * 2006-12-27 2008-11-19 朱鸿利 Picture-character mosaic type underground pipeline mark plate and manufacturing method and application thereof
JP2009523245A (en) * 2006-01-11 2009-06-18 ジュン,ヒュン−チュル Construction method of location management system using RFID series
JP2009523287A (en) * 2006-01-11 2009-06-18 ジュン,ヒュン−チュル Location management method using RFID series
JP2010002305A (en) * 2008-06-20 2010-01-07 Kindai-Sekkei Consultant Inc Underground object position indicator
US7782202B2 (en) 2006-10-31 2010-08-24 Corning Cable Systems, Llc Radio frequency identification of component connections
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
JP2010277096A (en) * 2010-07-07 2010-12-09 Fuji Seal International Inc Cylindrical label with ic tag, and method of manufacturing cylindrical label continuous body
JP2011103246A (en) * 2009-11-11 2011-05-26 Hitachi Cable Ltd Cable having identification function
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US8172468B2 (en) 2010-05-06 2012-05-08 Corning Incorporated Radio frequency identification (RFID) in communication connections, including fiber optic components
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8264355B2 (en) 2006-12-14 2012-09-11 Corning Cable Systems Llc RFID systems and methods for optical fiber network deployment and maintenance
US8264366B2 (en) 2009-03-31 2012-09-11 Corning Incorporated Components, systems, and methods for associating sensor data with component location
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
CN103390176A (en) * 2012-05-08 2013-11-13 珠海格力电器股份有限公司 Assembly system and method
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8731405B2 (en) 2008-08-28 2014-05-20 Corning Cable Systems Llc RFID-based systems and methods for collecting telecommunications network information
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9159012B2 (en) 2009-11-30 2015-10-13 Corning Incorporated RFID condition latching
US9165232B2 (en) 2012-05-14 2015-10-20 Corning Incorporated Radio-frequency identification (RFID) tag-to-tag autoconnect discovery, and related methods, circuits, and systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9563832B2 (en) 2012-10-08 2017-02-07 Corning Incorporated Excess radio-frequency (RF) power storage and power sharing RF identification (RFID) tags, and related connection systems and methods
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9652708B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Protocol for communications between a radio frequency identification (RFID) tag and a connected device, and related systems and methods
US9652707B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Radio frequency identification (RFID) connected tag communications protocol and related systems and methods
US9652709B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Communications between multiple radio frequency identification (RFID) connected tags and one or more devices, and related systems and methods
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
FR3054695A1 (en) * 2016-08-01 2018-02-02 Commissariat Energie Atomique METHOD AND SYSTEM FOR DETECTING A SPECIFIC RELATIVE POSITION BETWEEN TWO OBJECTS
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10032102B2 (en) 2006-10-31 2018-07-24 Fiber Mountain, Inc. Excess radio-frequency (RF) power storage in RF identification (RFID) tags, and related systems and methods
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
JP2019530859A (en) * 2016-09-08 2019-10-24 イーエーエス,アイピー,エルエルシー Signal tape
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435997B1 (en) * 2014-01-16 2014-11-04 조선남 Underground pipe

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943212A (en) * 1982-09-06 1984-03-10 Taisei Polymer Kk Sign of buried object
JPH02179492A (en) * 1988-12-29 1990-07-12 Oobayashi Doro Kk Method and apparatus for detecting outer periphery of laid underground pipe
JPH0439483A (en) * 1990-06-04 1992-02-10 Kubota Corp Underground buried pipe
JPH0493687A (en) * 1990-08-03 1992-03-26 Showa Denko Kk Labeled sheet
JPH04336196A (en) * 1991-05-10 1992-11-24 Furukawa Electric Co Ltd:The Propulsion of underground pusher
JPH09166404A (en) * 1995-12-15 1997-06-24 Osaka Gas Co Ltd Method and device for specifying position of object
JP2001264447A (en) * 2000-01-14 2001-09-26 Osaka Gas Co Ltd System and method for locating buried pipe
JP2001336667A (en) * 2000-03-24 2001-12-07 Murao Giken:Kk Buried pipe identifying device
JP2003035782A (en) * 2001-07-23 2003-02-07 Fuji Tecom Inc Position information editing control method for underground facility and record medium recording program for the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943212A (en) * 1982-09-06 1984-03-10 Taisei Polymer Kk Sign of buried object
JPH02179492A (en) * 1988-12-29 1990-07-12 Oobayashi Doro Kk Method and apparatus for detecting outer periphery of laid underground pipe
JPH0439483A (en) * 1990-06-04 1992-02-10 Kubota Corp Underground buried pipe
JPH0493687A (en) * 1990-08-03 1992-03-26 Showa Denko Kk Labeled sheet
JPH04336196A (en) * 1991-05-10 1992-11-24 Furukawa Electric Co Ltd:The Propulsion of underground pusher
JPH09166404A (en) * 1995-12-15 1997-06-24 Osaka Gas Co Ltd Method and device for specifying position of object
JP2001264447A (en) * 2000-01-14 2001-09-26 Osaka Gas Co Ltd System and method for locating buried pipe
JP2001336667A (en) * 2000-03-24 2001-12-07 Murao Giken:Kk Buried pipe identifying device
