JP2003148111A - Steam turbine plant - Google Patents

Steam turbine plant

Info

Publication number
JP2003148111A
JP2003148111A JP2001342517A JP2001342517A JP2003148111A JP 2003148111 A JP2003148111 A JP 2003148111A JP 2001342517 A JP2001342517 A JP 2001342517A JP 2001342517 A JP2001342517 A JP 2001342517A JP 2003148111 A JP2003148111 A JP 2003148111A
Authority
JP
Japan
Prior art keywords
steam
pressure turbine
valve
low pressure
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001342517A
Other languages
Japanese (ja)
Inventor
Takashi Nakano
隆 中野
Kyoji Tanaka
亨治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001342517A priority Critical patent/JP2003148111A/en
Publication of JP2003148111A publication Critical patent/JP2003148111A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce capacities (diameters) of high and low pressure turbine bypass valves and bypass piping, and also to reduce boiler fuel consumption during turbine stoppage in a steam turbine plant carrying out high and low pressure turbine bypass operations. SOLUTION: The steam turbine plant is provided with a boiler for generating steam provided with a reheater, plural stages of steam turbines respectively leading in steam of different pressures and driving a generator, and a condenser cooling and condensing the steam. It is composed so that the high and low pressure turbine bypass operations are carried out at starting. A first operation mode used at starting and a second operation mode selectively used after full admission in the first operation mode are provided in opening control of a reheat steam control valve controlling a steam quantity fed from the reheater to a low pressure turbine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、起動時に高低圧タ
ービンバイパス運用を行う蒸気タービンプラントに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam turbine plant that performs high and low pressure turbine bypass operation at startup.

【0002】[0002]

【従来の技術】図10に従来の蒸気タービンプラントの
構成例を示して簡単に説明する。図10において、図中
の符号1はボイラ、2は再熱器、3は発電機、4は高圧
タービン、5は低圧タービン、6は復水器、7は制御
部、8は復水ポンプ、9はスプレイ水ライン、10はス
プレイ水制御弁である。ボイラ1で発生された蒸気は、
主蒸気管11を通って高圧タービン4へ導かれる。主蒸
気管11には蒸気加減弁12が設けられ、発電負荷に応
じて蒸気加減弁12を開度制御することで、高圧タービ
ン4へ供給する蒸気量が調整される。高圧タービン4で
仕事をした蒸気は、低温再熱蒸気管13を通って再熱器
2に導かれる。
2. Description of the Related Art A conventional steam turbine plant configuration example is shown in FIG. 10 and will be briefly described. In FIG. 10, reference numeral 1 in the drawing is a boiler, 2 is a reheater, 3 is a generator, 4 is a high pressure turbine, 5 is a low pressure turbine, 6 is a condenser, 7 is a control unit, 8 is a condensate pump, 9 is a spray water line, 10 is a spray water control valve. The steam generated in the boiler 1
It is guided to the high-pressure turbine 4 through the main steam pipe 11. A steam control valve 12 is provided in the main steam pipe 11, and the amount of steam supplied to the high-pressure turbine 4 is adjusted by controlling the opening degree of the steam control valve 12 according to the power generation load. The steam that has worked in the high-pressure turbine 4 is guided to the reheater 2 through the low-temperature reheat steam pipe 13.

【0003】再熱器2で再熱された蒸気は、再熱蒸気管
14を通って低圧タービン5へ導かれる。再熱蒸気管1
4には、上述した蒸気加減弁12の開度制御に連動した
開度制御を行う再熱蒸気制御弁15が設けられているの
で、同再熱蒸気制御弁の開度に応じた再熱蒸気量が低圧
タービン5へ供給されることになる。こうして低圧ター
ビン5へ供給された再熱蒸気は、低圧タービン5の駆動
源として仕事をした後、復水器6へ送られて復水する。
The steam reheated by the reheater 2 is guided to the low pressure turbine 5 through the reheat steam pipe 14. Reheat steam pipe 1
4 is provided with the reheat steam control valve 15 that controls the opening degree in conjunction with the opening degree control of the steam control valve 12 described above, the reheat steam depending on the opening degree of the reheat steam control valve. The quantity will be supplied to the low pressure turbine 5. The reheated steam thus supplied to the low-pressure turbine 5 works as a drive source of the low-pressure turbine 5, and is then sent to the condenser 6 to be condensed.

【0004】主蒸気管11と低温再熱蒸気管13との間
は、高圧タービンバイパス弁16を備えた高圧蒸気バイ
パス管17により連結されている。この高圧蒸気バイパ
ス管17は、高圧タービン4の運転状況に応じて余剰の
蒸気量を直接低温再熱蒸気管13へ流すものであり、圧
力センサ18の検出値を所定の圧力に維持するよう高圧
タービンバイパス弁16の開度制御が行われる。再熱蒸
気管14と復水器6との間は、低圧タービンバイパス弁
19を備えた低圧蒸気バイパス管20により連結されて
いる。この低圧蒸気バイパス管20は、低圧タービン5
の運転状況に応じて余剰の蒸気量を直接復水器6へ流す
ものであり、圧力センサ21の検出値を所定の圧力に維
持するよう低圧タービンバイパス弁19の開度制御が行
われる。
The main steam pipe 11 and the low temperature reheat steam pipe 13 are connected by a high pressure steam bypass pipe 17 having a high pressure turbine bypass valve 16. The high-pressure steam bypass pipe 17 allows an excess amount of steam to flow directly to the low-temperature reheat steam pipe 13 in accordance with the operating condition of the high-pressure turbine 4, and the high-pressure steam bypass pipe 17 keeps the detected value of the pressure sensor 18 at a predetermined pressure. The opening degree of the turbine bypass valve 16 is controlled. A low pressure steam bypass pipe 20 having a low pressure turbine bypass valve 19 is connected between the reheat steam pipe 14 and the condenser 6. This low-pressure steam bypass pipe 20 is used for the low-pressure turbine 5
The surplus steam amount is caused to flow directly to the condenser 6 in accordance with the operating conditions of the above, and the opening degree control of the low pressure turbine bypass valve 19 is performed so as to maintain the detected value of the pressure sensor 21 at a predetermined pressure.

【0005】上述した構成の蒸気タービンプラントで
は、その起動時において、蒸気通気前から100%負荷
に達するまで、以下に説明する高低圧タービンバイパス
運用と呼ばれる運転操作が行われている。この高低圧タ
ービンバイパス運用の第1段階(蒸気通気前)では、ボ
イラ1で発生した蒸気の全量(大気放出やボイラ補助蒸
気等を除く)が主蒸気管11から高圧蒸気バイパス管1
7を通って再熱器2に導かれ、さらに、再熱器2で再熱
された再熱蒸気が再熱蒸気管14から低圧蒸気バイパス
管20を通って復水器6へ導かれる。すなわち、ボイラ
1で発生された蒸気は、蒸気タービンの運転に十分な温
度及び圧力を有していないため、蒸気加減弁12及び再
熱蒸気制御弁15を全閉にして高圧タービン4及び低圧
タービン5をバイパスさせて復水器6に送られる。
In the steam turbine plant having the above-described structure, at the time of start-up, an operation operation called a high / low pressure turbine bypass operation described below is performed from before steam aeration until 100% load is reached. In the first stage of this high and low pressure turbine bypass operation (before steam ventilation), all of the steam generated in the boiler 1 (excluding atmospheric emission and boiler auxiliary steam) is transferred from the main steam pipe 11 to the high pressure steam bypass pipe 1.
The reheated steam reheated in the reheater 2 is introduced from the reheated steam pipe 14 into the condenser 6 through the low pressure steam bypass pipe 20. That is, since the steam generated in the boiler 1 does not have sufficient temperature and pressure for the operation of the steam turbine, the steam control valve 12 and the reheat steam control valve 15 are fully closed and the high pressure turbine 4 and the low pressure turbine are closed. 5 is bypassed and sent to the condenser 6.

【0006】高低圧タービンバイパス運用の第2段階
(蒸気通気〜蒸気併入)では、ボイラ1で発生された蒸
気は、蒸気加減弁12及び再熱蒸気制御弁15の開度制
御により一部が高圧タービン4及び低圧タービン5に通
気され、蒸気タービンの温度を上昇させる。高低圧ター
ビンバイパス運用の第3段階(蒸気併入〜第1低負荷到
達)では、高圧タービンバイパス弁16が全閉とされ、
ボイラ1で発生した蒸気の全量(大気放出やボイラ補助
蒸気等を除く)が主蒸気管11から高圧タービン4へ導
かれる。なお、再熱器2を通過した再熱蒸気は、再熱蒸
気制御弁15及び低圧タービンバイパス弁19の開度制
御により、低圧タービン5に導かれる。
In the second stage of high / low pressure turbine bypass operation (steam ventilation-steam co-entry), the steam generated in the boiler 1 is partly controlled by controlling the opening degree of the steam control valve 12 and the reheat steam control valve 15. The high pressure turbine 4 and the low pressure turbine 5 are ventilated to raise the temperature of the steam turbine. At the third stage of high / low pressure turbine bypass operation (combining steam to reach first low load), the high pressure turbine bypass valve 16 is fully closed,
The entire amount of steam generated in the boiler 1 (excluding atmospheric emission, boiler auxiliary steam, etc.) is guided to the high-pressure turbine 4 from the main steam pipe 11. The reheated steam that has passed through the reheater 2 is guided to the low pressure turbine 5 by controlling the opening degrees of the reheated steam control valve 15 and the low pressure turbine bypass valve 19.

【0007】高低圧タービンバイパス運用の第4段階
(第1低負荷到達〜第2低負荷到達)では、高圧タービ
ンバイパス弁16が全閉とされ、ボイラ1で発生した蒸
気の全量(大気放出やボイラ補助蒸気等を除く)が主蒸
気管11から高圧タービン4へ導かれる。また、再熱器
2を通過した再熱蒸気は、再熱蒸気制御弁15が全開と
されかつ低圧タービンバイパス弁19が全閉とされるた
め、開状態の電動弁22を通って復水器6に導かれる再
熱蒸気を除く全量が低圧タービン5に導かれる。
In the fourth stage of high / low pressure turbine bypass operation (first low load to second low load), the high pressure turbine bypass valve 16 is fully closed, and the total amount of steam generated in the boiler 1 (release to the atmosphere and (Excluding boiler auxiliary steam) is introduced from the main steam pipe 11 to the high-pressure turbine 4. The reheated steam that has passed through the reheater 2 has the reheated steam control valve 15 fully opened and the low-pressure turbine bypass valve 19 fully closed. All but the reheated steam introduced to 6 is introduced to the low pressure turbine 5.

【0008】高低圧タービンバイパス運用の最終となる
第5段階(第2低負荷到達〜100%負荷到達)では、
高圧タービンバイパス弁16及び低圧タービンバイパス
弁19に加えて、大気放出やボイラ補助蒸気等の供給ラ
インに設けられた弁類も全閉とされ、ボイラ1で発生し
た蒸気の全量が負荷に応じた蒸気加減弁12の開度制御
を受けて主蒸気管11から高圧タービン4へ導かれる。
なお、再熱器2を通過した再熱蒸気は、全開の再熱蒸気
制御弁15を通過して全量が低圧タービン5に導かれ
る。
In the final stage 5 of high and low pressure turbine bypass operation (second low load to 100% load),
In addition to the high-pressure turbine bypass valve 16 and the low-pressure turbine bypass valve 19, the valves provided in the supply line for the atmosphere discharge and boiler auxiliary steam are also fully closed, and the total amount of steam generated in the boiler 1 depends on the load. Under the control of the opening degree of the steam control valve 12, the steam is introduced from the main steam pipe 11 to the high pressure turbine 4.
The reheated steam that has passed through the reheater 2 passes through the fully-opened reheated steam control valve 15 and is entirely guided to the low-pressure turbine 5.

【0009】また、発電機3がなんらかの原因で緊急停
止された場合など負荷遮断時においては、ボイラ1で発
生された蒸気は余剰蒸気となって高圧タービンバイパス
弁16を通って再熱器2に送られ、さらに、低圧タービ
ンバイパス弁19を通って復水器6へ排出される。な
お、蒸気加減弁12及び再熱蒸気制御弁は開度制御状態
にある。なお、図10の従来例には負荷遮断時における
弁開閉状態が示されており、図中の各弁は、黒塗りが全
閉、白抜きが全開、黒塗り/白抜き混合が開度制御を示
している。
Further, when the load is cut off, such as when the generator 3 is urgently stopped for some reason, the steam generated in the boiler 1 becomes excess steam and passes through the high pressure turbine bypass valve 16 to the reheater 2. It is sent to the condenser 6 through the low pressure turbine bypass valve 19. The steam control valve 12 and the reheat steam control valve are in the opening control state. The conventional example of FIG. 10 shows a valve open / closed state at the time of load shedding. In each valve in the figure, black is fully closed, white is fully open, and black / white mixed is opening control. Is shown.

【0010】[0010]

【発明が解決しようとする課題】ところで、上述した従
来の蒸気タービンプラントでは、高低圧タービンバイパ
ス運用を行う場合、再熱蒸気制御弁15の開度制御につ
いては、蒸気加減弁12に連動させた機械カムによる一
つのシーケンス(運転モード)に基づいて実施されてい
た。このため、再熱蒸気制御弁15の開度制御は、起動
時のバイパス運用に合わせた弁開度に設定されることと
なり、弁開度が全開となる条件は第1低圧負荷到達時と
なる。ここで、一般的には第1の低負荷領域が概ね15
%、第2の低負荷領域が概ね20%程度となるため、負
荷遮断時における再熱制御弁15の弁開度は小さくな
る。
By the way, in the above-described conventional steam turbine plant, when the high-low pressure turbine bypass operation is performed, the opening control of the reheat steam control valve 15 is linked to the steam control valve 12. It was implemented based on one sequence (operation mode) by the mechanical cam. Therefore, the opening degree control of the reheat steam control valve 15 is set to the valve opening degree according to the bypass operation at the time of startup, and the condition that the valve opening degree is fully opened is when the first low pressure load is reached. . Here, generally, the first low load region is approximately 15
%, The second low load region is approximately 20%, so the valve opening degree of the reheat control valve 15 at the time of load shedding becomes small.

【0011】従って、負荷遮断時の余剰蒸気を安全かつ
スムーズに復水器6へ排気できるようにするため、余剰
蒸気流量に応じて低圧タービンバイパス弁19,高圧タ
ービンバイパス弁16及びこれらの弁が設けられる配管
の容量(サイズ)を大きく設定しておく必要があった。
また、蒸気タービン停止時においても上述した起動時と
反対の順序でバイパス運用を実施する必要があり、従っ
て、各主要配管(主蒸気管11,再熱蒸気管14など)
の圧力を最低圧力以上に保つため、ボイラ1で必要以上
に蒸気を発生させていた。このため、高温の蒸気を高圧
蒸気バイパス管17及び低圧蒸気バイパス管20を通し
て復水器6へ排気(放熱)する必要があり、ボイラ1に
おいて無駄な燃料消費が行われるという問題があった。
Therefore, in order to allow the excess steam at the time of load shedding to be safely and smoothly discharged to the condenser 6, the low pressure turbine bypass valve 19, the high pressure turbine bypass valve 16 and these valves are set in accordance with the excess steam flow rate. It was necessary to set the capacity (size) of the pipe to be set large.
Further, even when the steam turbine is stopped, it is necessary to carry out bypass operation in the reverse order to the above-mentioned start-up, and therefore each main pipe (main steam pipe 11, reheat steam pipe 14, etc.)
In order to keep the pressure of 1 above the minimum pressure, steam was generated more than necessary in the boiler 1. Therefore, it is necessary to discharge (radiate heat) the high-temperature steam to the condenser 6 through the high-pressure steam bypass pipe 17 and the low-pressure steam bypass pipe 20, which causes a problem of wasteful fuel consumption in the boiler 1.

【0012】本発明は、上記の事情に鑑みてなされたも
ので、高低圧タービンバイパス運用を行う蒸気タービン
プラントにおいて、高低圧タービンバイパス弁及びバイ
パス配管の小容量(小径)化を可能にし、かつ、タービ
ン停止時におけるボイラ燃料消費量の低減を目的として
いる。
The present invention has been made in view of the above circumstances, and enables a high- and low-pressure turbine bypass valve and a bypass pipe to have a small capacity (small diameter) in a steam turbine plant for performing a high- and low-pressure turbine bypass operation, and The purpose is to reduce boiler fuel consumption when the turbine is stopped.

【0013】[0013]

【課題を解決するための手段】本発明は、上記課題を解
決するため、以下の手段を採用した。請求項1に記載の
蒸気タービンプラントは、再熱器を備えた蒸気発生用の
ボイラと、それぞれ異なる圧力の蒸気を導入して発電機
を駆動する複数段の蒸気タービンと、蒸気を冷却して復
水する復水器とを具備し、起動時に高低圧タービンバイ
パス運用を行うように構成された蒸気タービンプラント
において、前記再熱器から低圧タービンへ供給する蒸気
量を制御する再熱蒸気制御弁の開度制御に、起動時に使
用する第1の運転モードと、該第1の運転モードで全開
後に選択切換される第2の運転モードとを設けたことを
特徴とするものである。
The present invention adopts the following means in order to solve the above problems. The steam turbine plant according to claim 1 is a steam generating boiler equipped with a reheater, a plurality of stages of steam turbines that introduce steam of different pressures to drive a generator, and cools the steam. A reheat steam control valve for controlling the amount of steam to be supplied from the reheater to the low pressure turbine in a steam turbine plant that is configured to perform bypass operation of high and low pressure turbines at the time of startup, and a condenser for condensing water. The opening degree control is provided with a first operation mode used at startup and a second operation mode that is selectively switched after the first operation mode is fully opened.

【0014】このような蒸気タービンプラントによれ
ば、起動時に使用する第1の運転モードと、第1の運転
モードで全開後に選択切換される第2の運転モードとを
設けたので、負荷遮断時には起動時の制約を受けない第
2の運転モードに基づき、再熱蒸気弁に大きな弁開度を
与えることができる。また、タービン停止時のバイパス
運用が不要となる。
According to such a steam turbine plant, since the first operation mode used at the time of start-up and the second operation mode which is selectively switched after the first operation mode is fully opened are provided, when the load is cut off. It is possible to give the reheat steam valve a large valve opening degree based on the second operation mode which is not restricted at the time of startup. Also, bypass operation when the turbine is stopped is unnecessary.

【0015】請求項1に記載の蒸気タービンプラントに
おいては、負荷遮断時に再熱蒸気制御弁に大きな開度を
与えるため、前記第1の運転モードを前記第2の運転モ
ードより大きな弁開度に設定する。また、上述した蒸気
タービンプラントにおいては、負荷遮断時における主蒸
気量及び再熱蒸気量を低減するため、前記ボイラから高
圧タービンへ蒸気を供給する主蒸気供給ラインに、前記
発電機の負荷遮断信号を受けて開く緊急開放弁を設ける
とよい。
In the steam turbine plant according to claim 1, since the reheat steam control valve is provided with a large opening when the load is cut off, the first operation mode is set to a valve opening larger than that of the second operation mode. Set. Further, in the above-described steam turbine plant, in order to reduce the amount of main steam and the amount of reheated steam at the time of load shedding, to the main steam supply line that supplies steam from the boiler to the high-pressure turbine, a load shedding signal for the generator is provided. It is advisable to provide an emergency release valve that opens in response to this.

【0016】[0016]

【発明の実施の形態】以下、本発明に係る蒸気タービン
プラントの一実施形態を図面に基づいて説明する。図1
において、図中の符号1はボイラ、2は再熱器、3は発
電機、4は高圧タービン、5は低圧タービン、6は復水
器、7は制御部、8は復水ポンプ、9はスプレイ水ライ
ン、10はスプレイ水制御弁、23は緊急開放弁であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a steam turbine plant according to the present invention will be described below with reference to the drawings. Figure 1
In the figure, reference numeral 1 is a boiler, 2 is a reheater, 3 is a generator, 4 is a high pressure turbine, 5 is a low pressure turbine, 6 is a condenser, 7 is a control unit, 8 is a condensate pump, and 9 is Spray water line, 10 is a spray water control valve, and 23 is an emergency opening valve.

【0017】ボイラ1で燃料を燃焼させて生じる熱によ
る加熱で発生した蒸気は、主蒸気管11を通って高圧タ
ービン4へ導かれる。主蒸気管11には蒸気加減弁12
及び緊急開放弁23が設けられ、発電(タービン)負荷
に応じて蒸気加減弁12の開度制御を実施することで、
高圧タービン4へ供給する蒸気量が調整される。蒸気加
減弁12の弁開度は、発電負荷に応じてサーボモータ
(図示省略)に供給する蒸気加減弁制御油圧(以下制御
油圧と呼ぶ)を変化させ、弁のリフトを調整して変化さ
せる。蒸気加減弁12の弁開度は、図8に一点鎖線で示
すように、横軸の蒸気加減弁制御油圧にほぼ比例して増
加する。
The steam generated by heating by the heat generated by burning the fuel in the boiler 1 is guided to the high pressure turbine 4 through the main steam pipe 11. A steam control valve 12 is provided in the main steam pipe 11.
And the emergency opening valve 23 is provided, and by performing the opening degree control of the steam control valve 12 according to a power generation (turbine) load,
The amount of steam supplied to the high-pressure turbine 4 is adjusted. The valve opening degree of the steam control valve 12 is changed by changing the steam control valve control hydraulic pressure (hereinafter referred to as control hydraulic pressure) supplied to a servo motor (not shown) according to the power generation load and adjusting the valve lift. The valve opening of the steam control valve 12 increases substantially in proportion to the steam control valve control hydraulic pressure on the horizontal axis, as indicated by the alternate long and short dash line in FIG.

【0018】また、緊急開放弁23は常時閉の弁であ
り、制御部7から開信号を受けて瞬時に全開し、ボイラ
で1で発生した蒸気を主蒸気管11から外部へ速やかに
放出する機能を有している。なお、一般的には制御部7
より出力される信号で図示省略の電磁弁を開き、緊急開
放弁23の弁本体について実際に開閉操作を行うための
シリンダに作動流体(エアなど)を供給するようになっ
ている。
Further, the emergency opening valve 23 is a normally closed valve, which is fully opened instantaneously upon receiving an opening signal from the control unit 7 and promptly discharges the steam generated in the boiler 1 to the outside from the main steam pipe 11. It has a function. In addition, in general, the control unit 7
A solenoid valve (not shown) is opened by a signal output from the valve, and working fluid (such as air) is supplied to a cylinder for actually opening and closing the valve body of the emergency opening valve 23.

【0019】高圧タービン4を通過することでタービン
を駆動した蒸気は、低温再熱蒸気管13を通って、ボイ
ラ1と一体に設けられた再熱器2に導かれる。再熱器2
通過する蒸気は、ボイラ1内で燃料を燃焼させて発生し
た熱を受けて再熱され、再熱蒸気管14を通って低圧タ
ービン5へ導かれる。再熱蒸気管14には、上述した蒸
気加減弁12の開度制御に連動した開度制御を行う再熱
蒸気制御弁15が設けられているので、同再熱蒸気制御
弁の開度に応じた再熱蒸気量が低圧タービン5へ供給さ
れることになる。
The steam that has driven the turbine by passing through the high-pressure turbine 4 is guided to the reheater 2 provided integrally with the boiler 1 through the low temperature reheat steam pipe 13. Reheater 2
The passing steam is reheated by receiving heat generated by burning the fuel in the boiler 1, and is guided to the low pressure turbine 5 through the reheat steam pipe 14. The reheat steam pipe 14 is provided with the reheat steam control valve 15 that controls the opening degree in conjunction with the opening degree control of the steam control valve 12 described above. The reheated steam amount is supplied to the low-pressure turbine 5.

【0020】再熱蒸気制御弁15の弁開度制御は、図8
(第1の実施形態)に実線で示すように、蒸気タービン
プラントの起動時に使用する第1の運転モードと、通常
運転時に使用する第2の運転モードとを備えている。な
お、後述する蒸気タービンの負荷遮断及び通常の停止に
ついても、通常運転時の状態から行われる。第1の運転
モードは機械カムによりシーケンスが制御され、第2の
運転モードと比較した場合、大きな制御油圧が作用する
領域(図8の右側)において弁開度の制御を行う。そし
て、第1の運転モードで弁開度が100%の全開に達し
た後には、電気カムによりシーケンスを切り換え、自動
的に第2の運転モードが選択されるようになっている。
The opening degree of the reheat steam control valve 15 is controlled by referring to FIG.
As indicated by the solid line in (First Embodiment), a first operation mode used when starting the steam turbine plant and a second operation mode used during normal operation are provided. Note that the load cutoff and normal stop of the steam turbine, which will be described later, are also performed from the state during normal operation. In the first operation mode, the sequence is controlled by the mechanical cam, and when compared with the second operation mode, the valve opening degree is controlled in the region where the large control hydraulic pressure acts (on the right side in FIG. 8). Then, after the valve opening reaches 100% full opening in the first operation mode, the sequence is switched by the electric cam, and the second operation mode is automatically selected.

【0021】すなわち、第1の運転モードで弁開度10
0%(全開)になると、電気カムによりシーケンスを切
り換えて自動的に第2の運転モードに移行し、制御油圧
が第2の運転モードの弁開度100%に対応する値に下
がるまで、再熱蒸気制御弁15の全開状態が維持され
る。この結果、通常運転時における再熱蒸気制御弁15
の弁開度は、起動時の運転モードと比較して、同じ発電
負荷に対する弁開度が大きくなる。こうして再熱蒸気制
御弁15の弁開度に制御されて低圧タービン5へ供給さ
れた再熱蒸気は、低圧タービン5を駆動する仕事をした
後、復水器6へ送られて復水する。
That is, in the first operation mode, the valve opening 10
When it reaches 0% (fully opened), the sequence is switched by the electric cam and the mode automatically shifts to the second operation mode, and the control oil pressure is restarted until it falls to a value corresponding to 100% of the valve opening in the second operation mode. The fully opened state of the hot steam control valve 15 is maintained. As a result, the reheat steam control valve 15 during normal operation
The valve opening of is larger than that for the same power generation load as compared with the operation mode at the time of startup. The reheated steam thus controlled by the opening degree of the reheated steam control valve 15 and supplied to the low-pressure turbine 5 performs the work of driving the low-pressure turbine 5, and then is sent to the condenser 6 to be condensed.

【0022】主蒸気管11と低温再熱蒸気管13との間
は、高圧タービンバイパス弁16を備えた高圧蒸気バイ
パス管17により連結されている。この高圧蒸気バイパ
ス管17は、高圧タービン4の運転状況に応じて余剰の
蒸気量を直接低温再熱蒸気管13へ流すものであり、圧
力センサ18の検出値を所定の圧力に維持するよう高圧
タービンバイパス弁16の開度制御が行われる。再熱蒸
気管14と復水器6との間は、低圧タービンバイパス弁
19を備えた低圧蒸気バイパス管20により連結されて
いる。この低圧蒸気バイパス管20は、低圧タービン5
の運転状況に応じて余剰の蒸気量を直接復水器6へ流す
ものであり、圧力センサ21の検出値を所定の圧力に維
持するよう低圧タービンバイパス弁19の開度制御が行
われる。
The main steam pipe 11 and the low temperature reheat steam pipe 13 are connected by a high pressure steam bypass pipe 17 having a high pressure turbine bypass valve 16. The high-pressure steam bypass pipe 17 allows an excess amount of steam to flow directly to the low-temperature reheat steam pipe 13 in accordance with the operating condition of the high-pressure turbine 4, and the high-pressure steam bypass pipe 17 keeps the detected value of the pressure sensor 18 at a predetermined pressure. The opening degree of the turbine bypass valve 16 is controlled. A low pressure steam bypass pipe 20 having a low pressure turbine bypass valve 19 is connected between the reheat steam pipe 14 and the condenser 6. This low-pressure steam bypass pipe 20 is used for the low-pressure turbine 5
The surplus steam amount is caused to flow directly to the condenser 6 in accordance with the operating conditions of the above, and the opening degree control of the low pressure turbine bypass valve 19 is performed so as to maintain the detected value of the pressure sensor 21 at a predetermined pressure.

【0023】以下、上述した構成の蒸気タービンプラン
トについて、その運転動作を説明する。なお、図中の各
弁は、黒塗りが全閉、白抜きが全開、黒塗り/白抜き混
合が開度制御を示している。蒸気タービンプラントの起
動時においては、蒸気通気前から100%負荷に達する
まで、高低圧タービンバイパス運用と呼ばれる運転操作
が行われる。この高低圧タービンバイパス運用における
第1段階(蒸気通気前)では、図1に太線で示すよう
に、ボイラ1で発生した蒸気の全量(大気放出やボイラ
補助蒸気等を除く)が主蒸気管11から高圧蒸気バイパ
ス管17を通って再熱器2に導かれる。すなわち、ボイ
ラ1で発生した蒸気は、その全量が蒸気加減弁12を全
閉とした高圧タービン4をバイパスして流れることとな
る。
The operation of the steam turbine plant having the above structure will be described below. In each valve in the figure, black is fully closed, white is fully open, and black / white mixed is for opening control. At the time of starting the steam turbine plant, an operation operation called high and low pressure turbine bypass operation is performed from before steam aeration until 100% load is reached. At the first stage (before steam aeration) in this high and low pressure turbine bypass operation, as shown by the thick line in FIG. 1, the entire amount of steam generated in the boiler 1 (excluding atmospheric discharge, boiler auxiliary steam, etc.) Through the high pressure steam bypass pipe 17 to the reheater 2. That is, the entire amount of the steam generated in the boiler 1 flows by bypassing the high pressure turbine 4 in which the steam control valve 12 is fully closed.

【0024】こうして再熱器2に送られた蒸気はボイラ
1の加熱で再熱され、この再熱蒸気が再熱蒸気管14か
ら低圧蒸気バイパス管20を通って復水器6へ導かれ
る。すなわち、再熱器2で再熱された再熱蒸気は、その
全量が再熱蒸気制御弁15を全閉とした低圧タービン5
をバイパスして復水器6へ流れることとなる。この第1
段階では、ボイラ1で発生された蒸気が蒸気タービンを
運転するのに十分な能力(蒸気量、温度及び圧力)を有
していないため、高圧タービン4及び低圧タービン5は
停止状態にある。
The steam thus sent to the reheater 2 is reheated by the heating of the boiler 1, and this reheated steam is introduced from the reheat steam pipe 14 through the low pressure steam bypass pipe 20 to the condenser 6. That is, the reheated steam reheated in the reheater 2 has a total amount of the low pressure turbine 5 with the reheated steam control valve 15 fully closed.
Will be bypassed and flow to the condenser 6. This first
At the stage, the high-pressure turbine 4 and the low-pressure turbine 5 are in a stopped state because the steam generated in the boiler 1 does not have sufficient capacity (steam amount, temperature and pressure) to operate the steam turbine.

【0025】高低圧タービンバイパス運用の第2段階
(蒸気通気〜蒸気併入)になると、図2に太線で示すよ
うに、ボイラ1で発生された蒸気は、蒸気加減弁12及
び高圧タービンバイパス弁16の開度制御により一部が
高圧タービン4に通気され、蒸気タービンの温度を上昇
させる。この時、蒸気加減弁12の弁開度は、図8に一
点鎖線で示すように設定された制御油圧を受けて上昇す
る。なお、高圧タービン4及び高圧蒸気バイパス管17
を通過した蒸気は、合流した後再熱器2に送られてボイ
ラ1で加熱される。また、再熱器2を通過して再熱され
た再熱蒸気は、再熱蒸気制御弁15及び低圧タービンバ
イパス弁19の開度制御により一部が低圧タービン5に
通気され、蒸気タービンの温度を上昇させる。この時、
再熱蒸気制御弁15の弁開度は、図8に実線で示すよう
に設定された起動時(第1の運転モード)のうち、区間
a〜bの制御油圧を受けて上昇する。
At the second stage of high / low pressure turbine bypass operation (steam ventilation-steam co-entry), as shown by the thick line in FIG. 2, the steam generated in the boiler 1 is steam control valve 12 and high pressure turbine bypass valve. A part of the high-pressure turbine 4 is ventilated by controlling the opening degree of 16 to raise the temperature of the steam turbine. At this time, the valve opening degree of the steam control valve 12 rises in response to the control hydraulic pressure set as shown by the one-dot chain line in FIG. The high-pressure turbine 4 and the high-pressure steam bypass pipe 17
After passing through, the steam is merged and then sent to the reheater 2 to be heated by the boiler 1. Further, the reheated steam that has passed through the reheater 2 and has been reheated is partially ventilated to the low pressure turbine 5 by controlling the opening degree of the reheat steam control valve 15 and the low pressure turbine bypass valve 19, and the temperature of the steam turbine is reduced. Raise. At this time,
The valve opening degree of the reheat steam control valve 15 is increased by receiving the control oil pressure in the sections a and b during the startup (first operation mode) set as shown by the solid line in FIG.

【0026】高低圧タービンバイパス運用の第3段階
(蒸気併入〜第1低負荷到達)では、図3に太線で示す
ように高圧タービンバイパス弁16が全閉となる。この
ため、ボイラ1で発生した蒸気の全量(大気放出やボイ
ラ補助蒸気等を除く)が発電機3の負荷に応じて蒸気加
減弁12の開度制御を受け、主蒸気管11から駆動源と
して高圧タービン4へ導かれる。また、再熱器2を通過
して再熱された再熱蒸気は、再熱蒸気制御弁15及び低
圧タービンバイパス弁19の開度制御により一部が低圧
タービン5に通気され、蒸気タービンの駆動源として利
用される。この時、再熱蒸気制御弁15の弁開度は、図
8に実線で示すように設定された起動時(第1の運転モ
ード)のうち、区間b〜cの制御油圧を受けて上昇す
る。なお、再熱蒸気制御弁15の開度は、発電機3の負
荷に応じて開度制御される蒸気加減弁12と連動してい
る。
At the third stage of high / low pressure turbine bypass operation (combination of steam to reach first low load), the high pressure turbine bypass valve 16 is fully closed as shown by the thick line in FIG. Therefore, the entire amount of steam generated in the boiler 1 (excluding atmospheric emission, boiler auxiliary steam, etc.) is controlled by the opening degree of the steam control valve 12 according to the load of the generator 3, and the main steam pipe 11 serves as a drive source. It is guided to the high-pressure turbine 4. Further, the reheated steam that has passed through the reheater 2 and is reheated is partially ventilated to the low pressure turbine 5 by controlling the opening degree of the reheat steam control valve 15 and the low pressure turbine bypass valve 19 to drive the steam turbine. Used as a source. At this time, the valve opening degree of the reheat steam control valve 15 is increased by receiving the control hydraulic pressure in the sections b to c during the startup (first operation mode) set as shown by the solid line in FIG. . The opening degree of the reheat steam control valve 15 is interlocked with the steam control valve 12 whose opening degree is controlled according to the load of the generator 3.

【0027】高低圧タービンバイパス運用の第4段階
(第1低負荷到達〜第2低負荷到達)では、図4に示す
ように、上述した第3段階と同様に高圧タービンバイパ
ス弁16が全閉とされ、ボイラ1で発生した蒸気の全量
(大気放出やボイラ補助蒸気等を除く)が蒸気加減弁1
2の開度制御を受けて主蒸気管11から高圧タービン4
へ導かれる。また、再熱器2を通過した再熱蒸気は、再
熱蒸気制御弁15が全開とされかつ低圧タービンバイパ
ス弁19が全閉とされるため、開状態の電動弁22を通
って復水器6に導かれる再熱蒸気を除いた全量が低圧タ
ービン5に導かれる。この時、再熱蒸気制御弁15の弁
開度は、図8に実線で示すように設定された起動時(第
1の運転モード)のうち、区間c〜d〜eの制御油圧を
受けて開く。
At the fourth stage of the high-low pressure turbine bypass operation (first low load arrival to second low load arrival), as shown in FIG. 4, the high pressure turbine bypass valve 16 is fully closed as in the third stage described above. Therefore, the total amount of steam generated in the boiler 1 (excluding atmospheric emission, boiler auxiliary steam, etc.) is the steam control valve 1
The high pressure turbine 4 from the main steam pipe 11 under the control of the opening degree of 2
Be led to. The reheated steam that has passed through the reheater 2 has the reheated steam control valve 15 fully opened and the low-pressure turbine bypass valve 19 fully closed. The entire amount excluding the reheated steam introduced to 6 is introduced to the low pressure turbine 5. At this time, the valve opening degree of the reheat steam control valve 15 receives the control oil pressure in the sections c to d to e during the startup (first operation mode) set as shown by the solid line in FIG. open.

【0028】このようにして、再熱蒸気制御弁15の開
度制御が起動時の全開(100%)まで達すると、以後
の開度制御は、図8に示す通常運転時(第2の運転モー
ド)へ自動的に移行する。すなわち、再熱蒸気制御弁1
5の弁開度は、図8に実線で示すように設定された起動
時(第1の運転モード)のa〜b〜c〜d〜eから、通
常運転時(第2の運転モード)のg〜f〜eに移行す
る。通常運転時における再熱蒸気弁15の弁開度は、同
一制御油圧に対して、換言すれば発電機3の同一負荷に
対して起動時制御よりも大きく設定されているため、負
荷が低下するような運転状況の変化がない限り全開状態
を維持することができる。
In this way, when the opening control of the reheat steam control valve 15 reaches the full opening (100%) at startup, the subsequent opening control is performed during the normal operation (second operation) shown in FIG. Mode) automatically. That is, the reheat steam control valve 1
The valve opening of No. 5 is from a to b to c to d to e at the time of startup (first operation mode) set as shown by the solid line in FIG. 8 to that at normal operation (second operation mode). Go to g-f-e. Since the valve opening degree of the reheat steam valve 15 during normal operation is set to be larger than that at the startup control for the same control oil pressure, in other words, for the same load of the generator 3, the load is reduced. The fully open state can be maintained as long as the driving situation does not change.

【0029】こうして高低圧タービンバイパス運用の最
終となる第5段階(第2低負荷到達〜100%負荷到
達)になると、高圧タービンバイパス弁16及び低圧タ
ービンバイパス弁19に加えて、大気放出やボイラ補助
蒸気等の供給ラインに設けられた弁類も全閉とされ、ボ
イラ1で発生した蒸気の全量が、負荷に応じた蒸気加減
弁12の開度制御(通常運転時)を受けて主蒸気管11
から高圧タービン4へ導かれる。なお、再熱器2を通過
した再熱蒸気は、区間g〜f〜e間における再熱蒸気制
御弁15の開度制御により全開となり、全量が低圧ター
ビン5に導かれる。
In this way, at the final stage 5 of high and low pressure turbine bypass operation (second low load reaches to 100% load), in addition to the high pressure turbine bypass valve 16 and the low pressure turbine bypass valve 19, atmospheric release and boiler are performed. The valves provided in the supply line for auxiliary steam, etc. are also fully closed, and the total amount of steam generated in the boiler 1 is controlled by the opening control of the steam control valve 12 according to the load (during normal operation) Tube 11
From the high pressure turbine 4. The reheated steam that has passed through the reheater 2 is fully opened by the opening degree control of the reheated steam control valve 15 between the sections g to f to e, and the entire amount is guided to the low pressure turbine 5.

【0030】続いて、発電機3がなんらかの原因で緊急
停止された場合など負荷遮断時について、図6を参照し
て説明する。この負荷遮断は、たとえば発電機3の遮断
器(図示省略)から出力される信号を制御部7に受けた
場合に実施される。この時、制御部7は緊急開放弁23
を開とする。ボイラ1で発生された蒸気は余剰蒸気とな
り、主流は緊急開放弁23から系外に放出され、残りが
蒸気加減弁12及び高圧タービン4を通って再熱器2に
送られる。そして、再熱器2で再熱された再熱蒸気は、
さらに再熱蒸気制御弁15及び低圧タービン5を通って
復水器6へ排出される。
Next, when the load is cut off, for example, when the generator 3 is stopped urgently for some reason, it will be described with reference to FIG. This load shedding is performed, for example, when the control unit 7 receives a signal output from the circuit breaker (not shown) of the generator 3. At this time, the control unit 7 controls the emergency opening valve 23
To open. The steam generated in the boiler 1 becomes surplus steam, the main flow is discharged to the outside of the system from the emergency opening valve 23, and the rest is sent to the reheater 2 through the steam control valve 12 and the high pressure turbine 4. Then, the reheated steam reheated in the reheater 2 is
Further, it is discharged to the condenser 6 through the reheat steam control valve 15 and the low pressure turbine 5.

【0031】このように、負荷遮断時における余剰蒸気
は主流が緊急開放弁23から排出されるため、主蒸気管
11から高圧タービン4へ流れる蒸気量は少量となる。
従って、従来は負荷遮断時の主蒸気流路としても使用す
ることを考慮し、高圧タービンバイパス弁16及び高圧
蒸気バイパス管17の容量(サイズ)を大きく設定して
いたものを、小さくすることができる。すなわち、上述
した高低圧タービンバイパス運用に必要な高圧タービン
バイパス弁16及び高圧蒸気バイパス管17の容量を確
保すればよいので、大量の余剰蒸気を流す負荷遮断時の
ような大きな容量は不要となる。
As described above, since the main flow of surplus steam at the time of load shedding is discharged from the emergency opening valve 23, the amount of steam flowing from the main steam pipe 11 to the high pressure turbine 4 becomes small.
Therefore, in consideration of using it also as the main steam flow path at the time of load shedding, conventionally, the capacity (size) of the high-pressure turbine bypass valve 16 and the high-pressure steam bypass pipe 17 was set large, but it can be reduced. it can. That is, since the capacities of the high-pressure turbine bypass valve 16 and the high-pressure steam bypass pipe 17 required for the above-described high / low-pressure turbine bypass operation may be secured, a large capacity such as when the load is cut off for flowing a large amount of excess steam becomes unnecessary. .

【0032】また、負荷遮断時における再熱蒸気につい
ても、緊急開放弁23から放出された蒸気量分だけ減少
する。さらに、再熱蒸気制御弁15の弁開度は、起動時
よりも通常運転時の方が大きくなる。このため、低圧タ
ービンバイパス弁19及び低圧蒸気バイパス管20につ
いても、負荷遮断時の再熱蒸気量を考慮して容量を決め
る必要がなくなり、従って、高低圧タービンバイパス運
用に合わせて容量を小さくすることができる。
Also, the amount of steam reheated when the load is cut off is reduced by the amount of steam released from the emergency release valve 23. Furthermore, the valve opening degree of the reheat steam control valve 15 is larger during normal operation than during startup. Therefore, it is not necessary to determine the capacities of the low-pressure turbine bypass valve 19 and the low-pressure steam bypass pipe 20 in consideration of the amount of reheated steam when the load is cut off. Therefore, the capacities are reduced in accordance with the high-low pressure turbine bypass operation. be able to.

【0033】続いて、蒸気タービン停止時について、図
7及び図8を参照して説明する。このような蒸気タービ
ン停止時には、従来とは異なり、高圧タービンバイパス
弁16及び低圧タービンバイパス弁19を閉じ、かつ、
再熱蒸気制御弁15の弁開度は通常運転時のモードで制
御される。このため、発電機3の負荷を下げても従来よ
り大きな弁開度が得られ、従って、主蒸気管11や再熱
蒸気管14などの圧力を最低圧力に保つため、ボイラ1
で必要以上に蒸気を発生させることを抑制できる。すな
わち、再熱蒸気制御弁15に大きな弁開度を設定できる
ようになるため、再熱蒸気の最低流量を確保でき、従っ
て、高温の蒸気を高圧蒸気バイパス管17及び低圧蒸気
バイパス管20を通して復水器6へ排気(放熱)する必
要がなくなるので、ボイラ1における燃料消費量を低減
することができる。
Next, the time when the steam turbine is stopped will be described with reference to FIGS. 7 and 8. When such a steam turbine is stopped, unlike the conventional case, the high pressure turbine bypass valve 16 and the low pressure turbine bypass valve 19 are closed, and
The valve opening degree of the reheat steam control valve 15 is controlled in the normal operation mode. Therefore, even if the load of the generator 3 is reduced, a valve opening larger than that of the conventional one can be obtained. Therefore, in order to keep the pressure of the main steam pipe 11 and the reheat steam pipe 14 at the minimum pressure, the boiler 1
It is possible to suppress the generation of steam more than necessary. That is, since a large valve opening can be set for the reheat steam control valve 15, the minimum flow rate of the reheat steam can be secured, and therefore, the high temperature steam is recovered through the high pressure steam bypass pipe 17 and the low pressure steam bypass pipe 20. Since it is not necessary to exhaust (radiate heat) to the water tank 6, the fuel consumption amount in the boiler 1 can be reduced.

【0034】ところで、上述した実施形態においては再
熱蒸気制御弁15が一つの場合を説明したが、再熱弁1
5の応答性を向上させるため、二つの再熱蒸気制御弁1
5を並列に配置して構成を採用してもよい。図9は、二
つの再熱蒸気制御弁15を並列に配置した場合の運転モ
ード例を示したもの(第2の実施形態)であり、弁開度
の小さい領域(具体的には区間a〜c及びg〜h)で
は、二つの再熱蒸気制御弁15について、起動時及び通
常運転時共に制御油圧に対する弁開度を若干ずらした設
定としている。
By the way, in the above-mentioned embodiment, the case where the reheat steam control valve 15 is one is explained, but the reheat valve 1
In order to improve the responsiveness of No. 5, two reheat steam control valves 1
You may arrange | position 5 in parallel and employ | adopt a structure. FIG. 9 shows an example of the operation mode in the case where the two reheat steam control valves 15 are arranged in parallel (second embodiment), and a region where the valve opening degree is small (specifically, the section a-). In c and g to h), the two reheat steam control valves 15 are set such that the valve opening degree with respect to the control oil pressure is slightly shifted both at the time of startup and at the time of normal operation.

【0035】このような弁開度の制御を実施しても、上
述した実施形態と同様に、高圧タービンバイパス弁1
6、高圧蒸気バイパス管17、低圧タービンバイパス弁
19及び低圧蒸気バイパス管20の容量(サイズ)を小
さくすることができる。また、再熱蒸気制御弁15に大
きな弁開度を設定できるようになるため、高温の蒸気を
高圧蒸気バイパス管17及び低圧蒸気バイパス管20を
通して復水器6へ排気(放熱)する必要がなくなり、ボ
イラ1における燃料消費量を低減することができる。
Even if such control of the valve opening degree is carried out, the high pressure turbine bypass valve 1 will be operated as in the above-mentioned embodiment.
6. The capacity (size) of the high pressure steam bypass pipe 17, the low pressure turbine bypass valve 19 and the low pressure steam bypass pipe 20 can be reduced. Further, since a large valve opening can be set for the reheat steam control valve 15, it is not necessary to exhaust the high temperature steam to the condenser 6 through the high pressure steam bypass pipe 17 and the low pressure steam bypass pipe 20 (heat dissipation). The fuel consumption in the boiler 1 can be reduced.

【0036】なお、本発明の構成は上述した実施形態に
限定されるものではなく、本発明の要旨を逸脱しない範
囲内において適宜変更することができ、たとえば、蒸気
タービンについては高低圧2段の他3段以上の多段蒸気
タービンへの適用も可能であり、また、通常運転時を機
械カムで制御して起動時に電気カムによりシーケンスを
切り換えることも可能である。
The configuration of the present invention is not limited to the above-described embodiment, and may be appropriately changed within the scope of the gist of the present invention. For example, for a steam turbine, two stages of high pressure and low pressure are used. It is also possible to apply to a multi-stage steam turbine having three or more stages, and it is also possible to control the sequence during normal operation with a mechanical cam and switch the sequence with an electric cam during startup.

【0037】[0037]

【発明の効果】本発明の蒸気タービンプラントによれ
ば、再熱器から低圧タービンへ供給する蒸気量を制御す
る再熱蒸気制御弁の開度制御に、起動時に使用する第1
の運転モードと、第1の運転モードで全開後に選択切換
されて通常運転時に使用する第2の運転モードとを設け
たので、高圧タービンバイパス弁、高圧蒸気バイパス
管、低圧タービンバイパス弁及び低圧蒸気バイパス管に
ついて負荷遮断時の蒸気流量を考慮する必要がなくな
り、結果として小容量化が可能になるという顕著な効果
を奏する。
According to the steam turbine plant of the present invention, the opening degree of the reheat steam control valve for controlling the amount of steam supplied from the reheater to the low pressure turbine is controlled by the first operation at the time of starting.
And the second operation mode which is selectively switched after being fully opened in the first operation mode and used during normal operation, the high pressure turbine bypass valve, the high pressure steam bypass pipe, the low pressure turbine bypass valve, and the low pressure steam are provided. It is not necessary to consider the steam flow rate at the time of load shedding for the bypass pipe, and as a result, it is possible to reduce the capacity.

【0038】また、通常運転時の弁開度制御が起動時と
異なるため、再熱蒸気制御弁に大きな弁開度を設定でき
るようになる。このため、蒸気タービンの停止時に高温
の蒸気を高圧蒸気バイパス管及び低圧蒸気バイパス管を
通して復水器へ排気(放熱)する必要がなくなり、結果
としてボイラにおける燃料消費量を低減できるという顕
著な効果を奏する。
Further, since the valve opening control during normal operation is different from that during startup, a large valve opening can be set for the reheat steam control valve. Therefore, when the steam turbine is stopped, it is not necessary to exhaust the high-temperature steam (heat radiation) to the condenser through the high-pressure steam bypass pipe and the low-pressure steam bypass pipe, and as a result, it is possible to reduce the fuel consumption in the boiler. Play.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る蒸気タービンプラントの一実施
形態を示す弁開閉状態が第1段階(蒸気通気前)の系統
図である。
FIG. 1 is a system diagram showing a first stage (before steam aeration) in a valve opening / closing state showing an embodiment of a steam turbine plant according to the present invention.

【図2】 本発明に係る蒸気タービンプラントの一実施
形態を示す弁開閉状態が第2段階(蒸気通気〜蒸気併
入)の系統図である。
FIG. 2 is a system diagram of a second stage (steam aeration-steam coexistence) in a valve open / close state showing an embodiment of a steam turbine plant according to the present invention.

【図3】 本発明に係る蒸気タービンプラントの一実施
形態を示す弁開閉状態が第3段階(蒸気併入〜第1低負
荷到達)の系統図である。
FIG. 3 is a system diagram showing a valve opening / closing state in a third stage (combining steam to reach a first low load) showing an embodiment of a steam turbine plant according to the present invention.

【図4】 本発明に係る蒸気タービンプラントの一実施
形態を示す弁開閉状態が第4段階(第1低負荷到達〜第
2低負荷到達)の系統図である。
FIG. 4 is a system diagram showing a valve opening / closing state in a fourth stage (first low load arrival to second low load arrival) showing an embodiment of a steam turbine plant according to the present invention.

【図5】 本発明に係る蒸気タービンプラントの一実施
形態を示す弁開閉状態が第5段階(第2低負荷到達〜1
00%負荷到達)の系統図である。
FIG. 5 shows an embodiment of a steam turbine plant according to the present invention in a valve open / closed state in a fifth stage (second low load arrival to 1).
It is a system diagram of (load reaching 00%).

【図6】 本発明に係る蒸気タービンプラントの一実施
形態を示す弁開閉状態が負荷遮断時の系統図である。
FIG. 6 is a system diagram showing an embodiment of a steam turbine plant according to the present invention when a valve is opened and closed and a load is cut off.

【図7】 本発明に係る蒸気タービンプラントの一実施
形態を示す弁開閉状態がタービン停止時の系統図であ
る。
FIG. 7 is a system diagram when a valve is opened / closed and the turbine is stopped, showing an embodiment of a steam turbine plant according to the present invention.

【図8】 本発明における蒸気加減弁及び再熱蒸気制御
弁の弁開度制御に係る第1の実施形態を示すグラフであ
る。
FIG. 8 is a graph showing a first embodiment relating to valve opening control of a steam control valve and a reheat steam control valve in the present invention.

【図9】 本発明における蒸気加減弁及び再熱蒸気制御
弁の弁開度制御に係る第2の実施形態を示すグラフであ
る。
FIG. 9 is a graph showing a second embodiment relating to valve opening control of a steam control valve and a reheat steam control valve in the present invention.

【図10】 従来の蒸気タービンプラントを示す弁開閉
状態が負荷遮断時の系統図である。
FIG. 10 is a system diagram showing a conventional steam turbine plant in a valve open / closed state when a load is cut off.

【符号の説明】[Explanation of symbols]

1 ボイラ 2 再熱器 3 発電機 4 高圧タービン 5 低圧タービン 6 復水器 11 主蒸気管 12 蒸気加減弁 13 低温再熱蒸気管 14 再熱蒸気管 15 再熱蒸気制御弁 16 高圧タービンバイパス弁 17 高圧蒸気バイパス管 19 低圧タービンバイパス弁 20 低圧蒸気バイパス管 23 緊急開放弁 1 boiler 2 reheater 3 generator 4 high pressure turbine 5 Low pressure turbine 6 condenser 11 Main steam pipe 12 Steam control valve 13 Low temperature reheat steam pipe 14 Reheated steam pipe 15 Reheat steam control valve 16 High pressure turbine bypass valve 17 High pressure steam bypass pipe 19 Low pressure turbine bypass valve 20 Low pressure steam bypass pipe 23 Emergency release valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01D 19/00 F01D 19/00 N 21/00 21/00 D R V F01K 7/24 F01K 7/24 B 13/02 13/02 A B C H02P 9/04 H02P 9/04 E 9/08 9/08 A Fターム(参考) 3G071 AB01 BA05 CA01 CA03 DA06 FA01 GA06 HA02 JA03 5H590 AA02 CA02 EA01 EA05 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F01D 19/00 F01D 19/00 N 21/00 21/00 DR V F01K 7/24 F01K 7/24 B 13/02 13/02 ABC H02P 9/04 H02P 9/04 E 9/08 9/08 AF term (reference) 3G071 AB01 BA05 CA01 CA03 DA06 FA01 GA06 HA02 JA03 5H590 AA02 CA02 EA01 EA05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 再熱器を備えた蒸気発生用のボイラ
と、それぞれ異なる圧力の蒸気を導入して発電機を駆動
する複数段の蒸気タービンと、蒸気を冷却して復水する
復水器とを具備し、起動時に高低圧タービンバイパス運
用を行うように構成された蒸気タービンプラントにおい
て、 前記再熱器から低圧タービンへ供給する蒸気量を制御す
る再熱蒸気制御弁の開度制御に、起動時に使用する第1
の運転モードと、該第1の運転モードで全開後に選択切
換される第2の運転モードとを設けたことを特徴とする
蒸気タービンプラント。
1. A steam generating boiler equipped with a reheater, a plurality of stages of steam turbines for driving a generator by introducing steams of different pressures, and a condenser for cooling the steam to condense it. In a steam turbine plant configured to perform high and low pressure turbine bypass operation at startup, in controlling the opening degree of a reheat steam control valve for controlling the amount of steam supplied from the reheater to the low pressure turbine, First used at startup
And a second operation mode which is selectively switched after the first operation mode is fully opened in the steam turbine plant.
【請求項2】 前記第1の運転モードが、前記第2の
運転モードより大きな弁開度に設定されることを特徴と
する請求項1記載の蒸気タービンプラント。
2. The steam turbine plant according to claim 1, wherein the first operation mode is set to a valve opening larger than that of the second operation mode.
【請求項3】 前記ボイラから高圧タービンへ蒸気を
供給する主蒸気供給ラインに、前記発電機の負荷遮断信
号を受けて開く緊急開放弁を設けたことを特徴とする請
求項1または2記載の蒸気タービンプラント。
3. A main steam supply line for supplying steam from the boiler to the high-pressure turbine is provided with an emergency opening valve which is opened upon receiving a load cutoff signal of the generator. Steam turbine plant.
JP2001342517A 2001-11-07 2001-11-07 Steam turbine plant Withdrawn JP2003148111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001342517A JP2003148111A (en) 2001-11-07 2001-11-07 Steam turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001342517A JP2003148111A (en) 2001-11-07 2001-11-07 Steam turbine plant

Publications (1)

Publication Number Publication Date
JP2003148111A true JP2003148111A (en) 2003-05-21

Family

ID=19156359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001342517A Withdrawn JP2003148111A (en) 2001-11-07 2001-11-07 Steam turbine plant

Country Status (1)

Country Link
JP (1) JP2003148111A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7581685B2 (en) 2007-07-19 2009-09-01 Christian Belisle Faucet end piece
JP2010242673A (en) * 2009-04-08 2010-10-28 Toshiba Corp Steam turbine system and method for operating the same
JP2011157966A (en) * 2010-02-02 2011-08-18 General Electric Co <Ge> Method and device for starting combined cycle power generation plant
JP2011174465A (en) * 2010-02-24 2011-09-08 Alstom Technology Ltd Steam turbine plant
JP2012021410A (en) * 2010-07-12 2012-02-02 Ihi Corp Starting method of steam turbine
KR101205617B1 (en) 2010-05-10 2012-11-27 가부시키가이샤 고베 세이코쇼 Steam turbine
WO2014156686A1 (en) 2013-03-27 2014-10-02 三菱日立パワーシステムズ株式会社 Condenser and steam-turbine plant provided therewith
CN108087047A (en) * 2017-12-28 2018-05-29 江苏金通灵流体机械科技股份有限公司 Turbine LP rotors and its electricity-generating method
JP2019522752A (en) * 2016-06-21 2019-08-15 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Dynamic interaction of turbine control valves.
WO2020255719A1 (en) * 2019-06-19 2020-12-24 三菱パワー株式会社 Power plant
CN112343679A (en) * 2020-11-05 2021-02-09 华能国际电力股份有限公司玉环电厂 Control method for deep peak shaving and shutdown of unit
CN112412557A (en) * 2020-11-09 2021-02-26 大庆石油管理局有限公司 Turbine high-side flexible heat supply system with auxiliary frequency modulation function

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7581685B2 (en) 2007-07-19 2009-09-01 Christian Belisle Faucet end piece
JP2010242673A (en) * 2009-04-08 2010-10-28 Toshiba Corp Steam turbine system and method for operating the same
JP2011157966A (en) * 2010-02-02 2011-08-18 General Electric Co <Ge> Method and device for starting combined cycle power generation plant
JP2011174465A (en) * 2010-02-24 2011-09-08 Alstom Technology Ltd Steam turbine plant
KR101205617B1 (en) 2010-05-10 2012-11-27 가부시키가이샤 고베 세이코쇼 Steam turbine
JP2012021410A (en) * 2010-07-12 2012-02-02 Ihi Corp Starting method of steam turbine
WO2014156686A1 (en) 2013-03-27 2014-10-02 三菱日立パワーシステムズ株式会社 Condenser and steam-turbine plant provided therewith
KR20150100886A (en) 2013-03-27 2015-09-02 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Condenser and steam-turbine plant provided therewith
JP7110122B2 (en) 2016-06-21 2022-08-01 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Turbine regulator dynamic interaction
JP2019522752A (en) * 2016-06-21 2019-08-15 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Dynamic interaction of turbine control valves.
CN108087047A (en) * 2017-12-28 2018-05-29 江苏金通灵流体机械科技股份有限公司 Turbine LP rotors and its electricity-generating method
JP2021001551A (en) * 2019-06-19 2021-01-07 三菱パワー株式会社 Power generation plant
WO2020255719A1 (en) * 2019-06-19 2020-12-24 三菱パワー株式会社 Power plant
JP7291010B2 (en) 2019-06-19 2023-06-14 三菱重工業株式会社 power plant
CN112343679A (en) * 2020-11-05 2021-02-09 华能国际电力股份有限公司玉环电厂 Control method for deep peak shaving and shutdown of unit
CN112412557A (en) * 2020-11-09 2021-02-26 大庆石油管理局有限公司 Turbine high-side flexible heat supply system with auxiliary frequency modulation function
CN112412557B (en) * 2020-11-09 2022-09-06 大庆石油管理局有限公司 Steam turbine high-side flexible heat supply system with auxiliary frequency modulation function

Similar Documents

Publication Publication Date Title
US7509794B2 (en) Waste heat steam generator
EP2423460B1 (en) Systems and methods for pre-warming a heat recovery steam generator and associated steam lines
CN101815903B (en) Rankine cycle power plant heat source control
JP5539521B2 (en) Power plant system with overload control valve
JP4818353B2 (en) Start-up method of gas / steam combined turbine equipment
JPS6240526B2 (en)
JP2003148111A (en) Steam turbine plant
JP2013050055A (en) Steam turbine plant and operation method therefor
JP2010014114A (en) Steam turbine overload valve and method associated with the same
JP2009062985A (en) Method for operating combined-cycle power plant and combined-cycle power plant for executing the method
JP2002309905A (en) Gas turbine combined plant
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
JP2000130108A (en) Starting method for combined cycle power plant
JP2010242673A (en) Steam turbine system and method for operating the same
JP4208397B2 (en) Start-up control device for combined cycle power plant
JP2006161698A (en) Overload operation device and method for steam turbine
US7568342B2 (en) Supply pump actuating turbine
JP4395275B2 (en) Operation method of combined plant
JP2006063886A (en) Thermal power plant
JP2005344528A (en) Combined cycle power generating plant and method for starting the same
JP2019173697A (en) Combined cycle power generation plant and operation method of the same
JPH0610619A (en) Supply water heating device
JPH10331608A (en) Closed steam cooling gas turbine combined plant
JP2002339708A (en) Power generating plant of combined cycle
JPH09105503A (en) Method and apparatus for controlling steam temperature of combined cycle plant

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050201