JP2003139726A - Analytical method of analyzing crystal structure for hydrogen storage alloy - Google Patents

Analytical method of analyzing crystal structure for hydrogen storage alloy

Info

Publication number
JP2003139726A
JP2003139726A JP2001338107A JP2001338107A JP2003139726A JP 2003139726 A JP2003139726 A JP 2003139726A JP 2001338107 A JP2001338107 A JP 2001338107A JP 2001338107 A JP2001338107 A JP 2001338107A JP 2003139726 A JP2003139726 A JP 2003139726A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
storage alloy
amount
sample chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001338107A
Other languages
Japanese (ja)
Other versions
JP3888577B2 (en
Inventor
Mitsuru Minami
充 南
Hisashi Sakai
久資 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001338107A priority Critical patent/JP3888577B2/en
Publication of JP2003139726A publication Critical patent/JP2003139726A/en
Application granted granted Critical
Publication of JP3888577B2 publication Critical patent/JP3888577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To analyze crystal structure of a hydrogen storage alloy in correlation to a hydrogen storage amount occluded in the hydrogen storage alloy. SOLUTION: Hydrogen is supplied to a sample chamber 10 by a hydrogen supplying device 60 to be occluded in the hydrogen storage alloy MH, a heat quantity change of the hydrogen storage alloy MH occlude with the hydrogen is detected by a heat quantity detecting means 50, the hydrogen storage amount is led out based on the heat quantity change detected based on a preliminarily measured correlation between the hydrogen storage amount of the alloy MH and the heat quantity change, and the crystal structure of the hydrogen storage alloy MH of which the hydrogen occlusion amount is led out is analyzed by X-ray diffractometers 20, 30, 40, using a hydrogen storage alloy storing device provided with the sample chamber 10 for holding the storage alloy MH, the X-ray diffractometers 20, 30, 40 for analyzing the crystal structure of the storage alloy MH, the hydrogen supplying device 60 for changing hydrogen pressure in the sample chamber 10 to supply the hydrogen, and the heat quantity detecting means 50 for detecting the heat quantity change of the storage alloy MH.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金の結
晶構造解析方法に関する。更に詳しくは水素吸蔵合金の
結晶構造を水素吸蔵合金に吸蔵された水素吸蔵量と関係
づけて解析することができる水素吸蔵合金の結晶構造解
析方法に関する。
TECHNICAL FIELD The present invention relates to a method for analyzing a crystal structure of a hydrogen storage alloy. More specifically, the present invention relates to a method for analyzing a crystal structure of a hydrogen storage alloy, by which the crystal structure of the hydrogen storage alloy can be analyzed in relation to the amount of hydrogen stored in the hydrogen storage alloy.

【0002】[0002]

【従来の技術】水素吸蔵合金は水素を吸蔵する過程にお
いて、全系が水素を固溶している固溶体の相、固溶体と
水素化物とが共存している相、全系が水素化物の相とい
うように移行する。そして水素を吸蔵する過程において
水素吸蔵合金の結晶構造は当然変化する。この結晶構造
の変化は水素吸蔵合金の開発における重要な情報となる
ため、水素を吸蔵した水素吸蔵合金の結晶構造の測定が
行われている。
2. Description of the Related Art A hydrogen storage alloy is referred to as a solid solution phase in which the whole system is a solid solution of hydrogen, a phase in which the solid solution and hydride coexist, and a whole system in the hydride phase in the process of storing hydrogen. To move. The crystal structure of the hydrogen storage alloy naturally changes during the process of storing hydrogen. Since the change of the crystal structure is important information in the development of the hydrogen storage alloy, the crystal structure of the hydrogen storage alloy that has stored hydrogen is measured.

【0003】この結晶構造の測定については一旦高圧水
素雰囲気下で水素吸蔵合金に水素を吸蔵させてから、そ
の水素吸蔵合金を取り出してX線回折装置等を用いて結
晶構造を測定するということが従来行われていた。
Regarding the measurement of this crystal structure, it is said that hydrogen is once stored in a hydrogen storage alloy in a high-pressure hydrogen atmosphere, the hydrogen storage alloy is taken out, and the crystal structure is measured using an X-ray diffractometer or the like. It used to be done.

【0004】また最近では『理学電気ジャーナル31
(1)2000』「水素吸蔵合金の高圧水素雰囲気にお
けるin-situ測定」26頁に記載されているように高圧i
n-situX線回折装置が開発されるようになり、高圧水素
雰囲気下で結晶構造を測定できるようになってきてい
る。
In addition, recently, "Science Electrical Journal 31
(1) 2000 ”“ High-pressure i ”as described in“ In-situ measurement of hydrogen storage alloy in high-pressure hydrogen atmosphere ”on page 26
With the development of an n-situ X-ray diffractometer, it has become possible to measure the crystal structure in a high-pressure hydrogen atmosphere.

【0005】しかしながらこのように高圧水素雰囲気下
で水素吸蔵合金の結晶構造を測定できる装置は開発され
たが、高圧水素雰囲気下での水素吸蔵合金の結晶構造の
測定時において、その高圧水素雰囲気下の水素吸蔵合金
に吸蔵された水素の吸蔵量を測定できる装置は未だ開発
されていない。従って水素吸蔵合金の結晶構造の変化に
対応して水素吸蔵合金に水素の吸蔵量がどのように変化
しているか把握することができなかった。
However, although an apparatus capable of measuring the crystal structure of a hydrogen storage alloy in a high-pressure hydrogen atmosphere has been developed, it is possible to measure the crystal structure of a hydrogen storage alloy in a high-pressure hydrogen atmosphere under the high-pressure hydrogen atmosphere. A device capable of measuring the amount of hydrogen stored in the hydrogen storage alloy has not yet been developed. Therefore, it has not been possible to understand how the hydrogen storage amount of the hydrogen storage alloy changes in response to the change in the crystal structure of the hydrogen storage alloy.

【0006】しかし水素吸蔵合金の開発においては、水
素の吸蔵放出のサイクルの繰り返しに伴う劣化抑制も重
要な課題である。水素の吸蔵放出のサイクルにおける水
素吸蔵合金の劣化機構の解明には水素の吸蔵量と結晶構
造構造の変化を同時に分析し、その関連を知ることが必
要である。
However, in the development of hydrogen storage alloys, suppression of deterioration due to repeated cycles of storage and release of hydrogen is also an important issue. In order to elucidate the deterioration mechanism of hydrogen storage alloys in the cycle of hydrogen storage and release, it is necessary to analyze the changes in the storage amount and crystal structure of hydrogen at the same time, and to know the relationship.

【0007】[0007]

【発明が解決しようとする課題】水素の圧力を次第に増
大させて水素吸蔵合金に水素を吸蔵させていくと、上述
したように水素吸蔵合金は水素の吸蔵に伴って全系が固
溶体の相、固溶体と水素化物とが共存した相、水素化物
の相というように移行する。この水素吸蔵合金の吸蔵特
性は、一般に圧力−組成等温線(PCT線)で表され、
JIS H7201にジーベルツ法(容量法)による一
般的な測定方法が規定されている。
When the hydrogen storage alloy is made to store hydrogen by gradually increasing the pressure of hydrogen, as described above, the hydrogen storage alloy has a phase in which the entire system is a solid solution phase along with the storage of hydrogen. The solid solution and the hydride coexist, and the phase shifts to the hydride phase. The storage characteristic of this hydrogen storage alloy is generally represented by a pressure-composition isotherm (PCT line),
JIS H7201 defines a general measurement method by the Sibelts method (capacity method).

【0008】水素吸蔵合金が固溶体と水素化物とを共存
した相においては、水素ガスの圧力が一定のままで水素
吸蔵合金は水素を吸蔵する。この水素ガスの圧力が一定
のままで水素を吸蔵する領域は、PCT線において、P
CT線が水平なプラトー域として表される。そしてこの
プラトー域は水素吸蔵合金に必ずしも一つというわけで
はなく、2つのプラトー域が発生する水素吸蔵合金も存
在している。
In the phase where the hydrogen storage alloy coexists with a solid solution and a hydride, the hydrogen storage alloy stores hydrogen while the pressure of hydrogen gas remains constant. The region where hydrogen is stored while the pressure of hydrogen gas remains constant is P
The CT line is represented as a horizontal plateau region. This plateau region is not necessarily one in the hydrogen storage alloy, and there are also hydrogen storage alloys in which two plateau regions are generated.

【0009】このように水素吸蔵合金は水素を吸蔵した
り放出したりする過程で複雑な挙動を示している。そこ
で水素吸蔵合金の水素の吸蔵放出挙動をin-situに(そ
の場所で)分析するためには水素の圧力と温度だけでは
なく水素吸蔵合金の水素の吸蔵量を測定する必要があ
る。
As described above, the hydrogen storage alloy exhibits a complicated behavior in the process of storing and releasing hydrogen. Therefore, in order to analyze the hydrogen absorption / desorption behavior of a hydrogen storage alloy in-situ (at that location), it is necessary to measure not only the pressure and temperature of hydrogen but also the hydrogen storage amount of the hydrogen storage alloy.

【0010】一般に気体の容積と圧力の関係は、PV=
nRT(P:圧力、V:容積、n:気体のモル数、R:
気体定数、T:絶対温度)という気体の状態方程式によ
って表される。水素吸蔵合金への水素吸蔵量の測定につ
いても一般にこの気体の状態方程式を利用して算出され
ている。即ち既知の容積の試料室に所定の圧力の水素を
導入して、水素吸蔵合金が水素を吸蔵することによって
減少した水素の圧力を読みとって、水素吸蔵合金が吸蔵
した水素の吸蔵量を算出していた。上述のPCT線を求
める測定方法も基本的にはこの考え方で水素の吸蔵量を
算出している。
Generally, the relationship between gas volume and pressure is PV =
nRT (P: pressure, V: volume, n: mole number of gas, R:
It is represented by a gas equation of state called gas constant, T: absolute temperature. The measurement of the hydrogen storage amount in the hydrogen storage alloy is also generally calculated using this equation of state of gas. That is, hydrogen of a predetermined pressure was introduced into a sample chamber of known volume, the hydrogen storage alloy read the pressure of hydrogen reduced by storing hydrogen, and calculated the storage amount of hydrogen stored by the hydrogen storage alloy. Was there. The measurement method for obtaining the PCT line described above basically calculates the hydrogen storage amount based on this idea.

【0011】しかしこの手法で水素の吸蔵量を求めよう
とすると、試料室の容積に対して試料として用いられる
水素吸蔵合金の量が少ない程、水素の圧力変動が小さく
なって水素の吸蔵量の測定の精度が悪くなってしまうこ
とになる。従ってX線回折装置を用いて水素吸蔵合金の
結晶構造を測定する同時にこの手法を用いてin-situに
水素吸蔵合金の水素吸蔵量を測定しようとすると以下の
問題が生じることが判明した。
However, in order to obtain the hydrogen storage amount by this method, the smaller the amount of the hydrogen storage alloy used as the sample with respect to the volume of the sample chamber, the smaller the pressure fluctuation of the hydrogen and the smaller the hydrogen storage amount. The accuracy of the measurement will deteriorate. Therefore, it was found that the following problems occur when the crystal structure of a hydrogen storage alloy is measured using an X-ray diffractometer and the hydrogen storage amount of the hydrogen storage alloy is measured in-situ using this method.

