JP2003148105A - Ceramics based composite member with band part and its manufacturing method - Google Patents

Ceramics based composite member with band part and its manufacturing method

Info

Publication number
JP2003148105A
JP2003148105A JP2001345712A JP2001345712A JP2003148105A JP 2003148105 A JP2003148105 A JP 2003148105A JP 2001345712 A JP2001345712 A JP 2001345712A JP 2001345712 A JP2001345712 A JP 2001345712A JP 2003148105 A JP2003148105 A JP 2003148105A
Authority
JP
Japan
Prior art keywords
band
blade
wing
composite member
plain weave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001345712A
Other languages
Japanese (ja)
Other versions
JP3978766B2 (en
Inventor
Takeshi Nakamura
武志 中村
Takahito Araki
隆人 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2001345712A priority Critical patent/JP3978766B2/en
Publication of JP2003148105A publication Critical patent/JP2003148105A/en
Application granted granted Critical
Publication of JP3978766B2 publication Critical patent/JP3978766B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramics based composite member with a band part which integrally forms the band part with a blade part durable to hoop stress and enhances sealability between the blade part and the band part, and also to provide its manufacturing method. SOLUTION: The ceramics based composite member with the band part comprises the wing shaped cylindrical blade part 1 and the tabular or arced band part 2 continuously formed on an end part of the blade part. The blade part is formed by a blade weave of ceramics fiber, and a protruding part 1a of a blade part end is bent and held in the band part. The band part is a plurality of layered products comprising plain weave plates 2a of ceramics fiber. The bent protruding part 1a of the blade part and the plain weave plates 2a are integrally seamed together by ceramics fiber 3 piercing the band part. The ceramics based composite member 10 with the band part is finished by carrying out a CVI process of forming SiC matrix layers on a surface of a formed fiber woven fabric and a PIP process of using organosilicon polymer as a base material and impregnating and baking it in gaps of the matrix layers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、フランジ部を有す
るセラミックス基複合部材とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic-based composite member having a flange portion and a method for manufacturing the same.

【0002】[0002]

【従来の技術】セラミックスは耐熱性が高いが脆い欠点
があるため、これをセラミックス繊維で強化したセラミ
ックス基複合部材(Ceramic Matrix C
omposite:以下、CMCと略称する)が開発さ
れている。すなわち、セラミックス基複合部材(CM
C)はセラミックス繊維とセラミックスマトリックスと
からなる。なお、一般にCMCはその素材により、セラ
ミックス繊維/セラミックスマトリックス(例えば、両
方がSiCからなる場合、SiC/SiC)と表示され
る。なお、以下、セラミックス基複合部材(CMC)に
ついて詳述するが、本発明は、これに限定されず、炭素
系複合材(C/C)、C/SiC、SiC/C等にも同
様に適用することができる。
2. Description of the Related Art Ceramics have high heat resistance but are fragile. Therefore, a ceramic matrix composite member (Ceramic Matrix C) reinforced with ceramic fibers is used.
omposite: hereinafter abbreviated as CMC) has been developed. That is, a ceramic matrix composite member (CM
C) consists of ceramic fibers and a ceramic matrix. Note that CMC is generally expressed as ceramic fiber / ceramic matrix (for example, SiC / SiC when both are made of SiC) depending on its material. The ceramic-based composite member (CMC) will be described in detail below, but the present invention is not limited to this and is similarly applied to carbon-based composite materials (C / C), C / SiC, SiC / C, and the like. can do.

【0003】CMCは、軽量で耐熱性に優れるため、ジ
ェットエンジン部品(例えば、タービン翼、燃焼器、ア
フターバーナ部品等)へ適用することによりエンジンの
重量削減および燃料消費率の低減が期待される有望な材
料である。
Since CMC is lightweight and has excellent heat resistance, it is expected to reduce the weight of the engine and the fuel consumption rate by applying it to jet engine parts (for example, turbine blades, combustors, afterburner parts, etc.). It is a promising material.

【0004】しかし、従来のCMCは、気密性を保持す
ることができず、かつ耐熱衝撃性が低い問題点があっ
た。すなわち、従来のCMCは、所定の形状をセラミッ
クス繊維で構成したのち、いわゆるCVI処理(Che
mical Vapor Infiltration:
気相含浸法)で繊維の隙間にマトリックスを形成する
が、このCVIで繊維間の隙間を完全に埋めるには実用
不可能な長期間(例えば1年以上)を要する問題点があ
った。また、このように形成した従来のCMCを高温で
試験等すると、激しい熱衝撃(例えば温度差が900℃
以上)が作用した場合に、強度低下が激しく、再使用が
ほとんどできない問題点があった。そのため、従来のセ
ラミックス基複合部材(CMC)は、タービン翼、燃焼
器のような気密性と耐熱衝撃性を要する部品には実質的
に使用できなかった。
However, the conventional CMC has a problem that it cannot maintain airtightness and its thermal shock resistance is low. That is, in the conventional CMC, after a predetermined shape is made of ceramic fibers, so-called CVI treatment (Che treatment) is performed.
medical Vapor Information:
The matrix is formed in the interstices of the fibers by the vapor phase impregnation method), but there is a problem that it takes an impractical long time (for example, one year or more) to completely fill the interstices of the fibers with this CVI. Moreover, when the conventional CMC thus formed is tested at a high temperature, a severe thermal shock (for example, a temperature difference of 900 ° C.
When the above) acts, there is a problem that the strength is drastically reduced and reuse is hardly possible. Therefore, the conventional ceramics-based composite member (CMC) cannot be practically used for parts that require airtightness and thermal shock resistance, such as turbine blades and combustors.

【0005】本発明の発明者等は、上述した問題点を解
決するために、気密性と耐熱衝撃性を大幅に高めること
ができ、これによりスラストチャンバ等にも実用可能な
「セラミックス基複合部材及びその製造方法」(特開2
000−219576号)を創案し出願した。この発明
は、成形した繊維織物の表面にSiCマトリックス層を
形成するCVI処理を行った後に、そのマトリックス層
の隙間に有機珪素ポリマーを基材として含浸し焼成する
PIP処理を行うものである。
In order to solve the above-mentioned problems, the inventors of the present invention can greatly enhance the airtightness and the thermal shock resistance, and thus the "ceramics-based composite member which can be practically used in the thrust chamber and the like. And its manufacturing method "
000-219576) was proposed and filed. According to the present invention, a CVI treatment for forming a SiC matrix layer on the surface of a molded fiber woven fabric is performed, and then a PIP treatment for impregnating the gaps in the matrix layer with an organic silicon polymer as a base material and firing the PIP treatment.

【0006】[0006]

【発明が解決しようとする課題】上述したCMCは、軽
量で耐熱性に優れるため、ジェットエンジンのガスター
ビン部品、例えば、タービン静翼や排気ディフューザベ
ーン)へ適用することが検討されている。しかし、ター
ビン静翼や排気ディフューザベーンは、図5に示すよう
に、翼部1の両端にフランジ部2(バンド部と呼ぶ)を
有する構造であり、このバンド部を有する翼形状をCM
Cで一体成形することは、従来、困難であった。
Since the CMC described above is lightweight and has excellent heat resistance, its application to gas turbine parts for jet engines, such as turbine vanes and exhaust diffuser vanes, is being studied. However, as shown in FIG. 5, the turbine vane and the exhaust diffuser vane have a structure in which there are flange portions 2 (called band portions) at both ends of the blade portion 1, and the blade shape having this band portion is CM.
It has been difficult in the past to integrally mold C.

【0007】すなわち、バンド部2は平板状又は円弧面
であるのに対して、翼部1は翼形の中空筒形であるた
め、全体をCMCの一体成形体とするには、平織りした
セラミックス繊維で翼部及びバンド部を成形し、これに
マトリックスを含浸してセラミックス基複合部材(CM
C)を製造する必要があった。この場合、全体の一体成
形化はできるものの、翼部1に繊維の縫い目があり、翼
部に作用するフープ応力に弱く、縫い目から亀裂が入り
やすい問題点があった。また、平織りのセラミックス繊
維で翼部を成形するのは、技術的に困難であり、コスト
がかかる問題点もあった。
That is, the band portion 2 has a flat plate shape or an arc surface, while the wing portion 1 has a hollow cylindrical shape of a wing shape. Therefore, in order to make the whole into an integrally molded body of CMC, plain weave ceramics is used. Wings and bands are formed from fibers, and the matrix is impregnated into the ceramics-based composite member (CM
C) had to be manufactured. In this case, although the whole can be integrally molded, there is a problem that the wing portion 1 has a seam of fibers, is weak against the hoop stress acting on the wing part, and is likely to be cracked from the seam. Further, it is technically difficult to form the blade portion with the plain weave ceramic fiber, and there is a problem that the cost is high.

【0008】そこで、翼部1のみをCMCで製造し、バ
ンド部は別部品で組み立てる分割式のCMC翼が、例え
ば、US5074749(図6)、US5630700
(図7)等に提案されている。しかし、かかる分割式の
CMC翼は、翼部1とバンド部2とのシール性が不十分
であり、かつ両者を連結して一体化するために余分な部
品(ボルト、フランジ等)を必要とし、CMCを用いた
重量低減(軽量化)のメリットが失われてしまう問題点
があった。
Therefore, a split type CMC blade in which only the blade portion 1 is manufactured by CMC and the band portion is assembled by separate parts is disclosed in, for example, US5074749 (FIG. 6) and US5630700.
(Fig. 7) and the like. However, such a split CMC blade does not have sufficient sealability between the blade portion 1 and the band portion 2 and requires extra parts (bolts, flanges, etc.) to connect and integrate the two. However, there is a problem that the merit of weight reduction (weight reduction) using CMC is lost.

【0009】本発明は上述した問題点を解決するために
創案されたものである。すなわち、本発明の目的は、バ
ンド部と翼部を一体成形でき、かつ翼部がフープ応力に
強く、翼部とバンド部とのシール性を高めることができ
るバンド部付きセラミックス基複合部材とその製造方法
を提供することにある。
The present invention was created to solve the above problems. That is, an object of the present invention is to integrally mold the band part and the wing part, and the wing part is resistant to hoop stress, and a ceramic base composite member with a band part capable of enhancing the sealing property between the wing part and the band part and the same. It is to provide a manufacturing method.

【0010】[0010]

【課題を解決するための手段】本発明によれば、翼形筒
状の翼部(1)と、該翼部の端部に連続して形成された
平板状又は円弧状のバンド部(2)とからなり、前記翼
部は、セラミックス繊維のブレード織りで成形され、か
つ翼部端の張出部(1a)が折曲げられて、バンド部内
に挟持されており、前記バンド部は、セラミックス繊維
の平織り板(2a)からなる複数の積層体であり、更
に、前記翼部の折曲げられた張出部(1a)と平織り板
(2a)は、バンド部を貫通するセラミックス繊維
(3)で一体に縫い合わされている、ことを特徴とする
バンド部付きセラミックス基複合部材が提供される。
According to the present invention, an airfoil-shaped tubular wing portion (1) and a flat plate-shaped or arc-shaped band portion (2) continuously formed at an end portion of the wing portion (2). ) Is formed by blade weaving of ceramic fibers, and the overhanging portion (1a) at the end of the blade is bent and sandwiched in the band portion, and the band portion is made of ceramics. A plurality of laminated bodies composed of a plain weave plate (2a) of fibers, and further, the bent overhanging portion (1a) and the plain weave plate (2a) of the wing portion are ceramic fibers (3) penetrating a band portion. A ceramic base composite member with a band portion is provided, which is sewn integrally with each other.

【0011】また、本発明によれば、翼形筒状の翼部
(1)を翼部端の張出部(1a)と共にブレード織りで
成形する翼部成形ステップ(A)と、平板状又は円弧状
のバンド部(2)を構成する複数の平織り板(2a)を
成形するバンド部成形ステップ(B)と、翼部端の張出
部(1a)を折曲げ、これを複数の平織り板(2a)の
間に挟持し、バンド部を貫通するセラミックス繊維で張
出部(1a)と平織り板(2a)を一体に縫い合わす一
体化ステップ(C)とを備える、ことを特徴とするバン
ド部付きセラミックス基複合部材の製造方法が提供され
る。
According to the present invention, the blade portion forming step (A) of forming the blade-shaped tubular blade portion (1) together with the overhanging portion (1a) of the blade portion by blade weaving, and the flat plate shape or A band part forming step (B) for forming a plurality of plain weave plates (2a) constituting an arc-shaped band part (2) and a wing end protruding portion (1a) are bent, and a plurality of plain weave plates are formed. A band, characterized by comprising an integration step (C) of sandwiching it between (2a) and integrally stitching the overhanging part (1a) and the plain weave plate (2a) with a ceramic fiber penetrating the band part. A method of manufacturing a ceramic matrix composite member with a part is provided.

【0012】本発明の好ましい実施形態によれば、前記
翼部成形ステップ(A)において、治具の表面にセラミ
ックス繊維をブレード織りし、次いでその表面にマトリ
ックスを含浸させて翼部を成形する。
According to a preferred embodiment of the present invention, in the blade portion forming step (A), ceramic fibers are braided on the surface of the jig and then the surface is impregnated with a matrix to form the blade portion.

【0013】上記本発明の構造及び方法によれば、翼形
筒状の翼部(1)の翼部端の張出部(1a)を折曲げ
て、バンド部を構成する複数の平織り板(2a)の間に
挟持し、かつ翼部の折曲げた張出部(1a)と平織り板
(2a)が、バンド部を貫通するセラミックス繊維
(3)で一体に縫い合わされるので、翼部とバンド部と
の境目には、折曲げられバンド部内に挟持された翼部
(1)の張出部(1a)が翼部と連続して存在する。従
って、翼部とバンド部は、ブレード織りの織物と平織り
板とが実質的に一体化され、かつ境目に隙間が全くでき
ないので高いシール性を得ることができる。
According to the above-described structure and method of the present invention, a plurality of plain weave plates (which constitute the band portion) are formed by bending the protruding portion (1a) of the blade end of the blade-shaped tubular blade portion (1). Since the overhanging portion (1a) sandwiched between 2a) and the bent wing portion and the plain weave plate (2a) are integrally sewn together with the ceramic fiber (3) penetrating the band portion, At the boundary with the band part, the overhanging part (1a) of the wing part (1) which is bent and sandwiched in the band part exists continuously with the wing part. Therefore, since the blade weave fabric and the plain weave plate are substantially integrated in the wing portion and the band portion, and no gap is formed at the boundary, high sealing performance can be obtained.

【0014】また、翼部(1)は、セラミックス繊維の
ブレード織りで成形されるので、フープ応力に対し強い
強度を得ることができる。更に、一体で作られた静翼の
ため、従来の分割式のCMCや一体式のCMCに比較し
て構造がシンプルであり、大幅なコストダウンが可能で
ある。更にまた、ブレード織りと平織りをそれぞれ独立
に最適化することにより、繊維の体積割合の高い高強度
織物構造とすることができる。
Further, since the blade portion (1) is formed by braiding of ceramic fibers, it is possible to obtain a high strength against hoop stress. Further, since the stator vanes are integrally formed, the structure is simpler than that of the conventional split type CMC or the integral type CMC, and the cost can be significantly reduced. Furthermore, by independently optimizing the braid weave and the plain weave, it is possible to obtain a high-strength woven structure having a high fiber volume ratio.

【0015】[0015]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において共通す
る部分には同一の符号を付し、重複した説明を省略す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below with reference to the drawings. In addition, in each figure, the common part is denoted by the same reference numeral, and the duplicated description will be omitted.

【0016】図1は、本発明のバンド部付きセラミック
ス基複合部材の分解斜視図であり、図2は、その完成後
の全体斜視図である。図1及び図2に示すように、本発
明のバンド部付きセラミックス基複合部材10は、翼形
筒状の翼部1と、翼部1の端部に連続して形成された平
板状又は円弧状のバンド部2とからなる。
FIG. 1 is an exploded perspective view of a ceramic base composite member with a band portion according to the present invention, and FIG. 2 is an overall perspective view after completion thereof. As shown in FIGS. 1 and 2, a ceramic base composite member 10 with a band portion according to the present invention has a wing portion 1 having a cylindrical airfoil shape and a flat plate shape or a circle continuously formed at an end portion of the wing portion 1. The band portion 2 has an arc shape.

【0017】翼部1は、フープ応力に対し強いセラミッ
クス繊維のブレード織りで成形されている。「ブレード
織り」とは、図3に模式的に示すように、中央糸に組み
糸を交互に斜めに織り込む織物であり、治具の表面に効
率的に織物を成形できると共に、フープ応力に対し強い
特徴を有する。また、翼部端の張出部1aは、翼部1と
共にブレード織りで成形された後、一部に切り込みを入
れて水平に折曲げられ、バンド部内に挟持されている。
The wing portion 1 is formed of a braid weave of ceramic fibers that is strong against hoop stress. "Blade weaving" is a woven fabric in which a braiding yarn is alternately woven diagonally into a central yarn, as schematically shown in FIG. 3, and the woven fabric can be efficiently formed on the surface of the jig, and the hoop stress Has strong characteristics. Further, the overhanging portion 1a at the end of the wing portion is formed by blade weaving together with the wing portion 1, and is partially bent to be horizontally bent and sandwiched in the band portion.

【0018】バンド部2は、セラミックス繊維により2
次元又は3次元に織られた平織り板2aからなる複数の
積層体である。この平織り板2aは、縦糸と横糸からな
る通常の平織りの他、ロービングを一方向に並列したプ
リプレグシート、或いは3軸織物でも良い。また、この
平織り板2aには、翼部1の翼形に対応した開口2bが
設けられている。なお、この開口2bは、バンド部2の
外面に使用する平織り板2aの場合には省略することも
できる。
The band portion 2 is made of ceramic fiber 2
It is a plurality of laminated bodies composed of a plain weave plate 2a woven three-dimensionally or three-dimensionally. The plain weave plate 2a may be a normal plain weave composed of warp yarns and weft yarns, a prepreg sheet in which rovings are arranged in one direction, or a triaxial woven fabric. Further, the plain weave plate 2a is provided with an opening 2b corresponding to the wing shape of the wing portion 1. The opening 2b can be omitted in the case of the plain weave plate 2a used for the outer surface of the band portion 2.

【0019】更に、翼部の折曲げられた張出部1aと平
織り板2aは、バンド部2を厚さ方向に貫通するセラミ
ックス繊維3で一体に縫い合わされている。この縫い合
わせは、図2に示すように、縦方向と横方向に複数行
い、繊維密度を十分に高めるのがよい。
Further, the bent overhanging portion 1a of the wing portion and the plain weave plate 2a are integrally sewn together with a ceramic fiber 3 penetrating the band portion 2 in the thickness direction. As shown in FIG. 2, this stitching is preferably performed in plural in the longitudinal direction and in the lateral direction to sufficiently increase the fiber density.

【0020】本発明のバンド部付きセラミックス基複合
部材10は、上述のように成形した繊維織物の表面にS
iCマトリックス層を形成するCVI処理を行った後
に、そのマトリックス層の隙間に有機珪素ポリマーを基
材として含浸し焼成するPIP処理を行ったものであ
る。
The ceramic-based composite member 10 with a band portion of the present invention has S formed on the surface of the fiber fabric formed as described above.
After the CVI treatment for forming the iC matrix layer, the PIP treatment of impregnating the gaps in the matrix layer with the organic silicon polymer as the base material and firing the PIP treatment is performed.

【0021】図4は、本発明によるバンド部付きセラミ
ックス基複合部材の製造方法の模式図である。この図に
示すように、本発明の製造方法は、翼部成形ステップ
(A)、バンド部成形ステップ(B)及び一体化ステッ
プ(C)を有する。
FIG. 4 is a schematic view of a method for manufacturing a ceramic base composite member with a band portion according to the present invention. As shown in this figure, the manufacturing method of the present invention includes a blade forming step (A), a band forming step (B), and an integration step (C).

【0022】翼部成形ステップ(A)は、治具の表面に
セラミックス繊維をブレード織りする翼部ブレード織り
工程S11と、ブレード織りした織物の表面にCVIで
0.1〜0.2μm程度のカーボンをコーティングする
C−CVD工程S12と、更にその繊維表面にCVIに
よりSiCのマトリックスを含浸させるSiC−CVI
工程S13とからなる。セラミックス繊維には、例えば
宇部興産株式会社製のチラノZMI繊維を用いる。この
翼部成形ステップ(A)では、翼形筒状の翼部1を翼部
端の張出部1aと共にブレード織りで成形する。また、
SiC−CVI工程S13におけるマトリックスの含浸
量は、一体化ステップ(C)における翼部1の加工が容
易にできる程度に抑える。
The wing portion forming step (A) is a wing portion blade weaving step S11 for blade-weaving ceramic fibers on the surface of the jig, and carbon of about 0.1 to 0.2 μm in CVI on the surface of the blade-woven fabric. C-CVD step S12 for coating SIC, and further SiC-CVI for impregnating the fiber surface with a matrix of SiC by CVI
And step S13. As the ceramic fiber, for example, Tyranno ZMI fiber manufactured by Ube Industries, Ltd. is used. In the blade forming step (A), the blade 1 having a cylindrical airfoil shape is formed by blade weaving together with the protruding portion 1a at the blade end. Also,
The impregnation amount of the matrix in the SiC-CVI step S13 is suppressed to such an extent that the wing portion 1 can be easily processed in the integration step (C).

【0023】バンド部成形ステップ(B)は、平板状又
は円弧状の平織り板2aを平織りするバンド部平織り工
程S21と、平織りした織物の表面にCVIで0.1〜
0.2μm程度のカーボンをコーティングするC−CV
D工程S22と、更にその繊維表面にCVIによりSi
Cのマトリックスを含浸させるSiC−CVI工程S2
3とからなる。C−CVD工程S22とSiC−CVI
工程23は、C−CVD工程S12とSiC−CVI工
程S13と実質的に同一である。平織り板2aの翼部1
の翼形に対応した開口2bは、工程S21で加工しても
よく、或いは、SiC−CVI工程S13の後で加工し
てもよい。また、通常の平織りの代わりに、ロービング
を一方向に並列したプリプレグシート、或いは3軸織物
を用いてもよい。
The band portion forming step (B) includes a band portion plain weaving step S21 for plain weaving the flat or arcuate plain weave plate 2a, and a CVI of 0.1 to 0.1 on the surface of the plain woven fabric.
C-CV coating carbon of about 0.2 μm
D step S22, and Si on the fiber surface by CVI
SiC-CVI step S2 of impregnating C matrix
3 and 3. C-CVD process S22 and SiC-CVI
Step 23 is substantially the same as C-CVD step S12 and SiC-CVI step S13. Wing 1 of plain woven board 2a
The opening 2b corresponding to the airfoil may be processed in step S21, or may be processed after the SiC-CVI step S13. Further, instead of a normal plain weave, a prepreg sheet in which rovings are arranged in one direction may be used, or a triaxial woven fabric may be used.

【0024】一体化ステップ(C)は、翼部1と共にブ
レード織りで成形された翼部端の張出部1aの一部にカ
ッター等で切り込みを入れ、次いで張出部1aを図1で
水平に折曲げる翼部の端部加工工程S31と、折曲げた
翼部端の張出部1aを複数の平織り板2aの間に挟持
し、バンド部を貫通するセラミックス繊維3で張出部1
aと平織り板2aを一体に縫い合わせる縫合わせ工程S
32とからなる。
In the integration step (C), a notch is used to cut a part of the overhanging portion 1a at the end of the blade formed by blade weaving together with the blade portion 1, and then the overhanging portion 1a is horizontal in FIG. The wing end processing step S31 of folding the blade into a wing and the bulging portion 1a of the bent wing end are sandwiched between a plurality of plain weave plates 2a, and the bulging portion 1 is formed by the ceramic fibers 3 penetrating the band portion.
a and the plain woven plate 2a are integrally sewn together in the sewing step S
And 32.

【0025】縫合わせ工程S32が完了すると、図2に
示すようなバンド部付きセラミックス基複合部材の織物
が完成する。次いで、織物の繊維表面にCVIによりS
iCのマトリックスを再度含浸させるSiC−CVI工
程S41、マトリックス層の隙間に有機珪素ポリマーを
基材として含浸し焼成するPIP工程S42を行った
後、機械加工(S43)し、最後に再度SiC−CVI
工程S44を行って目的とするバンド部付きセラミック
ス基複合部材10が完成する。
When the sewing step S32 is completed, the woven fabric of the ceramic base composite member with the band portion as shown in FIG. 2 is completed. Then, the S fiber is applied to the fiber surface of the fabric by CVI.
After performing a SiC-CVI step S41 of re-impregnating the iC matrix and a PIP step S42 of impregnating and baking the organosilicon polymer in the gaps of the matrix layer, machining (S43) is performed, and finally SiC-CVI is performed again.
By carrying out step S44, the target ceramics-based composite member 10 with a band portion is completed.

【0026】翼部成形ステップ(A)において使用した
治具(例えばカーボン製)は、最終形状を保持できる限
りで、どの工程において外してもよいが、SiC−CV
I工程13の後、或いはSiC−CVI工程S41の後
で外すのが好ましい。
The jig (for example, made of carbon) used in the step (A) for forming the blade portion may be removed in any step as long as it can maintain the final shape.
It is preferably removed after the I step 13 or after the SiC-CVI step S41.

【0027】上述した本発明の構造及び方法によれば、
翼形筒状の翼部1の翼部端の張出部1aを折曲げて、バ
ンド部を構成する複数の平織り板2aの間に挟持し、か
つ翼部の折曲げた張出部1aと平織り板2aが、バンド
部を貫通するセラミックス繊維3で一体に縫い合わされ
るので、翼部とバンド部との境目には、折曲げられバン
ド部内に挟持された翼部1の張出部1aが翼部と連続し
て存在する。従って、翼部とバンド部は、ブレード織り
の織物と平織り板とが実質的に一体化され、かつ境目に
隙間が全くできないので高いシール性を得ることができ
る。
According to the structure and method of the present invention described above,
The protruding portion 1a at the end of the blade portion of the airfoil-shaped tubular blade portion 1 is bent and sandwiched between a plurality of plain weave plates 2a forming the band portion, and the protruding portion 1a is formed by bending the blade portion. Since the plain weave plate 2a is integrally sewn with the ceramic fibers 3 penetrating the band part, the overhanging part 1a of the wing part 1 which is bent and sandwiched in the band part is formed at the boundary between the wing part and the band part. It exists continuously with the wings. Therefore, since the blade weave fabric and the plain weave plate are substantially integrated in the wing portion and the band portion, and no gap is formed at the boundary, high sealing performance can be obtained.

【0028】また、翼部1は、セラミックス繊維のブレ
ード織りで成形されるので、フープ応力に対し強い強度
を得ることができる。更に、一体で作られた静翼のた
め、従来の分割式のCMCや一体式のCMCに比較して
構造がシンプルであり、大幅なコストダウンが可能であ
る。更にまた、ブレード織りと平織りをそれぞれ独立に
最適化することにより、繊維の体積割合の高い高強度織
物構造とすることができる。
Further, since the wing portion 1 is formed by the ceramic fiber braid weave, it is possible to obtain strong strength against the hoop stress. Further, since the stator vanes are integrally formed, the structure is simpler than that of the conventional split type CMC or the integral type CMC, and the cost can be significantly reduced. Furthermore, by independently optimizing the braid weave and the plain weave, it is possible to obtain a high-strength woven structure having a high fiber volume ratio.

【0029】なお、本発明は上述した実施の形態に限定
されず、本発明の要旨を逸脱しない範囲で種々変更でき
ることは勿論である。
The present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

【0030】[0030]

【発明の効果】上述したように本発明のバンド部付きセ
ラミックス基複合部材とその製造方法は、一体で作られ
た静翼のため、複雑な構造を必要としない、シール性に
優れる、コストメリットがある、織り構造を組み合わせ
て最適化することで、繊維体積割合の高い高強度織物構
造とできる、等の特徴を有する。
As described above, the ceramic base composite member with a band portion and the method for manufacturing the same according to the present invention do not require a complicated structure because of the integrally formed stationary blade, have excellent sealing properties, and have a cost advantage. There is a feature that a high strength woven structure having a high fiber volume ratio can be obtained by combining and optimizing a woven structure.

【0031】従って、本発明のバンド部付きセラミック
ス基複合部材とその製造方法は、バンド部と翼部を一体
成形でき、かつ翼部がフープ応力に強く、翼部とバンド
部とのシール性を高めることができる等の優れた効果を
有する。
Therefore, according to the ceramic base composite member with the band portion and the method for manufacturing the same of the present invention, the band portion and the blade portion can be integrally formed, the blade portion is resistant to hoop stress, and the sealing property between the blade portion and the band portion is improved. It has an excellent effect that it can be enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のバンド部付きセラミックス基複合部材
の分解斜視図である。
FIG. 1 is an exploded perspective view of a ceramic base composite member with a band portion according to the present invention.

【図2】本発明のバンド部付きセラミックス基複合部材
の全体斜視図である。
FIG. 2 is an overall perspective view of a ceramic base composite member with a band portion of the present invention.

【図3】ブレード織りの模式図である。FIG. 3 is a schematic diagram of blade weaving.

【図4】本発明によるバンド部付きセラミックス基複合
部材の製造方法の模式図である。
FIG. 4 is a schematic diagram of a method for producing a ceramics-based composite member with a band portion according to the present invention.

【図5】バンド部付きセラミックス基複合部材の模式図
である。
FIG. 5 is a schematic view of a ceramics-based composite member with a band portion.

【図6】従来の分割式CMC翼の模式図である。FIG. 6 is a schematic view of a conventional split CMC blade.

【図7】従来の分割式CMC翼の別の模式図である。FIG. 7 is another schematic view of a conventional split CMC blade.

【符号の説明】[Explanation of symbols]

1 翼部、1a 翼部端の張出部、2 バンド部、2a
平織り板、3 セラミックス繊維、10 バンド部付
きセラミックス基複合部材
1 Wing portion, 1a Wing end portion overhanging portion, 2 Band portion, 2a
Plain woven board, 3 ceramics fibers, 10 ceramics base composite member with band part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 翼形筒状の翼部(1)と、該翼部の端部
に連続して形成された平板状又は円弧状のバンド部
(2)とからなり、 前記翼部は、セラミックス繊維のブレード織りで成形さ
れ、かつ翼部端の張出部(1a)が折曲げられて、バン
ド部内に挟持されており、 前記バンド部は、セラミックス繊維の平織り板(2a)
からなる複数の積層体であり、 更に、前記翼部の折曲げられた張出部(1a)と平織り
板(2a)は、バンド部を貫通するセラミックス繊維
(3)で一体に縫い合わされている、ことを特徴とする
バンド部付きセラミックス基複合部材。
1. A wing-shaped tubular wing part (1), and a flat plate-shaped or arc-shaped band part (2) continuously formed at an end of the wing part, the wing part comprising: It is formed by blade weaving of ceramic fibers, and the overhanging portion (1a) of the blade end is bent and sandwiched in the band portion, and the band portion is a plain weave plate (2a) of ceramic fiber.
The bent overhang portion (1a) and the plain weave plate (2a) of the wing portion are integrally sewn together with a ceramic fiber (3) penetrating the band portion. A ceramic-based composite member with a band portion, characterized in that
【請求項2】 翼形筒状の翼部(1)を翼部端の張出部
(1a)と共にブレード織りで成形する翼部成形ステッ
プ(A)と、平板状又は円弧状のバンド部(2)を構成
する複数の平織り板(2a)を成形するバンド部成形ス
テップ(B)と、翼部端の張出部(1a)を折曲げ、こ
れを複数の平織り板(2a)の間に挟持し、バンド部を
貫通するセラミックス繊維で張出部(1a)と平織り板
(2a)を一体に縫い合わす一体化ステップ(C)とを
備える、ことを特徴とするバンド部付きセラミックス基
複合部材の製造方法。
2. A wing portion forming step (A) of forming a wing-shaped tubular wing portion (1) together with an overhanging portion (1a) of the wing portion by blade weaving, and a flat plate-shaped or arc-shaped band portion ( 2) A band portion forming step (B) for forming a plurality of plain weave plates (2a) and a protruding portion (1a) at the wing end are bent, and this is placed between a plurality of plain weave plates (2a). A ceramic base composite member with a band part, comprising an integrated step (C) for sandwiching and sandwiching the overhanging part (1a) and the plain weave plate (2a) with a ceramic fiber penetrating the band part. Manufacturing method.
【請求項3】 前記翼部成形ステップ(A)において、
治具の表面にセラミックス繊維をブレード織りし、次い
でその表面にマトリックスを含浸させて翼部を成形す
る、ことを特徴とする請求項2に記載の製造方法。
3. In the step (A) of forming the wing portion,
3. The manufacturing method according to claim 2, wherein the surface of the jig is braided with ceramic fibers, and then the surface is impregnated with a matrix to form a wing portion.
JP2001345712A 2001-11-12 2001-11-12 Ceramic matrix composite member with band and method for manufacturing the same Expired - Lifetime JP3978766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001345712A JP3978766B2 (en) 2001-11-12 2001-11-12 Ceramic matrix composite member with band and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001345712A JP3978766B2 (en) 2001-11-12 2001-11-12 Ceramic matrix composite member with band and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2003148105A true JP2003148105A (en) 2003-05-21
JP3978766B2 JP3978766B2 (en) 2007-09-19

Family

ID=19159008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001345712A Expired - Lifetime JP3978766B2 (en) 2001-11-12 2001-11-12 Ceramic matrix composite member with band and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3978766B2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002765A (en) * 2004-06-17 2006-01-05 Snecma Moteurs Method of installing turbine nozzle to gas turbine combustion chamber having cmc wall part
JP2007182881A (en) * 2006-01-03 2007-07-19 General Electric Co <Ge> Gas turbine stator and turbine blade assembly
JP2008514848A (en) * 2004-09-29 2008-05-08 スネクマ・プロピュルシオン・ソリド Mixer for separate stream nozzle
FR2939130A1 (en) * 2008-11-28 2010-06-04 Snecma Propulsion Solide PROCESS FOR MANUFACTURING COMPOUND FORM SHAPE PIECE OF COMPOSITE MATERIAL
WO2010146288A1 (en) 2009-06-18 2010-12-23 Snecma Turbine distributor element made of cmc, method for making same, distributor and gas turbine including same
WO2011059064A1 (en) 2009-11-13 2011-05-19 株式会社Ihi Method for producing vane
FR2953885A1 (en) * 2009-12-14 2011-06-17 Snecma TURBOMACHINE DRAFT IN COMPOSITE MATERIAL AND METHOD FOR MANUFACTURING THE SAME
FR2955142A1 (en) * 2010-01-13 2011-07-15 Snecma PIONE VIBRATION SHOCK ABSORBER BETWEEN ADJACENT AUB THREADS IN COMPOSITE MATERIAL OF A TURBOMACHINE MOBILE WHEEL.
WO2011122593A1 (en) * 2010-03-29 2011-10-06 株式会社Ihi Powder material impregnation method and method for producing fiber-reinforced composite material
JP2011527400A (en) * 2008-07-10 2011-10-27 スネクマ Stator blade for 3D composite blower
US20110299976A1 (en) * 2010-06-07 2011-12-08 Richard Christopher Uskert Composite gas turbine engine component
JP2012510586A (en) * 2008-11-28 2012-05-10 スネクマ・プロピュルシオン・ソリド Composite turbomachine engine blade and method for manufacturing the same
JP2012522937A (en) * 2009-04-06 2012-09-27 スネクマ Method for manufacturing turbomachine blades made from composite materials
JP2012246915A (en) * 2011-05-26 2012-12-13 United Technologies Corp <Utc> Vane structure and low-pressure turbine for gas turbine engine
JP2012246926A (en) * 2011-05-26 2012-12-13 United Technologies Corp <Utc> Hybrid ceramic matrix composite vane structure for gas turbine engine
JP2012246917A (en) * 2011-05-26 2012-12-13 United Technologies Corp <Utc> Ceramic matrix composite airfoil segment for gas turbine engine, ceramic matrix composite structure, and method for assembling the ceramic matrix composite structure
FR2976314A1 (en) * 2011-06-07 2012-12-14 Snecma Blade for stator of turboshaft engine, has composite material sheet whose one part forms aerodynamic part and another part is divided to form two branches, which are folded to form fixing foot, where foot is fixed on external ring of stator
JP2013029104A (en) * 2011-07-28 2013-02-07 General Electric Co <Ge> Cap for ceramic blade tip shroud
WO2013079859A1 (en) * 2011-12-01 2013-06-06 Herakles Hollow-blade turbine vane made from composite material, turbine or compressor including a nozzle or guide vane assembly formed by such blades, and turbomachine comprising same
WO2013154007A1 (en) * 2012-04-10 2013-10-17 株式会社Ihi Method for manufacturing coupled turbine blades, and coupled turbine blades
WO2014083975A1 (en) 2012-11-29 2014-06-05 株式会社 豊田自動織機 Tubular fiber structure and fiber reinforced composite material
JP2014518976A (en) * 2011-05-13 2014-08-07 エラクレス Turbomachine rotor with composite legged blades
US20140272274A1 (en) * 2013-03-14 2014-09-18 Rolls-Royce Corporation High strength joints in ceramic matrix composite preforms
JP2015500416A (en) * 2011-12-01 2015-01-05 エラクレスHerakles Method of manufacturing a composite turbomachine vane with an integrated platform
JP2015514026A (en) * 2012-03-23 2015-05-18 ゼネラル・エレクトリック・カンパニイ Manufacturing method of ceramic composite material parts
JP2016520169A (en) * 2013-05-14 2016-07-11 ゼネラル・エレクトリック・カンパニイ Composite fabric exit guide vanes with optional hollow airfoils
EP2543823A3 (en) * 2011-07-05 2016-10-26 United Technologies Corporation Ceramic matrix composite components
US9506355B2 (en) 2009-12-14 2016-11-29 Snecma Turbine engine blade or vane made of composite material, turbine nozzle or compressor stator incorporating such vanes and method of fabricating same
JP2016540147A (en) * 2013-10-23 2016-12-22 サフラン エアークラフト エンジンズ Fiber preform for hollow turbine engine vane
EP3004560A4 (en) * 2013-06-04 2017-01-11 United Technologies Corporation Vane assembly including two- and three-dimensional arrangements of continuous fibers
US9677405B2 (en) 2013-03-05 2017-06-13 Rolls-Royce Corporation Composite gas turbine engine blade having multiple airfoils
US9752443B2 (en) 2011-10-14 2017-09-05 Ihi Corporation Ceramic matrix composite member and method of manufacturing the same
JP2017190775A (en) * 2016-04-15 2017-10-19 ゼネラル・エレクトリック・カンパニイ Airfoil cooling using non-line-of-sight holes
RU2678479C2 (en) * 2014-05-22 2019-01-29 Сафран Эркрафт Энджинз Method for manufacturing a turbine engine vane made of a composite material, resulting vane and turbine engine including same
US10207471B2 (en) * 2016-05-04 2019-02-19 General Electric Company Perforated ceramic matrix composite ply, ceramic matrix composite article, and method for forming ceramic matrix composite article
JP2020067083A (en) * 2018-10-25 2020-04-30 ゼネラル・エレクトリック・カンパニイ Ceramic matrix composite turbine nozzle shell and method of assembly
JP2020118155A (en) * 2019-01-09 2020-08-06 ゼネラル・エレクトリック・カンパニイ Cmc layering with plies with inner portion defined with openings, and nozzle endwall

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5062212B2 (en) * 2009-03-30 2012-10-31 株式会社Ihi Method for manufacturing hollow structure including flange, hollow structure including flange, and turbine blade
JP6372210B2 (en) 2014-07-14 2018-08-15 株式会社Ihi Turbine vane made of ceramic matrix composite
US20240200461A1 (en) * 2022-12-20 2024-06-20 Raytheon Technologies Corporation Contour weaves for interwoven vanes

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002765A (en) * 2004-06-17 2006-01-05 Snecma Moteurs Method of installing turbine nozzle to gas turbine combustion chamber having cmc wall part
JP2008514848A (en) * 2004-09-29 2008-05-08 スネクマ・プロピュルシオン・ソリド Mixer for separate stream nozzle
JP4740249B2 (en) * 2004-09-29 2011-08-03 スネクマ・プロピュルシオン・ソリド Mixer for separate stream nozzle
JP2007182881A (en) * 2006-01-03 2007-07-19 General Electric Co <Ge> Gas turbine stator and turbine blade assembly
JP2011527400A (en) * 2008-07-10 2011-10-27 スネクマ Stator blade for 3D composite blower
FR2939130A1 (en) * 2008-11-28 2010-06-04 Snecma Propulsion Solide PROCESS FOR MANUFACTURING COMPOUND FORM SHAPE PIECE OF COMPOSITE MATERIAL
US8846147B2 (en) 2008-11-28 2014-09-30 Herakles Method for manufacturing a complexly shaped composite material part
WO2010061139A3 (en) * 2008-11-28 2010-12-02 Snecma Propulsion Solide Method for manufacturing a complexly shaped composite material part
JP2012510586A (en) * 2008-11-28 2012-05-10 スネクマ・プロピュルシオン・ソリド Composite turbomachine engine blade and method for manufacturing the same
JP2012522937A (en) * 2009-04-06 2012-09-27 スネクマ Method for manufacturing turbomachine blades made from composite materials
FR2946999A1 (en) * 2009-06-18 2010-12-24 Snecma CMC TURBINE DISPENSER ELEMENT, PROCESS FOR MANUFACTURING SAME, AND DISPENSER AND GAS TURBINE INCORPORATING SAME.
WO2010146288A1 (en) 2009-06-18 2010-12-23 Snecma Turbine distributor element made of cmc, method for making same, distributor and gas turbine including same
US9022733B2 (en) 2009-06-18 2015-05-05 Snecma Turbine distributor element made of CMC, method for making same, distributor and gas turbine including same
JP2012530212A (en) * 2009-06-18 2012-11-29 スネクマ Turbine distributor element made of CMC, method of manufacturing turbine distributor element, distributor, and gas turbine including distributor
WO2011059064A1 (en) 2009-11-13 2011-05-19 株式会社Ihi Method for producing vane
FR2953885A1 (en) * 2009-12-14 2011-06-17 Snecma TURBOMACHINE DRAFT IN COMPOSITE MATERIAL AND METHOD FOR MANUFACTURING THE SAME
WO2011080443A1 (en) * 2009-12-14 2011-07-07 Snecma Composite material turbine engine blade and method for manufacturing same
US9605543B2 (en) 2009-12-14 2017-03-28 Snecma Turbine engine blade made of composite material, and a method of fabricating it
US9506355B2 (en) 2009-12-14 2016-11-29 Snecma Turbine engine blade or vane made of composite material, turbine nozzle or compressor stator incorporating such vanes and method of fabricating same
US9194240B2 (en) 2010-01-13 2015-11-24 Snecma Vibration damper comprising a peg between outer platforms of adjacent composite-material blades of a turbine engine rotor wheel
GB2489165A (en) * 2010-01-13 2012-09-19 Snecma Vibration damper having a pin between adjacent turbine engine rotor-wheel blade roots made of a composite material
WO2011086313A1 (en) * 2010-01-13 2011-07-21 Snecma Vibration damper having a pin between adjacent turbine engine rotor-wheel blade roots made of a composite material
FR2955142A1 (en) * 2010-01-13 2011-07-15 Snecma PIONE VIBRATION SHOCK ABSORBER BETWEEN ADJACENT AUB THREADS IN COMPOSITE MATERIAL OF A TURBOMACHINE MOBILE WHEEL.
GB2489165B (en) * 2010-01-13 2016-03-30 Snecma A vibration damper comprising a peg between outer platforms of adjacent composite-material blades of a turbine engine rotor wheel
US9039955B2 (en) 2010-03-29 2015-05-26 Ihi Corporation Powder material impregnation method and method for producing fiber-reinforced composite material
JPWO2011122593A1 (en) * 2010-03-29 2013-07-08 株式会社Ihi Method for impregnating powder material and method for producing fiber-reinforced composite material
WO2011122593A1 (en) * 2010-03-29 2011-10-06 株式会社Ihi Powder material impregnation method and method for producing fiber-reinforced composite material
EP2392778A3 (en) * 2010-06-07 2013-05-15 Rolls-Royce North American Technologies, Inc. Composite gas turbine engine component
US9151166B2 (en) 2010-06-07 2015-10-06 Rolls-Royce North American Technologies, Inc. Composite gas turbine engine component
US20110299976A1 (en) * 2010-06-07 2011-12-08 Richard Christopher Uskert Composite gas turbine engine component
US9790802B2 (en) 2011-05-13 2017-10-17 Snecma Turbine engine rotor including blade made of composite material and having an added root
JP2014518976A (en) * 2011-05-13 2014-08-07 エラクレス Turbomachine rotor with composite legged blades
US8905711B2 (en) 2011-05-26 2014-12-09 United Technologies Corporation Ceramic matrix composite vane structures for a gas turbine engine turbine
US9915154B2 (en) 2011-05-26 2018-03-13 United Technologies Corporation Ceramic matrix composite airfoil structures for a gas turbine engine
JP2012246917A (en) * 2011-05-26 2012-12-13 United Technologies Corp <Utc> Ceramic matrix composite airfoil segment for gas turbine engine, ceramic matrix composite structure, and method for assembling the ceramic matrix composite structure
JP2012246926A (en) * 2011-05-26 2012-12-13 United Technologies Corp <Utc> Hybrid ceramic matrix composite vane structure for gas turbine engine
JP2012246915A (en) * 2011-05-26 2012-12-13 United Technologies Corp <Utc> Vane structure and low-pressure turbine for gas turbine engine
FR2976314A1 (en) * 2011-06-07 2012-12-14 Snecma Blade for stator of turboshaft engine, has composite material sheet whose one part forms aerodynamic part and another part is divided to form two branches, which are folded to form fixing foot, where foot is fixed on external ring of stator
EP2543823A3 (en) * 2011-07-05 2016-10-26 United Technologies Corporation Ceramic matrix composite components
JP2013029104A (en) * 2011-07-28 2013-02-07 General Electric Co <Ge> Cap for ceramic blade tip shroud
US9752443B2 (en) 2011-10-14 2017-09-05 Ihi Corporation Ceramic matrix composite member and method of manufacturing the same
WO2013079859A1 (en) * 2011-12-01 2013-06-06 Herakles Hollow-blade turbine vane made from composite material, turbine or compressor including a nozzle or guide vane assembly formed by such blades, and turbomachine comprising same
JP2015500416A (en) * 2011-12-01 2015-01-05 エラクレスHerakles Method of manufacturing a composite turbomachine vane with an integrated platform
US9708918B2 (en) 2011-12-01 2017-07-18 Herakles Hollow-blade turbine vane made from composite material, turbine or compressor including a nozzle or guide vane assembly formed by such blades, and turbomachine comprising same
JP2015514026A (en) * 2012-03-23 2015-05-18 ゼネラル・エレクトリック・カンパニイ Manufacturing method of ceramic composite material parts
EP2837796A4 (en) * 2012-04-10 2015-12-02 Ihi Corp Method for manufacturing coupled turbine blades, and coupled turbine blades
WO2013154007A1 (en) * 2012-04-10 2013-10-17 株式会社Ihi Method for manufacturing coupled turbine blades, and coupled turbine blades
JP2013217320A (en) * 2012-04-10 2013-10-24 Ihi Corp Ceramic group composite member to be used as turbine blade, and method of manufacturing the same
US9752445B2 (en) 2012-04-10 2017-09-05 Ihi Corporation Method for producing coupled turbine vanes, and turbine vanes
WO2014083975A1 (en) 2012-11-29 2014-06-05 株式会社 豊田自動織機 Tubular fiber structure and fiber reinforced composite material
US9677405B2 (en) 2013-03-05 2017-06-13 Rolls-Royce Corporation Composite gas turbine engine blade having multiple airfoils
US10151207B2 (en) 2013-03-14 2018-12-11 Rolls-Royce Corporation High strength joints in ceramic matrix composite preforms
US20140272274A1 (en) * 2013-03-14 2014-09-18 Rolls-Royce Corporation High strength joints in ceramic matrix composite preforms
US9291060B2 (en) 2013-03-14 2016-03-22 Rolls-Royce Corporation High strength joints in ceramic matrix composite preforms
WO2014158257A1 (en) * 2013-03-14 2014-10-02 Rolls-Royce Corporation High strength joints in ceramic matrix composite preforms
US10751958B2 (en) 2013-05-14 2020-08-25 General Electric Company Composite woven outlet guide vane with optional hollow airfoil
JP2016520169A (en) * 2013-05-14 2016-07-11 ゼネラル・エレクトリック・カンパニイ Composite fabric exit guide vanes with optional hollow airfoils
EP3004560A4 (en) * 2013-06-04 2017-01-11 United Technologies Corporation Vane assembly including two- and three-dimensional arrangements of continuous fibers
US10006301B2 (en) 2013-06-04 2018-06-26 United Technologies Corporation Vane assembly including two- and three-dimensional arrangements of continuous fibers
JP2016540147A (en) * 2013-10-23 2016-12-22 サフラン エアークラフト エンジンズ Fiber preform for hollow turbine engine vane
RU2678479C2 (en) * 2014-05-22 2019-01-29 Сафран Эркрафт Энджинз Method for manufacturing a turbine engine vane made of a composite material, resulting vane and turbine engine including same
US11306598B2 (en) 2014-05-22 2022-04-19 Safran Aircraft Engines Method for manufacturing a turbine engine vane made of a composite material, resulting vane and turbine engine including same
US10519786B2 (en) 2014-05-22 2019-12-31 Safran Aircraft Engines Method for manufacturing a turbine engine vane made of a composite material, resulting vane and turbine engine including same
JP2017190775A (en) * 2016-04-15 2017-10-19 ゼネラル・エレクトリック・カンパニイ Airfoil cooling using non-line-of-sight holes
US10207471B2 (en) * 2016-05-04 2019-02-19 General Electric Company Perforated ceramic matrix composite ply, ceramic matrix composite article, and method for forming ceramic matrix composite article
JP2020067083A (en) * 2018-10-25 2020-04-30 ゼネラル・エレクトリック・カンパニイ Ceramic matrix composite turbine nozzle shell and method of assembly
JP7423228B2 (en) 2018-10-25 2024-01-29 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Ceramic matrix composite turbine nozzle shell and method of assembly
JP2020118155A (en) * 2019-01-09 2020-08-06 ゼネラル・エレクトリック・カンパニイ Cmc layering with plies with inner portion defined with openings, and nozzle endwall
JP7455549B2 (en) 2019-01-09 2024-03-26 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング CMC laminate with ply and nozzle end wall with inner portion defined by opening

Also Published As

Publication number Publication date
JP3978766B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
JP2003148105A (en) Ceramics based composite member with band part and its manufacturing method
US10151207B2 (en) High strength joints in ceramic matrix composite preforms
JP5569194B2 (en) Method for manufacturing shroud segment
US9752445B2 (en) Method for producing coupled turbine vanes, and turbine vanes
JP5042735B2 (en) Rotor blade and gas turbine engine assembly
JP6248090B2 (en) Manufacturing method of ceramic composite material parts
JP5973589B2 (en) Method of manufacturing a composite turbomachine vane with an integrated platform
US11415014B2 (en) Turbine vane assembly with reinforced end wall joints
US20140271153A1 (en) Cooled ceramic matrix composite airfoil
EP3339573B1 (en) Composite turbine vane with three-dimensional fiber reinforcements
CN102099313B (en) The manufacture method of the nozzle of being made by composite or divergent nozzle element
JP2014518976A (en) Turbomachine rotor with composite legged blades
JP6174839B2 (en) Ceramic matrix composite member and manufacturing method thereof
BRPI1015161B1 (en) manufacturing process of a composite material turbomachine blade with integrated upper or lower platform
CN107667007A (en) Arranged with ceramic panel and the interlayer of ceramic blankets
US9845688B2 (en) Composite blade with an integral blade tip shroud and method of forming the same
BR112016019941B1 (en) METHOD OF MANUFACTURING A SECTOR OF A STATOR, SECTOR FOR A TURBINE STATOR, TURBINE ENGINE STATOR, TURBINE ENGINE COMPRESSOR AND TURBINE ENGINE
US20190145269A1 (en) Ceramic component for combustion turbine engines
JP2015514026A5 (en)
US20070231155A1 (en) Methods and apparatus for mechanical retainment of non-metallic fillers in pockets
WO2016009817A1 (en) Turbine stator vane composed of ceramic-based composite material
JPH02196103A (en) Ceramic turbine parts
WO2021034327A1 (en) Three-dimensional ceramic matrix composite t-joint for airfoils via pin-weaving
US11905851B2 (en) CMC trailing edge 3D weaved cross brace
JP2000202931A (en) Manufacture of three-dimensional fabric for fiber reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070617

R151 Written notification of patent or utility model registration

Ref document number: 3978766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term