JP2003035782A (en) * 2001-07-23 2003-02-07 Fuji Tecom Inc Position information editing control method for underground facility and record medium recording program for the same

Cited By (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004072989A1 (en) * 2003-02-12 2004-08-26 Fujikura Ltd Continuous long body and cable
JP4698148B2 (en) * 2003-02-13 2011-06-08 株式会社フジクラ Cable and RFID continuous body
JP2004265860A (en) * 2003-02-13 2004-09-24 Fujikura Ltd Cable and rfid elongated body
US7197214B2 (en) 2004-05-24 2007-03-27 Corning Cable Systems Llc Methods and apparatus for facilitating cable locating
JP2007012038A (en) * 2005-06-01 2007-01-18 Semiconductor Energy Lab Co Ltd Information management method and information management system
JP2007170865A (en) * 2005-12-19 2007-07-05 Chugoku Electric Power Co Inc:The System, apparatus, method and program for managing information of cable position
JP2009523245A (en) * 2006-01-11 2009-06-18 ジュン,ヒュン−チュル Construction method of location management system using RFID series
JP2009523287A (en) * 2006-01-11 2009-06-18 ジュン,ヒュン−チュル Location management method using RFID series
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US10032102B2 (en) 2006-10-31 2018-07-24 Fiber Mountain, Inc. Excess radio-frequency (RF) power storage in RF identification (RFID) tags, and related systems and methods
US7782202B2 (en) 2006-10-31 2010-08-24 Corning Cable Systems, Llc Radio frequency identification of component connections
US9652708B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Protocol for communications between a radio frequency identification (RFID) tag and a connected device, and related systems and methods
US9652709B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Communications between multiple radio frequency identification (RFID) connected tags and one or more devices, and related systems and methods
US9652707B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Radio frequency identification (RFID) connected tag communications protocol and related systems and methods
US8264355B2 (en) 2006-12-14 2012-09-11 Corning Cable Systems Llc RFID systems and methods for optical fiber network deployment and maintenance
US9130613B2 (en) 2006-12-19 2015-09-08 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
CN100435179C (en) * 2006-12-27 2008-11-19 朱鸿利 Picture-character mosaic type underground pipeline mark plate and manufacturing method and application thereof
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
JP2010002305A (en) * 2008-06-20 2010-01-07 Kindai-Sekkei Consultant Inc Underground object position indicator
US8731405B2 (en) 2008-08-28 2014-05-20 Corning Cable Systems Llc RFID-based systems and methods for collecting telecommunications network information
US9058529B2 (en) 2008-08-28 2015-06-16 Corning Optical Communications LLC RFID-based systems and methods for collecting telecommunications network information
US10153841B2 (en) 2009-02-03 2018-12-11 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9900097B2 (en) 2009-02-03 2018-02-20 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US8264366B2 (en) 2009-03-31 2012-09-11 Corning Incorporated Components, systems, and methods for associating sensor data with component location
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
JP2011103246A (en) * 2009-11-11 2011-05-26 Hitachi Cable Ltd Cable having identification function
US9729238B2 (en) 2009-11-13 2017-08-08 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9485022B2 (en) 2009-11-13 2016-11-01 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9159012B2 (en) 2009-11-30 2015-10-13 Corning Incorporated RFID condition latching
US8831428B2 (en) 2010-02-15 2014-09-09 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9853732B2 (en) 2010-05-02 2017-12-26 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9270374B2 (en) 2010-05-02 2016-02-23 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US8333518B2 (en) 2010-05-06 2012-12-18 Corning Incorporated Radio frequency identification (RFID) in communication connections, including fiber optic components
US8172468B2 (en) 2010-05-06 2012-05-08 Corning Incorporated Radio frequency identification (RFID) in communication connections, including fiber optic components
JP2010277096A (en) * 2010-07-07 2010-12-09 Fuji Seal International Inc Cylindrical label with ic tag, and method of manufacturing cylindrical label continuous body
US10014944B2 (en) 2010-08-16 2018-07-03 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US11671914B2 (en) 2010-10-13 2023-06-06 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11212745B2 (en) 2010-10-13 2021-12-28 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11224014B2 (en) 2010-10-13 2022-01-11 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US8913892B2 (en) 2010-10-28 2014-12-16 Coring Optical Communications LLC Sectorization in distributed antenna systems, and related components and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9813164B2 (en) 2011-02-21 2017-11-07 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US10205538B2 (en) 2011-02-21 2019-02-12 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9807722B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9806797B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9369222B2 (en) 2011-04-29 2016-06-14 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US10148347B2 (en) 2011-04-29 2018-12-04 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9813127B2 (en) 2012-03-30 2017-11-07 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10349156B2 (en) 2012-04-25 2019-07-09 Corning Optical Communications LLC Distributed antenna system architectures
