JP2003134843A - Control method for pwm power conversion device - Google Patents

Control method for pwm power conversion device

Info

Publication number
JP2003134843A
JP2003134843A JP2001328643A JP2001328643A JP2003134843A JP 2003134843 A JP2003134843 A JP 2003134843A JP 2001328643 A JP2001328643 A JP 2001328643A JP 2001328643 A JP2001328643 A JP 2001328643A JP 2003134843 A JP2003134843 A JP 2003134843A
Authority
JP
Japan
Prior art keywords
voltage command
signal
phase
power conversion
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001328643A
Other languages
Japanese (ja)
Other versions
JP3812406B2 (en
Inventor
Hiroshi Shinohara
博 篠原
Koya Yoshioka
康哉 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001328643A priority Critical patent/JP3812406B2/en
Publication of JP2003134843A publication Critical patent/JP2003134843A/en
Application granted granted Critical
Publication of JP3812406B2 publication Critical patent/JP3812406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the output voltage of a power conversion device to the extent that the limit value of a voltage command will not be exceeded, regardless of the phase of the voltage command for the enhancement of the rate of direct-current voltage utilization. SOLUTION: A PWM power conversion device is designed so that a signal wave and a carrier wave are compared with each other to generate a PWM pulse, and the PWM pulse is used to on/off-control semiconductor switching elements to perform power conversion. The PWM power conversion device is provided with a conversion circuit 15 for conducting three phase to two phase which converts a three-phase alternating-current voltage command given to the power conversion device into two- phase; a vector conversion circuit 16, which separates the two-phase command into first and second alternating-current waveform signals of the same frequency and an amplitude signal through arithmetic operations; a triple harmonic generator 17a with triples the frequency of the alternating-current-waveform signals to generate a tripled harmonic signal in the same phase as that of the original alternating-current voltage command; adders 14a to 14c, which add a signal obtained by multiplying a signal, obtained by multiplying the amplitude signal using a specified value, by the triple harmonic signal to the original alternating-current voltage command for generating a final alternating-current voltage command.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、信号波と搬送波と
の比較によって制御されるPWM(パルス幅変調)電力
変換装置の制御方法に関する。ここで、PWM電力変換
装置とは、信号波と搬送波との比較によって生成される
PWMパルスにより半導体スイッチング素子をオン・オ
フ制御し、直流−交流変換、交流−直流変換等を行う半
導体電力変換装置をいう。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method for a PWM (pulse width modulation) power conversion device controlled by comparing a signal wave and a carrier wave. Here, the PWM power conversion device is a semiconductor power conversion device that performs on / off control of a semiconductor switching element by a PWM pulse generated by comparing a signal wave and a carrier wave, and performs DC-AC conversion, AC-DC conversion, and the like. Say.

【0002】[0002]

【従来の技術】図8は従来のPWM電力変換装置の制御
ブロック図である。図において、PWM電力変換装置3
は、変圧器2を介した電力系統1との間で直流電力P
dcと交流電力Pacとを相互に変換するものであり、
例えばPWMインバータ等が該当する。この電力変換装
置3は、図9(a)のように、GTOサイリスタ等の自
己消弧形半導体スイッチング素子(以下、単に半導体素
子という)11a〜11fと、これらに逆並列接続され
たダイオード12a〜12fと、直流入力端子間に接続
されたコンデンサ13とから構成されている。図9
(b)は電力変換装置3の1相分を取り出したもので、
Q1,Q2はそれぞれ半導体素子であり、図9(a)の
11a〜11fに相当する。
2. Description of the Related Art FIG. 8 is a control block diagram of a conventional PWM power converter. In the figure, the PWM power converter 3
Is the DC power P between the power system 1 and the transformer 2.
dc and AC power P ac are mutually converted,
For example, a PWM inverter or the like is applicable. As shown in FIG. 9A, the power conversion device 3 includes self-extinguishing semiconductor switching elements (hereinafter, simply referred to as semiconductor elements) 11a to 11f such as GTO thyristors, and diodes 12a to 11f connected in antiparallel. 12 f and a capacitor 13 connected between the DC input terminals. Figure 9
(B) shows one phase of the power conversion device 3 taken out,
Each of Q1 and Q2 is a semiconductor element and corresponds to 11a to 11f in FIG.

【0003】電力変換装置3が有効電力を出力する場
合、図10(a)のように、前記変圧器2をリアクトル
Xとして表すことができる。いま、図10(b)に示す
ごとく、電力変換装置3の出力電圧ベクトルVinv
位相を系統電圧ベクトルVに対して変えることで、両
者の差電圧ベクトルVがリアクトルXに印加され、有
効電流iが流れることになる。
When the power conversion device 3 outputs active power, the transformer 2 can be represented as a reactor X as shown in FIG. Now, as shown in FIG. 10B, by changing the phase of the output voltage vector V inv of the power conversion device 3 with respect to the system voltage vector V s , the difference voltage vector V x between them is applied to the reactor X, The effective current i will flow.

【0004】電力変換装置3を制御するに当たっては、
図8において出力電圧指令iと出力電流iとの偏差
を加算器6により求めて電流調節器7に入力し、その出
力を電圧検出器5により検出した系統電圧Vに加算器
8にて加算することで、電力変換装置3に対する交流電
圧指令V(信号波)を演算する。そして、図11に示
すように、交流電圧指令Vと搬送波発生器10により
演算された三角波などの搬送波CAとを比較器9により
比較し、半導体素子Q1,Q2(11a〜11f)に対
するPWMパルスを生成してスイッチングタイミングを
決定する。このような一連の制御方法が、一般的なPW
M(Pulse Width Modulation)制御方法である。
In controlling the power converter 3,
Input to the current regulator 7 to seek the adder 6 the deviation between the output voltage command i * and the output current i S 8, the adder 8 the output to the system voltage V S detected by the voltage detector 5 The AC voltage command V * (signal wave) for the power converter 3 is calculated by adding and adding. Then, as shown in FIG. 11, the AC voltage command V * and the carrier wave CA such as a triangular wave calculated by the carrier wave generator 10 are compared by the comparator 9, and the PWM pulse for the semiconductor elements Q1 and Q2 (11a to 11f) is compared. Is generated to determine the switching timing. Such a series of control methods is a common PW
This is an M (Pulse Width Modulation) control method.

【0005】PWM制御は、図9(b)の電力変換装置
3の1相分だけを考えると、正弦波変調の場合には、図
11に示したように正弦波の電圧指令Vと搬送波CA
との比較を行い、V>CAの場合は上アームの半導体
素子Q1をオンさせ、下アームの半導体素子Q2をオフ
させる。また、V<CAの場合は半導体素子Q1をオ
フさせ、半導体素子Q2をオンさせる制御である。ここ
で、電力変換装置3の出力電圧Vinvは、コンデンサ
13の直流電圧をEとすると、数式1のようになる。
Considering only one phase of the power converter 3 of FIG. 9 (b), the PWM control, in the case of sine wave modulation, shows a sine wave voltage command V * and a carrier wave as shown in FIG. CA
When V * > CA, the semiconductor element Q1 of the upper arm is turned on and the semiconductor element Q2 of the lower arm is turned off. When V * <CA, the semiconductor element Q1 is turned off and the semiconductor element Q2 is turned on. Here, the output voltage V inv of the power conversion device 3 is represented by Formula 1 when the DC voltage of the capacitor 13 is E d .

【0006】[0006]

【数1】 Vinv={(√3/2)×(1/√2)}E×V (Vinv:線間電圧実効値)[Equation 1] Vinv= {(√3 / 2) × (1 / √2)} Ed× V* (Vinv: Effective value of line voltage)

【0007】数式1から、コンデンサ13の電圧E
一定の場合、電力変換装置3の出力電圧Vinvを大き
くするためには、電圧指令Vを大きくすれば良いこと
が分かる。しかし、電圧指令Vは、以下のような理由
によって所定の値よりも大きくすることができない。
From Equation 1, it can be seen that when the voltage E d of the capacitor 13 is constant, the output voltage V inv of the power conversion device 3 can be increased by increasing the voltage command V * . However, the voltage command V * cannot be made larger than the predetermined value for the following reasons.

【0008】すなわち、図12(a)は半導体素子Q
1,Q2を過電圧から保護するためにスナバ回路Sを付
加した回路構成図であり、Cはスナバコンデンサであ
る。例えば下アームの半導体素子Q2に過電圧が印加さ
れて充電されたスナバコンデンサCの電荷は、半導体
素子Q2のオン時に図12(a)の破線矢印の経路で放
電する。図12(b)に示すように、このスナバコンデ
ンサCの放電時間tや半導体素子Q1,Q2の短絡
を回避するためのオン遅延時間tを確保する必要があ
るので、搬送波CAの周波数をfとした場合、電圧指
令Vは数式2に示す最大値V maxを超えることが
できない。
That is, FIG. 12A shows a semiconductor device Q.
1, Q2 and a circuit diagram obtained by adding a snubber circuit S for protection against overvoltages, C s is a snubber capacitor. For example, the electric charge of the snubber capacitor C S charged by applying the overvoltage to the semiconductor element Q2 of the lower arm is discharged through the path indicated by the broken line arrow in FIG. 12A when the semiconductor element Q2 is turned on. As shown in FIG. 12B, since it is necessary to secure the discharge time t c of the snubber capacitor C s and the on-delay time t d for avoiding the short circuit of the semiconductor elements Q1 and Q2, the frequency of the carrier wave CA. If the set to f s, * the voltage command V can not exceed the maximum value V * max shown in formula 2.

【0009】[0009]

【数2】V max=1−2×f×(t+t[Number 2] V * max = 1-2 × f s × (t c + t d)

【0010】例えば、t=100[μs]、t
[μs]、f=450[Hz]とするとすると、数式
2からV max=0.865となる。従って、数式1
によれば、電力変換装置3の出力電圧の最大値(√2×
inv)は直流電圧Eの0.745倍(つまり、√
2×Vinv=(√3/2)×E×0.865=0.
745×E)が限度となるため、直流電圧Eを十分
に利用していないことにほかならない。このように、直
流電圧利用率が低い場合には電力変換装置3の出力電圧
が低くなり、装置容量が小さくなるという問題を生じ
る。
For example, t c = 100 [μs], t d =
Assuming that [μs] and f s = 450 [Hz], V * max = 0.865 is obtained from Equation 2. Therefore, Equation 1
According to the above, the maximum value of the output voltage of the power conversion device 3 (√2 ×
V inv is 0.745 times the DC voltage E d (that is, √)
2 × V inv = (√3 / 2) × E d × 0.865 = 0.
Since the limit is 745 × E d ), it means that the DC voltage E d is not fully utilized. As described above, when the DC voltage utilization rate is low, the output voltage of the power conversion device 3 becomes low, which causes a problem that the device capacity becomes small.

【0011】[0011]

【発明が解決しようとする課題】従来、直流電圧利用率
を上げる場合は、図13に示すように、系統電圧V
基準とした3倍調波発生器23を電圧検出器5の二次側
に接続し、この3倍調波発生器23により演算した3倍
調波V3f(系統電圧Vと同位相)を加算器14にお
いて電圧指令Vに加算することにより、搬送波CAと
比較するべき電圧指令V**を得ている。なお、図13
において、図8と同一の構成要素には同一の参照符号を
付してある。
Conventionally, in order to increase the DC voltage utilization rate, as shown in FIG. 13, the triple harmonic generator 23 based on the system voltage V s is used as a secondary detector of the voltage detector 5. by connecting to the side, adds in an adder 14 three times harmonic V 3f of calculation (system voltage V s in phase) by the triple harmonic generator 23 to the voltage command V *, compared with the carrier CA The voltage command V ** to be obtained is obtained. Note that FIG.
8, the same components as those in FIG. 8 are designated by the same reference numerals.

【0012】上記3倍調波V3fの振幅をV max
対して約13%にすると、前出の例では、電圧指令V
と3倍調波V3fとを加算したV**(加算器14の出
力信号)の最大値は約0.755となる(0.865・
sinθ+0.865×0.13・sin3θの最大値が約
0.755となる)。つまり、V maxの値を0.7
55にしても、(√3/2)×E×0.865という
出力電圧Vinvの最大値(√2×Vinv)が得られ
ることになり、この場合の電圧利用率(直流電圧をどの
くらい交流電圧に変換できるかを示す比率)は(√2×
inv)/E=(√3/2)×0.865となる。
これに対し、3倍調波V3fを電圧指令Vに加算しな
い時には、√2×V nv =(√3/2)×E×
0.755となり、電圧利用率は(√2×Vin )/
=(√3/2)×0.755となる。従って、3倍
調波V3fを電圧指令Vに加算すれば、電圧利用率は
約14.6%(0.865/0.755≒1.146)
上がることになる。このことから、3倍調波V3fを加
算すれば、V maxを超えない範囲で直流電圧の利用
率を上げることが可能である。
When the amplitude of the third harmonic V 3f is set to about 13% with respect to V * max , the voltage command V * is obtained in the above example .
And the third harmonic V 3f are added together, the maximum value of V ** (output signal of the adder 14) is about 0.755 (0.865 ·
The maximum value of sinθ + 0.865 × 0.13 · sin3θ is about 0.755). That is, the value of V * max is 0.7
Even with 55, the maximum value (√2 × V inv ) of the output voltage V inv of (√3 / 2) × E d × 0.865 is obtained, and the voltage utilization rate (DC voltage is The ratio indicating how much can be converted into AC voltage is (√2 ×
V inv ) / E d = (√3 / 2) × 0.865.
In contrast, when not adding the 3-fold harmonic V 3f voltage command V * is, √2 × V i nv = ( √3 / 2) × E d ×
0.755, and the voltage utilization rate is (√2 × V in v ) /
E d = (√3 / 2) × 0.755. Therefore, if the triple harmonic V 3f is added to the voltage command V * , the voltage utilization rate is about 14.6% (0.865 / 0.755≈1.146).
Will go up. From this, by adding the third harmonic V 3f , it is possible to increase the utilization rate of the DC voltage within a range not exceeding V * max .

【0013】図14はもとの電圧指令Vと3倍調波V
3f及びこれらの加算結果である電圧指令V**の波形
を示しており、もとの電圧指令VがV maxを超え
る場合でも、3倍調波V3fを加算すれば電圧指令V
**がV max以下になることがわかる。
FIG. 14 shows the original voltage command V * and the triple harmonic V
3f and the waveform of the voltage command V ** which is the addition result thereof are shown, and even if the original voltage command V * exceeds V * max , if the triple harmonic V 3f is added, the voltage command V *
It can be seen that ** becomes V * max or less.

【0014】しかし、この方法によると、電流調節器7
の出力に応じて系統電圧Vに対する電圧指令Vの位
相が変化し、この位相が大きくずれた時には、図15に
示すように3倍調波V3fと電圧指令Vとの位相が大
きくずれてしまい、その結果、電圧指令V**が電圧指
令Vよりも大きくなってV maxを超えることにな
り、直流電圧利用率の向上が達成できない場合があっ
た。そこで本発明は、もとの交流電圧指令に基づいて演
算した同位相の3倍調波をもとの交流電圧指令に加算す
ることにより、交流電圧指令の位相に関わらず、しかも
制限値を超えない状態で直流電圧利用率を高めるように
したPWM変換装置の制御方法を提供しようとするもの
である。
However, according to this method, the current regulator 7
When the phase of the voltage command V * with respect to the system voltage V S changes in accordance with the output of V.sub.S and the phase greatly deviates, the phase between the third harmonic V.sub.3f and the voltage command V * becomes large as shown in FIG. As a result, the voltage command V ** becomes larger than the voltage command V * and exceeds V * max, and in some cases, the improvement of the DC voltage utilization rate cannot be achieved. In view of this, the present invention adds a triple harmonic wave of the same phase calculated based on the original AC voltage command to the original AC voltage command, so that the limit value is exceeded regardless of the phase of the AC voltage command. An object of the present invention is to provide a control method for a PWM conversion device that enhances the DC voltage utilization rate in a non-existent state.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するた
め、請求項1項記載の発明は、信号波と搬送波とを比較
してPWMパルスを生成し、このPWMパルスを用いて
半導体スイッチング素子をオン・オフ制御することによ
り電力変換を行うPWM電力変換装置において、前記電
力変換装置に与える3相の交流電圧指令を3相2相変換
して互いに同一周波数の第1、第2の交流波形信号と振
幅信号とに分離演算し、前記交流波形信号の周波数を3
倍にしてもとの交流電圧指令と同位相の3倍調波信号を
生成し、前記振幅信号に所定値を乗算した信号と前記3
倍調波信号とを乗算して得た信号をもとの交流電圧指令
に加算して最終的な交流電圧指令を生成するものであ
る。
In order to solve the above problems, the invention according to claim 1 compares a signal wave with a carrier wave to generate a PWM pulse, and uses this PWM pulse to implement a semiconductor switching element. In a PWM power conversion device that performs power conversion by performing on / off control, a three-phase two-phase conversion of a three-phase AC voltage command given to the power conversion device is performed, and first and second AC waveform signals having the same frequency as each other. And the amplitude signal are separately calculated, and the frequency of the AC waveform signal is set to 3
Even if the signal is multiplied, a triple harmonic signal having the same phase as the original AC voltage command is generated, and the amplitude signal is multiplied by a predetermined value, and
A signal obtained by multiplying with the harmonic wave signal is added to the original AC voltage command to generate a final AC voltage command.

【0016】請求項2記載の発明は、信号波と搬送波と
を比較してPWMパルスを生成し、このPWMパルスを
用いて半導体スイッチング素子をオン・オフ制御するこ
とにより電力変換を行うPWM電力変換装置において、
前記電力変換装置に与える3相の交流電圧指令を3相2
相変換して互いに同一周波数の第1、第2の交流波形信
号と振幅信号とに分離演算し、前記交流波形信号の周波
数を3倍にしてもとの交流電圧指令と同位相の3倍調波
信号を生成し、この3倍調波信号に所定値を乗算して得
た信号をもとの交流電圧指令に加算して最終的な交流電
圧指令を生成するものである。
According to a second aspect of the present invention, a PWM power conversion is performed by comparing a signal wave with a carrier wave to generate a PWM pulse, and using this PWM pulse to perform on / off control of a semiconductor switching element to perform power conversion. In the device,
The three-phase two-phase AC voltage command given to the power converter is used.
Phase conversion is performed to separate and calculate the first and second AC waveform signals and the amplitude signal having the same frequency, and the frequency of the AC waveform signal is tripled. A wave signal is generated and a signal obtained by multiplying the triple harmonic signal by a predetermined value is added to the original AC voltage command to generate a final AC voltage command.

【0017】請求項3記載の発明は、信号波と搬送波と
を比較してPWMパルスを生成し、このPWMパルスを
用いて半導体スイッチング素子をオン・オフ制御するこ
とにより電力変換するPWM電力変換装置において、前
記電力変換装置に与える3相の交流電圧指令を3相2相
変換して交流電圧指令の周波数を基準とした第1、第2
の回転座標軸成分と振幅信号とに分離演算し、前記回転
座標軸成分を用いて交流電圧指令の3倍周波数を基準と
して交流電圧指令と同位相の3倍調波信号を生成すると
ともに、前記振幅信号に所定値を乗算した信号と前記3
倍調波信号とを乗算して得た信号をもとの交流電圧指令
に加算して最終的な交流電圧指令を生成するものであ
る。
According to a third aspect of the present invention, a PWM power converter for comparing a signal wave and a carrier wave to generate a PWM pulse, and using this PWM pulse to perform on / off control of a semiconductor switching element for power conversion. In the first and second, the three-phase AC voltage command given to the power converter is converted into three-phase to two-phase and the frequency of the AC voltage command is used as a reference.
And the amplitude signal is generated separately, and a triple harmonic signal having the same phase as the AC voltage command is generated using the rotary coordinate axis component as a reference and the triple frequency of the AC voltage command is used. Signal multiplied by a predetermined value and the above 3
A signal obtained by multiplying with the harmonic wave signal is added to the original AC voltage command to generate a final AC voltage command.

【0018】請求項4記載の発明は、信号波と搬送波と
を比較してPWMパルスを生成し、このPWMパルスを
用いて半導体スイッチング素子をオン・オフ制御するこ
とにより電力変換を行うPWM電力変換装置において、
前記電力変換装置に与える3相の交流電圧指令を3相2
相変換して交流電圧指令の周波数を基準とした第1、第
2の回転座標軸成分と振幅信号とに分離演算し、前記回
転座標軸成分を用いて交流電圧指令の3倍周波数を基準
として交流電圧指令と同位相の3倍調波信号を生成する
とともに、この3倍調波信号に所定値を乗算して得た信
号をもとの交流電圧指令に加算して最終的な交流電圧指
令を生成するものである。
According to a fourth aspect of the present invention, a PWM power conversion is performed by comparing a signal wave with a carrier wave to generate a PWM pulse, and using this PWM pulse to perform on / off control of a semiconductor switching element to perform power conversion. In the device,
The three-phase two-phase AC voltage command given to the power converter is used.
Phase conversion is performed to perform a separate operation on the first and second rotational coordinate axis components based on the frequency of the AC voltage command and the amplitude signal, and the AC voltage is determined using the rotational coordinate axis component and the triple frequency of the AC voltage command as a reference. Generates a triple harmonic signal with the same phase as the command, and adds the signal obtained by multiplying this triple harmonic signal by a predetermined value to the original AC voltage command to generate the final AC voltage command. To do.

【0019】[0019]

【発明の実施の形態】以下、図に沿って本発明の実施形
態を説明する。図1は第1実施形態を示す制御ブロック
図であり、PWM変換装置3に与える3相各相の交流電
圧指令V ,V ,V は、3相2相変換回路1
5により2相量Vα,Vβに変換される。ここで、交流
電圧指令V ,V ,V は、図8における加算
器8の出力信号に相当する信号であり、数式3によって
表されるものとする。なお、数式3においてVは振
幅、ωは角周波数、φは位相角である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a control block diagram showing the first embodiment. AC voltage commands V a * , V b * , and V c * of each of the three phases given to the PWM conversion device 3 are the three-phase / two-phase conversion circuit 1.
5 is converted into two-phase quantities Vα and Vβ. Here, the AC voltage commands V a * , V b * , and V c * are signals corresponding to the output signals of the adder 8 in FIG. 8, and are represented by Formula 3. In Expression 3, V m is the amplitude, ω is the angular frequency, and φ is the phase angle.

【0020】[0020]

【数3】 [Equation 3]

【0021】3相2相変換回路15では、数式4の演算
により、数式5に示す2相量Vα,Vβを得る。
The three-phase / two-phase conversion circuit 15 obtains the two-phase quantities Vα and Vβ shown in Expression 5 by the calculation of Expression 4.

【0022】[0022]

【数4】 [Equation 4]

【0023】[0023]

【数5】 [Equation 5]

【0024】2相量Vα,Vβはベクトル変換回路16
に入力され、数式6の演算により、数式7に示す余弦波
1C及び正弦波V1Sと、電圧指令の振幅Vを出力
する。
The two-phase quantities Vα and Vβ are calculated by the vector conversion circuit 16
And outputs the cosine wave V 1C and the sine wave V 1S shown in Expression 7 and the amplitude V m of the voltage command by the calculation of Expression 6.

【0025】[0025]

【数6】 [Equation 6]

【0026】[0026]

【数7】 [Equation 7]

【0027】ベクトル変換回路16から出力された余弦
波V1Cは3倍調波発生器17aに入力される。この3
倍調波発生器17aでは、3倍角の公式に基づく数式8
の演算、具体的には、数式9の演算を行ってV1Cの周
波数を3倍にした3倍調波V 3f’を出力する。
Cosine output from the vector conversion circuit 16
Wave V1CIs input to the triple harmonic generator 17a. This 3
In the harmonic generator 17a, the formula 8 based on the triple angle formula is used.
Is calculated, specifically, the calculation of Equation 9 is performed to obtain V1CLap
Triple harmonic V with tripled wave number 3f'Is output.

【0028】[0028]

【数8】V3f’=4×V1C −3×V1C ## EQU8 ## V 3f '= 4 × V 1C 3 -3 × V 1C

【0029】[0029]

【数9】 V3f’=4×cos(ωt−φ)−3×cos(ωt−φ) =cos{3(ωt−φ)}V 3f '= 4 × cos 3 (ωt−φ) −3 × cos (ωt−φ) = cos {3 (ωt−φ)}

【0030】一方、振幅Vに所定値のゲイン22(例
えば−0.13)を乗算し、その結果と数式9の3倍調
波V3f’とを乗算器18により乗算して、数式10に
示す3倍調波V3fを得る。この3倍調波V3fは、加
算器14a,14b,14cにおいてもとの電圧指令V
,V ,V と加算されることにより、最終的
な3相各相の電圧指令V **,V **,V **
出力され、これらの電圧指令が信号波として搬送波と比
較されてPWMパルスが生成されることになる。
On the other hand, the amplitude V m is multiplied by a gain 22 of a predetermined value (for example, -0.13), and the result is multiplied by the triple harmonic V 3f ′ of Equation 9 by the multiplier 18, and Equation 10 The third harmonic V 3f shown in is obtained. This triple harmonic V 3f is the original voltage command V in the adders 14a, 14b, 14c.
a *, V b *, by being added to the V c *, the final three phases of voltage command V a **, V b **, V c ** is output, these voltage command The PWM pulse will be generated by being compared with the carrier wave as a signal wave.

【0031】[0031]

【数10】 V3f=−0.13・V・cos{3(ωt−φ)}V 3f = −0.13 · V m · cos {3 (ωt−φ)}

【0032】図2は、この実施形態における電圧指令V
,V ,V 、2相量Vα,Vβ、余弦波V
1C、正弦波V1S、振幅V、3倍調波V3f,V
3f’、最終的な電圧指令V **,V **,V
**の波形を示している。この図から明らかなように、
本実施形態によれば、3倍調波V3fはもとの電圧指令
,V ,V に対して常に同位相となる。す
なわち、3倍調波V3fのゼロクロス点は電圧指令V
,V ,V のゼロクロス点と一致している。こ
のように、交流電圧指令を振幅Vと交流波形(余弦波
1C及び正弦波V1S)とに分離演算するとともに、
振幅Vに所定値を乗算した値と交流波形(余弦波V
1C)の周波数を3倍にした3倍調波V3f’とを乗算
して交流電圧指令と同位相の3倍調波V3fとを得るこ
とができ、この3倍調波V3fを各相の電圧指令
,V ,V にそれぞれ加算すれば、もとの
電圧指令V ,V ,V 以下であって制限値V
maxを超えない電圧指令V **,V **,V
**を得ることができる。このため、電圧指令の位相に
関わらず、制限値V maxを超えない範囲で電力変換
装置3の出力電圧を大きくし、直流電圧利用率を上げる
ことができる。
FIG. 2 shows the voltage command V in this embodiment.
a *, Vb *, Vc *Two-phase quantities Vα, Vβ, cosine wave V
1C, Sine wave V1S, Amplitude Vm3rd harmonic V3f, V
3f', The final voltage command Va **, Vb **, Vc
**Shows the waveform of. As you can see from this figure,
According to this embodiment, the triple harmonic V3fOriginal voltage command
Va *, Vb *, Vc *It is always in phase with. You
That is, triple harmonic V3fThe zero-cross point of is the voltage command Va
*, Vb *, Vc *It coincides with the zero-cross point of. This
, The AC voltage command is amplitude VmAnd AC waveform (cosine wave
V1CAnd sine wave V1S) And a separate operation,
Amplitude VmValue multiplied by a predetermined value and the AC waveform (cosine wave V
1C) The triple harmonic V which tripled the frequency3fMultiply by
And the third harmonic V of the same phase as the AC voltage command3fAnd get
And this triple harmonic V3fVoltage command for each phase
Va *, Vb *, Vc *If you add each to
Voltage command Va *, Vb *, Vc *Less than or equal to the limit value V
* maxVoltage command V not exceeding a **, Vb **, Vc
**Can be obtained. Therefore, the phase of the voltage command
Regardless of the limit value V* maxPower conversion within the range
Increase the output voltage of device 3 and increase the DC voltage utilization rate
be able to.

【0033】図3は、この実施形態において、もとの電
圧指令V ,V ,V の振幅に応じて3倍調波
3fの振幅が変化する様子を示している。このこと
は、前述の数式10や、図1において、振幅Vにゲイ
ン22を乗じた値を乗算器18により3倍調波V3f
乗じていることからも理解される。なお、この図3は、
次の第2実施形態の説明においても比較参照する。
FIG. 3 shows how the amplitude of the third harmonic V 3f changes according to the amplitude of the original voltage commands V a * , V b * , V c * in this embodiment. This can be understood from the above-mentioned mathematical expression 10 and in FIG. 1 that the multiplier 18 multiplies the triple harmonic V 3f by a value obtained by multiplying the amplitude V m by the gain 22. In addition, this FIG.
Comparative reference will be made also in the following description of the second embodiment.

【0034】次に、本発明の第2実施形態を説明する。
図4は本実施形態の制御ブロック図であり、図1と同一
の構成要素には同一の参照符号を付してある。この実施
形態では、3倍調波発生器17aから出力される3倍調
波V3f’に所定値のゲイン19(例えば−0.13)
が乗算されて電圧指令V ,V ,V の大きさ
に依存しない振幅一定の3倍調波V3fが出力される。
この3倍調波V3fは前述した数式10の右辺における
を除去した(1とした)値である。
Next, a second embodiment of the present invention will be described.
FIG. 4 is a control block diagram of this embodiment, and the same components as those in FIG. 1 are designated by the same reference numerals. In this embodiment, the third harmonic V 3f ′ output from the third harmonic generator 17 a has a predetermined gain 19 (eg, −0.13).
Is multiplied by to output a third harmonic V 3f having a constant amplitude that does not depend on the magnitude of the voltage commands V a * , V b * , and V c * .
The third harmonic V 3f is a value obtained by removing V m on the right side of Expression 10 described above (assumed to be 1).

【0035】上記の3倍調波V3fは、図1と同様に加
算器14a,14b,14cにおいて各相の電圧指令V
,V ,V にそれぞれ加算されることで、も
との電圧指令V ,V ,V 以下であって制限
値V maxを超えない電圧指令V **,V **
**が得られる。本実施形態においても、電圧指令
の位相に関わらず制限値V maxを超えない範囲で電
力変換装置3の出力電圧を大きくし、直流電圧利用率を
上げることができる。
The above triple harmonic V 3f is applied to the voltage command V of each phase in the adders 14a, 14b and 14c as in FIG.
a *, V b *, V c * in by being respectively added, based on the voltage command V a *, V b *, V c * less was it does not exceed the limit value V * max voltage command V a ** , V b ** ,
V c ** is obtained. Also in the present embodiment, it is possible to increase the output voltage of the power conversion device 3 and increase the DC voltage utilization rate within a range that does not exceed the limit value V * max regardless of the phase of the voltage command.

【0036】第1実施形態では、前述の図3のように3
倍調波V3fの振幅は電圧指令V ,V ,V
の振幅に応じて変化することになるが、この第2実施形
態では、図5に示すように電圧指令V ,V ,V
の振幅に関わらず3倍調波V3fの振幅が一定とな
る。この実施形態によれば、第1実施形態に比べて乗算
器18が不要になり、回路構成が簡略化されるという利
点がある。
In the first embodiment, as shown in FIG.
Harmonic V3fIs the voltage command Va *, Vb *, Vc *
It changes according to the amplitude of the
In the state, as shown in FIG.a *, Vb *, V
c *3rd harmonic V regardless of amplitude3fThe amplitude of
It According to this embodiment, multiplication is performed as compared with the first embodiment.
Since the device 18 is not necessary, the circuit configuration can be simplified.
There is a point.

【0037】次に、本発明の第3実施形態を図6に従っ
て説明する。なお、図1,図4と同一の構成要素には同
一の参照符号を付してある。図6において、各相の電圧
指令V ,V ,V は3相2相変換回路15に
入力され、2相量Vα,Vβに変換される。ここで、電
圧指令V ,V ,V は前記数式3によって表さ
れるものとし、3相2相変換回路15から出力される2
相量Vα,Vβは数式5のとおりである。
Next, a third embodiment of the present invention will be described with reference to FIG.
Explain. The same components as those in FIGS.
One reference numeral is attached. 6, the voltage of each phase
Command Va *, Vb *, Vc *In the three-phase to two-phase conversion circuit 15
It is input and converted into two-phase quantities Vα and Vβ. Where the electric
Pressure command Va *, Vb *, Vc *Is expressed by Equation 3 above.
2 output from the three-phase / two-phase conversion circuit 15
The phase amounts Vα and Vβ are as shown in Equation 5.

【0038】30は電圧指令V ,V ,V
同じ周波数を持つ正弦波sinωt及び余弦波cosω
tを出力する正弦波・余弦波発生器であり、前記正弦波
sinωt及び余弦波cosωtは回転座標軸変換回路
20に入力される。回転座標軸変換回路20では、数式
11により、2相量Vα,Vβから正弦波sinωt及
び余弦波cosωt(電圧指令V ,V
)の周波数を基準とした回転座標軸成分V,V
を演算する。すなわち、数式11を演算し、加法定理
を適用して数式12を得る。こうして求められた回転座
標軸成分V ,Vは、フィルタ回路24d,24qに
よって電圧指令に含まれる高調波成分や逆相成分が除去
される。
30 is a voltage command Va *, Vb *, Vc *When
Sine wave sinωt and cosine wave cosω having the same frequency
A sine / cosine wave generator for outputting t,
sinωt and cosine wave cosωt are rotational coordinate axis conversion circuits.
It is input to 20. In the rotary coordinate axis conversion circuit 20,
11, the sine wave sinωt and the two-phase quantities Vα and Vβ
And cosine wave cosωt (voltage command Va *, Vb *
Vc *) Rotation coordinate axis component V based on the frequencyd, V
qIs calculated. That is, Equation 11 is calculated, and the addition theorem
To obtain Equation 12. Rotating seat thus obtained
Standard axis component V d, VqIn the filter circuits 24d and 24q
Therefore, the harmonic components and negative phase components included in the voltage command are removed.
To be done.

【0039】[0039]

【数11】 [Equation 11]

【0040】[0040]

【数12】 [Equation 12]

【0041】回転座標軸成分V,Vはベクトル変換
回路16に入力され、数式13の演算により余弦波V
1CA及び正弦波V1SAが求められる。また、ベクト
ル変換回路16は電圧指令の振幅Vを出力する。
The rotational coordinate axis components V d and V q are input to the vector conversion circuit 16 and the cosine wave V
1CA and sine wave V 1SA are determined. Further, the vector conversion circuit 16 outputs the amplitude V m of the voltage command.

【0042】[0042]

【数13】 [Equation 13]

【0043】3倍調波発生器17bでは、3倍角の公式
に従って数式14の演算を行い、V 1CA,V1SA
周波数を3倍にしたV2CA,V2SAを求めて静止座
標変換回路21に出力する。
In the triple harmonic generator 17b, the triple angle formula is used.
According to the formula 14, 1 CA, V1 SAof
V tripled in frequency2CA, V2SAIn search of stationary
It outputs to the standard conversion circuit 21.

【0044】[0044]

【数14】 [Equation 14]

【0045】31は電圧指令V ,V ,V
3倍周波数を持つ正弦波sin3ωt及び余弦波cos
3ωtを出力する正弦波・余弦波発生器であり、これら
の正弦波sin3ωt及び余弦波cos3ωtは前記V
2CA,V2SAとともに静止座標変換回路21に入力
される。静止座標変換回路21では、数式15、詳しく
は数式16の演算を行い、加法定理を適用して各相電圧
指令の3倍周波数を持つ3倍調波V3fd及びV3fq
を出力する。
Reference numeral 31 denotes a sine wave sin3ωt and a cosine wave cos having a frequency three times that of the voltage commands V a * , V b * , and V c *.
It is a sine wave / cosine wave generator that outputs 3ωt, and these sine wave sin3ωt and cosine wave cos3ωt are
It is input to the static coordinate conversion circuit 21 together with 2CA and V 2SA . In the static coordinate conversion circuit 21, the calculation of Formula 15, more specifically Formula 16, is performed, and the addition theorem is applied to apply triple harmonics V 3fd and V 3fq having a triple frequency of each phase voltage command.
Is output.

【0046】[0046]

【数15】 [Equation 15]

【0047】[0047]

【数16】 [Equation 16]

【0048】一方、振幅Vに所定値のゲイン22(例
えば−0.13)を乗算し、その結果と前記3倍調波V
3fdとを乗算器18により乗算して、数式10と同様
に数式17に示す3倍調波V3fを得る。この3倍調波
3fは、加算器14a,14b,14cにおいてもと
の電圧指令V ,V ,V と加算されることに
より、最終的な3相各相の電圧指令V **
**,V **となり、搬送波との比較に用いられ
る。
On the other hand, the amplitude V m is multiplied by a gain 22 of a predetermined value (for example, -0.13), and the result is multiplied by the third harmonic V.
3fd is multiplied by the multiplier 18 to obtain the third harmonic V 3f shown in Expression 17 as in Expression 10. This triple harmonic V 3f is added to the original voltage commands V a * , V b * , V c * in the adders 14 a, 14 b, 14 c, so that the final voltage command for each of the three phases is obtained. V a ** ,
It becomes V b ** , V c ** and is used for comparison with the carrier wave.

【0049】[0049]

【数17】 V3f=−0.13・V・cos{3(ωt−φ)}V 3f = −0.13 · V m · cos {3 (ωt−φ)}

【0050】本実施形態によれば、3倍調波V3fはも
との電圧指令V ,V ,V に対して常に同位
相となる。このように、交流の電圧指令を振幅Vと電
圧指令の周波数を基準とした回転座標軸成分V1CA
1SAとに分離演算し、振幅Vに所定値を乗算した
値と電圧指令の3倍周波数を基準として演算した3倍調
波V3fdとを乗算して電圧指令と同位相の3倍調波V
3fを得ることができ、この3倍調波V3fを各相の電
圧指令V ,V ,V にそれぞれ加算すれば、
もとの電圧指令V ,V ,V 以下であって制
限値V maxを超えない電圧指令V **
**,V **を得ることができる。従って本実施
形態でも、電圧指令の位相に関わらず、制限値V
maxを超えない範囲で電力変換装置3の出力電圧を大
きくし、直流電圧利用率を上げることができる。
According to this embodiment, the triple harmonic V3fPeach
Voltage command V witha *, Vb *, Vc *Always equal to
Be in phase. In this way, the AC voltage command is applied to the amplitude VmAnd electric
Rotation coordinate axis component V based on the frequency of the pressure command1 CA
V1 SASeparately calculated into and amplitude VmIs multiplied by a predetermined value
Triple adjustment calculated based on the value and triple the frequency of the voltage command
Wave V3fdMultiply by and the third harmonic V with the same phase as the voltage command
3fThis triple harmonic V3fThe power of each phase
Pressure command Va *, Vb *, Vc *If you add
Original voltage command Va *, Vb *, Vc *Less than
Limit value V* maxVoltage command V not exceedinga **
Vb **, Vc **Can be obtained. Therefore, this implementation
Also in the form, the limit value V regardless of the phase of the voltage command*
maxThe output voltage of the power conversion device 3 within a range not exceeding
The DC voltage utilization rate can be increased.

【0051】最後に、本発明の第4実施形態を図7に従
って説明する。この実施形態において、3相2相変換回
路15から静止座標変換回路21までの動作は第3実施
形態と同様である。この実施形態では、静止座標変換回
路21から出力される3倍調波V3fdに所定値のゲイ
ン19(例えば−0.13)が乗算される。これによ
り、第3実施形態と異なって電圧指令V ,V
の大きさに依存しない振幅一定の3倍調波V3f
が出力される。この3倍調波V3fは数式17の右辺に
おけるVを除去した(1とした)値である。
Finally, a fourth embodiment of the present invention will be described with reference to FIG. In this embodiment, the operation from the three-phase / two-phase conversion circuit 15 to the stationary coordinate conversion circuit 21 is the same as in the third embodiment. In this embodiment, the third harmonic V 3fd output from the static coordinate conversion circuit 21 is multiplied by a gain 19 (for example, −0.13) of a predetermined value. As a result, unlike the third embodiment, the voltage commands V a * , V b * ,
Third harmonic V 3f with constant amplitude that does not depend on the magnitude of V c *
Is output. The third harmonic V 3f is a value obtained by removing V m on the right side of Expression 17 (assumed to be 1).

【0052】上記3倍調波V3fは、加算器14a,1
4b,14cにおいて各相の電圧指令V ,V
にそれぞれ加算され、もとの電圧指令V ,V
,V 以下であって制限値V maxを超えない
電圧指令V **,V **,V **が得られる。こ
れにより、本実施形態でも電圧指令の位相に関わらず制
限値V maxを超えない範囲で電力変換装置3の出力
電圧を大きくし、直流電圧利用率を上げることができ
る。この実施形態によれば、第2実施形態と同様に図6
における乗算器18が不要になるので、回路構成が簡略
化される。
The third harmonic V 3f is added to the adders 14a, 1
4b and 14c, voltage commands V a * , V b * of each phase,
The original voltage commands V a * , V a are added to V c * , respectively.
b *, the voltage command does not exceed the limit value V * max be at V c * below V a **, V b **, V c ** is obtained. As a result, even in this embodiment, the output voltage of the power conversion device 3 can be increased and the DC voltage utilization rate can be increased within a range that does not exceed the limit value V * max regardless of the phase of the voltage command. According to this embodiment, as in the second embodiment, as shown in FIG.
Since the multiplier 18 in is unnecessary, the circuit configuration is simplified.

【0053】なお、上記各実施形態では各相の電圧指令
の分離演算により得た余弦波を利用して3倍調波を作成
しているが、正弦波を用いて3倍調波を作成することも
可能である。
In each of the above embodiments, the triple harmonic is created by using the cosine wave obtained by the separation calculation of the voltage command of each phase, but the triple harmonic is created by using the sine wave. It is also possible.

【0054】[0054]

【発明の効果】以上のように本発明によれば、もとの電
圧指令に基づいてこれと同位相の3倍調波を生成し、こ
の3倍調波をもとの電圧指令に加算して最終的な電圧指
令を得るようにしたので、系統電圧に対して電圧指令の
位相が変化した場合にも、常に適切な3倍調波を得るこ
とができ、電圧指令の制限値を超えない範囲で電力変換
値の直流電圧利用率を上げることができる。
As described above, according to the present invention, a triple harmonic having the same phase as that of the original voltage command is generated, and the triple harmonic is added to the original voltage command. As a result, the final voltage command is obtained, so that even if the phase of the voltage command changes with respect to the system voltage, an appropriate triple harmonic can always be obtained, and the limit value of the voltage command is not exceeded. The DC voltage utilization rate of the power conversion value can be increased in the range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態を示す制御ブロック図で
ある。
FIG. 1 is a control block diagram showing a first embodiment of the present invention.

【図2】第1実施形態の動作を示す電圧波形図である。FIG. 2 is a voltage waveform diagram showing the operation of the first embodiment.

【図3】第1実施形態において、電圧指令の大きさが異
なる場合の電圧波形図である。
FIG. 3 is a voltage waveform diagram when the magnitudes of voltage commands are different in the first embodiment.

【図4】本発明の第2実施形態を示す制御ブロック図で
ある。
FIG. 4 is a control block diagram showing a second embodiment of the present invention.

【図5】第2実施形態において、電圧指令の大きさが異
なる場合の電圧波形図である。
FIG. 5 is a voltage waveform diagram when the magnitudes of voltage commands are different in the second embodiment.

【図6】本発明の第3実施形態を示す制御ブロック図で
ある。
FIG. 6 is a control block diagram showing a third embodiment of the present invention.

【図7】本発明の第4実施形態を示す制御ブロック図で
ある。
FIG. 7 is a control block diagram showing a fourth embodiment of the present invention.

【図8】従来技術を示す制御ブロック図である。FIG. 8 is a control block diagram showing a conventional technique.

【図9】電力変換装置の主回路構成図である。FIG. 9 is a main circuit configuration diagram of a power conversion device.

【図10】電力変換装置の動作説明図である。FIG. 10 is an operation explanatory diagram of the power conversion device.

【図11】電力変換装置のPWM制御原理を説明する波
形図である。
FIG. 11 is a waveform diagram illustrating the PWM control principle of the power conversion device.

【図12】電力変換装置におけるスナバ回路と放電時間
及びオン遅延時間の説明図である。
FIG. 12 is an explanatory diagram of a snubber circuit and a discharge time and an ON delay time in the power conversion device.

【図13】直流電圧利用率を上げるための従来技術を示
す制御ブロック図である。
FIG. 13 is a control block diagram showing a conventional technique for increasing a DC voltage utilization rate.

【図14】電圧指令等の波形図である。FIG. 14 is a waveform diagram of a voltage command or the like.

【図15】発明の解決課題を説明するための電圧指令等
の波形図である。
FIG. 15 is a waveform diagram of a voltage command or the like for explaining the problem to be solved by the invention.

【符号の説明】[Explanation of symbols]

1・・・電力系統 2・・・変圧器 3・・・PWM電力変換装置 4・・・電流検出器 5・・・電圧検出器 6・・・減算器 7・・・電流調節器 8・・・加算器 9・・・比較器 10・・・搬送波発生器 11a〜11f・・・自己消弧形半導体スイッチング素
子 12a〜12f・・・ダイオード 13・・・コンデンサ 14a,14b,14c・・・加算器 15・・・3相2相変換回路 16・・・ベクトル変換回路 17a,17b,23・・・3倍調波発生器 18・・・乗算器 19,22・・・ゲイン 20・・・回転座標変換回路 21・・・静止座標変換回路 24d,24q・・・フィルタ回路 30,31・・・正弦波・余弦波発生器
1 ... Power system 2 ... Transformer 3 ... PWM power converter 4 ... Current detector 5 ... Voltage detector 6 ... Subtractor 7 ... Current regulator 8 ... Adder 9 ... Comparator 10 ... Carrier wave generators 11a-11f ... Self-extinguishing type semiconductor switching elements 12a-12f ... Diode 13 ... Capacitors 14a, 14b, 14c ... Addition 15-three-phase / two-phase conversion circuit 16-vector conversion circuits 17a, 17b, 23-third harmonic generator 18-multipliers 19, 22-gain 20-rotation Coordinate conversion circuit 21 ... Stationary coordinate conversion circuits 24d, 24q ... Filter circuits 30, 31 ... Sine / cosine wave generator

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H006 AA07 CA05 CB01 CB08 CC02 DA02 DC02 DC04 DC05 5H007 AA00 CA05 CB02 CB05 CC03 DA05 DB02 DC02 DC05 EA15   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H006 AA07 CA05 CB01 CB08 CC02                       DA02 DC02 DC04 DC05                 5H007 AA00 CA05 CB02 CB05 CC03                       DA05 DB02 DC02 DC05 EA15

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 信号波と搬送波とを比較してPWMパル
スを生成し、このPWMパルスを用いて半導体スイッチ
ング素子をオン・オフ制御することにより電力変換を行
うPWM電力変換装置において、 前記電力変換装置に与える3相の交流電圧指令を3相2
相変換して互いに同一周波数の第1、第2の交流波形信
号と振幅信号とに分離演算し、前記交流波形信号の周波
数を3倍にしてもとの交流電圧指令と同位相の3倍調波
信号を生成し、前記振幅信号に所定値を乗算した信号と
前記3倍調波信号とを乗算して得た信号をもとの交流電
圧指令に加算して最終的な交流電圧指令を生成すること
を特徴としたPWM電力変換装置の制御方法。
1. A PWM power conversion apparatus for performing power conversion by comparing a signal wave and a carrier wave to generate a PWM pulse, and using the PWM pulse to control ON / OFF of a semiconductor switching element. Three-phase AC voltage command given to the device
Phase conversion is performed to separate and calculate the first and second AC waveform signals and the amplitude signal having the same frequency, and the frequency of the AC waveform signal is tripled. Wave signal is generated, and a signal obtained by multiplying the signal obtained by multiplying the amplitude signal by a predetermined value and the triple harmonic signal is added to the original AC voltage command to generate a final AC voltage command. A method for controlling a PWM power conversion device, comprising:
【請求項2】 信号波と搬送波とを比較してPWMパル
スを生成し、このPWMパルスを用いて半導体スイッチ
ング素子をオン・オフ制御することにより電力変換を行
うPWM電力変換装置において、 前記電力変換装置に与える3相の交流電圧指令を3相2
相変換して互いに同一周波数の第1、第2の交流波形信
号と振幅信号とに分離演算し、前記交流波形信号の周波
数を3倍にしてもとの交流電圧指令と同位相の3倍調波
信号を生成し、この3倍調波信号に所定値を乗算して得
た信号をもとの交流電圧指令に加算して最終的な交流電
圧指令を生成することを特徴としたPWM電力変換装置
の制御方法。
2. A PWM power conversion device for performing power conversion by comparing a signal wave and a carrier wave to generate a PWM pulse, and using the PWM pulse to control ON / OFF of a semiconductor switching element. Three-phase AC voltage command given to the device
Phase conversion is performed to separate and calculate the first and second AC waveform signals and the amplitude signal having the same frequency, and the frequency of the AC waveform signal is tripled. PWM power conversion characterized by generating a wave signal and adding a signal obtained by multiplying the triple harmonic signal by a predetermined value to the original AC voltage command to generate a final AC voltage command. Device control method.
【請求項3】 信号波と搬送波とを比較してPWMパル
スを生成し、このPWMパルスを用いて半導体スイッチ
ング素子をオン・オフ制御することにより電力変換を行
うPWM電力変換装置において、 前記電力変換装置に与える3相の交流電圧指令を3相2
相変換して交流電圧指令の周波数を基準とした第1、第
2の回転座標軸成分と振幅信号とに分離演算し、前記回
転座標軸成分を用いて交流電圧指令の3倍周波数を基準
として交流電圧指令と同位相の3倍調波信号を生成する
とともに、前記振幅信号に所定値を乗算した信号と前記
3倍調波信号とを乗算して得た信号をもとの交流電圧指
令に加算して最終的な交流電圧指令を生成することを特
徴としたPWM電力変換装置の制御方法。
3. A PWM power conversion device for performing power conversion by comparing a signal wave and a carrier wave to generate a PWM pulse, and using the PWM pulse to control ON / OFF of a semiconductor switching element. Three-phase AC voltage command given to the device
Phase conversion is performed to perform a separate operation on the first and second rotational coordinate axis components based on the frequency of the AC voltage command and the amplitude signal, and the AC voltage is determined using the rotational coordinate axis component and the triple frequency of the AC voltage command as a reference. A triple harmonic signal having the same phase as the command is generated, and a signal obtained by multiplying the amplitude signal by a predetermined value and the triple harmonic signal is added to the original AC voltage command. And a final AC voltage command is generated to control the PWM power converter.
【請求項4】 信号波と搬送波とを比較してPWMパル
スを生成し、このPWMパルスを用いて半導体スイッチ
ング素子をオン・オフ制御することにより電力変換を行
うPWM電力変換装置において、 前記電力変換装置に与える3相の交流電圧指令を3相2
相変換して交流電圧指令の周波数を基準とした第1、第
2の回転座標軸成分と振幅信号とに分離演算し、前記回
転座標軸成分を用いて交流電圧指令の3倍周波数を基準
として交流電圧指令と同位相の3倍調波信号を生成する
とともに、この3倍調波信号に所定値を乗算して得た信
号をもとの交流電圧指令に加算して最終的な交流電圧指
令を生成することを特徴としたPWM電力変換装置の制
御方法。
4. A PWM power conversion device for performing power conversion by comparing a signal wave and a carrier wave to generate a PWM pulse, and using the PWM pulse to control ON / OFF of a semiconductor switching element. Three-phase AC voltage command given to the device
Phase conversion is performed to perform a separate operation on the first and second rotational coordinate axis components based on the frequency of the AC voltage command and the amplitude signal, and the AC voltage is determined using the rotational coordinate axis component and the triple frequency of the AC voltage command as a reference. Generates a triple harmonic signal with the same phase as the command, and adds the signal obtained by multiplying this triple harmonic signal by a predetermined value to the original AC voltage command to generate the final AC voltage command. A method for controlling a PWM power conversion device, comprising:
JP2001328643A 2001-10-26 2001-10-26 Control method for PWM power converter Expired - Lifetime JP3812406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001328643A JP3812406B2 (en) 2001-10-26 2001-10-26 Control method for PWM power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001328643A JP3812406B2 (en) 2001-10-26 2001-10-26 Control method for PWM power converter

Publications (2)

Publication Number Publication Date
JP2003134843A true JP2003134843A (en) 2003-05-09
JP3812406B2 JP3812406B2 (en) 2006-08-23

Family

ID=19144675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001328643A Expired - Lifetime JP3812406B2 (en) 2001-10-26 2001-10-26 Control method for PWM power converter

Country Status (1)

Country Link
JP (1) JP3812406B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244066A (en) * 2006-03-07 2007-09-20 Ebara Densan Ltd Voltage-type current control inverter
JP2010213512A (en) * 2009-03-12 2010-09-24 Hitachi Car Eng Co Ltd Torque controller for permanent-magnet synchronous motor
WO2012127910A1 (en) * 2011-03-23 2012-09-27 北陸電力株式会社 Distributed power supply system
JP2012231606A (en) * 2011-04-26 2012-11-22 Fuji Electric Co Ltd System interconnection power conversion device
WO2015036835A3 (en) * 2013-09-11 2015-06-11 Toyota Jidosha Kabushiki Kaisha Electric motor control apparatus and electric motor control method
CN112385112A (en) * 2019-05-29 2021-02-19 东芝三菱电机产业***株式会社 Power conversion system
EP3985851A1 (en) * 2020-10-16 2022-04-20 General Electric Technology GmbH Improvements in or relating to voltage source converters

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244066A (en) * 2006-03-07 2007-09-20 Ebara Densan Ltd Voltage-type current control inverter
US8305019B2 (en) 2009-03-12 2012-11-06 Hitachi Car Engineering Co., Ltd. Torque controller for permanent magnet synchronous motor
JP2010213512A (en) * 2009-03-12 2010-09-24 Hitachi Car Eng Co Ltd Torque controller for permanent-magnet synchronous motor
CN103430441A (en) * 2011-03-23 2013-12-04 北陆电力株式会社 Distributed power supply system
JP2012205325A (en) * 2011-03-23 2012-10-22 Hokuriku Electric Power Co Inc:The Distributed power supply system
WO2012127910A1 (en) * 2011-03-23 2012-09-27 北陸電力株式会社 Distributed power supply system
US20130328398A1 (en) * 2011-03-23 2013-12-12 Fuji Electric Co., Ltd. Distributed power supply system
US9509145B2 (en) 2011-03-23 2016-11-29 Hokuriku Electric Power Company Distributed power supply system
JP2012231606A (en) * 2011-04-26 2012-11-22 Fuji Electric Co Ltd System interconnection power conversion device
WO2015036835A3 (en) * 2013-09-11 2015-06-11 Toyota Jidosha Kabushiki Kaisha Electric motor control apparatus and electric motor control method
CN105556830A (en) * 2013-09-11 2016-05-04 丰田自动车株式会社 Electric motor control apparatus and electric motor control method
CN105556830B (en) * 2013-09-11 2018-04-10 丰田自动车株式会社 Electric motor control device and method of motor control
CN112385112A (en) * 2019-05-29 2021-02-19 东芝三菱电机产业***株式会社 Power conversion system
EP3985851A1 (en) * 2020-10-16 2022-04-20 General Electric Technology GmbH Improvements in or relating to voltage source converters

Also Published As

Publication number Publication date
JP3812406B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
US5321599A (en) Control apparatus for suppressing a third harmonic neutral point voltage in a three level inverter
US6594164B2 (en) PWM controlled power conversion device
JPS6137864B2 (en)
US20150137779A1 (en) Matrix converter and method for controlling matrix converter
KR20130078380A (en) Control apparatus for regenerative medium voltage inverter
WO2019146437A9 (en) Inverter device
JP3812406B2 (en) Control method for PWM power converter
JPH09308264A (en) Self-excited power inverter
JP4019263B2 (en) AC-AC direct conversion power converter
KR100706181B1 (en) Single-Phase Active Power Filter Using Rotating Reference Frame
JP4971758B2 (en) Power converter
JP7316259B2 (en) Controller for three-level power converter
JPH07123726A (en) Power converter
JP6263990B2 (en) Synchronous control circuit for AC / DC converter
Xiao et al. Active power filter design for improving power quality
JP2000102168A (en) Active filter control method
JPH10295080A (en) Thyristor convertor
JPH0246173A (en) Frequency converter
JPH05176553A (en) Inverter control method of non-interruption power supply apparatus and non-interruption power supply apparatus
JP3580089B2 (en) Diode rectifier circuit
US11843327B2 (en) Power conversion device with current hysteresis band control
JPH09331699A (en) Ac-excited generator-motor
EP4148969A1 (en) Power conversion device and control method thereof
JP2924589B2 (en) Power converter
JP2011172387A (en) Power conversion controller, converter control circuit, power conversion control method, power conversion control program and recording medium

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3812406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term