【0012】即ちX線回折装置ではX線を透過すること
ができる窓を試料室に設置する必要があり、この窓を高
圧水素に耐える構造にする必要がある。そこでこの窓を
例えば50気圧の高圧に耐えるようにするためには、窓
材として2mmの板厚のBe板を用いた場合にはこの窓
の断面形状を半径38mmの円弧状にする必要がある。
従ってX線を透過することができる窓を有する試料室
は、高圧水素を受け入れるために、少なくとも半径が3
8mmの円弧状の窓を備えることができる大きさにする
必要がある。そしてこの資料室の中に更に試料である水
素吸蔵合金へのX線の照射によるX線の回折パターンを
得ることができるように水素吸蔵合金の試料を平滑に収
納する試料ホルダーを配置するというように2重構造と
する必要がある。従ってこの試料室の大きさは、PCT
線を測定するための通常の装置によりも2桁以上大きく
なるために、水素ガスの圧力変動による吸蔵量を測定す
ることが困難となる。
That is, in the X-ray diffractometer, it is necessary to install a window capable of transmitting X-rays in the sample chamber, and this window needs to have a structure capable of withstanding high-pressure hydrogen. Therefore, in order to withstand the high pressure of 50 atm, for example, when a Be plate having a plate thickness of 2 mm is used as the window material, the cross-sectional shape of the window needs to be an arc shape having a radius of 38 mm. .
Therefore, a sample chamber having a window capable of transmitting X-rays should have a radius of at least 3 in order to receive high-pressure hydrogen.
It must be sized to accommodate an 8 mm arcuate window. Then, in this data room, a sample holder for smoothly storing the sample of the hydrogen storage alloy is arranged so that an X-ray diffraction pattern by irradiating the sample hydrogen storage alloy with the X-ray can be obtained. It is necessary to have a double structure. Therefore, the size of this sample chamber is
It becomes more than two orders of magnitude larger than that of an ordinary device for measuring a line, which makes it difficult to measure the storage amount of hydrogen gas due to pressure fluctuations.

【0013】そこで本発明の目的とするところは、水素
吸蔵合金の結晶構造を水素吸蔵合金に吸蔵された水素吸
蔵量と関係づけて解析することができる水素吸蔵合金の
結晶構造解析方法を提供することにある。
Therefore, an object of the present invention is to provide a method for analyzing a crystal structure of a hydrogen storage alloy, by which the crystal structure of the hydrogen storage alloy can be analyzed in relation to the hydrogen storage amount stored in the hydrogen storage alloy. Especially.

【0014】[0014]

【課題を解決するための手段及びその作用】本発明者は
上記課題を解決するために以下のように考えた。
Means for Solving the Problem and Its Action The present inventors have considered the following in order to solve the above problems.

【0015】水素吸蔵合金が水素を吸蔵する過程は発熱
過程であり、水素吸蔵合金が水素を放出する過程は吸熱
過程である。従って水素吸蔵合金の熱量変化と水素吸蔵
合金の水素吸蔵量との関係を予め求めておけば、水素吸
蔵合金の熱量変化から水素吸蔵合金の吸蔵量を導出する
ことができる。
The process in which the hydrogen storage alloy stores hydrogen is an exothermic process, and the process in which the hydrogen storage alloy releases hydrogen is an endothermic process. Therefore, if the relationship between the heat quantity change of the hydrogen storage alloy and the hydrogen storage quantity of the hydrogen storage alloy is obtained in advance, the storage quantity of the hydrogen storage alloy can be derived from the heat quantity change of the hydrogen storage alloy.

【0016】詳しく述べると水素圧を上昇させて水素吸
蔵合金に水素を吸蔵させていくと、上述したようにこの
水素吸蔵合金は水素を固溶した固溶体の相を通過して、
水素を固溶した固溶体と水素化物とが共存している相を
経て、水素化物の相へと移行する。この水素を固溶した
固溶体から水素化物への移行過程は発熱過程である。即
ち水素を固溶した固溶体から水素化物へと移行過程にお
いて、水素吸蔵合金の内部に吸蔵された水素は水素吸蔵
合金の結晶格子内部の安定した位置に落ち着くために運
動エネルギーを失い、失われた運動エネルギーが熱エネ
ルギーに変換されることになる。
More specifically, when the hydrogen pressure is increased to cause the hydrogen storage alloy to store hydrogen, as described above, the hydrogen storage alloy passes through the phase of a solid solution in which hydrogen is dissolved,
The solid solution in which hydrogen is solid-dissolved and the hydride coexist, and then transitions to the hydride phase. The transition process from the solid solution in which hydrogen is dissolved to the hydride is an exothermic process. That is, in the transition process from a solid solution containing hydrogen to a hydride, the hydrogen stored inside the hydrogen storage alloy loses its kinetic energy because it settles at a stable position inside the crystal lattice of the hydrogen storage alloy and is lost. Kinetic energy will be converted into heat energy.

【0017】従って水素吸蔵合金が水素を吸蔵する過程
で発熱した発熱量とその水素吸蔵合金が吸蔵した水素吸
蔵量とは一定の関係を有することになる。また水素吸蔵
合金が水素を放出する過程で吸熱した吸熱量とその水素
吸蔵合金が放出した水素放出量とはやはり一定の関係を
有することになる。
Therefore, there is a certain relationship between the amount of heat generated by the hydrogen storage alloy in the process of storing hydrogen and the amount of hydrogen storage stored by the hydrogen storage alloy. Further, the amount of heat absorbed by the hydrogen storage alloy in the process of releasing hydrogen and the amount of hydrogen released by the hydrogen storage alloy also have a certain relationship.

【0018】この場合水素吸蔵合金の発熱量と水素吸蔵
量との関係について、水素吸蔵合金が水素を吸蔵する過
程で発熱した結果生じる熱量変化を検出し、その熱量変
化と水素吸蔵量との関係として予め求めておくことがで
きる。また水素吸蔵合金の吸熱量と水素放出量との関係
についても、水素吸蔵合金が水素を放出する過程で吸熱
した結果生じる熱量変化を検出しその熱量変化と水素を
放出した結果水素吸蔵合金に残された水素吸蔵量との関
係として予め求めておくことができる。
In this case, regarding the relationship between the heat generation amount and the hydrogen storage amount of the hydrogen storage alloy, the change in the heat amount resulting from the heat generation of the hydrogen storage alloy during the storage of hydrogen is detected, and the relation between the change in the heat amount and the hydrogen storage amount. Can be obtained in advance. Regarding the relationship between the amount of heat absorbed by the hydrogen storage alloy and the amount of released hydrogen, the change in the amount of heat that occurs as a result of the endothermic absorption of hydrogen in the process of releasing hydrogen by the hydrogen storage alloy is detected, and the result of the change in the amount of heat and the release of hydrogen remains in the hydrogen storage alloy. It can be obtained in advance as a relationship with the stored hydrogen storage amount.

【0019】そしてこの水素吸蔵合金の熱量変化と水素
吸蔵量との関係を利用することで、高圧水素に耐えるこ
とができる試料室の内部に収納され、高水素圧で水素を
吸蔵させた状態での水素吸蔵合金をX線回折装置を用い
てその水素吸蔵合金の結晶構造を解析する際に、同時に
その水素吸蔵合金の熱量変化を検出することにより、予
め求めておいた水素吸蔵合金の熱量変化と水素吸蔵量の
関係からその水素吸蔵合金に吸蔵された水素吸蔵量を導
出することができる。このようにして水素吸蔵合金の水
素吸蔵量を導出しつつ水素吸蔵合金の結晶構造を解析す
ることができる。
By utilizing the relationship between the change in the amount of heat of this hydrogen storage alloy and the amount of stored hydrogen, the hydrogen storage alloy is housed inside a sample chamber that can withstand high-pressure hydrogen, and hydrogen is stored at a high hydrogen pressure. When analyzing the crystal structure of the hydrogen storage alloy of the above hydrogen storage alloy using an X-ray diffractometer, at the same time, by detecting the change of the heat quantity of the hydrogen storage alloy, the heat quantity change of the hydrogen storage alloy obtained in advance And the hydrogen storage amount, the hydrogen storage amount stored in the hydrogen storage alloy can be derived. In this way, the crystal structure of the hydrogen storage alloy can be analyzed while deriving the hydrogen storage amount of the hydrogen storage alloy.

【0020】そこで上記課題を解決する本発明の水素吸
蔵合金の結晶解析方法は、入射されたX線に照射される
位置に水素吸蔵合金を保持する試料室と、前記試料室に
保持された前記水素吸蔵合金にX線を照射して前記水素
吸蔵合金の結晶構造を解析するX線回折装置と、前記試
料室に連通し前記試料室内の水素圧を変化させながら所
定の水素圧になるまで水素を供給する水素供給装置と、
前記試料室に保持された前記水素吸蔵合金の熱量変化を
検出する熱量変化検出手段とを備える水素吸蔵合金収納
装置を用いて、前記水素吸蔵合金の結晶構造を前記水素
吸蔵合金に吸蔵された水素吸蔵量と関係づけて解析する
ことができる水素吸蔵合金の結晶構造解析方法であっ
て、前記水素供給装置によって前記試料室に水素を供給
して前記試料室に保持された前記水素吸蔵合金に水素を
吸蔵させる水素吸蔵ステップと、水素を吸蔵した前記水
素吸蔵合金の熱量変化を前記検出手段によって検出して
予め測定した前記水素吸蔵合金の水素吸蔵量と熱量変化
との関係に基いて検出された前記熱量変化から前記水素
吸蔵合金に吸蔵した水素吸蔵量を導出する吸蔵量導出ス
テップと、前記吸蔵量導出ステップにおいて前記水素吸
蔵量が導出された前記水素吸蔵合金を前記X線回折装置
によって結晶構造を解析する吸蔵過程結晶構造解析ステ
ップとを有することを特徴とする。
Therefore, the crystal analysis method of the hydrogen storage alloy of the present invention which solves the above-mentioned problems, includes a sample chamber for holding the hydrogen storage alloy at a position irradiated with incident X-rays, and a sample chamber for holding the hydrogen storage alloy in the sample chamber. An X-ray diffractometer for irradiating the hydrogen storage alloy with X-rays to analyze the crystal structure of the hydrogen storage alloy, and hydrogen connected to the sample chamber while changing the hydrogen pressure in the sample chamber until hydrogen reaches a predetermined hydrogen pressure. A hydrogen supply device for supplying
Using a hydrogen storage alloy storage device equipped with a calorific value change detection means for detecting a calorific value change of the hydrogen storage alloy held in the sample chamber, the crystal structure of the hydrogen storage alloy hydrogen stored in the hydrogen storage alloy A method for analyzing a crystal structure of a hydrogen storage alloy, which can be analyzed in association with a storage amount, wherein hydrogen is supplied to the sample chamber by the hydrogen supply device to store hydrogen in the hydrogen storage alloy held in the sample chamber. Was detected based on the relationship between the hydrogen storage step of storing hydrogen and the change in the amount of heat of the hydrogen storage alloy that has stored hydrogen and the change in the amount of heat of the hydrogen storage alloy that was previously measured by the detection means. A storage amount deriving step of deriving a hydrogen storage amount stored in the hydrogen storage alloy from the change of the heat amount, and a step of deriving the hydrogen storage amount in the storage amount deriving step And having a storage process crystal structure analysis step of analyzing the crystal structure of the hydrogen storage alloy by the X-ray diffraction apparatus.

【0021】本発明の水素吸蔵合金の結晶構造解析方法
に用いる水素吸蔵合金収納装置は、入射されたX線に照
射される位置に水素吸蔵合金を保持する試料室と、この
試料室に連通し前記試料室内の水素圧を変化させながら
所定の水素圧になるまで水素を供給する水素供給装置
と、この試料室内の水素吸蔵合金の熱量変化を検出する
熱量変化検出手段とを備えているので、本発明の水素吸
蔵合金の結晶構造解析方法は、これらの試料室、水素供
給装置及び熱量変化検出手段とを用いて、水素供給装置
によって試料室に水素を供給して試料室に保持された水
素吸蔵合金に水素を吸蔵させる水素吸蔵ステップと、水
素を吸蔵した水素吸蔵合金の熱量変化を検出手段によっ
て検出して予め測定した水素吸蔵合金の水素吸蔵量と熱
量変化との関係に基いて検出された熱量変化から水素吸
蔵合金に吸蔵した水素吸蔵量を導出する吸蔵量導出ステ
ップとを実行することで、試料室に保持された水素吸蔵
合金に水素が吸蔵される過程での水素吸蔵量を水素吸蔵
合金の熱量変化から導出することができる。
The hydrogen storage alloy storage device used in the method for analyzing the crystal structure of a hydrogen storage alloy according to the present invention communicates with a sample chamber that holds the hydrogen storage alloy at a position where it is irradiated with incident X-rays. Since a hydrogen supply device that supplies hydrogen until the hydrogen pressure reaches a predetermined hydrogen pressure while changing the hydrogen pressure in the sample chamber, and a heat amount change detection unit that detects a heat amount change of the hydrogen storage alloy in the sample chamber, The crystal structure analysis method of the hydrogen storage alloy of the present invention uses these sample chamber, hydrogen supply device and heat quantity change detection means to supply hydrogen to the sample chamber by the hydrogen supply device and hold hydrogen in the sample chamber. Based on the relationship between the hydrogen storage step of causing the storage alloy to store hydrogen and the change in the amount of heat of the hydrogen storage alloy that has stored hydrogen by the detection means and the change in the amount of heat of the hydrogen storage alloy that was measured in advance and the change in the amount of heat. The storage capacity derivation step of deriving the storage capacity of hydrogen stored in the hydrogen storage alloy from the change in the detected heat quantity and the storage capacity of hydrogen in the process of storing hydrogen in the hydrogen storage alloy held in the sample chamber. The amount can be derived from the change in the amount of heat of the hydrogen storage alloy.

【0022】また本発明の水素吸蔵合金の結晶構造解析
方法に用いられる水素吸蔵合金収納装置は、入射された
X線に照射される位置に水素吸蔵合金を保持する試料室
と、この試料室に収納された水素吸蔵合金にX線を照射
して水素吸蔵合金の結晶構造を解析するX線回折装置と
を備えているので、本発明の水素吸蔵合金の結晶構造解
析方法は、これらの試料室とX線回折装置とを用いて、
吸蔵量導出ステップにおいて水素吸蔵量が導出された水
素吸蔵合金をX線回折装置によって結晶構造を解析する
吸蔵過程結晶構造解析ステップとを有することで、吸蔵
した水素吸蔵量が導出された水素吸蔵合金の結晶構造を
解析することができる。
The hydrogen storage alloy storage device used in the method for analyzing the crystal structure of a hydrogen storage alloy according to the present invention includes a sample chamber for holding the hydrogen storage alloy at a position where it is irradiated with incident X-rays, and this sample chamber. Since the stored hydrogen storage alloy is provided with an X-ray diffracting device for irradiating the hydrogen storage alloy with X-rays to analyze the crystal structure of the hydrogen storage alloy, the crystal structure analysis method of the hydrogen storage alloy according to the present invention is performed in these sample chambers. And an X-ray diffractometer,
Hydrogen storage alloy from which the absorbed hydrogen absorption amount is derived by having an absorption process crystal structure analysis step of analyzing the crystal structure of the hydrogen absorption alloy from which the hydrogen absorption amount is derived in the absorption amount derivation step by an X-ray diffractometer. The crystal structure of can be analyzed.

【0023】従って本発明の水素吸蔵合金の結晶構造解
析方法は、水素吸蔵合金の水素吸蔵量を熱量変化から導
出することができ、同時に水素を吸蔵した状態での水素
吸蔵合金の結晶構造を解析することができるので、水素
吸蔵合金に吸蔵された水素吸蔵量と関係付けて水素吸蔵
合金の結晶構造を解析することができる。
Therefore, according to the method for analyzing the crystal structure of the hydrogen storage alloy of the present invention, the hydrogen storage amount of the hydrogen storage alloy can be derived from the change in heat quantity, and at the same time, the crystal structure of the hydrogen storage alloy in the state of storing hydrogen can be analyzed. Therefore, the crystal structure of the hydrogen storage alloy can be analyzed in relation to the hydrogen storage amount stored in the hydrogen storage alloy.

【0024】また本発明の水素吸蔵合金の結晶構造解析
方法において、前記水素吸蔵合金収納装置は、前記試料
室に連通し、前記試料室内の水素圧を変化させながら所
定の水素圧になるまで水素を排出する水素排出装置を更
に備え、前記水素排出装置によって前記試料室から水素
を排出して前記試料室に保持された前記水素吸蔵合金か
ら水素を放出させる水素放出ステップと、水素を放出し
た前記水素吸蔵合金の熱量変化を検出手段によって検出
して予め測定した前記水素吸蔵合金の水素放出量と熱量
変化との関係に基いて検出された前記熱量変化から前記
水素吸蔵合金から放出された水素放出量を導出する放出
量導出ステップと、放出量導出ステップにおいて前記水
素放出量が導出された前記水素吸蔵合金を前記X線回折
装置によって結晶構造を解析する放出過程結晶構造解析
ステップとを更に有することができる。
In the crystal structure analysis method for a hydrogen storage alloy according to the present invention, the hydrogen storage alloy storage device is communicated with the sample chamber, and hydrogen is changed to a predetermined hydrogen pressure while changing the hydrogen pressure in the sample chamber. A hydrogen discharging device for discharging hydrogen from the sample chamber by the hydrogen discharging device to discharge hydrogen from the hydrogen storage alloy held in the sample chamber; Hydrogen release from the hydrogen storage alloy based on the relationship between the amount of heat release and the amount of heat release of the hydrogen storage alloy, which has been measured in advance by detecting the change in the amount of heat of the hydrogen storage alloy. A step of deriving a release amount for deriving the amount, and crystallizing the hydrogen storage alloy from which the hydrogen release amount is derived in the release amount deriving step by the X-ray diffraction device It may further include a release process crystal structure analysis step of analyzing the granulation.

【0025】このように本発明の水素吸蔵合金の結晶構
造解析方法で用いる水素収納装置が試料室に連通し、試
料室内の水素圧を変化させながら所定の水素圧になるま
で水素を排出する水素排出装置を更に備えているので、
本発明の水素吸蔵合金の結晶構造解析方法は、これらの
試料室、水素排出装置及び熱量変化検出手段とを用い
て、この水素排出装置によって試料室から水素を排出し
て試料室に保持された水素吸蔵合金から水素を放出させ
る水素放出ステップと、水素を放出した水素吸蔵合金の
熱量変化を検出手段によって検出して予め測定した水素
吸蔵合金の水素排出量と熱量変化との関係に基いて検出
された熱量変化から水素吸蔵合金から放出された水素放
出量を導出する放出量導出ステップとを実行すること
で、試料室に保持された水素吸蔵合金から水素が放出さ
れていく過程での水素放出量を水素吸蔵合金の熱量変化
から導出することができる。
As described above, the hydrogen storage device used in the method for analyzing the crystal structure of the hydrogen storage alloy of the present invention is connected to the sample chamber, and hydrogen is discharged until the hydrogen pressure becomes a predetermined hydrogen pressure while changing the hydrogen pressure in the sample chamber. Since it is further equipped with a discharge device,
The crystal structure analysis method for a hydrogen storage alloy of the present invention uses these sample chamber, hydrogen discharge device and calorie change detecting means to discharge hydrogen from the sample chamber by this hydrogen discharge device and hold it in the sample chamber. Hydrogen release step of releasing hydrogen from the hydrogen storage alloy and detection based on the relationship between the amount of heat released from the hydrogen storage alloy and the change in the amount of heat measured in advance by detecting the change in the amount of heat of the hydrogen storage alloy that released hydrogen By performing the release amount deriving step of deriving the release amount of hydrogen released from the hydrogen storage alloy from the change in the amount of heat generated, hydrogen release in the process of releasing hydrogen from the hydrogen storage alloy held in the sample chamber The amount can be derived from the change in the amount of heat of the hydrogen storage alloy.

【0026】なお本発明の水素吸蔵合金の結晶構造解析
方法においては、前記熱量変化検出手段は温度センサで
あることができる。即ち水素吸蔵合金の熱量変化を温度
変化として捉えて、この温度変化を温度センサによって
測定することができる。この場合水素吸蔵合金の熱量変
化と水素吸蔵量或いは水素放出量との関係は温度変化と
水素吸蔵量或いは水素放出量との関係として表現される
ことになる。
In the crystal structure analysis method of the hydrogen storage alloy of the present invention, the calorific value change detecting means may be a temperature sensor. That is, a change in the amount of heat of the hydrogen storage alloy can be captured as a change in temperature, and this change in temperature can be measured by a temperature sensor. In this case, the relationship between the heat quantity change of the hydrogen storage alloy and the hydrogen storage amount or the hydrogen release amount is expressed as the relationship between the temperature change and the hydrogen storage amount or the hydrogen release amount.

【0027】また前記熱量変化検出手段は示差熱分析手
段であることもできる。水素吸蔵合金が発熱量或いは水
素吸蔵合金が吸熱した吸熱量を示差熱分析手段によって
測定することができる。水素吸蔵合金の熱量変化は水素
吸蔵合金の発熱量或いは吸熱量として把握され、熱量変
化と水素吸蔵量或いは水素放出量との関係は発熱量と水
素吸蔵量との関係或いは吸熱量と水素放出量との関係と
して表現されることになる。
Further, the calorific value change detecting means may be a differential thermal analysis means. The amount of heat generated by the hydrogen storage alloy or the amount of heat absorbed by the hydrogen storage alloy can be measured by a differential thermal analysis means. The change in the calorific value of the hydrogen storage alloy is grasped as the calorific value or the calorific value of the hydrogen storage alloy, and the relationship between the change in the calorific value and the hydrogen storage amount or the hydrogen release amount is the relationship between the calorific value and the hydrogen storage amount or the heat absorption amount and the hydrogen release amount. Will be expressed as a relationship with.

【0028】[0028]

【発明の実施の形態】以下本発明の水素吸蔵合金の結晶
構造解析方法について図面を参照しつつ実施例に基いて
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A method for analyzing a crystal structure of a hydrogen storage alloy according to the present invention will be described below with reference to the drawings based on an embodiment.

【0029】(水素吸蔵合金の熱量変化と水素吸蔵量と
の関係の測定)本発明の水素吸蔵合金の結晶構造解析方
法は、予め測定した水素吸蔵合金の熱量変化と水素吸蔵
量との関係に基いて、水素吸蔵合金の熱量変化から水素
吸蔵合金に吸蔵された水素吸蔵量を導出する。本実施例
では、水素吸蔵合金の熱量変化を水素吸蔵合金の温度変
化として捉えて、この温度変化と水素吸蔵合金に吸蔵さ
れた水素吸蔵量との関係を予め測定した。
(Measurement of Relationship between Change in Heat Quantity of Hydrogen Storage Alloy and Hydrogen Storage Quantity) The crystal structure analysis method of the hydrogen storage alloy of the present invention is based on the relationship between the change in heat quantity of the hydrogen storage alloy and the hydrogen storage quantity measured in advance. Based on this, the hydrogen storage amount stored in the hydrogen storage alloy is derived from the change in the amount of heat of the hydrogen storage alloy. In the present example, the change in the amount of heat of the hydrogen storage alloy was taken as the temperature change of the hydrogen storage alloy, and the relationship between this temperature change and the amount of hydrogen storage stored in the hydrogen storage alloy was measured in advance.

【0030】この温度変化と水素吸蔵合金との関係の測
定は、まずJIS H 7201で規定された「水素吸蔵
合金の圧力−組成等温線(PCT線)の測定方法」(以
下「PCT測定方法」と略す)に基いて、このPCT測
定方法において規定された基本構成を備える測定装置
(以後「PCT測定装置」と略す)を用いて、本実施例
に用いる水素吸蔵合金について水素圧力と水素吸蔵合金
への水素吸蔵量との関係を測定してPCT線を得た。こ
の測定結果を図1に示す。この得られたPCT線におい
て水素圧力が上昇するについて水素吸蔵量が上昇してい
ることが示されている。
The measurement of the relationship between this temperature change and the hydrogen storage alloy is first made in accordance with JIS H7201 "Method of measuring pressure-composition isotherm (PCT line) of hydrogen storage alloy" (hereinafter "PCT measurement method"). The hydrogen pressure and the hydrogen storage alloy used in this example are measured by using a measurement device (hereinafter abbreviated as “PCT measurement device”) having a basic configuration defined in this PCT measurement method. The PCT curve was obtained by measuring the relationship with the hydrogen storage amount of hydrogen. The measurement result is shown in FIG. The obtained PCT line shows that the hydrogen storage amount increases as the hydrogen pressure increases.

【0031】このPCT線をPCT測定装置によって得
る際に、併せて水素吸蔵合金の温度を温度センサとして
熱電対を用いて測定した。この結果を図2に示す。PC
T測定方法において水素を所定の圧力で水素吸蔵合金に
吸蔵させると、例えば図2中のA1、A2、B1という
ように1回の水素吸蔵過程において素吸蔵合金の温度は
上昇してピークに達してから、その後下降する。水素吸
蔵過程は上述したように発熱過程であるので、水素吸蔵
によって水素吸蔵合金は吸蔵前の平衡状態にある温度
(A1)から吸蔵に伴って発熱して水素吸蔵合金の温度
は上昇する。そしてその所定の水素圧力下において最大
に吸蔵した段階で水素吸蔵合金の水素吸蔵は停止する。
それに伴って水素吸蔵合金の温度の上昇はピーク(A
2)に達する。そしてその後水素吸蔵合金から発熱され
た熱量は熱伝導によって失われて水素吸蔵合金の温度は
平衡状態の温度(B1)となる。このように水素吸蔵合
金は水素を吸蔵するに伴って温度変化を示す。
When this PCT line was obtained by a PCT measuring device, the temperature of the hydrogen storage alloy was also measured using a thermocouple as a temperature sensor. The result is shown in FIG. PC
When hydrogen is stored in the hydrogen storage alloy at a predetermined pressure in the T measurement method, the temperature of the elementary storage alloy rises and reaches a peak in one hydrogen storage process, such as A1, A2, and B1 in FIG. And then descend. Since the hydrogen storage process is an exothermic process as described above, the hydrogen storage alloy heats up from the temperature (A1) in the equilibrium state before storage due to the hydrogen storage and the temperature of the hydrogen storage alloy rises. Then, the hydrogen storage of the hydrogen storage alloy stops at the stage of maximum storage under the predetermined hydrogen pressure.
As a result, the temperature rise of the hydrogen storage alloy peaks (A
Reach 2). Then, after that, the amount of heat generated from the hydrogen storage alloy is lost by heat conduction, and the temperature of the hydrogen storage alloy becomes the equilibrium temperature (B1). As described above, the hydrogen storage alloy exhibits a temperature change as it stores hydrogen.

【0032】上述したように、水素吸蔵合金が水素を吸
蔵する過程で発熱した発熱量とその水素吸蔵合金が吸蔵
した水素吸蔵量とは一定の関係を有することを考慮する
と、この「A1とA2」の温度変化即ち温度差は、PC
T測定方法で規定した1回の水素吸蔵過程における水素
吸蔵量に対応すると考えられる。従って以後「B1とB
2」の温度差とこの温度差を伴う水素吸蔵過程の水素吸
蔵量と対応し、「C1とC2」の温度差は同様にこの温
度差を伴う水素吸蔵過程の水素吸蔵量に対応する。「D
1とD2」の温度差に同様である。従って「A1とA
2」の温度差、「B1とB2」の温度差、「C1とC
2」の温度差及び「D1とD2」の温度差の累積値とこ
れらの温度差を伴った水素吸蔵過程において水素吸蔵合
金が吸蔵した水素吸蔵量とが対応すると考えられる。
As described above, considering that there is a certain relationship between the amount of heat generated by the hydrogen storage alloy in the process of storing hydrogen and the amount of hydrogen storage stored by the hydrogen storage alloy, this "A1 and A2" The temperature change, that is, the temperature difference
It is considered to correspond to the hydrogen storage amount in one hydrogen storage process defined by the T measurement method. Therefore, "B1 and B
The temperature difference of "2" corresponds to the hydrogen storage amount in the hydrogen storage process involving this temperature difference, and the temperature difference of "C1 and C2" also corresponds to the hydrogen storage amount in the hydrogen storage process involving this temperature difference. "D
1 and D2 "temperature difference. Therefore, "A1 and A
2 "temperature difference," B1 and B2 "temperature difference," C1 and C "
It is considered that the accumulated value of the temperature difference of "2" and the temperature difference of "D1 and D2" correspond to the hydrogen storage amount stored by the hydrogen storage alloy in the hydrogen storage process involving these temperature differences.

【0033】そして水素の圧力と水素吸蔵合金の温度差
の累積値との関係を求めると図3のようになる。この図
3は、図1と比較するとほぼ同じ線図が得られる。即ち
この図3から、個々の水素吸蔵過程での水素吸蔵合金の
温度差の累積値(以後「温度差累積値」と略す)と水素
吸蔵合金が吸蔵した水素吸蔵量とが対応していることが
分かる。
Then, the relationship between the pressure of hydrogen and the cumulative value of the temperature difference of the hydrogen storage alloy is obtained as shown in FIG. Compared with FIG. 1, this FIG. 3 gives almost the same diagram. That is, from FIG. 3, the cumulative value of the temperature difference of the hydrogen storage alloy in each hydrogen storage process (hereinafter, abbreviated as “temperature difference cumulative value”) and the hydrogen storage amount stored by the hydrogen storage alloy correspond to each other. I understand.

【0034】そしてこの温度差累積値と水素吸蔵量との
関係を図4に示す。このように本実施例ではまずPCT
測定装置を用いて、水素吸蔵合金の熱量変化と水素吸蔵
量との関係を温度差累積値と水素吸蔵量との関係として
測定した。
The relationship between the temperature difference accumulated value and the hydrogen storage amount is shown in FIG. In this way, in this embodiment, first, the PCT
Using a measuring device, the relationship between the change in the amount of heat of the hydrogen storage alloy and the hydrogen storage amount was measured as the relationship between the temperature difference cumulative value and the hydrogen storage amount.

【0035】なおこの温度差累積値と水素吸蔵量との関
係は以下で説明する水素吸蔵合金収納装置においても同
様に成立する。従って以下で説明する水素吸蔵合金収納
装置を用いた場合においても、水素吸蔵合金の温度を測
定し、その温度変化から水素吸蔵合金に吸蔵された水素
吸蔵量を求めることができる。
The relationship between the temperature difference accumulated value and the hydrogen storage amount is similarly established in the hydrogen storage alloy storage device described below. Therefore, even when the hydrogen storage alloy storage device described below is used, the temperature of the hydrogen storage alloy can be measured and the hydrogen storage amount stored in the hydrogen storage alloy can be obtained from the temperature change.

【0036】また水素吸蔵合金が水素を放出する過程で
吸熱した吸熱量とその水素吸蔵合金が放出した水素放出
量とはやはり一定の関係を有することになる。従って水
素を吸蔵した水素吸蔵合金から水素を放出する過程でも
水素吸蔵合金の温度変化と水素放出量とが対応してい
る。従って水素吸蔵合金から水素を放出する放出過程を
繰り返した場合にそれらの放出過程における水素吸蔵合
金の温度差を累積した値とそれらの放出過程で放出した
水素の放出量とは対応していると考えられる。
The amount of heat absorbed by the hydrogen storage alloy in the process of releasing hydrogen and the amount of hydrogen released by the hydrogen storage alloy also have a constant relationship. Therefore, even in the process of releasing hydrogen from the hydrogen storage alloy that has stored hydrogen, the temperature change of the hydrogen storage alloy and the amount of released hydrogen correspond. Therefore, when the release process of releasing hydrogen from the hydrogen storage alloy is repeated, the accumulated value of the temperature difference of the hydrogen storage alloy during those release processes corresponds to the amount of released hydrogen in those release processes. Conceivable.

【0037】ここで特に図示しないが、放出過程におけ
る水素吸蔵合金の温度差を累積した累積値から水素吸蔵
合金から放出された水素放出量を導出することができ
る。このように水素放出量を導出できるので、先の水素
を吸蔵させる過程で水素吸蔵合金に吸蔵されていた水素
吸蔵量が分かっていれば、水素を放出する過程において
水素吸蔵合金にまだ吸蔵されている水素吸蔵量もまた導
出することができる。
Although not shown here, the amount of hydrogen released from the hydrogen storage alloy can be derived from the cumulative value obtained by accumulating the temperature difference of the hydrogen storage alloy during the release process. Since the hydrogen release amount can be derived in this way, if the hydrogen storage amount stored in the hydrogen storage alloy during the previous hydrogen storage process is known, it is still stored in the hydrogen storage alloy during the hydrogen release process. The amount of stored hydrogen can also be derived.

【0038】(水素吸蔵合金収納装置)本発明の水素吸
蔵合金の結晶構造解析方法において用いる水素吸蔵合金
収納装置は、入射されたX線に照射される位置に水素吸
蔵合金を保持する試料室と、この試料室に保持された水
素吸蔵合金にX線を照射して水素吸蔵合金の結晶構造を
解析するX線回折装置と、試料室に連通し試料室内の水
素圧を変化させながら所定の水素圧になるまで水素を供
給する水素供給装置と、試料室に連通し前記試料室内の
水素圧を変化させながら所定の水素圧になるまで水素を
排出する水素排出装置と、試料室に保持された水素吸蔵
合金の熱量変化を検出する熱量変化検出手段とを備える
が、本実施例においてはこの水素吸蔵合金収納装置は以
下のように具体的に実現されている。
(Hydrogen Storage Alloy Storage Device) The hydrogen storage alloy storage device used in the method for analyzing the crystal structure of a hydrogen storage alloy of the present invention comprises a sample chamber for holding the hydrogen storage alloy at a position irradiated with incident X-rays. , An X-ray diffractometer for irradiating the hydrogen storage alloy held in this sample chamber with X-rays to analyze the crystal structure of the hydrogen storage alloy, and a predetermined hydrogen while communicating with the sample chamber and changing the hydrogen pressure in the sample chamber. A hydrogen supply device that supplies hydrogen until a pressure is reached, a hydrogen discharge device that communicates with the sample chamber and discharges hydrogen until a predetermined hydrogen pressure is reached while changing the hydrogen pressure inside the sample chamber, and a hydrogen discharge device that is held in the sample chamber. The hydrogen storage alloy storage device is provided with a heat amount change detection means for detecting a heat amount change of the hydrogen storage alloy. In the present embodiment, this hydrogen storage alloy storage device is specifically realized as follows.

【0039】本実施例での水素吸蔵合金収納装置の概略
を図5に示す。この水素吸蔵合金収納装置においては、
水素の供給及び排出に関しては基本的に上述したJIS
規格H 7201に規定されたPCT測定方法で用いる
PCT測定装置の基本構成を利用している。そしてPC
T測定装置の試料容器を、内部に保持された水素吸蔵合
金に照射されるX線が透過することができる窓を有する
試料室10に代え、また恒温槽を外してX線回折装置2
0、30、40を備えるようにした。
FIG. 5 shows an outline of the hydrogen storage alloy storage device in this embodiment. In this hydrogen storage alloy storage device,
Regarding the supply and discharge of hydrogen, the JIS mentioned above is basically used.
The basic configuration of the PCT measuring device used in the PCT measuring method defined in the standard H7201 is used. And PC
The sample container of the T measuring device is replaced with a sample chamber 10 having a window through which the X-rays applied to the hydrogen storage alloy held therein can pass, and the thermostat is removed to remove the X-ray diffractometer 2
0, 30, 40 were provided.

【0040】試料室10はX線が透過することができる
試料室X線窓11を備えており、この試料室X線窓11
は、図1に示すように半径38mmの円弧状の形状をし
ており、2mmの板厚のBe板を用いて構成されてい
る。この試料室10内には、更に水素吸蔵合金MHを平
滑に収納する試料ホルダー20が配置されており、この
試料ホルダー20はやはりBe板からなる試料ホルダー
X線窓21を有している。即ち水素吸蔵合金MHは試料
ホルダー20に収納され、この試料ホルダー20が試料
室10に配置されるというように試料室10内に保持さ
れている。
The sample chamber 10 is provided with a sample chamber X-ray window 11 capable of transmitting X-rays.
1 has an arcuate shape with a radius of 38 mm as shown in FIG. 1, and is configured by using a Be plate having a plate thickness of 2 mm. A sample holder 20 for smoothly storing the hydrogen storage alloy MH is arranged in the sample chamber 10, and the sample holder 20 also has a sample holder X-ray window 21 made of a Be plate. That is, the hydrogen storage alloy MH is stored in the sample holder 20, and the sample holder 20 is held in the sample chamber 10 such that it is arranged in the sample chamber 10.

【0041】試料室10が備える試料室X線窓11を挟
んで試料ホルダー20と対向する位置にX線管球30と
X線検出器40とが配置されている。このX線管球30
とX線検出器40と試料ホルダー20とを用いてX線回
折装置を構成している。試料室X線窓11及び試料ホル
ダーX線窓21にX線透過性のよいBeを用いられてい
るので、X線管球30から発せられた入射X線は試料室
X線窓11及び試料ホルダーX線窓21を透過して、水
素吸蔵合金MHを照射し、その結果水素吸蔵合金MHか
ら発せられる回折X線は試料ホルダーX線窓21及び試
料室X線窓11を透過して、X線検出器40によって検
出されるように設定されている。この場合試料ホルダー
20は水素吸蔵合金MHへのX線の入射角を変えること
ができるように、図示しない回転手段によって回転する
ように設定されている。
An X-ray tube 30 and an X-ray detector 40 are arranged at positions facing the sample holder 20 with the sample chamber X-ray window 11 provided in the sample chamber 10 interposed therebetween. This X-ray tube 30
The X-ray detector 40 and the sample holder 20 constitute an X-ray diffractometer. Since Be with good X-ray transparency is used for the sample chamber X-ray window 11 and the sample holder X-ray window 21, the incident X-rays emitted from the X-ray tube 30 are the sample chamber X-ray window 11 and the sample holder. Diffracted X-rays transmitted through the X-ray window 21 and irradiating the hydrogen storage alloy MH, and as a result, the diffracted X-rays transmitted through the sample holder X-ray window 21 and the sample chamber X-ray window 11, It is set to be detected by the detector 40. In this case, the sample holder 20 is set to be rotated by a rotating means (not shown) so that the incident angle of X-rays on the hydrogen storage alloy MH can be changed.

【0042】試料室10に保持された水素吸蔵合金MH
の熱量変化を検出する熱量変化検出手段として温度セン
サ50が用いられている。この温度センサ50は水素吸
蔵合金MHの温度を検出することができる位置に配置さ
れている。本実施例では熱量変化を温度変化として捉え
てこの温度変化を測定する。
Hydrogen storage alloy MH held in the sample chamber 10
The temperature sensor 50 is used as a heat quantity change detecting means for detecting a heat quantity change of the. The temperature sensor 50 is arranged at a position where the temperature of the hydrogen storage alloy MH can be detected. In this embodiment, a change in heat quantity is regarded as a change in temperature and the change in temperature is measured.

【0043】水素ガス供給タンク60はこの試料室10
に第2バルブ82及び第4バルブ84を介して連通して
いる。本実施例では、この水素ガス供給タンク60から
供給される水素は以下に述べるように手順で所定の水素
圧になるまで増圧して水素が供給されるように構成され
ている。まず第1バルブ81、第3バルブ83及び第4
バルブ84を閉じ、第2バルブ82を開いた状態にし
て、第1バルブ81と第2バルブ82と第3バルブ83
と第4バルブ84とにより仕切られる系に水素供給タン
ク60から水素を所定の圧力になるまで導入する。この
場合第1バルブ81と第2バルブ82と第3バルブ83
と第4バルブ84とにより仕切られる系に導入された水
素は蓄圧容器80に導入され、この系内の水素圧は圧力
計85で測定される。そしてその後第2バルブ82を閉
じ第4バルブ84を開いて、第1バルブ81と第2バル
ブ82と第3バルブ83と第4バルブ84とにより仕切
られる系に導入された水素を試料室10に供給すること
になる。
The hydrogen gas supply tank 60 is the sample chamber 10
To the second valve 82 and the fourth valve 84. In the present embodiment, the hydrogen supplied from the hydrogen gas supply tank 60 is configured so that the hydrogen is supplied by increasing the pressure until a predetermined hydrogen pressure is obtained by the procedure as described below. First, the first valve 81, the third valve 83 and the fourth valve
With the valve 84 closed and the second valve 82 open, the first valve 81, the second valve 82, and the third valve 83
Hydrogen is introduced into the system partitioned by the fourth valve 84 from the hydrogen supply tank 60 until a predetermined pressure is reached. In this case, the first valve 81, the second valve 82, and the third valve 83
The hydrogen introduced into the system partitioned by the fourth valve 84 and the fourth valve 84 is introduced into the pressure accumulator 80, and the hydrogen pressure in the system is measured by the pressure gauge 85. Then, after that, the second valve 82 is closed and the fourth valve 84 is opened so that the hydrogen introduced into the system partitioned by the first valve 81, the second valve 82, the third valve 83 and the fourth valve 84 is introduced into the sample chamber 10. Will be supplied.

【0044】従って本実施例では、水素供給装置は、水
素ガス供給タンク60、第1バルブ81、第2バルブ8
2、第3バルブ83、第4バルブ84及び圧力計85等
を備えることで構成されている。
Therefore, in the present embodiment, the hydrogen supply device comprises a hydrogen gas supply tank 60, a first valve 81 and a second valve 8.
2, the third valve 83, the fourth valve 84, the pressure gauge 85, etc. are provided.

【0045】また真空ポンプ70は、この試料室10に
第4バルブ84及び第3バルブ83を介して連通してい
る。そしてこの試料室10の水素は、以下に述べる手順
で所定の水素圧になるまで減圧して真空ポンプ70によ
って排出されるように構成されている。まず第1バルブ
81、第2バルブ82及び第4バルブ84を閉じ、第3
バルブ83を開いた状態にして、第1バルブ81と第2
バルブ82と第4バルブ84とにより仕切られる系内の
水素圧を所定の圧力になるまで減圧しながら真空ポンプ
70によって排出する。この場合第1バルブ81と第2
バルブ82と第3バルブ83と第4バルブ84とにより
仕切られる系内の水素圧は真空ポンプ70で測定され
る。そしてその後第3バルブ83を閉じ、第4バルブ8
4を開いて、第1バルブ81と第2バルブ82と第3バ
ルブ83と第4バルブ84とにより仕切られる系に試料
室10の水素を導入して、試料室10の水素圧を減圧す
ることになる。
The vacuum pump 70 communicates with the sample chamber 10 via a fourth valve 84 and a third valve 83. Then, the hydrogen in the sample chamber 10 is decompressed to a predetermined hydrogen pressure by the procedure described below and discharged by the vacuum pump 70. First, the first valve 81, the second valve 82, and the fourth valve 84 are closed, and the third valve
With the valve 83 open, the first valve 81 and the second valve 81
The hydrogen pressure in the system partitioned by the valve 82 and the fourth valve 84 is reduced by the vacuum pump 70 while being reduced to a predetermined pressure. In this case, the first valve 81 and the second valve
The hydrogen pressure in the system partitioned by the valve 82, the third valve 83, and the fourth valve 84 is measured by the vacuum pump 70. Then, after that, the third valve 83 is closed and the fourth valve 8
4 is opened, and hydrogen in the sample chamber 10 is introduced into the system partitioned by the first valve 81, the second valve 82, the third valve 83, and the fourth valve 84 to reduce the hydrogen pressure in the sample chamber 10. become.

【0046】従って本実施例では、水素排出装置は、真
空ポンプ70、第1バルブ81、第2バルブ82、第3
バルブ83、第4バルブ84、蓄圧容器80等を備える
ことで構成されている。
Therefore, in the present embodiment, the hydrogen discharging device includes a vacuum pump 70, a first valve 81, a second valve 82, and a third valve.
It is configured by including a valve 83, a fourth valve 84, a pressure accumulating container 80, and the like.

【0047】更に本実施例の水素吸蔵合金収納装置にお
いては、不活性ガス供給タンク90が第1バルブ、第4
バルブ84等を介して試料室10に連通している。
Further, in the hydrogen storage alloy storage device of this embodiment, the inert gas supply tank 90 has the first valve and the fourth valve.
It communicates with the sample chamber 10 via a valve 84 and the like.

【0048】(本実施例の水素吸蔵合金の結晶構造解析
方法の具体的手順)本実施例の水素吸蔵合金の結晶構造
解析方法は、上述した水素吸蔵合金収納装置を用いて、
水素供給装置によって試料室に水素を供給して試料室に
保持された前記水素吸蔵合金に水素を吸蔵させる水素吸
蔵ステップと、水素を吸蔵した水素吸蔵合金の熱量変化
を検出手段によって検出して予め測定した水素吸蔵合金
の水素吸蔵量と熱量変化との関係に基いて検出された熱
量変化から水素吸蔵合金に吸蔵した水素吸蔵量を導出す
る吸蔵量導出ステップと、吸蔵量導出ステップにおいて
水素吸蔵量が導出された水素吸蔵合金をX線回折装置に
よって結晶構造を解析する吸蔵過程結晶構造解析ステッ
プと、水素排出装置によって試料室から水素を排出して
試料室に保持された水素吸蔵合金から水素を放出させる
水素放出ステップと、水素を放出した水素吸蔵合金の熱
量変化を検出手段によって検出して予め測定した水素吸
蔵合金の水素放出量と熱量変化との関係に基いて検出さ
れた熱量変化から水素吸蔵合金から放出された水素放出
量を導出する放出量導出ステップと、放出量導出ステッ
プにおいて水素放出量が導出された水素吸蔵合金をX線
回折装置によって結晶構造を解析する放出過程結晶構造
解析ステップと実施する。
(Specific Procedure of Crystal Structure Analysis Method of Hydrogen Storage Alloy of this Embodiment) The crystal structure analysis method of hydrogen storage alloy of this embodiment uses the hydrogen storage alloy storage device described above.
A hydrogen storage step of supplying hydrogen to the sample chamber by the hydrogen supply device to store the hydrogen in the hydrogen storage alloy held in the sample chamber, and detecting the change in the amount of heat of the hydrogen storage alloy storing the hydrogen by the detection means in advance. Based on the relationship between the measured hydrogen storage amount of the hydrogen storage alloy and the heat amount change, the storage amount derivation step of deriving the hydrogen storage amount stored in the hydrogen storage alloy from the detected heat amount change, and the hydrogen storage amount in the storage amount derivation step The storage process of analyzing the crystal structure of the hydrogen-absorbing alloy from which the X-ray diffractometer analyzes the crystal structure, and the hydrogen-discharging device discharges hydrogen from the sample chamber and releases hydrogen from the hydrogen-absorbing alloy held in the sample chamber. Hydrogen release step of releasing hydrogen and hydrogen release of hydrogen storage alloy measured in advance by detecting change in heat quantity of hydrogen storage alloy that released hydrogen The desorption amount deriving step for deriving the hydrogen desorption amount released from the hydrogen storage alloy from the calorific value change detected based on the relationship between the desorption amount and the heat amount change, and the hydrogen storage alloy for which the hydrogen desorption amount was derived in the release amount deriving step. An emission process of analyzing a crystal structure by an X-ray diffraction apparatus and a crystal structure analysis step are performed.

【0049】これらのステップは上述した水素吸蔵合金
収納装置を用いて具体的に以下の動作を行うことで実現
される。
These steps are realized by specifically performing the following operations using the hydrogen storage alloy storage device described above.

【0050】まず試料室10内に配置された試料ホルダ
ー20に水素吸蔵合金MHを収納しておく。そして不活
性ガス供給タンク90から第2バルブ82、第3バルブ
83及び第4バルブ84を閉じ、第1バルブ81を開け
た状態にしておいて、第1バルブ81、第2バルブ8
2、第3バルブ83及び第4バルブ84とにより仕切ら
れる系内の蓄圧容器80に不活性ガスを導入する。そし
て第1バブル81を閉じ、第4バルブ84を開いて、試
料室10に不活性ガスを試料室10に供給する。漏れの
ないことを確認した後、第3バルブ83を開いて真空ポ
ンプ70で不活性ガスを吸引して不活性ガスを排出す
る。
First, the hydrogen storage alloy MH is stored in the sample holder 20 arranged in the sample chamber 10. Then, the second valve 82, the third valve 83, and the fourth valve 84 are closed from the inert gas supply tank 90, and the first valve 81 is kept open.
The inert gas is introduced into the pressure accumulating container 80 in the system partitioned by the second, third valve 83 and the fourth valve 84. Then, the first bubble 81 is closed and the fourth valve 84 is opened to supply the sample chamber 10 with the inert gas. After confirming that there is no leakage, the third valve 83 is opened and the vacuum pump 70 sucks the inert gas and discharges the inert gas.

【0051】a)水素吸蔵ステップを以下のように実行す
る。
A) The hydrogen storage step is performed as follows.

【0052】第1ステップとして、第1バルブ81、第
3バルブ83及び第4バルブ84を閉じ、第2バルブ8
2を開けた状態にしておいて、水素ガス供給タンク60
から水素を第2バルブ82、第1バルブ81、第3バル
ブ83及び第4バルブ84とにより仕切られる系内の蓄
圧容器80に所定の圧力になるまで水素を導入する。そ
して所定の圧力に至った段階で第2バルブ82を閉じ
る。この場合この系内での水素の圧力は圧力計85によ
って測定される。
As a first step, the first valve 81, the third valve 83 and the fourth valve 84 are closed, and the second valve 8
With 2 open, the hydrogen gas supply tank 60
Hydrogen is introduced into the pressure accumulator 80 in the system partitioned by the second valve 82, the first valve 81, the third valve 83, and the fourth valve 84 until a predetermined pressure is reached. Then, when the predetermined pressure is reached, the second valve 82 is closed. In this case, the pressure of hydrogen in this system is measured by the pressure gauge 85.

【0053】第2ステップとして、第4バルブ84を開
いて試料室10に水素を導入し、試料ホルダ20に収納
されている水素吸蔵合金MHに水素を吸蔵させる。
As the second step, the fourth valve 84 is opened to introduce hydrogen into the sample chamber 10 so that the hydrogen storage alloy MH contained in the sample holder 20 absorbs hydrogen.

【0054】b)そして吸蔵量導出ステップを以下のよう
に実行する。
B) Then, the occlusion amount deriving step is executed as follows.

【0055】第3ステップとして、第2ステップにおい
て導入された水素を水素吸蔵合金MHが吸蔵する過程で
の水素吸蔵合金MHの温度変化を温度センサ50で検出
する。具体的には水素吸蔵合金MHが第2ステップによ
って試料室10に導入された水素を吸蔵する前の平衡状
態にある時の水素吸蔵合金の温度と第2ステップによっ
て導入された水素を水素吸蔵合金MHが吸蔵した結果温
度が上昇した時の水素吸蔵合金の温度を検出してこの温
度差を求める。
As the third step, the temperature sensor 50 detects the temperature change of the hydrogen storage alloy MH in the process of storing the hydrogen introduced in the second step by the hydrogen storage alloy MH. Specifically, the temperature of the hydrogen storage alloy MH when the hydrogen storage alloy MH is in an equilibrium state before storing the hydrogen introduced into the sample chamber 10 in the second step, and the hydrogen storage alloy that absorbs the hydrogen introduced in the second step The temperature difference of the hydrogen storage alloy is detected by detecting the temperature of the hydrogen storage alloy when the temperature rises as a result of the storage of MH.

【0056】そして第4ステップとして予め測定した水
素吸蔵合金MHの温度差累積値と水素吸蔵量との関係に
基いて第3ステップにおいて検出された温度差から水素
吸蔵合金MHに吸蔵された水素吸蔵量を導出する。この
温度差累積値と水素吸蔵量との関係の測定は先の(水素
吸蔵合金の熱量変化と水素吸蔵量との関係の測定)の箇
所で説明した。
Then, in the fourth step, based on the relationship between the temperature difference accumulated value and the hydrogen storage amount of the hydrogen storage alloy MH measured in advance, the hydrogen storage capacity of the hydrogen storage alloy MH is detected from the temperature difference detected in the third step. Derive the quantity. The measurement of the relationship between the cumulative value of the temperature difference and the hydrogen storage amount has been described in the previous section (Measurement of the relationship between the change in heat quantity of the hydrogen storage alloy and the hydrogen storage amount).

【0057】c)更に吸蔵過程結晶構造解析ステップを以
下のように実行する。
C) Further, the occlusion process crystal structure analysis step is executed as follows.

【0058】第5ステップとして、水素を吸蔵して温度
が上昇した水素吸蔵合金MHの温度が下がるのを待ち、
平衡状態になったところで、X線管球30から入射X線
を水素吸蔵合金MHに照射して、水素吸蔵合金MHから
出てくる回折X線をX線検出器40で検出する。更に試
料ホルダー20を所定の角度回転させてX線管球30か
ら照射される入射X線の入射角を変えて水素吸蔵合金M
Hから出てくる回折X線をX線検出器40で検出する。
これらの結果に基づいてX線回折パターンを構成して、
水素吸蔵合金の結晶構造を解析する。
As the fifth step, waiting for the temperature of the hydrogen storage alloy MH, which has absorbed hydrogen and has risen in temperature, to drop,
When the equilibrium state is reached, incident X-rays are irradiated from the X-ray tube 30 onto the hydrogen storage alloy MH, and the diffracted X-rays emitted from the hydrogen storage alloy MH are detected by the X-ray detector 40. Further, the sample holder 20 is rotated by a predetermined angle to change the incident angle of the incident X-rays emitted from the X-ray tube 30 to change the hydrogen storage alloy M.
Diffracted X-rays emitted from H are detected by the X-ray detector 40.
An X-ray diffraction pattern is constructed based on these results,
Analyze the crystal structure of hydrogen storage alloy.

【0059】このようにして水素吸蔵過程における水素
吸蔵合金に吸蔵されている水素の吸蔵量の測定とその時
の水素吸蔵合金の結晶構造の解析とを行うことができる d)そして上述した第1ステップから第5ステップまでを
繰り返す。この場合第4ステップにおいては、得られた
温度差をそれまで得た温度差に累積することになる。そ
してこの温度差累積値から予め測定した温度差累積値と
水素吸蔵量との関係に基いてそれまで吸蔵した水素吸蔵
量を導出する。このように第1ステップから第5ステッ
プを繰り返して、水素吸蔵合金MHへの水素吸蔵を終了
する。
In this way, the amount of hydrogen stored in the hydrogen storage alloy during the hydrogen storage process can be measured and the crystal structure of the hydrogen storage alloy at that time can be analyzed d) and the above-mentioned first step To step 5 are repeated. In this case, in the fourth step, the obtained temperature difference is accumulated with the temperature difference obtained so far. Then, based on the relationship between the temperature difference cumulative value and the hydrogen storage amount, which have been measured in advance, the hydrogen storage amount stored up to that time is derived from the temperature difference cumulative value. Thus, the first step to the fifth step are repeated to complete the hydrogen storage in the hydrogen storage alloy MH.

【0060】e)次に水素放出ステップを以下のように実
行する。
E) Next, the hydrogen releasing step is executed as follows.

【0061】まず第6ステップとして第4バルブ84を
閉じ、第3バルブを開いた状態にして第1バルブ81、
第2バルブ82、第3バルブ83及び第4バルブ84に
よって仕切られる系内から水素を排出する真空ポンプ7
0によって排出して、所定の圧力にまで減圧する。この
場合この系内での水素の圧力は真空ポンプ70によって
測定される。
First, as the sixth step, the fourth valve 84 is closed, the third valve is opened, and the first valve 81,
Vacuum pump 7 for discharging hydrogen from the system partitioned by the second valve 82, the third valve 83 and the fourth valve 84.
It is discharged by 0 and the pressure is reduced to a predetermined pressure. In this case, the pressure of hydrogen in the system is measured by the vacuum pump 70.

【0062】そして第7ステップとして、このように第
1バルブ81、第2バルブ82、第3バルブ83及び第
4バルブ84によって仕切られる系内から水素を排出し
た後に、第3バルブ83を閉じ第4バルブ84を開いた
状態にして、試料室10の水素圧力を減圧して、水素吸
蔵合金MHから水素を放出させる。
Then, as a seventh step, after discharging hydrogen from the system partitioned by the first valve 81, the second valve 82, the third valve 83 and the fourth valve 84 in this way, the third valve 83 is closed. With the 4 valve 84 open, the hydrogen pressure in the sample chamber 10 is reduced to release hydrogen from the hydrogen storage alloy MH.

【0063】f)そして放出量導出ステップを以下のよ
うに実行する。
F) Then, the release amount deriving step is executed as follows.

【0064】第8ステップとして、第7ステップにおい
て水素吸蔵合金MHから水素が放出される過程での水素
吸蔵合金MHの温度変化を温度センサ50で検出する。
具体的には水素吸蔵合金MHが第7ステップによって水
素吸蔵合金MHから水素が放出される前の平衡状態にあ
る時の水素吸蔵合金の温度と第7ステップによって水素
が水素吸蔵合金MHから水素が放出された結果温度が下
降した時の水素吸蔵合金MHの温度を検出してこの温度
差を求める。
As an eighth step, the temperature sensor 50 detects the temperature change of the hydrogen storage alloy MH during the process of releasing hydrogen from the hydrogen storage alloy MH in the seventh step.
Specifically, when the hydrogen storage alloy MH is in an equilibrium state before hydrogen is released from the hydrogen storage alloy MH in the seventh step, the temperature of the hydrogen storage alloy MH and the hydrogen in the hydrogen storage alloy MH are changed in the seventh step. The temperature difference of the hydrogen storage alloy MH when the temperature is lowered as a result of the release is detected.

【0065】そして第9ステップとして予め測定した水
素吸蔵合金MHの温度差累積値と水素放出量との関係に
基いて第8ステップにおいて検出された温度差から水素
吸蔵合金MHから放出された水素放出量を導出する。な
お水素吸蔵過程における水素吸蔵量は先の吸蔵量導出ス
テップによって求めることができるので、水素吸蔵合金
MHからの放出された水素の放出量を導出すれば、水素
吸蔵合金から水素が放出された結果まだ水素吸蔵合金M
Hに吸蔵されている水素の吸蔵量を導出することができ
る。従って後述の放出過程結晶構造解析ステップにおい
て結晶構造が解析される水素吸蔵合金MHに吸蔵されて
いる水素の吸蔵量を導出しておくことができる。
Then, in a ninth step, based on the relationship between the temperature difference cumulative value of the hydrogen storage alloy MH and the hydrogen release amount measured in advance, the hydrogen release from the hydrogen storage alloy MH is released from the temperature difference detected in the eighth step. Derive the quantity. Note that the hydrogen storage amount in the hydrogen storage process can be obtained by the storage amount derivation step described above. Therefore, if the release amount of hydrogen released from the hydrogen storage alloy MH is derived, the result is that hydrogen is released from the hydrogen storage alloy. Still hydrogen storage alloy M
The storage amount of hydrogen stored in H can be derived. Therefore, the storage amount of hydrogen stored in the hydrogen storage alloy MH whose crystal structure is analyzed in the later-described release process crystal structure analysis step can be derived.

【0066】この温度差累積値と水素放出量との関係の
測定は先の(水素吸蔵合金の熱量変化と水素吸蔵量との
関係の測定)の箇所で説明した。
The measurement of the relationship between the cumulative value of the temperature difference and the amount of released hydrogen has been described in the previous section (Measurement of the relationship between the change in heat quantity of the hydrogen storage alloy and the stored amount of hydrogen).

【0067】g)更に放出過程結晶構造解析ステップを以
下のように実行する。
G) Further, the step of analyzing the crystal structure of the emission process is executed as follows.

【0068】第10ステップとして、水素を放出して温
度が下降した水素吸蔵合金MHの温度が上昇するのを待
ち、平衡状態になったところで、X線管球30から入射
X線を水素吸蔵合金MHに照射して、水素吸蔵合金MH
から出てくる回折X線をX線検出器40で検出する。更
に試料ホルダー20を所定の角度回転させてX線管球3
0から照射される入射X線の入射角を変えて水素吸蔵合
金MHから出てくる回折X線をX線検出器40で検出す
る。これらの結果に基づいてX線回折パターンを構成し
て、水素吸蔵合金MHの結晶構造を解析する。
As a tenth step, waiting for the temperature of the hydrogen storage alloy MH, which has released hydrogen and decreased in temperature, to rise, and when the equilibrium state is reached, the incident X-rays from the X-ray tube 30 are used to absorb the hydrogen storage alloy. Irradiating MH, hydrogen storage alloy MH
X-ray detector 40 detects the diffracted X-rays emitted from. Further, the sample holder 20 is rotated by a predetermined angle to rotate the X-ray tube 3
The incident X-ray irradiated from 0 is changed, and the X-ray detector 40 detects the diffracted X-ray emitted from the hydrogen storage alloy MH. An X-ray diffraction pattern is constructed based on these results, and the crystal structure of the hydrogen storage alloy MH is analyzed.

【0069】このようにして水素放出過程における水素
吸蔵合金MHに吸蔵されている水素の吸蔵量の測定とそ
の時の水素吸蔵合金MHの結晶構造の解析とを行うこと
ができる。
In this way, it is possible to measure the amount of hydrogen stored in the hydrogen storage alloy MH during the hydrogen desorption process and to analyze the crystal structure of the hydrogen storage alloy MH at that time.

【0070】h)そして上述した第6ステップから第10
ステップまでを繰り返す。この場合第9ステップにおい
ては、得られた温度差をそれまで得た温度差に累積する
ことになる。そしてこの温度差累積値から予め測定した
温度差累積値と水素放出量との関係に基いてそれまで放
出した水素放出量を導出する。このように第6ステップ
から第10ステップを繰り返して、水素吸蔵合金MHか
らの水素放出を終了する。
H) Then, from the sixth step to the tenth step described above.
Repeat steps. In this case, in the ninth step, the obtained temperature difference is accumulated in the temperature differences obtained so far. Then, the hydrogen release amount released up to that time is derived from the temperature difference cumulative value based on the relationship between the temperature difference cumulative value and the hydrogen release amount measured in advance. In this way, the sixth step to the tenth step are repeated to complete the hydrogen release from the hydrogen storage alloy MH.

【0071】なおここで説明した実施例では、PCT測
定装置を利用した実施例である。但し本発明の水素吸蔵
合金の結晶構造解析方法に用いる水素吸蔵合金収納装置
は、実施例で示したPCT測定装置の基本構成を利用し
た形態に限定されない。特許請求の範囲に記載された水
素吸蔵合金の結晶解析方法の範囲を実行できるのであれ
ばよい。
The embodiment described here is an embodiment using a PCT measuring device. However, the hydrogen storage alloy storage device used in the method for analyzing the crystal structure of the hydrogen storage alloy of the present invention is not limited to the form using the basic configuration of the PCT measurement device shown in the examples. It suffices that the range of the crystal analysis method for a hydrogen storage alloy described in the claims can be carried out.

【0072】また本実施例では水素吸蔵合金の水素吸蔵
時の温度差から水素吸蔵量を導出し、また水素放出時の
温度差から水素放出量を導出した。但し先に述べたよう
に示差熱分析的に熱量の変化を求めて水素吸蔵量を導出
したり、水素放出量を導出したりすることも可能であ
る。
Further, in this example, the hydrogen storage amount was derived from the temperature difference during hydrogen storage of the hydrogen storage alloy, and the hydrogen release amount was derived from the temperature difference during hydrogen release. However, as described above, it is also possible to derive the hydrogen storage amount or the hydrogen release amount by obtaining the change in the amount of heat by differential thermal analysis.

【0073】[0073]

【発明の効果】本発明の水素吸蔵合金の結晶構造解析方
法は、入射されたX線に照射される位置に水素吸蔵合金
を保持する試料室と、試料室に保持された水素吸蔵合金
にX線を照射して水素吸蔵合金の結晶構造を解析するX
線回折装置と、試料室に連通し試料室内の水素圧を変化
させながら所定の水素圧になるまで水素を供給する水素
供給装置と、試料室に保持された水素吸蔵合金の熱量変
化を検出する熱量変化検出手段とを備える水素吸蔵合金
収納装置を用いて、上述の水素吸蔵ステップと、吸蔵量
導出ステップと、吸蔵過程結晶構造解析ステップと実行
することで水素吸蔵過程において水素吸蔵合金に吸蔵さ
れている水素の吸蔵量を測定できると同時に、その時の
水素吸蔵合金の結晶構造を解析することができる。
According to the method for analyzing a crystal structure of a hydrogen storage alloy of the present invention, a sample chamber for holding the hydrogen storage alloy at a position irradiated with incident X-rays and an X for the hydrogen storage alloy held in the sample chamber. X-ray irradiation to analyze the crystal structure of hydrogen storage alloy X
A line diffractometer, a hydrogen supply device that communicates with the sample chamber and supplies hydrogen until the hydrogen pressure reaches a predetermined hydrogen pressure while changing the hydrogen pressure in the sample chamber, and detects a change in heat quantity of the hydrogen storage alloy held in the sample chamber. By using the hydrogen storage alloy storage device provided with the heat quantity change detection means, the above hydrogen storage step, the storage amount derivation step, and the storage process crystal structure analysis step are performed to store the hydrogen storage alloy in the hydrogen storage process. The amount of hydrogen stored can be measured, and at the same time, the crystal structure of the hydrogen storage alloy can be analyzed.

【0074】本発明の水素吸蔵合金の結晶構造解析方法
は、水素吸蔵合金収納装置が試料室に連通し前記試料室
内の水素圧を変化させながら所定の水素圧になるまで水
素を排出する水素排出装置を更に有し、上述の水素放出
ステップと、放出量導出ステップと、放出過程結晶構造
解析ステップと更に実行することで、水素放出過程にお
いて水素吸蔵合金に吸蔵されている水素の吸蔵量を測定
できると同時に、その時の水素吸蔵合金の結晶構造を解
析することができる。
According to the crystal structure analysis method of the hydrogen storage alloy of the present invention, the hydrogen storage alloy storage device communicates with the sample chamber to discharge hydrogen until the predetermined hydrogen pressure is reached while changing the hydrogen pressure in the sample chamber. By further including a device, and further executing the above-mentioned hydrogen desorption step, desorption amount derivation step, and desorption process crystal structure analysis step, the amount of hydrogen absorbed in the hydrogen absorption alloy during the hydrogen desorption process is measured. At the same time, the crystal structure of the hydrogen storage alloy at that time can be analyzed.

【図面の簡単な説明】[Brief description of drawings]

【図1】PCT測定方法に基づき、PCT測定装置を用
いて得たPCT線である。
FIG. 1 is a PCT line obtained by using a PCT measuring device based on a PCT measuring method.

【図2】PCT測定方法に基づいてPCT線を得る際に
測定した水素吸蔵過程における水素吸蔵合金の温度変化
を示すグラフである。
FIG. 2 is a graph showing a temperature change of a hydrogen storage alloy during a hydrogen storage process, which is measured when obtaining a PCT line based on a PCT measurement method.

【図3】温度差累積値と水素圧力との関係を示すグラフ
である。
FIG. 3 is a graph showing a relationship between a temperature difference cumulative value and hydrogen pressure.

【図4】温度差累積値と水素吸蔵量との関係を示すグラ
フである。
FIG. 4 is a graph showing a relationship between a temperature difference cumulative value and a hydrogen storage amount.

【図5】本実施例で用いた水素収納装置の概略を模式的
に示した図である。
FIG. 5 is a diagram schematically showing an outline of a hydrogen storage device used in this example.

【符号の説明】[Explanation of symbols]

10:試料室 11:試料室X線窓 20:試料ホルダー 21:試料ホルダーX線窓 30:X線管球 40:X線検出器 50:温度センサ 60:水素供給タンク 70:真空ポンプ 80:蓄圧容器 81:第1バルブ 82:第2バルブ 83:第3バルブ 84:第4バルブ 85:圧力計 90:不活性ガス供給タンク MH:水素吸蔵合金 10: Sample chamber 11: Sample chamber X-ray window 20: Sample holder 21: Sample holder X-ray window 30: X-ray tube 40: X-ray detector 50: Temperature sensor 60: Hydrogen supply tank 70: Vacuum pump 80: Accumulator container 81: First valve 82: Second valve 83: Third valve 84: 4th valve 85: Pressure gauge 90: Inert gas supply tank MH: Hydrogen storage alloy

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G001 AA01 BA18 CA01 JA12 LA02 PA29 QA01 RA10 2G040 AB12 BA08 BA25 CA02 CB02 DA02 GA04 HA06    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2G001 AA01 BA18 CA01 JA12 LA02                       PA29 QA01 RA10                 2G040 AB12 BA08 BA25 CA02 CB02                       DA02 GA04 HA06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 入射されたX線に照射される位置に水素
吸蔵合金を保持する試料室と、前記試料室に保持された
前記水素吸蔵合金にX線を照射して前記水素吸蔵合金の
結晶構造を解析するX線回折装置と、前記試料室に連通
し前記試料室内の水素圧を変化させながら所定の水素圧
になるまで水素を供給する水素供給装置と、前記試料室
に保持された前記水素吸蔵合金の熱量変化を検出する熱
量変化検出手段とを備える水素吸蔵合金収納装置を用い
て、前記水素吸蔵合金の結晶構造を前記水素吸蔵合金に
吸蔵された水素吸蔵量と関係づけて解析することができ
る水素吸蔵合金の結晶構造解析方法であって、 前記水素供給装置によって前記試料室に水素を供給して
前記試料室に保持された前記水素吸蔵合金に水素を吸蔵
させる水素吸蔵ステップと、 水素を吸蔵した前記水素吸蔵合金の熱量変化を前記検出
手段によって検出して予め測定した前記水素吸蔵合金の
水素吸蔵量と熱量変化との関係に基いて検出された前記
熱量変化から前記水素吸蔵合金に吸蔵された水素吸蔵量
を導出する吸蔵量導出ステップと、 前記吸蔵量導出ステップにおいて前記水素吸蔵量が導出
された前記水素吸蔵合金を前記X線回折装置によって結
晶構造を解析する吸蔵過程結晶構造解析ステップとを有
することを特徴とする水素吸蔵合金の結晶構造解析装方
法。
1. A sample chamber that holds a hydrogen storage alloy at a position where it is irradiated with incident X-rays, and a crystal of the hydrogen storage alloy that is irradiated with X-rays at the hydrogen storage alloy held in the sample chamber. An X-ray diffractometer for analyzing the structure, a hydrogen supply device which communicates with the sample chamber and supplies hydrogen until the hydrogen pressure reaches a predetermined hydrogen pressure while changing the hydrogen pressure in the sample chamber, and the hydrogen supply device held in the sample chamber. Using a hydrogen storage alloy storage device equipped with a heat amount change detection means for detecting a heat amount change of the hydrogen storage alloy, the crystal structure of the hydrogen storage alloy is analyzed in relation to the hydrogen storage amount stored in the hydrogen storage alloy. A method for analyzing a crystal structure of a hydrogen storage alloy, which comprises: a hydrogen storage step of supplying hydrogen to the sample chamber by the hydrogen supply device to store hydrogen in the hydrogen storage alloy held in the sample chamber; From the change in the amount of heat detected based on the relationship between the change in the amount of heat and the change in the amount of heat of the hydrogen storage alloy that has been measured in advance by detecting the change in the amount of heat of the hydrogen storage alloy that has stored hydrogen, the hydrogen storage alloy A storage amount deriving step for deriving the hydrogen storage amount stored in the storage step, and an absorption process crystal structure for analyzing the crystal structure of the hydrogen storage alloy from which the hydrogen storage amount has been calculated in the storage amount deriving step by the X-ray diffractometer. And a method of analyzing the crystal structure of a hydrogen storage alloy.
【請求項2】 前記水素吸蔵合金収納装置は、前記試料
室に連通し前記試料室内の水素圧を変化させながら所定
の水素圧になるまで水素を排出する水素排出装置を更に
有し、 前記水素排出装置によって前記試料室から水素を排出し
て前記試料室に保持された前記水素吸蔵合金から水素を
放出させる水素放出ステップと、 水素を放出した前記水素吸蔵合金の熱量変化を前記検出
手段によって検出して予め測定した前記水素吸蔵合金の
水素放出量と熱量変化との関係に基いて検出された前記
熱量変化から前記水素吸蔵合金から放出された水素放出
量を導出する放出量導出ステップと、 前記放出量導出ステップにおいて前記水素放出量が導出
された前記水素吸蔵合金を前記X線回折装置によって結
晶構造を解析する放出過程結晶構造解析ステップとを更
に有する請求項1記載の水素吸蔵合金の結晶構造解析方
法。
2. The hydrogen storage alloy storage device further comprises a hydrogen discharge device communicating with the sample chamber and discharging hydrogen until a predetermined hydrogen pressure is reached while changing the hydrogen pressure in the sample chamber, A step of discharging hydrogen from the sample chamber by a discharging device to release hydrogen from the hydrogen storage alloy held in the sample chamber; and a change in the amount of heat of the hydrogen storage alloy that has released hydrogen is detected by the detection means. Then, a release amount deriving step of deriving the hydrogen release amount released from the hydrogen storage alloy from the heat amount change detected based on the relationship between the hydrogen release amount and the heat amount change of the hydrogen storage alloy, which is previously measured, A release process crystal structure analyzing step of analyzing a crystal structure of the hydrogen storage alloy from which the hydrogen release amount is derived in the release amount deriving step by the X-ray diffractometer; The crystal structure analysis method for a hydrogen storage alloy according to claim 1, further comprising:
【請求項3】 前記熱量変化検出手段は温度センサであ
る請求項1又は2記載の水素吸蔵合金の結晶構造解析方
法。
3. The crystal structure analysis method for a hydrogen storage alloy according to claim 1, wherein the calorific value change detecting means is a temperature sensor.
【請求項4】 前記熱量変化検出手段は示差熱分析手段
である請求項1又は2記載の水素吸蔵合金結晶構造解析
方法。
4. The hydrogen storage alloy crystal structure analysis method according to claim 1, wherein the calorific value change detection means is a differential thermal analysis means.
JP2001338107A 2001-11-02 2001-11-02 Crystal structure analysis method of hydrogen storage alloy Expired - Fee Related JP3888577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001338107A JP3888577B2 (en) 2001-11-02 2001-11-02 Crystal structure analysis method of hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001338107A JP3888577B2 (en) 2001-11-02 2001-11-02 Crystal structure analysis method of hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JP2003139726A true JP2003139726A (en) 2003-05-14
JP3888577B2 JP3888577B2 (en) 2007-03-07

Family

ID=19152647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001338107A Expired - Fee Related JP3888577B2 (en) 2001-11-02 2001-11-02 Crystal structure analysis method of hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP3888577B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223921A (en) * 2015-05-29 2016-12-28 国立大学法人名古屋大学 Hydrogen storage capacity measurement method and hydrogen storage capacity measurement apparatus
WO2020105724A1 (en) * 2018-11-23 2020-05-28 株式会社リガク Single-crystal x-ray structural analysis device and sample holder
WO2020105720A1 (en) * 2018-11-22 2020-05-28 株式会社リガク Single-crystal x-ray structural analysis device and sample holder mounting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4788676B2 (en) 2007-07-12 2011-10-05 トヨタ自動車株式会社 Gas introduction apparatus and method for analyzer
JP4784569B2 (en) 2007-07-13 2011-10-05 トヨタ自動車株式会社 Gas introduction device monitoring device for analyzer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223921A (en) * 2015-05-29 2016-12-28 国立大学法人名古屋大学 Hydrogen storage capacity measurement method and hydrogen storage capacity measurement apparatus
WO2020105720A1 (en) * 2018-11-22 2020-05-28 株式会社リガク Single-crystal x-ray structural analysis device and sample holder mounting device
JPWO2020105720A1 (en) * 2018-11-22 2021-10-07 株式会社リガク Single crystal X-ray structure analyzer and sample holder mounting device
JP7237373B2 (en) 2018-11-22 2023-03-13 株式会社リガク Single crystal X-ray structure analysis device and sample holder mounting device
WO2020105724A1 (en) * 2018-11-23 2020-05-28 株式会社リガク Single-crystal x-ray structural analysis device and sample holder

Also Published As

Publication number Publication date
JP3888577B2 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
Sharma et al. Measurement and analysis of reaction kinetics of La–based hydride pairs suitable for metal hydride–based cooling systems
US8020426B2 (en) Gas sorption tester for rapid screening of multiple samples
Ren et al. Hydrogen storage properties of magnesium hydride with V-based additives
Johansson et al. The sticking probability for H2 on some transition metals at a hydrogen pressure of 1bar
Lachawiec et al. A robust volumetric apparatus and method for measuring high pressure hydrogen storage properties of nanostructured materials
JP2003139726A (en) Analytical method of analyzing crystal structure for hydrogen storage alloy
CN105606767A (en) High vacuum-high pressure combined hydrogen storage property testing device for low hydrogen absorption equilibrium pressure material
Bürger et al. Material properties and empirical rate equations for hydrogen sorption reactions in 2 LiNH2–1.1 MgH2–0.1 LiBH4–3 wt.% ZrCoH3
Srinivasan et al. Metal hydrides used for hydrogen storage
Lillard et al. A thermal desorption study of the kinetics of uranium hydride decomposition
JP2009002878A (en) Device and method for evaluating gas adsorption material
EP2040071A2 (en) Gas sorption tester for rapid screening of multiple samples
Gray et al. In-situ diffraction techniques for studying hydrogen storage materials under high hydrogen pressure
Suwarno et al. Non-isothermal kinetics and in situ SR XRD studies of hydrogen desorption from dihydrides of binary Ti–V alloys
Cabrera et al. Kinetics of hydrogen desorption from palladium and ruthenium-palladium foils
Blackburn et al. Measurement of the reversible hydrogen storage capacity of milligram Ti–6Al–4V alloy samples with temperature programmed desorption and volumetric techniques
JP6583616B2 (en) Hydrogen storage amount measuring method and hydrogen storage amount measuring apparatus
JP7211205B2 (en) Device for detecting deterioration of hydrogen storage alloy, method for detecting deterioration thereof, and hydrogen absorption and desorption system
Kumar et al. Influence of aluminium content on the dynamic characterstics of mischmetal based hydrogen storage alloys
Miles et al. Search for anomalous effects involving excess power and helium during D2O electrolysis using palladium cathodes
Robinson et al. Metal hydride differential scanning calorimetry as an approach to compositional determination of mixtures of hydrogen isotopologues and helium
Romero et al. Unexpected large hydrogen adsorption by Nb cluster films under mild conditions of pressure and temperature
JP2006017543A (en) X-ray diffractometer and specimen measurement method
Adams et al. Kinetics of Isotope‐Exchange Reactions of Fluorine with Some Halogen Fluorides
Kojima et al. Thermal desorption of hydrogen adsorbed on copper surface.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061123

LAPS Cancellation because of no payment of annual fees