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
CN103390176A (en) * 2012-05-08 2013-11-13 珠海格力电器股份有限公司 Assembly system and method
US9165232B2 (en) 2012-05-14 2015-10-20 Corning Incorporated Radio-frequency identification (RFID) tag-to-tag autoconnect discovery, and related methods, circuits, and systems
US9973968B2 (en) 2012-08-07 2018-05-15 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9563832B2 (en) 2012-10-08 2017-02-07 Corning Incorporated Excess radio-frequency (RF) power storage and power sharing RF identification (RFID) tags, and related connection systems and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US10361782B2 (en) 2012-11-30 2019-07-23 Corning Optical Communications LLC Cabling connectivity monitoring and verification
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US11291001B2 (en) 2013-06-12 2022-03-29 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US11792776B2 (en) 2013-06-12 2023-10-17 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9967754B2 (en) 2013-07-23 2018-05-08 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9526020B2 (en) 2013-07-23 2016-12-20 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US10292056B2 (en) 2013-07-23 2019-05-14 Corning Optical Communications LLC Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9807772B2 (en) 2014-05-30 2017-10-31 Corning Optical Communications Wireless Ltd. Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems
US10256879B2 (en) 2014-07-30 2019-04-09 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9929786B2 (en) 2014-07-30 2018-03-27 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US10397929B2 (en) 2014-08-29 2019-08-27 Corning Optical Communications LLC Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9929810B2 (en) 2014-09-24 2018-03-27 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9788279B2 (en) 2014-09-25 2017-10-10 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per-band gain control of remote uplink paths in remote units
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10523326B2 (en) 2014-11-13 2019-12-31 Corning Optical Communications LLC Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10135561B2 (en) 2014-12-11 2018-11-20 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10361783B2 (en) 2014-12-18 2019-07-23 Corning Optical Communications LLC Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10523327B2 (en) 2014-12-18 2019-12-31 Corning Optical Communications LLC Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US10292114B2 (en) 2015-02-19 2019-05-14 Corning Optical Communications LLC Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US10009094B2 (en) 2015-04-15 2018-06-26 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
FR3054695A1 (en) * 2016-08-01 2018-02-02 Commissariat Energie Atomique METHOD AND SYSTEM FOR DETECTING A SPECIFIC RELATIVE POSITION BETWEEN TWO OBJECTS
US10802172B2 (en) 2016-08-01 2020-10-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method and system for detecting a specific relative position between two objects
WO2018024967A1 (en) * 2016-08-01 2018-02-08 Commissariat à l'énergie atomique et aux énergies alternatives Method and system for detecting a specific relative position between two objects
JP7060254B2 (en) 2016-09-08 2022-04-26 イーエーエス,アイピー,エルエルシー Signal tape
JP2019530859A (en) * 2016-09-08 2019-10-24 イーエーエス,アイピー,エルエルシー Signal tape

Also Published As

Publication number Publication date
JP4043761B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
JP2003148653A (en) Long stretching piece for marker
US9140818B2 (en) Method and apparatus for determining position in a pipe
EP2103960B1 (en) Method and apparatus for determining position in a pipe
US7969295B2 (en) Device, system and method for the location and identification of as-built plants of pipes, conduits, cables or hidden objects
US20110181289A1 (en) Locator assembly for detecting, locating and identifying buried objects and method of use
JP2005181111A (en) Reading device of buried pipe information
KR101337722B1 (en) Underground Management System
JP2007004778A (en) Facility maintenance system
JPH1185925A (en) Wireless id tag and system therefor
KR200252939Y1 (en) Administration system of layer under the ground using intelligence marker
KR20030004610A (en) Administration system of layer under the ground using intelligence marker
JPH11248035A (en) Coupling for pipe
KR20030030594A (en) A System for position recognition of underground facilities
JPH10317410A (en) Information system of object embedded in underground
KR100614204B1 (en) Detecting apparatus for the position of earth burial cable and the method thereof
JP2003153410A (en) Underground box and conduit opening forming member with marker installed in the underground box
JPH07134032A (en) Buried label
JP4147163B2 (en) Information tag system
JP2016044431A (en) Ground displacement measuring device and ground displacement measuring method
CN109409146A (en) A kind of method and system using RFID tags road
JP2003004843A (en) Flush type data control method
KR20230009697A (en) A Tag Unit
Dziadak et al. RFID applied to the built environment: Buried Asset Tagging and Tracking System
IT201900005942A1 (en) Real-time identification and tracking system and method for construction and maintenance purposes
JP2006119933A (en) Underground electric line mark and underground electric line mark installation management system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees