JP2003148632A - Rotating shaft seal mechanism for rotary machine - Google Patents

Rotating shaft seal mechanism for rotary machine

Info

Publication number
JP2003148632A
JP2003148632A JP2001346490A JP2001346490A JP2003148632A JP 2003148632 A JP2003148632 A JP 2003148632A JP 2001346490 A JP2001346490 A JP 2001346490A JP 2001346490 A JP2001346490 A JP 2001346490A JP 2003148632 A JP2003148632 A JP 2003148632A
Authority
JP
Japan
Prior art keywords
storage chamber
chamber
rotating shaft
fluid storage
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001346490A
Other languages
Japanese (ja)
Inventor
Tadashi Suzuki
正 鈴木
Tomoyuki Tanaka
智之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2001346490A priority Critical patent/JP2003148632A/en
Publication of JP2003148632A publication Critical patent/JP2003148632A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotating shaft seal mechanism for rotary machine which keeps a seal liquid at a low temperature and suppresses the evaporation of the seal liquid. SOLUTION: This rotating shaft seal mechanism for rotary machine comprises a second rotating shaft 113 concentrically provided on the outside of a first rotating shaft 115 and rotated at a speed higher than the first rotating shaft, and seals a high- pressure fluid chamber 3 communicating with one side of the hollow shaft part of the second rotating shaft and a low-pressure fluid chamber communicating with the other side thereof. The second rotating shaft comprises an annular fluid storage chamber 121 opened in the axial direction, which is provided on the shaft end part on the side communicating with the low-pressure fluid chamber, and the first rotating shaft comprises a flange 123 extended into the fluid storage chamber. An annular U-shaped fluid storage chamber 125 is formed in the fluid storage chamber, and a drain chamber 5 for mutually interrupting the high-pressure fluid and the low-pressure fluid by the seal liquid 127 well-balanced by the pressure difference between the high- pressure side and the low-pressure side and discharging the seal liquid in the U-shaped fluid storage chamber to the low-pressure fluid chamber is provided within the U-shaped storage chamber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は回転機械の回転軸シ
ール機構に関する。さらに詳細には2軸ターボファンエ
ンジンの回転軸シール機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary shaft seal mechanism for a rotary machine. More specifically, it relates to a rotary shaft seal mechanism for a two-axis turbofan engine.

【0002】[0002]

【従来の技術】回転機械の回転軸シール機構として、例
えば、図2に示すような2軸ターボファンエンジン(ジ
ェットエンジンの一種)における空気圧縮機用のタービ
ン駆動軸とファン回転駆動軸との間のシールには、図3
に示す如き流体シール(Hydraulic Seal)機構が使用さ
れている。
2. Description of the Related Art As a rotary shaft seal mechanism for a rotary machine, for example, a space between a turbine drive shaft and a fan rotary drive shaft for an air compressor in a two-axis turbofan engine (a kind of jet engine) as shown in FIG. The seal of Figure 3
The fluid seal (Hydraulic Seal) mechanism as shown in is used.

【0003】図2に示すように、2軸ターボファンエン
ジン101は、エンジン外筒102内部に設けた空気圧
縮機103、燃焼室105および空気圧縮機用タービン
107などからなるターボジェット(コアエンジン)を
間にはさんで、空気圧縮機103の前に設けた大口径の
ファン109を後端のファンタービン111で回す構造
となっている。
As shown in FIG. 2, a twin-screw turbofan engine 101 is a turbojet (core engine) including an air compressor 103, a combustion chamber 105, and an air compressor turbine 107 provided inside an engine outer cylinder 102. With a structure in which a large-diameter fan 109 provided in front of the air compressor 103 is rotated by a fan turbine 111 at the rear end with the fan turbine 111 interposed therebetween.

【0004】エンジン外筒102の周囲にはファンケー
ス112を介してカウル114が設けてあり、このカウ
ル114とエンジン外筒102との間の空間をファン1
09からの外気が流れると共に、外気の一部はエンジン
内部に取り込まれて空気圧縮機103に送られるように
なっている。
A cowl 114 is provided around the engine outer cylinder 102 via a fan case 112. The space between the cowl 114 and the engine outer cylinder 102 is a fan 1.
While the outside air from 09 flows, a part of the outside air is taken into the engine and sent to the air compressor 103.

