JP2003135942A - Hydrogen separating permeable membrane and method for manufacturing the same - Google Patents

Hydrogen separating permeable membrane and method for manufacturing the same

Info

Publication number
JP2003135942A
JP2003135942A JP2001334193A JP2001334193A JP2003135942A JP 2003135942 A JP2003135942 A JP 2003135942A JP 2001334193 A JP2001334193 A JP 2001334193A JP 2001334193 A JP2001334193 A JP 2001334193A JP 2003135942 A JP2003135942 A JP 2003135942A
Authority
JP
Japan
Prior art keywords
metal
film
hydrogen
alloy
permeable membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001334193A
Other languages
Japanese (ja)
Inventor
Shinobu Takagi
忍 高木
Shinichi Yagi
伸一 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001334193A priority Critical patent/JP2003135942A/en
Publication of JP2003135942A publication Critical patent/JP2003135942A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen separating permeable membrane with a defect- free hydrogen permeable metal film and metal supports which tightly support the metal film and in which numerous fine concave holes are arranged at high density and to provide a manufacturing method for reliably obtaining the membrane at a low cost. SOLUTION: The hydrogen separating permeable membrane 1 or 1a has a metal film 2 or an alloy film 2 comprising Pd as a hydrogen permeable metal element or a Pd-25 wt.% Ag alloy and a pair of metal supports 5, 6 fixed on both faces of the alloy film 2, or the like, the metal supports 5, 6 have numerous concave holes 8 ranging from their surfaces 5a, 6a to the surfaces 3, 4 of the alloy film 2, or the like, and the ratio (D/t) of the opening diameter D of the concave holes 8 in the surfaces of the metal supports 5, 6 to the total thickness (t) of the metal film 2, or the like, is within the range of 1.0-3.0.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水素含有ガス中の
水素を分離透過する水素分離透過膜およびその製造方法
に関する。
TECHNICAL FIELD The present invention relates to a hydrogen separation permeable membrane which separates and permeates hydrogen in a hydrogen-containing gas, and a method for producing the same.

【0002】[0002]

【従来の技術】一般に、水素分離透過膜の金属支持体
は、使用時の圧力損失を可及的に小さくするため、多孔
質であることが望ましい。一方、Pd(パラジウム)など
からなる水素透過性の金属膜または合金膜は、亀裂や膜
欠陥がなく且つ水素透過性能を高くすると共に、低コス
トにするためにできる限り薄くした薄膜とすることが望
ましい。これまで、水素分離透過膜の製造方法には、
(1)Pd板またはPd合金板を冷間圧延により箔化した
後、多孔質の金属支持体の表面に貼り付ける方法と、
(2)セラミックス製の多孔質支持体の表面に徐々に粒度
の細かいセラミックス粒子を被覆して複数層に積層し、
最上層の表面に無電解Pdメッキにより緻密で均一な厚
みのPd膜を形成する方法とが試みられている。
2. Description of the Related Art Generally, a metal support for a hydrogen permeable membrane is preferably porous in order to minimize pressure loss during use. On the other hand, a hydrogen-permeable metal film or alloy film made of Pd (palladium) or the like may be a thin film that is as thin as possible in order to have a high hydrogen-permeable performance without cracks and film defects and to have low cost. desirable. So far, the manufacturing method of the hydrogen separation permeable membrane,
(1) A method of forming a Pd plate or a Pd alloy plate into a foil by cold rolling, and then attaching the foil to the surface of a porous metal support,
(2) The surface of a porous ceramic support is gradually coated with ceramic particles having a small particle size and laminated in a plurality of layers,
Attempts have been made to form a dense and uniform Pd film on the surface of the uppermost layer by electroless Pd plating.

【0003】しかし、前記(1)の製造方法では、Pdの
厚みが50μm以下になると圧延による箔化が難しく、
得られるPd箔(膜)に亀裂やピンホールなどの欠陥が生
じ易くなる。また、前記(2)の製造方法では、Pd膜を
形成する前に、最上層に緻密なセラミックス層を形成す
る必要があり、このためゾルーゲル法などの高度な成膜
技術を用いるため、コスト高になる。しかも、セラミッ
クス製の支持体は、耐振動性や耐衝撃性が低いため、当
該支持体が破損したり、あるいは金属とセラミックスと
の間における熱膨張の差によりPd膜が剥離し易い。加
えて、金属とセラミックスとの溶接ができないため、他
の部材とのシール性の高い接合が難しい、などの問題が
あった。
However, in the manufacturing method of (1), when the thickness of Pd is 50 μm or less, it is difficult to form a foil by rolling,
Defects such as cracks and pinholes are likely to occur in the obtained Pd foil (film). In addition, in the manufacturing method of (2), it is necessary to form a dense ceramics layer as the uppermost layer before forming the Pd film. Therefore, since an advanced film forming technique such as the sol-gel method is used, the cost is high. become. Moreover, since the ceramic support has low vibration resistance and impact resistance, the support is easily damaged or the Pd film is easily peeled off due to the difference in thermal expansion between the metal and the ceramic. In addition, since metal and ceramics cannot be welded, there is a problem that it is difficult to join the other members with high sealing property.

【0004】更に、孔径が10〜500μmである多数
の細孔(凹孔)をエッチングにより穿孔したステンレス鋼
からなる金属支持体の片面に、Pd−Ag合金からなり
且つ膜厚が1〜50μmの水素透過合金膜を被着して形
成された水素分離膜も提案されている(特開平5−31
7662号公報参照)。しかしながら、上記合金膜の片
面に被着され且つエッチングされた金属支持体は、支持
強度が弱いため、上記合金膜が形成されると当該合金膜
を内側(凹み側)にして大きく反るように変形してしま
う。かかる変形を強制的に抑えようとすると、当該合金
膜に亀裂や剥離が生じてしまうため、実用的でない、と
いう問題があった。
Further, on one surface of a metal support made of stainless steel having a large number of pores (concave holes) having a diameter of 10 to 500 μm formed by etching, a Pd-Ag alloy having a film thickness of 1 to 50 μm is formed. A hydrogen separation membrane formed by depositing a hydrogen permeable alloy membrane has also been proposed (JP-A-5-31).
7662). However, the metal support adhered to one surface of the alloy film and etched is weak in support strength, so that when the alloy film is formed, the alloy film is warped to the inside (recess side). It will be transformed. If such deformation is forcibly suppressed, the alloy film is cracked or peeled off, which is not practical.

【0005】[0005]

【発明が解決すべき課題】本発明は、上述した従来の技
術における問題点を解決し、欠陥のない水素透過性の金
属膜とかかる金属膜を強固に支持し且つ多数の微細な凹
孔を高密度で配置する金属支持体とを備えた水素分離透
過膜およびこれを低コストで確実に得るための製造方法
を提供する、ことを課題とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, and provides a defect-free hydrogen permeable metal film, a metal film firmly supporting the metal film, and a large number of fine recesses. An object of the present invention is to provide a hydrogen separation permeable membrane provided with a metal support arranged at a high density and a manufacturing method for surely obtaining the hydrogen separation permeable membrane at low cost.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するため、発明者らの鋭意研究による結果、水素透過
性の金属膜の両面に一対の金属支持体を対称に固定し且
つこれらに多数の凹孔を穿孔する、ことに着想して成さ
れたものである。即ち、本発明の水素分離透過膜(請求
項1)は、水素透過性を有する金属元素を少なくとも1
種類以上含む金属膜または合金膜と、金属膜または合金
膜の両面に固定された一対の金属支持体と、を備え、一
対の金属支持体は、それぞれの表面から上記金属膜また
は合金膜の表面に至る多数の凹孔を有すると共に、かか
る凹孔の各金属支持体の表面における開口径Dとかかる
金属支持体および上記金属膜または合金膜の全体の厚み
tとの比D/tが、1.0〜3.0の範囲内にある、こ
とを特徴とする。尚、上記厚みtは、一対の金属支持体
の厚みと金属膜または合金膜との厚みとを合計した厚み
である。
In order to solve the above-mentioned problems, the present invention has revealed that, as a result of intensive research by the inventors, a pair of metal supports are symmetrically fixed on both surfaces of a hydrogen-permeable metal film and It was made with the idea of drilling a large number of concave holes. That is, the hydrogen separation permeable membrane of the present invention (Claim 1) contains at least one hydrogen-permeable metal element.
A metal film or alloy film containing more than one kind, and a pair of metal supports fixed on both sides of the metal film or alloy film, the pair of metal supports, the surface of the metal film or alloy film from each surface And the ratio D / t of the opening diameter D of the surface of each metal support of the recesses to the total thickness t of the metal support and the metal film or alloy film is 1 It is characterized in that it is in the range of 0.0 to 3.0. The thickness t is the total thickness of the pair of metal supports and the thickness of the metal film or alloy film.

【0007】これによれば、水素透過性の金属膜や合金
膜を、その両面から一対の金属支持体が挟持しつつ対称
に支持するため、かかる金属支持体を薄肉としても水素
分離透過膜に反りが生じないと共に、上記金属膜などの
膜厚も薄膜化し且つ膜支持強度を高めることができる。
また、一対の金属支持体に穿孔される多数の凹孔は、一
対の金属支持体の各表面から上記金属膜などの表面に至
るため、穿孔精度が高く且つ高密度で配置することが可
能となる。更に、薄膜化された上記金属膜などは、一対
の金属支持体に保護されているため、不用意に損傷しに
くく、水素分離装置における所定の位置に容易にセット
することも可能となる。しかも、上記比D/tを1.0
〜3.0の範囲内にしたので、金属支持体に穿孔される
凹孔をエッチングにより形成する場合でも、各凹孔の底
面に金属膜または合金膜の表面を確実に露出させること
ができる。従って、水素の透過分離を確実に行うことが
できる。
According to this, the hydrogen-permeable metal film or alloy film is supported symmetrically while being sandwiched by the pair of metal supports from both sides thereof. Therefore, even if the metal support is thin, it can be used as a hydrogen permeable membrane. Warpage does not occur, the film thickness of the metal film or the like can be reduced, and the film supporting strength can be increased.
Further, since the large number of recessed holes drilled in the pair of metal supports reach from the respective surfaces of the pair of metal supports to the surface of the metal film or the like, it is possible to arrange them with high drilling accuracy and high density. Become. Furthermore, since the thinned metal film is protected by the pair of metal supports, it is unlikely to be inadvertently damaged and can be easily set at a predetermined position in the hydrogen separation device. Moreover, the ratio D / t is 1.0
Since it is within the range of 3.0 to 3.0, the surface of the metal film or the alloy film can be surely exposed at the bottom surface of each recess even when the recess is formed in the metal support by etching. Therefore, the permeation separation of hydrogen can be reliably performed.

【0008】因みに、上記金属膜などの膜厚が5μmで
ある場合、各金属支持体の厚みは数10〜数100μm
である。尚、上記凹孔は、断面円形で底狭状の形態の
他、断面多角形とし例えば正六角形とし且つハニカムコ
ア状に配置することもできる。尚、上記開口径Dと一対
の金属支持体および金属膜全体の厚みtとの比D/tが
1.0未満になると、エッチング加工の場合に凹孔の底
面に金属膜などが露出しにくくなり、上記比D/tが
3.0を越えると凹孔の底面に金属膜などが大きく露出
し陥没し易くなるため、かかる比D/tを上記の範囲と
したものである。
When the film thickness of the metal film or the like is 5 μm, the thickness of each metal support is several tens to several hundreds μm.
Is. The concave hole may have a circular cross section and a narrow bottom shape, or may have a polygonal cross section, for example, a regular hexagon, and may be arranged in a honeycomb core shape. When the ratio D / t of the opening diameter D to the thickness t of the pair of metal supports and the metal film is less than 1.0, the metal film or the like is less likely to be exposed on the bottom surface of the recess during etching. When the ratio D / t exceeds 3.0, a metal film or the like is largely exposed on the bottom surface of the concave hole and is likely to be depressed. Therefore, the ratio D / t is within the above range.

【0009】また、本発明には、前記水素透過性を有す
る金属元素が、Pd、Ti、Zr、Hf、V、Nb、ま
たはTaの何れかである、水素分離透過膜(請求項2)も
含まれる。これによれば、例えばPdなどからなる水素
透過性の金属膜またはPd基合金などからなる水素透過
性の合金膜を、任意の金属元素から容易に選択して形成
できる。尚、上記合金膜には、例えばPd−Ag系合金
が適用される。更に、本発明には、前記金属支持体が、
ステンレス鋼、NiまたはNi基合金、AlまたはAl
基合金、CuまたはCu基合金の何れかからなる、水素
分離透過膜(請求項3)も含まれる。これによれば、水素
含有ガスまたは分離された水素によって腐食しにくい金
属支持体となるため、水素分離透過膜の耐久性を安定さ
せることが可能となる。
The present invention also provides a hydrogen permeable membrane (claim 2) in which the hydrogen-permeable metal element is any one of Pd, Ti, Zr, Hf, V, Nb, and Ta. included. According to this, for example, a hydrogen-permeable metal film made of Pd or the like or a hydrogen-permeable alloy film made of a Pd-based alloy or the like can be easily selected from any metal element and formed. A Pd—Ag alloy, for example, is applied to the alloy film. Further, in the present invention, the metal support is
Stainless steel, Ni or Ni-based alloy, Al or Al
A hydrogen separation permeable membrane (claim 3) made of a base alloy, Cu or a Cu base alloy is also included. According to this, the metal support is less likely to be corroded by the hydrogen-containing gas or the separated hydrogen, so that the durability of the hydrogen-permeable membrane can be stabilized.

【0010】また、本発明には、前記凹孔の前記各金属
支持体の表面における開口径Dは、10〜550μmで
ある、水素分離透過膜(請求項4)も含まれる。これによ
れば、金属支持体に穿孔される凹孔が後述するようにエ
ッチングにより形成される場合でも、各凹孔の底部に金
属膜または合金膜を確実に露出させることができるた
め、水素の透過分離を確実に行うことができる。一方、
凹孔がレーザ加工により穿孔される場合は、当該凹孔内
の傾斜(テーパ)が小さくなるため、各凹孔の底部に金属
膜などの表面を容易に露出可能となる。
The present invention also includes a hydrogen permeable membrane (claim 4) in which the opening diameter D of the concave hole on the surface of each metal support is 10 to 550 μm. According to this, even when the recessed holes drilled in the metal support are formed by etching as described below, the metal film or the alloy film can be surely exposed at the bottom of each recessed hole, so that the hydrogen Permeation separation can be reliably performed. on the other hand,
When the recessed holes are formed by laser processing, the inclination (taper) in the recessed holes becomes small, so that the surface of the metal film or the like can be easily exposed at the bottom of each recessed hole.

【0011】尚、凹孔の開口径Dが10μm未満では水
素含有ガスの流通抵抗が過大となり、一方、開口径Dが
550μmを越えると金属膜などが上記ガスにより変形
または陥没するおそれが生じるため、上記開口径Dを上
記の範囲としたものである。また、上記凹孔の前記各金
属支持体の表面における開口径Dは、50〜310μm
がより望ましい。かかる形態とすることにより、凹孔に
おける水素含有ガスの流通抵抗がなく且つ金属膜などが
かかるガスにより変形または陥没が生じることなく、水
素ガスのみを一層確実且つ安定して分離透過させること
が可能となる。
If the opening diameter D of the concave hole is less than 10 μm, the flow resistance of the hydrogen-containing gas becomes excessive, while if the opening diameter D exceeds 550 μm, the metal film or the like may be deformed or depressed by the gas. The opening diameter D is within the above range. The opening diameter D of the concave hole on the surface of each metal support is 50 to 310 μm.
Is more desirable. With such a configuration, it is possible to separate and permeate only hydrogen gas more reliably and stably without the flow resistance of the hydrogen-containing gas in the concave hole and without causing deformation or depression due to the gas on the metal film or the like. Becomes

【0012】加えて、本発明には、前記金属膜または合
金膜の両面に固定した一対の金属支持体における凹孔
は、上記金属膜または合金膜を挟んで同軸心またはほぼ
同軸心の位置にあるか、あるいは一方の金属支持体の凹
孔と他方の金属支持体の凹孔との軸心が互いにずれた位
置にある、水素分離透過膜(請求項5)も含まれる。これ
によれば、一対の金属支持体に穿孔される各凹孔を同軸
心またはほぼ同軸心の位置にする形態とすることによ
り、金属膜などを挟んで多数の凹孔を対称に配置でき、
水素分離透過膜全体の反りを確実に防止でき且つ同軸心
状の各凹孔の底部に金属膜などを確実に露出させること
ができる。
In addition, according to the present invention, the concave holes in the pair of metal supports fixed on both sides of the metal film or alloy film are located at the coaxial or substantially coaxial positions with the metal film or alloy film interposed therebetween. There is also a hydrogen separation permeable membrane (claim 5) in which the axis of the concave hole of one metal support and the concave hole of the other metal support are displaced from each other. According to this, by arranging the concave holes drilled in the pair of metal supports in a coaxial or substantially coaxial position, a large number of concave holes can be arranged symmetrically with a metal film or the like interposed therebetween.
The warp of the entire hydrogen permeable membrane can be reliably prevented, and the metal membrane or the like can be reliably exposed at the bottom of each coaxially-shaped concave hole.

【0013】また、一対の金属支持体に穿孔される各凹
孔の軸心を互いにずれた位置にする形態とすることによ
り、エッチング加工による凹孔であっても金属膜などを
介して水素ガスの分離透過を容易に行えると共に、多数
の凹孔を高密度にして配置することができる。また、各
金属支持体に形成する多数の凹孔同士間のピッチを、例
えば各凹孔の前記開口径Dの約1.5〜2倍程度に緻密
にしても、金属膜などを確実に支持する強度を維持する
ことが可能となる。尚、金属膜などを挟んだ位置に隣接
する一対の凹孔は、それぞれの底部にかかる金属膜の表
面が露出していれば、かかる露出する表面同士が厚み方
向において重複していない形態でも、金属膜などの内部
を迂回させつつ分離した水素を透過させることができ
る。
Further, by setting the axial centers of the concave holes formed in the pair of metal supports to be displaced from each other, even if the concave holes are formed by etching, the hydrogen gas is passed through the metal film or the like. It is possible to easily separate and permeate the same, and to arrange a large number of concave holes at high density. Further, even if the pitch between the large number of concave holes formed in each metal support is made dense, for example, about 1.5 to 2 times the opening diameter D of each concave hole, the metal film or the like is reliably supported. It becomes possible to maintain strength. Incidentally, the pair of concave holes adjacent to the position sandwiching the metal film and the like, if the surface of the metal film is exposed to the bottom of each, even if the exposed surfaces do not overlap in the thickness direction, It is possible to permeate separated hydrogen while bypassing the inside of a metal film or the like.

【0014】一方、本発明の水素分離透過膜の製造方法
(請求項6)は、水素透過性を有する金属元素を少なくと
も1種類以上含む金属膜または合金膜の両面に金属支持
体をそれぞれ固定する工程と、上記一対の金属支持体に
おけるそれぞれの表面から上記金属膜または合金膜の表
面に達する多数の凹孔を穿孔する工程と、を含む、こと
を特徴とする。これによれば、一対の金属支持体を薄肉
化し且つ欠陥のない金属膜などを薄膜化し全体を薄くし
且つ膜支持強度を高められ、多数の凹孔を穿孔精度が高
く且つ高密度で配置すると共に、前記比D/tを前記の
範囲内とした水素分離透過膜を確実に製造することが可
能となる。
On the other hand, the method for producing a hydrogen separation permeable membrane of the present invention
(Claim 6) comprises a step of fixing metal supports on both surfaces of a metal film or an alloy film containing at least one or more kinds of hydrogen-permeable metal elements, and the steps from the respective surfaces of the pair of metal supports. Drilling a large number of concave holes reaching the surface of the metal film or alloy film. According to this, the pair of metal supports can be thinned and a defect-free metal film or the like can be thinned to reduce the overall thickness and enhance the film supporting strength, and a large number of concave holes can be arranged with high accuracy and high density. At the same time, it becomes possible to reliably manufacture a hydrogen separation permeable membrane having the ratio D / t within the above range.

【0015】また、本発明には、前記金属膜または合金
膜の両面に金属支持体をそれぞれ固定する工程は、何れ
か一方の金属支持体の裏面にメッキ、イオンプレーティ
ング、または蒸着などにより上記金属膜または合金膜を
被覆した後、かかる金属膜または合金膜の表面に他方の
金属支持体を圧着、接着、または溶着するものである、
水素分離透過膜の製造方法(請求項7)も含まれる。更
に、前記金属元素を含む金属膜または合金膜の両面に金
属支持体をそれぞれ固定する工程は、前記金属または合
金を超急冷または圧延して帯状薄膜とした後、その両面
に金属支持体を圧着、接着、または溶着するものであ
る、水素分離透過膜の製造方法(請求項8)も含まれる。
Further, in the present invention, the step of fixing the metal support on both sides of the metal film or alloy film, respectively, is carried out by plating, ion plating, vapor deposition or the like on the back surface of one of the metal supports. After coating the metal film or alloy film, the other metal support is pressure-bonded, adhered, or welded to the surface of the metal film or alloy film.
A method for producing a hydrogen separation permeable membrane (claim 7) is also included. Further, in the step of fixing the metal support on both sides of the metal film or alloy film containing the metal element, respectively, after the metal or alloy is rapidly quenched or rolled into a strip-shaped thin film, the metal support is pressure-bonded on both sides thereof. Also included is a method for producing a hydrogen separation permeable membrane (claim 8) which is a method for adhering or welding.

【0016】これらによれば、金属膜の両面に金属支持
体を強固に固定した3層構造の積層体を確実に得ること
が可能となる。尚、上記圧着にはプレスまたはクラッド
圧延が、上記接着には無機または有機系接着剤による接
着が、更に、上記溶着には拡散接合を含む熱処理または
レーザ加熱などを用いる方法が含まれる。このうち、圧
着による場合、金属膜または合金膜の組織を一層緻密に
でき、且つ厚みも一層薄くできる。更に、圧延や超急冷
による帯状薄膜を用いる製造方法は、金属膜などがメッ
キで形成できない金属またはその合金からなる場合に適
用される。
According to these, it becomes possible to surely obtain a laminate having a three-layer structure in which the metal supports are firmly fixed on both sides of the metal film. The pressure bonding includes pressing or clad rolling, the bonding includes bonding with an inorganic or organic adhesive, and the welding includes a method using heat treatment including diffusion bonding or laser heating. Of these, when pressure bonding is used, the structure of the metal film or alloy film can be made more precise and the thickness can be made even thinner. Furthermore, the manufacturing method using a strip-shaped thin film by rolling or ultra-quenching is applied when the metal film or the like is made of a metal that cannot be formed by plating or an alloy thereof.

【0017】更に、本発明には、前記金属支持体に凹孔
を穿孔する工程は、かかる金属支持体の表面から所定パ
ターンに倣ったエッチングまたはレーザ加工を施すもの
である、水素分離透過膜の製造方法(請求項9)も含まれ
る。これによれば、前記金属膜などを挟んで各金属支持
体に同軸心状または軸心がずれた位置に多数の凹孔を精
度良く穿孔することができる。尚、上記エッチングに
は、公知のフォトリソグラフィ技術におけるエッチング
工程が用いられる。また、上記レーザには、炭酸ガスレ
ーザまたはYAGレーザなどが含まれる。
Further, according to the present invention, the step of boring a concave hole in the metal support is performed by etching or laser processing according to a predetermined pattern from the surface of the metal support. A manufacturing method (claim 9) is also included. According to this, a large number of recessed holes can be accurately formed in each metal support body with the metal film or the like being sandwiched therebetween, at a coaxial center or a position where the axis center is deviated. Incidentally, an etching step in a known photolithography technique is used for the above etching. Further, the laser includes a carbon dioxide gas laser, a YAG laser, or the like.

【0018】加えて、本発明には、前記水素透過性を有
する金属元素が、Pd、Ti、Zr、Hf、V、Nb、
またはTaの何れかであり、あるいは、前記金属支持体
が、ステンレス鋼、NiまたはNi基合金、Alまたは
Al基合金、CuまたはCu基合金の何れかからなる、
水素分離透過膜の製造方法(請求項10)も含まれる。こ
れによれば、前述した水素含有ガスから水素を分離透過
する金属膜などとその両面で多数の凹孔を穿孔され且つ
耐食性を有する一対の金属支持体とからなる水素分離透
過膜を確実に製造することができる。
In addition, in the present invention, the metal element having hydrogen permeability is Pd, Ti, Zr, Hf, V, Nb,
Or Ta, or the metal support is made of any one of stainless steel, Ni or Ni-based alloy, Al or Al-based alloy, Cu or Cu-based alloy,
A method for producing a hydrogen permeable membrane (claim 10) is also included. According to this, it is possible to reliably manufacture a hydrogen permeable membrane that is composed of a metal membrane that separates and permeates hydrogen from the hydrogen-containing gas described above and a pair of metal supports that have a large number of concave holes on both sides and that have corrosion resistance. can do.

【0019】[0019]

【発明の実施の形態】以下において、本発明の実施に好
適な形態を図面と共に説明する。図1(A)は、本発明に
よる1形態の水素分離透過膜1の要部の概略を示す。水
素分離透過膜1は、図1(A)に示すように、水素透過性
を有する金属元素Pdからなる金属膜2またはPd−A
g合金の合金膜2と、かかる金属膜2などの両面(表面)
3,4に固定されたステンレス鋼(SUS316L)から
なる一対の金属支持体5,6とを備える。金属支持体
5,6は、それぞれの表面5a,6aから合金膜2の表
面3,4に至る厚み方向に沿った多数の微細な凹孔8を
有する。かかる凹孔8は、後述するように金属支持体
5,6をエッチングすることにより穿孔されたもので、
ほぼ半球形状を呈するその底面9の中央付近には、上記
金属膜2などの表面3,4が露出している。また、上記
金属膜2などを挟んだ両側の凹孔8,8は、互いに同軸
心の位置にそれぞれ配置されている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 (A) shows an outline of a main part of a hydrogen separation permeable membrane 1 of one embodiment according to the present invention. As shown in FIG. 1A, the hydrogen separation permeable membrane 1 is a metal membrane 2 or Pd-A made of a metal element Pd having hydrogen permeability.
Alloy film 2 of g alloy and both sides (surface) of such metal film 2
And a pair of metal supports 5 and 6 made of stainless steel (SUS316L) fixed to the surfaces 3 and 4. The metal supports 5 and 6 have a large number of fine recessed holes 8 along the thickness direction from the respective surfaces 5a and 6a to the surfaces 3 and 4 of the alloy film 2. The recessed holes 8 are formed by etching the metal supports 5 and 6 as described later,
The surfaces 3 and 4 of the metal film 2 and the like are exposed in the vicinity of the center of the bottom surface 9 having a substantially hemispherical shape. The concave holes 8 on both sides sandwiching the metal film 2 and the like are arranged coaxially with each other.

【0020】因みに、上記金属膜2または合金膜2の厚
みは約5μmであり、かかる金属膜2または合金膜2と
金属支持体5,6との全体の厚み(t)は約50〜500
μm、凹孔8の表面5a,6aにおける開口径(D)は、
10〜550μmである。尚、上記水素透過性を有する
金属元素には、Ti、Zr、Hf、V、Nb、またはT
aも含まれる。また、金属支持体5,6は、Niまたは
Ni基合金、AlまたはAl基合金、CuまたはCu基
合金の何れからなるものとしても良い。
Incidentally, the thickness of the metal film 2 or alloy film 2 is about 5 μm, and the total thickness (t) of the metal film 2 or alloy film 2 and the metal supports 5 and 6 is about 50 to 500.
μm, the opening diameter (D) on the surfaces 5a, 6a of the concave hole 8 is
It is 10 to 550 μm. The hydrogen-permeable metal element may be Ti, Zr, Hf, V, Nb, or T.
a is also included. The metal supports 5 and 6 may be made of any one of Ni or Ni-based alloy, Al or Al-based alloy, Cu or Cu-based alloy.

【0021】図1(B)は、異なる形態の水素分離透過膜
1aの要部の概略を示す。図1(B)に示すように、水素
分離透過膜1aも、水素透過性を有するPdなどからな
る金属膜2またはPd−Agなどの合金膜2と、かかる
金属膜2などの両面3,4に固定された一対の金属支持
体5,6を備え、かかる金属支持体5,6の表面5a,
6aから金属膜2などの表面3,4に至る厚み方向に沿
った多数の微細な凹孔8を有する。かかる凹孔8もエッ
チングにより穿孔され、その底面9の中央付近には上記
金属膜2などの表面3,4が露出すると共に、上記金属
膜2などを挟んだ両側の凹孔8,8は、互いの軸心がず
れた位置に配置されている。かかる配置により、図1
(B)に示す水素分離透過膜1aの各凹孔8における厚み
方向の水素透過面積は、前記水素分離透過膜1よりも小
さくなるが、かかる透過膜1a自体の膜支持強度が高く
なるため、金属膜など2を破れにくくすることができ
る。この結果、より微細な凹孔8を多数穿孔することに
より、透過後における水素純度を高くすることが容易と
なる。
FIG. 1B shows an outline of the main part of a hydrogen separation / permeable membrane 1a having a different form. As shown in FIG. 1B, the hydrogen separation / permeable membrane 1a is also composed of a metal membrane 2 made of Pd or the like having hydrogen permeability or an alloy membrane 2 such as Pd-Ag and both surfaces 3, 4 of the metal membrane 2 or the like. A pair of metal supports 5, 6 fixed to the surface of the metal support 5, 6
It has a large number of fine recessed holes 8 along the thickness direction from 6a to the surfaces 3 and 4 of the metal film 2 and the like. The concave hole 8 is also formed by etching, the surfaces 3 and 4 of the metal film 2 and the like are exposed near the center of the bottom surface 9, and the concave holes 8 and 8 on both sides sandwiching the metal film 2 are They are arranged at positions where their axes are offset from each other. With this arrangement, FIG.
Although the hydrogen permeable area in the thickness direction of each concave hole 8 of the hydrogen permeable membrane 1a shown in (B) is smaller than that of the hydrogen permeable membrane 1, the membrane supporting strength of the permeable membrane 1a itself is high. It is possible to make the metal film or the like 2 difficult to tear. As a result, by forming a large number of finer concave holes 8, it becomes easy to increase the hydrogen purity after permeation.

【0022】図2(A)は、前記水素分離透過膜1の拡大
断面を示す。水素透過性の金属膜2などを挟んで同軸心
の位置に対向する凹孔8,8は、後述するエッチングに
より穿孔されている。従って、図2(A)に示すように、
金属支持体5,6の表面5a,6aにおける凹孔8,8
の開口径Dは、金属膜2などおよび金属支持体5,6全
体の厚みtと同じか、これよりも大きくなる。尚、凹孔
8の開口径Dは、10〜550μmの範囲が望ましく、
10μm未満では水素含有ガスの流通抵抗が過大とな
り、一方、開口径Dが550μmを越えると、金属膜2
などが上記ガスで変形したりまたは陥没を誘発し易くす
るおそれがある。また、図2(B),(C)は、前記水素分
離透過膜1aの拡大断面を示し、水素透過性の金属膜2
などを挟んで互いの軸心がずれた位置で対向する凹孔
8,8も、エッチングにより穿孔されている。尚、図2
(B),(C)は、金属膜2などを挟んだ両側の凹孔8,8
の軸心間における距離が互いに相違する形態を示す。
FIG. 2 (A) shows an enlarged cross section of the hydrogen permeable membrane 1. The recessed holes 8, 8 facing the coaxial position with the hydrogen permeable metal film 2 or the like sandwiched therebetween are bored by etching described later. Therefore, as shown in FIG.
Recessed holes 8, 8 on the surfaces 5a, 6a of the metal supports 5, 6
The opening diameter D is equal to or larger than the total thickness t of the metal film 2 and the metal supports 5 and 6. The opening diameter D of the concave hole 8 is preferably in the range of 10 to 550 μm,
If it is less than 10 μm, the flow resistance of the hydrogen-containing gas becomes excessive, while if the opening diameter D exceeds 550 μm, the metal film 2
And the like may be deformed by the gas or may easily induce depression. 2B and 2C are enlarged cross-sectional views of the hydrogen permeable / permeable membrane 1a, showing the hydrogen permeable metal membrane 2
The concave holes 8 and 8 facing each other at positions where their axes are offset from each other with the axis sandwiched therebetween are also punched by etching. Incidentally, FIG.
(B) and (C) are concave holes 8 and 8 on both sides sandwiching the metal film 2 or the like.
2 shows a mode in which the distances between the axis centers of are different from each other.

【0023】更に、図2(A)に示すように、凹孔8,8
のほぼ半球形状の底面9の中央付近において金属膜2な
どの表面3,4が露出する部分は、水素含有ガス中の水
素が分離し且つ透過する部分であり、かかる部分の透過
径dは約0.01μm以上とすることが必要である。と
ころで、図2(B)に示す水素分離透過膜1aでは、上記
透過径dが小さくなる。更に、図2(C)に示す水素分離
透過膜1aでは、透過径dが0になる。しかし、図2
(C)中の破線の矢印で示すように、金属膜2などの両側
における凹孔8,8の底面9にかかる金属膜2などの表
面3,4が露出していれば、かかる表面3,4同士が厚
み方向において重複していなくても、即ち透過径dが0
(ゼロ)でも、金属膜2などの内部を迂回しつつ分離した
水素を透過させることができる。
Further, as shown in FIG. 2 (A), the concave holes 8, 8
The portion where the surfaces 3 and 4 of the metal film 2 and the like are exposed near the center of the bottom surface 9 having a substantially hemispherical shape is a portion through which hydrogen in the hydrogen-containing gas is separated and permeated, and the permeation diameter d of such portion is approximately. It is necessary that the thickness is 0.01 μm or more. By the way, in the hydrogen separation / permeable membrane 1a shown in FIG. 2 (B), the permeation diameter d is small. Further, in the hydrogen separation / permeable membrane 1a shown in FIG. 2 (C), the permeation diameter d becomes 0. However, FIG.
As shown by the dashed arrow in (C), if the surfaces 3, 4 of the metal film 2 or the like that are exposed to the bottoms 9 of the recessed holes 8, 8 on both sides of the metal film 2 or the like are exposed, 4 does not overlap each other in the thickness direction, that is, the permeation diameter d is 0.
Even at (zero), separated hydrogen can be permeated while bypassing the inside of the metal film 2 or the like.

【0024】上記の各水素分離透過膜1aは、前記図1
(B)に示したように、金属膜2などを挟んで隣接する凹
孔8,8の各軸心を適宜ずらすことで、該透過膜1aの
膜支持強度が向上するため、金属膜2などが破れにくく
なる。この結果、より微細な凹孔8を多数形成すること
で、透過後の水素純度を高めることが容易となる。上記
透過径dまたは水素の流通路を確保するには、凹孔8の
開口径Dと金属膜2などおよび金属支持体5,6の全体
の厚みtとの比D/tは、1.0〜3.0の範囲にある
ことが必要となる。即ち、かかる比D/tが1.0未満
になると、エッチング加工の場合に凹孔8の底部に金属
膜2などが露出しにくくなり、上記比D/tが3.0を
越えると凹孔8の底部に金属膜2などが大きく露出し陥
没し易くなるためである。以上の水素分離透過膜1,1
aによれば、金属膜2などは金属支持体5,6によりそ
の両面から支持されているため、該金属膜2などを薄膜
化してもクラックなどの欠陥を生じず、且つ多数の凹孔
8を有する金属支持体5,6も薄肉化できるため、全体
を薄くし且つ安定した水素の分離透過作用を果たすこと
ができる。
The above-mentioned hydrogen separation and permeable membranes 1a are the same as those shown in FIG.
As shown in (B), by appropriately shifting the axial centers of the recessed holes 8, 8 that are adjacent to each other with the metal film 2 or the like sandwiched between them, the film supporting strength of the permeable membrane 1a is improved. Is hard to tear. As a result, by forming a large number of finer concave holes 8, it becomes easy to increase the hydrogen purity after permeation. In order to secure the permeation diameter d or the hydrogen flow passage, the ratio D / t of the opening diameter D of the concave hole 8 and the total thickness t of the metal film 2 and the metal supports 5 and 6 is 1.0. It is necessary to be in the range of 3.0. That is, when the ratio D / t is less than 1.0, it becomes difficult to expose the metal film 2 or the like at the bottom of the recessed hole 8 during etching, and when the ratio D / t exceeds 3.0, the recessed hole is not formed. This is because the metal film 2 and the like are largely exposed at the bottom of 8 and are easily depressed. Hydrogen separation permeable membrane 1, 1 above
According to a, since the metal film 2 and the like are supported from both sides by the metal supports 5 and 6, defects such as cracks do not occur even when the metal film 2 and the like are thinned, and a large number of concave holes 8 are formed. Since the metal supports 5 and 6 having the above can also be thinned, the whole can be made thin and a stable hydrogen separating and permeating action can be achieved.

【0025】ここで、前記水素分離透過膜1の製造方法
について、図3に基づき説明する。図3(A)に示すよう
に、先ず、ステンレス鋼(SUS316L)からなり厚さ
が0.1mmの金属支持体6の裏面に、水素透過性のP
dからなる金属膜2またはPd−25wt%Agからなる
合金膜2を、電解メッキにより全体の膜厚を約10μm
で形成した。この際、合金膜2は、金属支持体6にPd
またはAgを電解メッキし且つその上にAgまたはPd
を更に電解メッキした後、これらを加熱してAgをPd
中に拡散することにより形成される。尚、圧延または超
急冷によりZrまたはVあるいはそれらの合金からなる
帯状薄膜を形成し、その両面に金属支持体5,6を次の
クラッド圧延によって圧着しても良い。
Now, a method of manufacturing the hydrogen separation / permeable membrane 1 will be described with reference to FIG. As shown in FIG. 3 (A), first, on the back surface of the metal support 6 made of stainless steel (SUS316L) and having a thickness of 0.1 mm, a hydrogen-permeable P
The metal film 2 made of d or the alloy film 2 made of Pd-25 wt% Ag is electrolytically plated to a total film thickness of about 10 μm.
Formed by. At this time, the alloy film 2 is deposited on the metal support 6 with Pd.
Alternatively, Ag may be electroplated and Ag or Pd may be deposited on it.
After further electrolytic plating, these are heated to add Ag to Pd
It is formed by diffusing into it. Alternatively, a band-shaped thin film made of Zr or V or an alloy thereof may be formed by rolling or ultra-quenching, and the metal supports 5 and 6 may be pressure-bonded to both surfaces thereof by the following clad rolling.

【0026】次に、図3(B)に示すように、金属膜2や
合金膜2の表面3上に上記と同じ材質および厚さの金属
支持体5を載置し、かかる状態で図示しない一対の平ロ
ール間に冷間で通すクラッド圧延を行った。かかる圧延
は、50%の圧下率による圧着で、圧延後の金属膜2お
よび金属支持体5,6全体の厚みtは全体で約0.1m
mになり、金属膜2などの膜厚は約5μmとなって、そ
の組織が一層緻密になった。尚、クラッド圧延する場合
の素材は、ステンレス鋼板とステンレス鋼のメッキとを
積層する以外に、ステンレス鋼のメッキ同士を2層積層
したものでも良い。また、圧下率は密着に要する圧力が
あれば良く、50%に限定されない。
Next, as shown in FIG. 3B, a metal support 5 of the same material and thickness as above is placed on the surface 3 of the metal film 2 or the alloy film 2 and not shown in this state. Clad rolling was carried out by passing it cold between a pair of flat rolls. Such rolling is pressure bonding with a reduction ratio of 50%, and the total thickness t of the metal film 2 and the metal supports 5 and 6 after rolling is about 0.1 m in total.
m, the film thickness of the metal film 2 etc. became about 5 μm, and the structure became more dense. The material for clad rolling may be a laminate of stainless steel plates and a stainless steel plate, or a laminate of two stainless steel plates. Further, the rolling reduction is not limited to 50% as long as the pressure required for the adhesion is sufficient.

【0027】次いで、金属膜2などを挟んだ金属支持体
5,6の表面5a,6a全体に、例えばノボラック系の
樹脂からなり厚さが数10μmの光感光性樹脂を塗布ま
たはフィルム圧着により被覆し、かかる樹脂層(レジス
ト)10の上に図示しない多数の透孔を有するメタルマ
スクを載置した後、紫外線などにより露光する。更に、
上記マスクを外し上記樹脂層10に現像液を接触させる
と、例えばポジ型の場合、上記マスクに覆われなかった
透孔部分に当たる位置には、図3(C)に示すように、樹
脂層10を貫通し且つ底面に金属支持体5,6の表面5
a,6aが露出する多数の開口部12が形成される。
尚、金属膜2または合金膜2を挟んで対向する開口部1
2,12は、図3(C)に示すように、互いの軸心が一致
している。また、上記のようなフォトリソグラフィ技術
を施す工程は、一対の樹脂層10,10に対し同時平行
的に行っても良いが、順次個別に行うこともできる。
Next, the entire surfaces 5a, 6a of the metal supports 5, 6 sandwiching the metal film 2 and the like are coated with a photosensitive resin made of, for example, a novolac resin and having a thickness of several tens of μm by coating or film pressure bonding. Then, a metal mask having a large number of through holes (not shown) is placed on the resin layer (resist) 10 and then exposed by ultraviolet rays or the like. Furthermore,
When the mask is removed and a developing solution is brought into contact with the resin layer 10, for example, in the case of a positive type, as shown in FIG. 3C, the resin layer 10 is located at a position corresponding to a through hole portion not covered by the mask. Surface 5 of the metal supports 5, 6
A large number of openings 12 through which a and 6a are exposed are formed.
The opening 1 facing the metal film 2 or the alloy film 2 is provided.
As shown in FIG. 3C, the axes 2 and 12 are aligned with each other. Further, the steps of performing the photolithography technique as described above may be performed in parallel with the pair of resin layers 10 at the same time, but may be performed individually in sequence.

【0028】そして、多数の開口部12を有する樹脂層
(エッチングレジスト)10,10を有する金属膜2など
と金属支持体5,6とからなる積層体を、図示しないエ
ッチング液中に所定時間にわたり浸漬する。その結果、
図3(D)に示すように、上記開口部12を通じてエッチ
ングされた金属支持体5,6の部分には、その表面5
a,6aから金属膜2などの表面3,4に至る断面ほぼ
半球形状の凹孔8が穿孔される。かかるエッチング後
に、不要となった上記樹脂層10を剥離剤で除去するこ
とにより、多数の凹孔8が穿孔された金属支持体5,6
が露出する。
A resin layer having a large number of openings 12
(Etching resist) A laminate composed of the metal film 2 having the 10, 10 and the metal supports 5, 6 is dipped in an etching solution (not shown) for a predetermined time. as a result,
As shown in FIG. 3D, the surface of the metal support 5, 6 is etched through the opening 12.
A concave hole 8 having a substantially hemispherical cross section is formed from a, 6a to the surfaces 3, 4 of the metal film 2 or the like. After such etching, the unnecessary resin layer 10 is removed with a release agent, so that the metal supports 5, 6 having a large number of concave holes 8 formed therein are formed.
Is exposed.

【0029】かかる凹孔8の底面9は、上記エッチング
作用が深くなるに連れて弱くなることにより、図3(D)
に示すように、ほぼ半球形状を呈し、その中央付近に金
属膜2などの表面3,4が露出している。このため、前
述したように、表面5a,6aにおける凹孔8の開口径
Dが10〜550μmであり且つ金属膜2などおよび金
属支持体5,6の全体の厚みtに対し、1.0〜3.0
の範囲に入るよう予め上記厚みt、開口部12の開口径
D、および前記エッチング条件が選定される。尚、上記
凹孔8を穿孔するエッチング工程(例えばサブトラクテ
ィブ法)は、金属支持体5,6に対して同時に行った
が、個別に順次行うこともできる。以上の各工程を経る
ことにより、水素分離透過膜1を製造することができ
る。
The bottom surface 9 of the recessed hole 8 becomes weaker as the etching action becomes deeper, so that the bottom surface 9 of FIG.
As shown in FIG. 3, the surface is substantially hemispherical, and the surfaces 3 and 4 of the metal film 2 and the like are exposed near the center thereof. Therefore, as described above, the opening diameter D of the recessed hole 8 on the surfaces 5a and 6a is 10 to 550 μm, and the total thickness t of the metal film 2 and the metal supports 5 and 6 is 1.0 to 3.0
The thickness t, the opening diameter D of the opening 12, and the etching conditions are selected in advance so as to fall within the range. Although the etching process (for example, the subtractive method) for forming the recessed holes 8 was performed simultaneously on the metal supports 5 and 6, it may be performed individually and sequentially. The hydrogen separation permeable membrane 1 can be manufactured through the above steps.

【0030】図4は、前記水素分離透過膜1aの製造方
法に関する。図4(A)に示すように、前記同様の金属膜
2または合金膜2の表面3,4に圧着した金属支持体
5,6の表面5a,6a上に樹脂層10をそれぞれ被覆
した後、前述したフォトリソグラフィ技術を施す。この
際、樹脂層10,10上に載置する各マスクの透孔同士
間のピッチおよび各マスク同士の位置を、前記図3で用
いたものと変更する。この結果、図4(B)に示すよう
に、合金膜2などおよび金属支持体5,6を挟んだ樹脂
層10の開口部12は、各々の軸心が互いにずれており
且つ隣接する開口部12,12間のピッチも小さくして
形成される。
FIG. 4 relates to a method of manufacturing the hydrogen permeable membrane 1a. As shown in FIG. 4 (A), after coating the resin layer 10 on the surfaces 5a and 6a of the metal supports 5 and 6 which are pressure-bonded to the surfaces 3 and 4 of the metal film 2 or alloy film 2 similar to the above, respectively, The above-mentioned photolithography technique is applied. At this time, the pitch between the through holes of the masks placed on the resin layers 10 and 10 and the positions of the masks are changed to those used in FIG. As a result, as shown in FIG. 4 (B), the openings 12 of the resin layer 10 sandwiching the alloy film 2 and the metal supports 5 and 6 are such that their axes are offset from each other and the openings are adjacent to each other. The pitch between 12 and 12 is also made small.

【0031】そして、これらを前記同様のエッチング液
中に所定時間にわたり浸漬することにより、図4(C)に
示すように、多数の凹孔8が金属支持体5,6に穿孔さ
れ、これらの軸心が金属膜2などを挟んで互いにずれて
いる水素分離透過膜1aを得ることができる。尚、図4
(C)にて、金属支持体5に穿孔された凹孔8,8と金属
支持体6に穿孔された凹孔8,8とは、図示で左右方向
に約1/5〜1/3ピッチ分ずれた位置にある。この結
果、前記水素分離透過膜1に比べて、前記透過径dが小
さくなるか、またはなくなるが、膜支持強度が向上する
ため、金属膜2などを破れにくく且つ多数の微細な凹孔
8を高密度に形成することができる。尚、前記図2(C)
に示したように、透過径dがない(0)場合でも、金属膜
2などを挟んだ凹孔8,8の底面9に当該金属膜2など
の表面3,4が露出していれば、金属支持体5,6に軸
心を適宜ずらして多数の凹孔8を穿孔しても良い。
By immersing these in the same etching solution as above for a predetermined time, a large number of recessed holes 8 are bored in the metal supports 5 and 6 as shown in FIG. 4 (C). It is possible to obtain the hydrogen separation / permeable membrane 1a whose axes are offset from each other with the metal membrane 2 or the like interposed therebetween. Incidentally, FIG.
In (C), the recessed holes 8 and 8 drilled in the metal support 5 and the recessed holes 8 and 8 drilled in the metal support 6 are approximately 1/5 to 1/3 pitch in the left-right direction in the figure. It is in a position that is offset. As a result, the permeation diameter d becomes smaller or disappears as compared with the hydrogen separation permeable membrane 1, but the membrane supporting strength is improved, so that the metal membrane 2 or the like is not easily broken and a large number of minute concave holes 8 are formed. It can be formed with high density. In addition, the above-mentioned FIG. 2 (C)
As shown in, even if the transmission diameter d is not (0), if the surfaces 3 and 4 of the metal film 2 and the like are exposed on the bottom surface 9 of the recessed holes 8 and 8 that sandwich the metal film 2 and the like, A large number of recessed holes 8 may be formed in the metal supports 5 and 6 by appropriately shifting the axes.

【0032】[0032]

【実施例】以下において、本発明の具体的な実施例を比
較例と併せて説明する。ステンレス鋼(SUS316L)
からなる金属支持体6を用意し、これらの裏面に、Pd
からなる水素透過性の金属膜2、または、Pd−25wt
%Ag、Zr−65wt%Ni、またはV−20wt%Ni
の何れかからなる水素透過性の合金膜2を、電解メッキ
などによりその膜厚を約10〜40μmにして個別に形
成した。尚、実施例21のV基合金からなる合金膜2
は、イオンプレーティングにより形成した。また、実施
例20のZr基合金からなる合金膜2は、超急冷法によ
り帯状薄膜を形成し、その両面に金属支持体5,6を次
述する圧延で圧着した。このうち、比較例1〜4につい
ては、かかる状態で直ちに後述する樹脂層10を形成し
且つエッチングによる凹孔8の穿孔を行った。
EXAMPLES Hereinafter, specific examples of the present invention will be described together with comparative examples. Stainless steel (SUS316L)
A metal support 6 made of Pd is prepared.
Hydrogen permeable metal film 2 or Pd-25wt
% Ag, Zr-65 wt% Ni, or V-20 wt% Ni
The hydrogen-permeable alloy film 2 made of any of the above was individually formed by electrolytic plating to a thickness of about 10 to 40 μm. The alloy film 2 made of the V-based alloy of Example 21
Were formed by ion plating. Further, the alloy film 2 made of the Zr-based alloy of Example 20 was formed into a band-shaped thin film by the ultra-quenching method, and the metal supports 5 and 6 were pressure-bonded to both surfaces thereof by the rolling described below. Among them, in Comparative Examples 1 to 4, the resin layer 10 described later was immediately formed in this state, and the recessed holes 8 were formed by etching.

【0033】次に、実施例1〜21および比較例5,6
について、各金属膜2または合金膜2の表面3上に材質
および厚さが上記同じ金属支持体5を載せ、この状態で
図示しない一対の平ロール間に冷間で通すクラッド圧延
を行った。かかる圧延は、圧下率50%による圧着であ
るため、圧延後の金属膜2などおよび金属支持体5,6
全体の厚みtは、表1のように0.05〜1.0mmと
なり、且つ金属膜2などの膜厚は5〜20μmとなっ
た。また、金属膜2などを挟んだ金属支持体5,6の表
面5a,6a全体に、ロールコーターを用いてノボラッ
ク系の樹脂からなる厚み約10μmの光感光性樹脂を塗
布し、予備加熱した後、樹脂層10の上に内径が異なる
透孔を有するメタルマスクを個別に載置して紫外線にて
露光した。
Next, Examples 1 to 21 and Comparative Examples 5 and 6
The metal support 5 having the same material and thickness as described above was placed on the surface 3 of each metal film 2 or alloy film 2, and in this state, clad rolling was performed by cold passing between a pair of flat rolls (not shown). Since such rolling is pressure bonding with a reduction rate of 50%, the rolled metal film 2 and the metal supports 5, 6
The total thickness t was 0.05 to 1.0 mm as shown in Table 1, and the film thickness of the metal film 2 was 5 to 20 μm. Further, after applying a photosensitive resin of novolac-based resin having a thickness of about 10 μm to the entire surfaces 5a and 6a of the metal supports 5 and 6 with the metal film 2 or the like sandwiched between them and preheating the same. A metal mask having through holes having different inner diameters was individually placed on the resin layer 10 and exposed to ultraviolet rays.

【0034】更に、上記マスクを外し、上記樹脂層10
に現像液をそれぞれ接触させた。この結果、ポジ型の場
合、メタルマスクに覆われなかった上記透孔に連通する
位置に、樹脂層10を貫通し且つ底面に金属支持体5,
6の表面5a,6aが露出する開口部12を形成した。
かかる状態で、エッチング液に浸漬して、開口部12に
連通する金属支持体5,6に、表1に示す開口径Dおよ
び透過径dを有する凹孔8を形成して、実施例1〜21
と比較例5,6の水素分離透過膜を得た。尚、表1に示
すように、比較例1〜4は、金属支持体5がなく且つク
ラッド圧延していないため、金属膜2の片面にのみ金属
支持体6と凹孔8を有している。また、各例における凹
孔8の底面9における金属膜/合金膜2の表面3,4が
露出する透過径d、開口径Dと金属膜/合金膜2および
金属支持体5,6の全体の厚みtとの比D/tについて
も表1に示した。更に、各例で金属膜2を挟んだ両側の
凹孔8,8が同軸心の位置か、または金属膜2を挟んだ
両側の凹孔8,8の軸心がずれているか、あるいは金属
膜2の片面にのみ凹孔8が位置するか、についても表1
に示した。
Further, the mask is removed and the resin layer 10 is removed.
And the developing solution was brought into contact with each. As a result, in the case of the positive type, the metal support 5 penetrates through the resin layer 10 at the position communicating with the through hole which is not covered with the metal mask and is formed on the bottom surface.
The openings 12 were formed so that the surfaces 5a, 6a of the 6 were exposed.
In this state, it is immersed in an etching solution to form recessed holes 8 having the opening diameter D and the transmission diameter d shown in Table 1 in the metal supports 5 and 6 communicating with the openings 12 to form the first to third embodiments. 21
And hydrogen separation permeable membranes of Comparative Examples 5 and 6 were obtained. In addition, as shown in Table 1, Comparative Examples 1 to 4 have no metal support 5 and are not clad-rolled, and therefore have the metal support 6 and the concave hole 8 on only one surface of the metal film 2. . Further, in each example, the permeation diameter d, the opening diameter D, and the metal film / alloy film 2 and the metal supports 5 and 6 at which the surfaces 3 and 4 of the metal film / alloy film 2 on the bottom surface 9 of the concave hole 8 are exposed. The ratio D / t with the thickness t is also shown in Table 1. Further, in each example, the recessed holes 8 and 8 on both sides sandwiching the metal film 2 are located at the coaxial positions, or the axial centers of the recessed holes 8 and 8 on both sides sandwiching the metal film 2 are displaced, or Table 1 also shows whether the concave hole 8 is located only on one side of No. 2
It was shown to.

【0035】[0035]

【表1】 [Table 1]

【0036】各例の水素分離透過膜について、気密性
(ガス漏れ評価)試験を行った。即ち、直径35mmとし
た各例の水素分離透過膜をVCR構造のホルダー内に個
別にセットし、室温で窒素ガスを0.8MPaの圧力を
加え、各例における金属膜2または合金膜2の気密性を
測定した。その結果を表2に示す。表2のうち、比較例
1,2,6にはピンホールが、また比較例3,4にはク
ラックによるガス漏れが確認された。一方、これらを除
いた実施例1〜21と比較例5とでは、何れもガス漏れ
はなかった。
Airtightness of the hydrogen permeable membrane of each example
(Gas leak evaluation) A test was conducted. That is, the hydrogen separation and permeable membrane of each example having a diameter of 35 mm was individually set in a holder having a VCR structure, and nitrogen gas was applied at a pressure of 0.8 MPa at room temperature to hermetically seal the metal film 2 or the alloy film 2 in each example. The sex was measured. The results are shown in Table 2. In Table 2, pinholes were confirmed in Comparative Examples 1, 2 and 6, and gas leakage due to cracks was confirmed in Comparative Examples 3 and 4. On the other hand, in Examples 1 to 21 and Comparative Example 5 excluding these, there was no gas leakage.

【0037】かかる結果から、金属膜2の片面にのみ金
属支持体6を有し且つ凹孔8の開口径Dが比較的大きな
比較例1,2では、ガス漏れが著しく、金属膜2自体に
問題があることが判明した。また、比較例3,4は、ガ
ス漏れは少なかったが、金属膜2の片面にのみ比較的薄
肉の金属支持体6を有するため、凹孔8を形成した後
で、大きな反りを生じ実用的ではなかった。更に、比較
例6は、凹孔8の開口径Dと金属膜2および金属支持体
5,6の全体の厚みtとの比D/tが4.0であること
により金属膜2のピンホールが生じたため、著しいガス
漏れが発生した。一方、比較例5は、上記比D/tが
0.8と低いことに起因して、凹孔8の底部に金属膜2
の表面3,4が露出していなかったため、ガス漏れは生
じなかった。
From the above results, in Comparative Examples 1 and 2 in which the metal support 6 is provided only on one surface of the metal film 2 and the opening diameter D of the recessed hole 8 is relatively large, gas leakage is remarkable and the metal film 2 itself is leaked. It turned out to be a problem. In addition, in Comparative Examples 3 and 4, gas leakage was small, but since the metal support 6 having a relatively thin wall is provided on only one surface of the metal film 2, a large warp occurs after forming the recessed hole 8 and is practical. Was not. Further, in Comparative Example 6, the ratio D / t of the opening diameter D of the recessed hole 8 and the total thickness t of the metal film 2 and the metal supports 5 and 6 is 4.0, so that the pinhole of the metal film 2 is Caused a significant gas leak. On the other hand, in Comparative Example 5, the metal film 2 is formed on the bottom of the concave hole 8 due to the low ratio D / t of 0.8.
Since the surfaces 3 and 4 were not exposed, no gas leakage occurred.

【0038】次に、各例の水素分離透過膜について、前
記のホルダーを用いて水素透過試験を行った。該ホルダ
ーの1次側に供給する水素含有ガスの組成は水素64vo
l%と窒素36vol%からなり、1次側の空間における圧
力は0.8MPa、測定温度は300℃、および、2次
側の空間における圧力は0.1MPaの条件とした。そ
して、各例の2次側の空間における水素量を測定し、そ
の結果を表2に示した。更に、各例における2次側の空
間に透過した水素の純度も、ガスクロマトグラフにより
分析し、その結果も表2に示した。
Next, a hydrogen permeation test was carried out on the hydrogen permeable membrane of each example using the above holder. The composition of the hydrogen-containing gas supplied to the primary side of the holder is hydrogen 64 vo
The pressure in the primary space was 0.8 MPa, the measurement temperature was 300 ° C., and the pressure in the secondary space was 0.1 MPa. Then, the amount of hydrogen in the space on the secondary side of each example was measured, and the results are shown in Table 2. Further, the purity of hydrogen permeated into the space on the secondary side in each example was also analyzed by gas chromatography, and the results are also shown in Table 2.

【0039】[0039]

【表2】 [Table 2]

【0040】表2によれば、実施例2〜21の水素分離
透過膜1,1aは、凹孔8の開口径Dが51〜510μ
mであるため、1次側で水素が漏れず2次側に水素が十
分透過し且つ水素純度も99.2%以上と実用性がかな
り高いことが判明した。尚、実施例1は、凹孔8の開口
径Dおよび底面9の透過径dが大きいため、金属膜2で
分離した水素の一部が1次側に漏れ、且つ2次側に透過
した水素の純度がやや低い99%であったが、実用上は
十分であった。また、実施例8〜10は、金属膜2を挟
んだ凹孔8,8の軸心が互いにずれており、それらの底
面9における透過径dが小さいか、実施例10のように
0(ゼロ)であったが、実用的には十分な気密性および水
素透過性を有していた。
According to Table 2, in the hydrogen permeable membranes 1 and 1a of Examples 2 to 21, the opening diameter D of the concave hole 8 is 51 to 510 μm.
Since it was m, hydrogen was not leaked on the primary side, hydrogen was sufficiently permeated on the secondary side, and the hydrogen purity was 99.2% or more, which proved to be quite practical. In Example 1, since the opening diameter D of the concave hole 8 and the permeation diameter d of the bottom surface 9 are large, some of the hydrogen separated by the metal film 2 leaks to the primary side and permeates to the secondary side. The purity was 99%, which was rather low, but it was sufficient for practical use. Further, in Examples 8 to 10, the axial centers of the concave holes 8 sandwiching the metal film 2 were deviated from each other, and the transmission diameter d on the bottom surface 9 thereof was small, or 0 (zero) as in Example 10. ), But had practically sufficient airtightness and hydrogen permeability.

【0041】一方、比較例1,2,6の水素分離透過膜
は、ガス漏れが著しいため、表2に示すように、その透
過水素量は測定不能であった。これらは、金属膜2にピ
ンホールが生じていたことによる。また、比較例5は、
凹孔8の開口径Dが小さく且つ透過径dが0で且つ凹孔
8の底面9に金属膜2の表面3,4が露出しなかったた
め、かかる金属膜2を水素が透過しなかった。この結
果、何れの比較例も実用に耐えないことが判明した。以
上に説明した各実施例の結果から、本発明の水素分離透
過膜1,1aの作用および効果の優位性が容易に理解さ
れよう。
On the other hand, in the hydrogen separation permeable membranes of Comparative Examples 1, 2, and 6, the amount of permeated hydrogen was not measurable as shown in Table 2 because of significant gas leakage. These are because the metal film 2 had pinholes. In addition, Comparative Example 5
Since the opening diameter D of the recessed hole 8 was small, the permeation diameter d was 0, and the surfaces 3 and 4 of the metal film 2 were not exposed on the bottom surface 9 of the recessed hole 8, hydrogen did not permeate the metal film 2. As a result, it was found that none of the comparative examples could be put to practical use. From the results of the respective embodiments described above, the superiority of the action and effect of the hydrogen permeable membranes 1 and 1a of the present invention can be easily understood.

【0042】本発明は以上に説明した実施の形態および
実施例に限定されるものではない。例えば、水素透過性
の金属膜または合金膜は、Ti、Zr、Hf、V、N
b、またはTa、あるいはこれらの何れかをベースとす
る合金から形成しても良い。また、金属支持体は、Ni
またはNi基合金、AlまたはAl基合金、Cuまたは
Cu基合金の何れかから形成したものでも良い。更に、
金属膜または合金膜の両面に金属支持体をそれぞれ固定
する前記工程は、一方の金属支持体に金属膜または合金
膜をメッキ、イオンプレーティング、蒸着などにより被
覆した後、プレス機を用いる圧着、無機または有機系接
着剤を用いる接着、または、拡散接合を含む熱処理また
はレーザ加熱などを用いる溶着により、他方の金属支持
体を上記合金膜などに固定しても良い。また、前記図3
(B)に示す金属支持体5,6に対し、直に炭酸ガスレー
ザまたはYAGレーザなどを所定のピッチで多数の位置
に照射することにより、多数の微細な凹孔8を穿孔して
も良い。
The present invention is not limited to the embodiments and examples described above. For example, a hydrogen-permeable metal film or alloy film is formed of Ti, Zr, Hf, V, N.
It may be formed from b, Ta, or an alloy based on any of these. The metal support is made of Ni
Alternatively, it may be formed of any one of Ni-based alloy, Al or Al-based alloy, Cu or Cu-based alloy. Furthermore,
The step of fixing the metal support on both sides of the metal film or alloy film, respectively, the metal film or alloy film on one metal support is coated by plating, ion plating, vapor deposition, etc., then pressure bonding using a pressing machine, The other metal support may be fixed to the alloy film or the like by adhesion using an inorganic or organic adhesive, or welding using heat treatment including diffusion bonding or laser heating. Also, in FIG.
The metal supports 5 and 6 shown in (B) may be directly irradiated with a carbon dioxide gas laser, a YAG laser or the like at a predetermined pitch at a large number of positions to form a large number of fine concave holes 8.

【0043】[0043]

【発明の効果】以上に説明した本発明の水素分離透過膜
(請求項1)によれば、一対の金属支持体を薄肉としても
水素分離透過膜に反りが生じず、前記金属膜などの膜厚
も薄膜化し且つ膜支持強度を高めることができる。ま
た、金属支持体に穿孔される多数の凹孔は、各金属支持
体の表面から金属膜などの表面に至るため、穿孔精度が
高く且つ高密度で配置可能となる。更に、薄膜化された
金属膜などは、一対の金属支持体に保護されているた
め、不用意に損傷しにくく、水素分離装置における所定
の位置に容易にセット可能となる。しかも、前記比D/
tを1.0〜3.0の範囲内にしたので、金属支持体に
穿孔される凹孔をエッチングにより形成した場合でも、
各凹孔の底面に金属膜または合金膜を確実に露出させる
ことができる。また、請求項2の水素分離透過膜によれ
ば、例えばPdからなる水素透過性の金属膜またはPd
基合金からなる水素透過性の合金膜を、任意の金属元素
から容易に選択して形成することができる。
The hydrogen separation permeable membrane of the present invention described above
According to (Claim 1), even if the pair of metal supports are thin, the hydrogen separation / permeable membrane does not warp, the film thickness of the metal film or the like can be reduced, and the film supporting strength can be increased. Further, since the large number of recessed holes drilled in the metal support extends from the surface of each metal support to the surface of the metal film or the like, it is possible to arrange the holes with high precision and high density. Further, since the thinned metal film is protected by the pair of metal supports, it is unlikely to be inadvertently damaged and can be easily set at a predetermined position in the hydrogen separation device. Moreover, the ratio D /
Since t is set in the range of 1.0 to 3.0, even when the concave hole to be formed in the metal support is formed by etching,
The metal film or alloy film can be reliably exposed on the bottom surface of each recess. Further, according to the hydrogen separation / permeable membrane of claim 2, for example, a hydrogen permeable metal film or Pd made of Pd.
A hydrogen-permeable alloy film made of a base alloy can be easily formed by selecting any metal element.

【0044】更に、請求項4の水素分離透過膜によれ
ば、金属支持体に穿孔される凹孔がエッチングにより形
成される場合も、各凹孔の底部に金属膜または合金膜を
確実に露出させることができるため、水素の透過分離を
確実に行うことができる。加えて、請求項5の水素分離
透過膜によれば、一対の金属支持体に穿孔される各凹孔
を同軸心などの位置にする形態では、金属膜などを挟ん
で多数の凹孔を対称に配置でき、水素分離透過膜全体の
反りを確実に防止でき且つ同軸心状の各凹孔の間に金属
膜などを確実に露出できる。また、一対の金属支持体に
穿孔される各凹孔の軸心を互いにずれた位置にする形態
では、エッチング加工による凹孔でも、膜支持強度が高
くなると共に、金属膜などを介して水素ガスの分離透過
を容易に行え、且つ多数の凹孔を高密度に配置すること
ができる。
Further, according to the hydrogen separation / permeable membrane of claim 4, even when the recessed holes formed in the metal support are formed by etching, the metal film or alloy film is surely exposed at the bottom of each recessed hole. Therefore, the permeation separation of hydrogen can be reliably performed. In addition, according to the hydrogen separation / permeable membrane of claim 5, in the configuration in which the concave holes formed in the pair of metal supports are located at positions such as a coaxial center, a large number of concave holes are symmetrical with the metal film interposed therebetween. , The hydrogen separation permeable membrane can be surely prevented from warping, and the metal membrane and the like can be reliably exposed between the coaxially-shaped concave holes. Further, in the form in which the axes of the recessed holes formed in the pair of metal supports are displaced from each other, the film supporting strength is increased even when the recessed holes are formed by etching and the hydrogen gas is passed through the metal film. Can be easily separated and transmitted, and a large number of concave holes can be arranged at high density.

【0045】一方、本発明の水素分離透過膜の製造方法
(請求項6)によれば、一対の金属支持体を薄肉化し且つ
欠陥のない金属膜などを薄膜化して全体を薄くし且つ膜
支持強度が高められると共に、前記比D/tを持った多
数の凹孔を穿孔精度が高く且つ高密度で配置した水素分
離透過膜を確実に製造できる。また、請求項7,8の水
素分離透過膜の製造方法によれば、金属膜の両面に金属
支持体を強固に固定した3層構造の積層体を確実に得る
ことが可能となる。更に、請求項9の水素分離透過膜の
製造方法によれば、前記金属膜などを挟んで各金属支持
体に同軸心状または軸心がずれた位置に多数の凹孔を精
度良く穿孔することができる。
On the other hand, the method for producing a hydrogen permeable membrane of the present invention
According to (Claim 6), the pair of metal supports are thinned, and a defect-free metal film or the like is thinned to thin the whole and the film supporting strength is enhanced, and a large number of the members having the ratio D / t are provided. It is possible to reliably manufacture the hydrogen separation permeable membrane in which the concave holes are arranged with high precision and high density. Further, according to the method for producing a hydrogen separation permeable membrane of claims 7 and 8, it is possible to reliably obtain a laminate having a three-layer structure in which a metal support is firmly fixed to both surfaces of the metal membrane. Further, according to the method for producing a hydrogen permeable membrane of claim 9, a large number of recessed holes can be accurately formed in the respective metal supports with the metal membrane or the like interposed therebetween, at positions coaxially or deviated from each other. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】(A),(B)は本発明の水素分離透過膜の形態を
示す概略図。
1A and 1B are schematic views showing the form of a hydrogen permeable membrane of the present invention.

【図2】(A)〜(C)は図1(A),(B)の各水素分離透過
膜の拡大断面図。
2A to 2C are enlarged cross-sectional views of the hydrogen permeable membranes of FIGS. 1A and 1B.

【図3】(A)〜(D)は図1(A)の水素分離透過膜を得る
ための製造方法の各工程を示す概略図。
3 (A) to 3 (D) are schematic views showing each step of a production method for obtaining the hydrogen permeable membrane of FIG. 1 (A).

【図4】(A)〜(C)は図1(B)の水素分離透過膜を得る
ための製造方法の各工程を示す概略図。
4A to 4C are schematic views showing respective steps of a production method for obtaining the hydrogen permeable membrane of FIG. 1B.

【符号の説明】[Explanation of symbols]

1,1a…………水素分離透過膜 2…………………金属膜/合金膜 3,4……………金属膜/合金膜の表面(両面) 5,6……………金属支持体 5a,6a………金属支持体の表面 8…………………凹孔 D…………………開口径 t…………………金属膜/合金膜と金属支持体との全厚
1, 1a ………… Hydrogen separation and permeable membrane 2 …………………… Metal film / alloy film 3, 4 ……………… Metal film / alloy film surface (both sides) 5, 6 ………… Metal support 5a, 6a ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… Total thickness with body

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA41 MA31 MC02 NA33 NA47 NA66 PA03 PB18 PB66 4G040 FA06 FB09 FC01 FE01    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4D006 GA41 MA31 MC02 NA33 NA47                       NA66 PA03 PB18 PB66                 4G040 FA06 FB09 FC01 FE01

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】水素透過性を有する金属元素を少なくとも
1種類以上含む金属膜または合金膜と、 上記金属膜または合金膜の両面に固定された一対の金属
支持体と、を備え、 上記一対の金属支持体は、それぞれの表面から上記金属
膜または合金膜の表面に至る多数の凹孔を有すると共
に、 上記凹孔の各金属支持体の表面における開口径Dとかか
る金属支持体および上記金属膜または合金膜の全体の厚
みtとの比D/tが、1.0〜3.0の範囲内にある、
ことを特徴とする水素分離透過膜。
1. A metal film or alloy film containing at least one or more kinds of metal elements having hydrogen permeability, and a pair of metal supports fixed on both surfaces of the metal film or alloy film. The metal support has a large number of concave holes extending from the respective surfaces to the surface of the metal film or alloy film, and the opening diameter D of the concave holes on the surface of each metal support and the metal support and the metal film. Alternatively, the ratio D / t to the total thickness t of the alloy film is in the range of 1.0 to 3.0,
A hydrogen separation permeable membrane characterized by the above.
【請求項2】前記水素透過性を有する金属元素が、P
d、Ti、Zr、Hf、V、Nb、またはTaの何れか
である、 ことを特徴とする請求項1に記載の水素分離透過膜。
2. The hydrogen-permeable metal element is P
It is either d, Ti, Zr, Hf, V, Nb, or Ta, The hydrogen separation permeable membrane of Claim 1 characterized by the above-mentioned.
【請求項3】前記金属支持体が、ステンレス鋼、Niま
たはNi基合金、AlまたはAl基合金、CuまたはC
u基合金の何れかからなる、 ことを特徴とする請求項1または2に記載の水素分離透
過膜。
3. The metal support is stainless steel, Ni or Ni-based alloy, Al or Al-based alloy, Cu or C.
The hydrogen separation permeable membrane according to claim 1 or 2, wherein the hydrogen separation permeable membrane is made of any one of u-based alloys.
【請求項4】前記凹孔の前記各金属支持体の表面におけ
る開口径Dは、10〜550μmである、 ことを特徴とする請求項1乃至3の何れか一項に記載の
水素分離透過膜。
4. The hydrogen separation permeable membrane according to claim 1, wherein an opening diameter D of the concave hole on the surface of each metal support is 10 to 550 μm. .
【請求項5】前記金属膜または合金膜の両面に固定した
一対の金属支持体における凹孔は、上記金属膜または合
金膜を挟んで同軸心またはほぼ同軸心の位置にあるか、
あるいは一方の金属支持体の凹孔と他方の金属支持体の
凹孔との軸心が互いにずれた位置にある、 ことを特徴とする請求項1乃至4の何れか一項に記載の
水素分離透過膜。
5. The recessed holes in the pair of metal supports fixed to both sides of the metal film or alloy film are coaxial or substantially coaxial with the metal film or alloy film interposed therebetween.
Alternatively, the axis of the concave hole of one metal support and the axis of the concave hole of the other metal support are displaced from each other, and the hydrogen separation according to any one of claims 1 to 4. Permeable membrane.
【請求項6】水素透過性を有する金属元素を少なくとも
1種類以上含む金属膜または合金膜の両面に金属支持体
をそれぞれ固定する工程と、 上記一対の金属支持体におけるそれぞれの表面から上記
金属膜または合金膜の表面に達する多数の凹孔を穿孔す
る工程と、を含む、 ことを特徴とする水素分離透過膜の製造方法。
6. A step of fixing metal supports to both surfaces of a metal film or an alloy film containing at least one kind of metal element having hydrogen permeability, and the metal film from each surface of the pair of metal supports. Or a step of boring a large number of recessed holes reaching the surface of the alloy membrane, the method for producing a hydrogen separation permeable membrane.
【請求項7】前記金属膜または合金膜の両面に金属支持
体をそれぞれ固定する工程は、何れか一方の金属支持体
の裏面にメッキ、イオンプレーティング、または蒸着な
どにより上記金属膜または合金膜を被覆した後、かかる
金属膜または合金膜の表面に他方の金属支持体を圧着、
接着、または溶着するものである、 ことを特徴とする請求項6に記載の水素分離透過膜の製
造方法。
7. The step of fixing a metal support on both sides of the metal film or alloy film, respectively, includes the step of plating, ion plating, or vapor deposition the metal film or alloy film on the back surface of one of the metal supports. And then pressure-bonding the other metal support to the surface of the metal film or alloy film,
It adheres or welds, The manufacturing method of the hydrogen separation permeable membrane of Claim 6 characterized by the above-mentioned.
【請求項8】前記金属膜または合金膜の両面に金属支持
体をそれぞれ固定する工程は、前記金属元素を含む金属
または合金を超急冷または圧延して帯状薄膜とした後、
その両面に金属支持体を圧着、接着、または溶着するも
のである、 ことを特徴とする請求項6に記載の水素分離透過膜の製
造方法。
8. The step of fixing metal supports on both sides of the metal film or alloy film, respectively, comprises ultra-quenching or rolling the metal or alloy containing the metal element to form a strip-shaped thin film,
The method for producing a hydrogen separation permeable membrane according to claim 6, wherein a metal support is pressure-bonded, adhered, or welded on both surfaces thereof.
【請求項9】前記金属支持体に凹孔を穿孔する工程は、
かかる金属支持体の表面から所定パターンに倣ったエッ
チングまたはレーザ加工を施すものである、ことを特徴
とする請求項6〜8の何れか一項に記載の水素分離透過
膜の製造方法。
9. The step of boring a concave hole in the metal support,
The method for producing a hydrogen separation permeable membrane according to any one of claims 6 to 8, wherein the surface of the metal support is subjected to etching or laser processing following a predetermined pattern.
【請求項10】前記水素透過性を有する金属元素が、P
d、Ti、Zr、Hf、V、Nb、またはTaの何れか
であり、あるいは、前記金属支持体が、ステンレス鋼、
NiまたはNi基合金、AlまたはAl基合金、Cuま
たはCu基合金の何れかからなる、ことを特徴とする請
求項6乃至9の何れか一項に記載の水素分離透過膜の製
造方法。
10. The metal element having hydrogen permeability is P
d, Ti, Zr, Hf, V, Nb, or Ta, or the metal support is stainless steel,
The method for producing a hydrogen separation permeable membrane according to any one of claims 6 to 9, comprising any one of Ni or a Ni-based alloy, Al or an Al-based alloy, Cu or a Cu-based alloy.
JP2001334193A 2001-10-31 2001-10-31 Hydrogen separating permeable membrane and method for manufacturing the same Withdrawn JP2003135942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001334193A JP2003135942A (en) 2001-10-31 2001-10-31 Hydrogen separating permeable membrane and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001334193A JP2003135942A (en) 2001-10-31 2001-10-31 Hydrogen separating permeable membrane and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003135942A true JP2003135942A (en) 2003-05-13

Family

ID=19149358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001334193A Withdrawn JP2003135942A (en) 2001-10-31 2001-10-31 Hydrogen separating permeable membrane and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003135942A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1946826A1 (en) * 2002-07-25 2008-07-23 Dai Nippon Insatsu Kabushiki Kaisha Production method of hydrogen production filter
JP2009106794A (en) * 2007-10-26 2009-05-21 Nissan Motor Co Ltd Hydrogen separation body and hydrogen separation apparatus
EP2933013A4 (en) * 2012-12-17 2016-09-14 Nitto Denko Corp Hydrogen-releasing film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1946826A1 (en) * 2002-07-25 2008-07-23 Dai Nippon Insatsu Kabushiki Kaisha Production method of hydrogen production filter
JP2009106794A (en) * 2007-10-26 2009-05-21 Nissan Motor Co Ltd Hydrogen separation body and hydrogen separation apparatus
EP2933013A4 (en) * 2012-12-17 2016-09-14 Nitto Denko Corp Hydrogen-releasing film

Similar Documents

Publication Publication Date Title
KR100908096B1 (en) Hydrogen Purification Filter and Manufacturing Method Thereof
JP2007007565A (en) Reinforcing structure for hydrogen-permeable film, and its manufacturing method
KR20020013778A (en) A supported metal membrane, a process for its preparation and use
US8366805B2 (en) Composite structures with porous anodic oxide layers and methods of fabrication
US20020028345A1 (en) Process for preparing a composite metal membrane, the composite metal membrane prepared therewith and its use
JP2006272420A (en) Diffusion welding method for metallic foil
JP4944656B2 (en) Membrane support for hydrogen separation and module for hydrogen separation using this support
JPWO2012132822A1 (en) Tungsten carbide-based cemented carbide joined body and manufacturing method thereof
JP3388840B2 (en) Hydrogen separation membrane and method for producing the same
JP4270014B2 (en) Hydrogen separation membrane module, hydrogen separation membrane fuel cell, and manufacturing method thereof
JP4367693B2 (en) Hydrogen separator and method for producing the same
JP5101183B2 (en) Method for producing hydrogen permeable membrane module
CN101218062B (en) Method for bonding work pieces and micro-structured component
JP2003135942A (en) Hydrogen separating permeable membrane and method for manufacturing the same
US7144444B2 (en) Hydrogen separation membrane, hydrogen separation unit, and manufacturing method for hydrogen separation membrane
TWI442966B (en) Methods of fabricating porous media and inorganic selective film
JP5061695B2 (en) Hydrogen purification filter and method for producing the same
JP5101182B2 (en) Hydrogen permeable membrane module
JP6561334B2 (en) Method for producing hydrogen separation membrane
JP2004290808A (en) Hydrogen separation permeation membrane and its production method
JP4745049B2 (en) Method for producing hydrogen permeable membrane module
JP4745048B2 (en) Hydrogen permeable membrane module
JP4001114B2 (en) Hydrogen separator and fuel cell
JP2005218963A (en) Member for hydrogen permeation and its producing method
JP2007117843A (en) Fluid-permeable thin film structure body and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104