【0005】空気圧縮機103を回転駆動するタービン
駆動軸(第2回転軸)113は、タービン107によっ
て高速度(15,000r.p.m程度)で回転駆動されており、
一方ファン回転駆動軸(第1回転軸)115は、ファン
タービン111によってタービン駆動軸113よりは低
速度(5,000r.p.m程度)で同一方向に回転駆動されてい
る。
A turbine drive shaft (second rotary shaft) 113 for rotating the air compressor 103 is driven to rotate by a turbine 107 at a high speed (about 15,000 rpm).
On the other hand, the fan rotation drive shaft (first rotation shaft) 115 is rotationally driven in the same direction by the fan turbine 111 at a lower speed (about 5,000 rpm) than the turbine drive shaft 113.

【0006】上述のタービン駆動軸(第2回転軸)11
3は中空軸になっており、このタービン駆動軸(第2回
転軸)113の外周に空気圧縮機用の複数枚の動翼11
7を備えている。前述のファン回転駆動軸(第1回転
軸)115はタービン駆動軸(第2回転軸)113の中
空軸部119を貫通するように設けてあり、その前端部
に前述のファン109が設けてある。
The above-mentioned turbine drive shaft (second rotary shaft) 11
3 is a hollow shaft, and a plurality of moving blades 11 for an air compressor are provided on the outer circumference of the turbine drive shaft (second rotating shaft) 113.
Equipped with 7. The above-described fan rotation drive shaft (first rotation shaft) 115 is provided so as to penetrate the hollow shaft portion 119 of the turbine drive shaft (second rotation shaft) 113, and the above-described fan 109 is provided at the front end portion thereof. .

【0007】図3に示すように、前記タービン駆動軸
(第2回転軸)113の中空軸部119の前端部(図3
において左側)は低圧流体室に連通しており、この低圧
流体室に連通する軸端部(前端部)に軸心方向に開口す
る環状の流体貯留室121を設け、前記ファン回転駆動
軸(第1回転軸)115には、この環状の流体貯留室1
21の内部へ伸張するフランジ123を設け、このフラ
ンジ123により前記流体貯留室121に環状のU字形
流体貯留室125を形成してある。
As shown in FIG. 3, the front end portion of the hollow shaft portion 119 of the turbine drive shaft (second rotary shaft) 113 (see FIG. 3).
On the left side) communicates with the low-pressure fluid chamber, and an annular fluid storage chamber 121 that opens in the axial direction is provided at the shaft end (front end) that communicates with the low-pressure fluid chamber. One rotation shaft) 115 has an annular fluid storage chamber 1
21 is provided with a flange 123 that extends to the inside, and the flange 123 forms an annular U-shaped fluid storage chamber 125 in the fluid storage chamber 121.

【0008】上述の環状のU字形流体貯留室125に
は、タービンの起動と同時に水または油などのシール液
体(水または油)127が注入手段129から注入され
る。このシール液体127はタービン駆動軸113の回
転による遠心力によりU字形流体貯留室125の底面
(円周面)に保持されると共に、前記中空軸部119に
連通する高圧流体室内の高温の高圧流体(約400℃の
空気)側と、中空軸部119を介して連通する前記高圧
流体室の外側空間にある低圧流体室(約180℃の空
気)側との圧力差により液面差Hでバランスして高温の
高圧流体が低圧室側へ流れないようにシールする。
A sealing liquid 127 such as water or oil (water or oil) 127 is injected into the above-mentioned annular U-shaped fluid storage chamber 125 from the injection means 129 at the same time when the turbine is started. The seal liquid 127 is retained on the bottom surface (circumferential surface) of the U-shaped fluid storage chamber 125 by the centrifugal force generated by the rotation of the turbine drive shaft 113, and at the same time, the high temperature high pressure fluid in the high pressure fluid chamber communicating with the hollow shaft portion 119. The liquid level difference H is balanced by the pressure difference between the (air of about 400 ° C.) side and the low pressure fluid chamber (air of about 180 ° C.) side in the outer space of the high pressure fluid chamber that communicates via the hollow shaft 119. Then, the high temperature high pressure fluid is sealed so as not to flow to the low pressure chamber side.

【0009】なお、上述のシール液体127はU字形流
体貯留室125の側方の低圧室側から継続的に注入さ
れ、注入されたシール液体127は矢印のような経路に
そって注入側へ排出されるようになっている。
The above-mentioned sealing liquid 127 is continuously injected from the side of the U-shaped fluid storage chamber 125 from the low-pressure chamber side, and the injected sealing liquid 127 is discharged to the injection side along the path indicated by the arrow. It is supposed to be done.

【0010】[0010]

【発明が解決しようとする課題】上述の如き流体シール
機構においては、タービン駆動軸113とファン回転駆
動軸115との回転速度の差に起因して、シール液体1
27とフランジ123との間に摩擦を生じてシール液体
127が発熱する。また、シール液体127は液体(水
または油)であり沸点または気化温度が低いため、シー
ル液体127の気化により残査(RESIDUE)Rを生じ、
長時間(数年または数千時間)の使用に伴い残査RがU
字形流体貯留室125内の底面(円周面)に溜まりシー
ル性能を劣化させる。
In the fluid sealing mechanism as described above, the sealing liquid 1 is caused by the difference in rotation speed between the turbine drive shaft 113 and the fan rotation drive shaft 115.
The seal liquid 127 generates heat by generating friction between the seal liquid 127 and the flange 123. Further, since the seal liquid 127 is a liquid (water or oil) and has a low boiling point or vaporization temperature, vaporization of the seal liquid 127 causes a residue (RESIDUE) R,
Residual R is U due to use for a long time (several years or thousands of hours)
It accumulates on the bottom surface (circumferential surface) inside the letter-shaped fluid storage chamber 125 and deteriorates the sealing performance.

【0011】すなわち、残査RがU字形流体貯留室12
5内の底面(円周面)に溜まることで、シール液体12
7からの放熱が阻害され、シール液体127が益々高温
になり易くなる。また、シール液体127の流れが変化
してシール性能が低下し、最終的には高圧/低圧間のバ
ランスがとれなくなり、突然低圧側に流入(SEAL BREA
K)し、シール機能を果たさなくなることがある。
That is, the residual R is a U-shaped fluid storage chamber 12
By collecting on the bottom surface (circumferential surface) within 5, the sealing liquid 12
The heat radiation from 7 is hindered, and the sealing liquid 127 is likely to become even hotter. In addition, the flow of the seal liquid 127 changes and the sealing performance deteriorates, and eventually the high pressure / low pressure is not balanced and suddenly flows into the low pressure side (SEAL BREAK).
K), and the sealing function may not be fulfilled.

【0012】U字形流体貯留室125内に溜まった残査
を除くため、定期的な清掃をすればよいが、ジェットエ
ンジン全体の分解が必要で、短期(約1〜5年または1000
〜5000時間)ごとの清掃はコスト的に困難である。
[0012] To remove the residue accumulated in the U-shaped fluid storage chamber 125, periodical cleaning may be performed, but it is necessary to disassemble the entire jet engine, and it is necessary to disassemble the jet engine for a short period (about 1 to 5 years or 1000 times).
Cleaning every ~ 5000 hours is difficult in terms of cost.

【0013】また、シール液体127の注入は、構造的
に注入側から排出されるので、U字形流体貯留室125
内で充分に循環されずシール液体127の冷却が不十分
となる。さらに、タービン駆動軸113は高速で回転し
ているので注入口で飛散してU字形流体貯留室125内
に入りにくいという問題がある。
Since the seal liquid 127 is structurally discharged from the injection side, the U-shaped fluid storage chamber 125 is used.
It is not sufficiently circulated in the inside, and the sealing liquid 127 is insufficiently cooled. Further, since the turbine drive shaft 113 rotates at a high speed, there is a problem that it is difficult to scatter at the inlet and enter the U-shaped fluid storage chamber 125.

【0014】本発明は上述の如き問題を解決するために
なされたものであり、本発明の課題は、シール液体を低
温度に維持可能な、かつシール液体の気化を抑制した回
転機械の回転軸シール機構を提供することである。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a rotary shaft of a rotary machine capable of maintaining the seal liquid at a low temperature and suppressing vaporization of the seal liquid. It is to provide a sealing mechanism.

【0015】[0015]

【課題を解決するための手段】上述の課題を解決する手
段として請求項1に記載の回転機械の回転軸シール機構
は、第1回転軸と該第1回転軸の外側に同軸に設けた第
1回転軸より高速に回転する第2回転軸とを備え、該第
2回転軸の中空軸部の一側に連通する高圧流体室と、前
記中空軸部の他側に連通する低圧流体室との間をシール
する回転機械の回転軸シール機構にして、前記第2回転
軸の中空軸部が前記低圧流体室に連通する側の軸端部に
軸心方向に開口する環状の流体貯留室を設け、該流体貯
留室内部へ伸張するフランジを前記第1回転軸に設け、
該流体貯留室内に環状のU字形流体貯留室を形成し、前
記第1回転軸と第2回転軸の回転時に前記低圧流体室側
から前記U字形流体貯留室内へシール液体を連続的に注
入し、前記U字形流体貯留室内に高圧側と低圧側の圧力
差でバランス保持されたシール液体により前記高圧流体
室と前記低圧流体室間の流体の流通を遮断すると共に、
前記U字形流体貯留室内に注入したシール液体を前記U
字形流体貯留室側方の前記低圧流体室へ排出させる排出
手段を設けたことを要旨とするものである。
According to a first aspect of the present invention, there is provided a rotary shaft sealing mechanism for a rotary machine, comprising: a first rotary shaft and a first rotary shaft coaxially provided outside the first rotary shaft. A second rotary shaft rotating at a higher speed than the first rotary shaft; a high-pressure fluid chamber communicating with one side of the hollow shaft portion of the second rotary shaft; and a low-pressure fluid chamber communicating with the other side of the hollow shaft portion. A rotary shaft sealing mechanism for a rotary machine that seals the space between the second rotary shaft and an annular fluid storage chamber that opens in the axial direction at the shaft end on the side where the hollow shaft portion of the second rotary shaft communicates with the low pressure fluid chamber. And a flange extending to the inside of the fluid storage chamber is provided on the first rotating shaft,
An annular U-shaped fluid storage chamber is formed in the fluid storage chamber, and a seal liquid is continuously injected into the U-shaped fluid storage chamber from the low pressure fluid chamber side when the first rotating shaft and the second rotating shaft rotate. , Blocking the flow of fluid between the high-pressure fluid chamber and the low-pressure fluid chamber by a seal liquid balanced in the U-shaped fluid storage chamber by a pressure difference between the high-pressure side and the low-pressure side,
The seal liquid injected into the U-shaped fluid storage chamber
The gist of the present invention is to provide a discharge means for discharging to the low pressure fluid chamber on the side of the letter-shaped fluid storage chamber.

【0016】請求項2に記載の回転機械の回転軸シール
機構は、請求項1に記載の回転機械の回転軸シール機構
において、前記高圧流体および低圧流体が気体であり、
前記シール液体が水または油であることを要旨とするも
のである請求項3に記載の回転機械の回転軸シール機構
は、請求項1または請求項2に記載の回転機械の回転軸
シール機構において、前記排出手段は、前記第1回転軸
と第2回転軸の回転時に前記U字形流体貯留室にバラン
ス保持されたシール液体の低圧側の液面より高い液面を
有するドレイン室を前記U字形流体貯留室に隣接して設
けたことを要旨とするものである。
A rotary shaft sealing mechanism for a rotary machine according to a second aspect is the rotary shaft sealing mechanism for a rotary machine according to the first aspect, wherein the high pressure fluid and the low pressure fluid are gases,
The rotary shaft seal mechanism for a rotary machine according to claim 3, wherein the seal liquid is water or oil. The rotary shaft seal mechanism for a rotary machine according to claim 1 or 2, The drain means has a U-shaped drain chamber having a liquid level higher than a low-pressure side liquid level of the seal liquid balanced in the U-shaped fluid storage chamber when the first rotary shaft and the second rotary shaft rotate. The gist is that it is provided adjacent to the fluid storage chamber.

【0017】[0017]

【発明の実施の形態】以下本発明の実施の形態を図面に
よって説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は本発明に係わる回転機械の回転軸シ
ール機構の例として、2軸ターボファンエンジン(ジェ
ットエンジンの一種)における空気圧縮機用のタービン
駆動軸とファン回転駆動軸との間に設けた流体シール
(Hydraulic Seal)機構を示したものであり、図3で説
明した流体シール機構の一部を改良したものである。な
お図3と同一の構成要素には同一の参照符号を付してあ
る。
FIG. 1 shows, as an example of a rotary shaft sealing mechanism for a rotary machine according to the present invention, between a turbine drive shaft and a fan rotary drive shaft for an air compressor in a two-shaft turbofan engine (a type of jet engine). 4 is a view showing a provided fluid seal (Hydraulic Seal) mechanism, which is an improvement of a part of the fluid seal mechanism described in FIG. 3. The same components as those in FIG. 3 are designated by the same reference numerals.

【0019】図1を参照するに、前述のように空気圧縮
機(図示省略)を回転駆動するタービン駆動軸(第2回
転軸)113の中空軸部119の軸端部(図1において
左側端部)は低圧流体室1に連通しており、この軸端部
に軸心方向に開口する環状の流体貯留室121を設けて
ある。また、タービン駆動軸(第2回転軸)113の中
空軸部119の他端部(図1において右側端部)は高圧
流体室3に連通している。
Referring to FIG. 1, a shaft end portion (a left end in FIG. 1) of a hollow shaft portion 119 of a turbine drive shaft (second rotary shaft) 113 that rotationally drives an air compressor (not shown) as described above. Part) communicates with the low-pressure fluid chamber 1, and an annular fluid storage chamber 121 that opens in the axial direction is provided at the end of this shaft. Further, the other end portion (the right end portion in FIG. 1) of the hollow shaft portion 119 of the turbine drive shaft (second rotating shaft) 113 communicates with the high pressure fluid chamber 3.

【0020】ファン回転駆動軸(第1回転軸)115に
は、環状の流体貯留室121の内部へ伸張するフランジ
123を設け、このフランジ123により前記流体貯留
室121に環状のU字形流体貯留室125を形成すると
共に、流体貯留室121の右側面に軸心方向に開口した
環状のドレイン室5を設け、このドレイン室5と環状の
流体貯留室121との間を連通孔7で連結してある。
The fan rotation drive shaft (first rotation shaft) 115 is provided with a flange 123 extending into the annular fluid storage chamber 121, and the flange 123 allows the fluid storage chamber 121 to have an annular U-shaped fluid storage chamber. In addition to forming 125, an annular drain chamber 5 opened in the axial direction is provided on the right side surface of the fluid storage chamber 121, and the drain chamber 5 and the annular fluid storage chamber 121 are connected by a communication hole 7. is there.

【0021】上述のドレイン室5の側壁9の高さKは、
U字形流体貯留室125内部のシール液体127の液面
高さJより高く設定してある。なお、ここでいう高さと
は、軸心CLを基準とする高さである。
The height K of the side wall 9 of the drain chamber 5 is
It is set higher than the liquid level height J of the seal liquid 127 inside the U-shaped fluid storage chamber 125. The height referred to here is a height based on the axial center CL.

【0022】なお、前記高圧流体室3には約400℃の
空気が存在し、前記低圧流体室1には約180℃の空気
が存在している。
Air of about 400 ° C. is present in the high pressure fluid chamber 3, and air of about 180 ° C. is present in the low pressure fluid chamber 1.

【0023】上記構成のシール機構において、始めにU
字形流体貯留室125内にシールに必要な量のシール液
体127がU字形流体貯留室125内に注入手段129
から注入されており、さらにジェットエンジンの起動と
同時に循環冷却に必要とする適宜な量のシール液体12
7が注入手段129から連続的に注入される。
In the seal mechanism having the above structure, first, U
An amount of the sealing liquid 127 required for sealing is filled in the U-shaped fluid storage chamber 125, and the injection means 129 is injected into the U-shaped fluid storage chamber 125.
And the appropriate amount of the seal liquid 12 required for circulation cooling at the same time when the jet engine is started.
7 is continuously injected from the injection means 129.

【0024】ジェットエンジンの運転中には、前述のよ
うに、タービン駆動軸(第2回転軸)113は高速度
(15,000r.p.m程度)で回転しており、一方ファン回転
駆動軸(第1回転軸)115は、ファンタービン(図示
省略)によってタービン駆動軸113よりは低速度(5,
000r.p.m程度)で同一方向に回転駆動されている。
During operation of the jet engine, as described above, the turbine drive shaft (second rotary shaft) 113 is rotating at a high speed (about 15,000 rpm), while the fan rotary drive shaft (first rotary shaft) is rotating. ) 115 is lower than the turbine drive shaft 113 by the fan turbine (not shown) (5,
It is driven to rotate in the same direction at about 000r.pm).

【0025】その結果、シール液体127は、第2回転
軸113と第1回転軸との中間程度の速度でU字形流体
貯留室125内を回転すると同時に、遠心力によりU字
形流体貯留室125の底面(円周面)に保持され、前記
中空軸部119に連通する高圧流体室3内の高温の高圧
流体(空気)側と、中空軸部119を介して連通する前
記高圧流体室3の外側空間にある低圧流体室1側との圧
力差により液面差Hでバランスして高温の高圧流体(空
気)が低圧室1側へ流れないようにシールする。
As a result, the sealing liquid 127 is rotated in the U-shaped fluid storage chamber 125 at a speed about the intermediate speed between the second rotary shaft 113 and the first rotary shaft, and at the same time, centrifugal force causes the U-shaped fluid storage chamber 125 to move. The high pressure fluid (air) side of the high pressure fluid chamber 3 held in the bottom surface (circumferential surface) and communicating with the hollow shaft portion 119 and the outside of the high pressure fluid chamber 3 communicating with the hollow shaft portion 119. The pressure difference with the low pressure fluid chamber 1 side in the space balances the liquid level difference H to seal the high temperature high pressure fluid (air) from flowing to the low pressure chamber 1 side.

【0026】また、ドレイン室5内のシール液体127
は、タービン駆動軸(第2回転軸)113と同じ高速度
で回転しているため大きな遠心力が作用し前記液面差H
を小さくするように働く。
Further, the seal liquid 127 in the drain chamber 5
Is rotating at the same high speed as the turbine drive shaft (second rotating shaft) 113, a large centrifugal force acts on the liquid level difference H.
Work to reduce.

【0027】シール液体127の冷却用にU字形流体貯
留室125に注入手段129から注入されたシール液体
127は、矢印で示すように、U字形流体貯留室125
から連通孔7を経てドレイン室5に入り、このドレイン
室5の高さKの側壁9をオーバーフローして低圧流体室
1に排出される。
The seal liquid 127 injected from the injection means 129 into the U-shaped fluid storage chamber 125 for cooling the seal liquid 127 is, as indicated by the arrow, the U-shaped fluid storage chamber 125.
Through the communication hole 7 into the drain chamber 5, the side wall 9 of the height K of the drain chamber 5 overflows and is discharged to the low pressure fluid chamber 1.

【0028】また、ドレイン室5の側壁9の高さKを適
宜に設定することにより、U字形流体貯留室125内の
低圧側の液面高さJをU字形流体貯留室125の壁面高
さLより高く設定することが可能であるため、冷却用シ
ール液体127の外部への飛散を防止して注入効率を改
善することができる。なお、上述のシール液体127に
は通常水または油が使用される。
Further, by appropriately setting the height K of the side wall 9 of the drain chamber 5, the liquid level height J on the low pressure side in the U-shaped fluid storage chamber 125 is set to the wall surface height of the U-shaped fluid storage chamber 125. Since it can be set higher than L, it is possible to prevent the cooling seal liquid 127 from scattering to the outside and improve the injection efficiency. Water or oil is usually used as the above-mentioned seal liquid 127.

【0029】[0029]

【発明の効果】請求項1または請求項2の発明によれ
ば、シール液体の冷却用にU字形流体貯留室に注入され
たシール液体は、U字形流体貯留室に隣接して設けたド
レイン室から低圧流体室に排出されるので、U字形流体
貯留室内のシール液体を充分に冷却することができる。
According to the first or second aspect of the present invention, the seal liquid injected into the U-shaped fluid storage chamber for cooling the seal liquid is the drain chamber provided adjacent to the U-shaped fluid storage chamber. Since it is discharged from the low pressure fluid chamber to the low pressure fluid chamber, the seal liquid in the U-shaped fluid storage chamber can be sufficiently cooled.

【0030】シール液体を低温に維持できるため、シー
ル液体の気化による残査の発生を低減させることが可能
となり、短期(約1〜5年または1000〜5000時間)毎の清
掃省略することが可能となる。また、突然のSEAL BREAK
の危険性が低下しジェットエンジンの信頼性が向上す
る。
Since the seal liquid can be maintained at a low temperature, it is possible to reduce the generation of residuals due to vaporization of the seal liquid, and it is possible to omit cleaning every short period (about 1 to 5 years or 1000 to 5000 hours). Becomes Also, sudden SEAL BREAK
The risk of the jet engine is reduced and the reliability of the jet engine is improved.

【0031】請求項3の発明によれば、U字形流体貯留
室内の低圧側液面高さJをU字形流体貯留室の壁面高さ
Lより高く設定することが可能であるため、注入する冷
却用シール液体の外部への飛散を防止して注入効率を改
善することができる。
According to the third aspect of the invention, since the low-pressure side liquid level height J in the U-shaped fluid storage chamber can be set higher than the wall surface height L of the U-shaped fluid storage chamber, the cooling to be injected is performed. It is possible to prevent the sealing liquid for use from scattering to the outside and improve the injection efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる回転機械の回転軸シール機構の
説明図。
FIG. 1 is an explanatory view of a rotary shaft seal mechanism of a rotary machine according to the present invention.

【図2】回転機械の回転軸シール機構の従来例として、
2軸ターボファンエンジンにおける流体シール(Hydrau
lic Seal)機構の説明図。
FIG. 2 shows a conventional example of a rotary shaft sealing mechanism of a rotary machine.
Fluid seal for 2-axis turbofan engine (Hydrau
An illustration of the lic seal mechanism.

【図3】図2におけるP部の拡大説明図。FIG. 3 is an enlarged explanatory view of a P portion in FIG.

【符号の説明】[Explanation of symbols]

1 低圧流体室 3 高圧流体室 5 ドレイン室 7 連通孔 9 側壁 113 タービン駆動軸(第2回転軸) 115 ファン回転駆動軸(第1回転軸) 119 中空軸部 121 環状の流体貯留室 123 フランジ 125 U字形流体貯留室 127 シール液体 1 Low pressure fluid chamber 3 High pressure fluid chamber 5 drain chamber 7 communication holes 9 Side wall 113 Turbine drive shaft (second rotary shaft) 115 Fan rotation drive shaft (first rotation shaft) 119 Hollow shaft 121 annular fluid storage chamber 123 flange 125 U-shaped fluid storage chamber 127 seal liquid

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1回転軸と該第1回転軸の外側に同軸
に設けた第1回転軸より高速に回転する第2回転軸とを
備え、該第2回転軸の中空軸部の一側に連通する高圧流
体室と、前記中空軸部の他側に連通する低圧流体室との
間をシールする回転機械の回転軸シール機構にして、前
記第2回転軸の中空軸部が前記低圧流体室に連通する側
の軸端部に軸心方向に開口する環状の流体貯留室を設
け、該流体貯留室内部へ伸張するフランジを前記第1回
転軸に設け、該流体貯留室内に環状のU字形流体貯留室
を形成し、前記第1回転軸と第2回転軸の回転時に前記
低圧流体室側から前記U字形流体貯留室内へシール液体
を連続的に注入し、前記U字形流体貯留室内に高圧側と
低圧側の圧力差でバランス保持されたシール液体により
前記高圧流体室と前記低圧流体室間の流体の流通を遮断
すると共に、前記U字形流体貯留室内に注入したシール
液体を前記U字形流体貯留室側方の前記低圧流体室へ排
出させる排出手段を設けたことを特徴とする回転機械の
回転軸シール機構。
1. A hollow shaft portion of the second rotating shaft, comprising: a first rotating shaft; and a second rotating shaft that is coaxial with the first rotating shaft and that rotates faster than the first rotating shaft. Side of the hollow shaft portion and a low pressure fluid chamber that communicates with the other side of the hollow shaft portion to form a rotary shaft sealing mechanism of a rotary machine. An annular fluid storage chamber that opens in the axial direction is provided at the shaft end on the side that communicates with the fluid chamber, a flange that extends to the inside of the fluid storage chamber is provided on the first rotating shaft, and an annular fluid storage chamber is provided inside the fluid storage chamber. A U-shaped fluid storage chamber is formed, and a seal liquid is continuously injected into the U-shaped fluid storage chamber from the low-pressure fluid chamber side when the first rotating shaft and the second rotating shaft rotate, and the U-shaped fluid storing chamber is formed. And the high pressure fluid chamber and the high pressure side by the seal liquid balanced by the pressure difference between the high pressure side and the low pressure side. Discharging means is provided for blocking the flow of fluid between the low-pressure fluid chambers and discharging the sealing liquid injected into the U-shaped fluid storage chamber to the low-pressure fluid chamber on the side of the U-shaped fluid storage chamber. Rotating shaft seal mechanism for rotating machinery.
【請求項2】 請求項1に記載の回転機械の回転軸シー
ル機構において、前記高圧流体および低圧流体が気体で
あり、前記シール液体が水または油であることを特徴と
する回転機械の回転軸シール機構。
2. The rotary shaft seal mechanism for a rotary machine according to claim 1, wherein the high-pressure fluid and the low-pressure fluid are gases, and the seal liquid is water or oil. Seal mechanism.
【請求項3】 請求項1または請求項2に記載の回転機
械の回転軸シール機構において、前記排出手段は、前記
第1回転軸と第2回転軸の回転時に前記U字形流体貯留
室にバランス保持されたシール液体の低圧側の液面より
高い液面を有するドレイン室を前記U字形流体貯留室に
隣接して設けたこと特徴とする回転機械の回転軸シール
機構。
3. The rotary shaft sealing mechanism for a rotary machine according to claim 1, wherein the discharging means balances the U-shaped fluid storage chamber when the first rotary shaft and the second rotary shaft rotate. A rotary shaft seal mechanism for a rotary machine, wherein a drain chamber having a liquid level higher than a low-pressure side liquid level of the retained seal liquid is provided adjacent to the U-shaped fluid storage chamber.
JP2001346490A 2001-11-12 2001-11-12 Rotating shaft seal mechanism for rotary machine Pending JP2003148632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001346490A JP2003148632A (en) 2001-11-12 2001-11-12 Rotating shaft seal mechanism for rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001346490A JP2003148632A (en) 2001-11-12 2001-11-12 Rotating shaft seal mechanism for rotary machine

Publications (1)

Publication Number Publication Date
JP2003148632A true JP2003148632A (en) 2003-05-21

Family

ID=19159661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001346490A Pending JP2003148632A (en) 2001-11-12 2001-11-12 Rotating shaft seal mechanism for rotary machine

Country Status (1)

Country Link
JP (1) JP2003148632A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7159873B2 (en) 2002-09-10 2007-01-09 United Technologies Corporation Shaft seal
WO2008065359A2 (en) * 2006-11-28 2008-06-05 Cummins Turbo Technologies Limited Hydraulic seal for a turbocharger
JP2010107038A (en) * 2008-10-14 2010-05-13 Rolls Royce Plc Seal
US9157532B2 (en) 2012-12-06 2015-10-13 Rolls-Royce Plc Hydraulic seal arrangement

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7159873B2 (en) 2002-09-10 2007-01-09 United Technologies Corporation Shaft seal
WO2008065359A2 (en) * 2006-11-28 2008-06-05 Cummins Turbo Technologies Limited Hydraulic seal for a turbocharger
WO2008065359A3 (en) * 2006-11-28 2008-07-31 Cummins Turbo Tech Ltd Hydraulic seal for a turbocharger
GB2456483A (en) * 2006-11-28 2009-07-22 Cummins Turbo Technologies Hydraulic seal for a turbocharger
GB2456483B (en) * 2006-11-28 2011-03-16 Cummins Turbo Technologies Hydraulic seal for a turbocharger
US8075251B2 (en) 2006-11-28 2011-12-13 Cummins Turbo Technologies Limited Hydraulic seal for a turbocharger
CN101595277B (en) * 2006-11-28 2013-07-24 康明斯涡轮增压技术有限公司 Hydraulic seal for a turbocharger
JP2010107038A (en) * 2008-10-14 2010-05-13 Rolls Royce Plc Seal
US9157532B2 (en) 2012-12-06 2015-10-13 Rolls-Royce Plc Hydraulic seal arrangement

Similar Documents

Publication Publication Date Title
US8057163B2 (en) Gas turbine engine cooling system and method
US6988367B2 (en) Gas turbine engine cooling system and method
JP4929217B2 (en) Gas turbine, gas turbine intermediate shaft, and gas turbine compressor cooling method
FR2648866A1 (en) DEVICE FOR CONTROLLING A LEAK AIR FLOW IN A TURBOMOTEUR
JP2005054781A (en) Low pressure turbine for turbo machine
EP1552111A1 (en) Gas turbine ventilation circuitry
JPS58135305A (en) Housing of turbo machine rotor
JP2010138916A (en) Steam turbine
JP2016196885A (en) Heat pipe temperature management system for wheels and buckets in turbomachine
JP2011117717A (en) Rotary valve assembly for high temperature and high pressure operation
JP2003148632A (en) Rotating shaft seal mechanism for rotary machine
EP2837856B1 (en) Fluid seal arrangement and method for constricting a leakage flow through a leakage gap
US6951444B2 (en) Turbine and a turbine vane for a turbine
US7037067B2 (en) Gas turbine engine
JPH06101597B2 (en) Gas transport laser device with axial gas flow
FR3054858A1 (en) TURBOMACHINE COMPRISING A DEVICE FOR DRIVING EQUIPMENT ARRANGED IN THE EXHAUST CONE
US20130156602A1 (en) Film cooled turbine component
EP3054091B1 (en) Gas turbine engine having section with thermally isolated area
WO1994001657A1 (en) An inert gas turbine engine
CN114508525A (en) Cooling device for hydraulic equipment
JPH0586901A (en) Gas turbine
WO2020018056A2 (en) Cooling of gas turbine engines with water recirculation
JPS5838617B2 (en) gas turbine home
CN219242010U (en) Engineering machine tool machine oil cooling system fast
JP2004060544A (en) Clearance reduction method for gas turbine compressor, and gas turbine plant