JP2003130494A - Air conditioning system utilizing underground heat exchanger, and operating method for the same - Google Patents

Air conditioning system utilizing underground heat exchanger, and operating method for the same

Info

Publication number
JP2003130494A
JP2003130494A JP2001322622A JP2001322622A JP2003130494A JP 2003130494 A JP2003130494 A JP 2003130494A JP 2001322622 A JP2001322622 A JP 2001322622A JP 2001322622 A JP2001322622 A JP 2001322622A JP 2003130494 A JP2003130494 A JP 2003130494A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
air conditioning
underground
conditioning system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001322622A
Other languages
Japanese (ja)
Inventor
Hiroshi Aiga
洋 相賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2001322622A priority Critical patent/JP2003130494A/en
Publication of JP2003130494A publication Critical patent/JP2003130494A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning system utilizing an underground heat exchanger capable of using the underground heat exchanger for a long period by preventing underground from being heated up and cooled down by the use of the underground heat exchanger, and an operating method for the air conditioner system. SOLUTION: In this air conditioning system, the underground heat exchanger 12 and an auxiliary heat exchanger 14 are used as heat sources. For air conditioning, these heat exchangers are used selectively so that the amount of heat taken out from the underground by a heating load becomes equal to the amount of heat discharged into the underground by a cooling load.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、地中を循環させた
熱媒によって熱交換する地中熱交換器を利用した空気調
和システムおよびその空気調和システムの運転方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning system using an underground heat exchanger that exchanges heat with a heat medium circulated in the ground and a method for operating the air conditioning system.

【0002】[0002]

【従来の技術】従来、地中熱交換器を有する空気調和シ
ステムは、例えば図3に示すようにボアホール熱交換器
を用いたものがある。このボアホール熱交換器100は
地中に形成したボアホール101内に循環配管をなすU
チューブ102を配設してグラウト103等で埋め戻
し、このUチューブ102と建物に設置された空調装置
とを接続して、Uチューブ102に熱媒を循環させ、地
中に対して熱を授受する地中熱交換器によって空気調和
する構造となっている。このボアホール熱交換器100
は、地中の熱容量を利用して蓄熱することで、一年を通
して建物の熱需要を賄うものである。すなわち、空調装
置を冷房運転しているときには、地中に放熱して蓄熱
し、暖房運転しているときには、地中から採熱してい
る。
2. Description of the Related Art Conventionally, some air conditioning systems having an underground heat exchanger use a borehole heat exchanger as shown in FIG. This borehole heat exchanger 100 forms a circulation pipe in a borehole 101 formed in the ground.
The tube 102 is arranged and backfilled with the grout 103 or the like, and the U tube 102 and the air conditioner installed in the building are connected to circulate the heat medium in the U tube 102 to transfer heat to the ground. It has a structure in which air is conditioned by a subterranean heat exchanger. This borehole heat exchanger 100
Uses the heat capacity of the earth to store heat, thereby supplying the heat demand of buildings throughout the year. That is, when the air conditioner is in the cooling operation, heat is radiated into the ground to store heat, and in the heating operation, heat is taken from the ground.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、一年を
通して建物の熱需要を賄う場合には、冷房運転している
ときの地中への放熱量と、暖房運転しているときの地中
から採熱量とのバランスが重要な問題となる。例えば、
図4(a)、(b)に示すように冷房負荷が暖房負荷よ
り大きい場合には、冷房時に地中に放熱した熱を、暖房
時だけでは採熱しきれないために年々地中温度が上昇し
(以下、ヒートアップという)、数年後には地中熱利用
による冷房ができなくなってしまう。逆に、暖房負荷が
冷房負荷より大きい場合には、図4(c)、(d)に示
すように年々地中温度が下降し(以下、クールダウンと
いう)、地中熱利用による暖房ができなくなってしまう
という課題があった。
However, when the heat demand of a building is covered throughout the year, the amount of heat released to the ground during cooling operation and the amount of heat collected from the ground during heating operation. The balance with the amount of heat becomes an important issue. For example,
As shown in FIGS. 4 (a) and 4 (b), when the cooling load is larger than the heating load, the heat radiated to the ground during cooling cannot be collected only by heating, so the underground temperature rises year by year. However, after a few years, it will not be possible to cool the ground by utilizing the underground heat. On the contrary, when the heating load is larger than the cooling load, the underground temperature decreases year by year as shown in FIGS. 4 (c) and 4 (d) (hereinafter referred to as “cool down”), and heating by utilizing the underground heat can be performed. There was a problem of disappearing.

【0004】そこで、本発明はかかる従来の課題に鑑み
て成されたもので、地中熱交換器の使用による地中のヒ
ートアップおよびクールダウンを防ぐことによって、地
中熱交換器を長期にわたって使用ことができる、地中熱
交換器を利用した空気調和システムおよびその空気調和
システムの運転方法を提供することを目的とする。
Therefore, the present invention has been made in view of such conventional problems, and prevents the underground heat-up and cool-down due to the use of the underground heat exchanger, so that the underground heat exchanger can be used for a long period of time. An object of the present invention is to provide an air conditioning system that utilizes a ground heat exchanger and a method of operating the air conditioning system that can be used.

【0005】[0005]

【課題を解決するための手段】かかる目的を達成するた
めに請求項1に示す空気調和システムは、地中を循環さ
せた熱媒によって熱交換する地中熱交換器と、補助熱源
としての補助熱交換器とを用いて空気調和する空気調和
システムであって、前記地中熱交換器と前記補助熱交換
器とを択一的に切り換えて使用して空気調和することを
特徴とする。
In order to achieve the above object, an air conditioning system according to a first aspect of the present invention is an underground heat exchanger for exchanging heat with a heat medium circulated in the ground and an auxiliary as an auxiliary heat source. An air conditioning system for air conditioning using a heat exchanger, wherein the underground heat exchanger and the auxiliary heat exchanger are selectively switched and used for air conditioning.

【0006】この発明によれば、空気調和システムの熱
交換手段を地中熱交換器と補助熱交換器とを択一的に切
り換えて使用することができるので、冷房負荷が暖房負
荷より大きい場合や、暖房負荷が冷房負荷より大きい場
合には、地中熱交換器によって放熱または採熱した熱量
をすべて消費するとともに、補助熱交換器に切り換える
ことによって、熱量の不足分を補うことができる。した
がって、地中熱交換器による地中放熱量および地中採熱
量を過不足が生じないように調節すると、地中のヒート
アップおよびクールダウンを防止することができ、もっ
て、地中熱交換器を長期にわたって使用し続けることが
可能となる。ここで、補助熱源設備によって熱交換する
補助熱交換器とは、例えばボイラ、冷凍機・ヒートポン
プ、冷却塔などの機器や蓄熱槽を用いて熱交換する熱交
換器をいう。
According to the present invention, the heat exchanging means of the air conditioning system can be selectively used by switching between the ground heat exchanger and the auxiliary heat exchanger, so that when the cooling load is larger than the heating load. Alternatively, when the heating load is larger than the cooling load, the heat quantity radiated or collected by the underground heat exchanger is completely consumed, and by switching to the auxiliary heat exchanger, the shortage of the heat quantity can be compensated. Therefore, it is possible to prevent heat-up and cool-down in the ground by adjusting the amount of heat radiated into the ground and the amount of heat collected in the ground by the ground heat exchanger so that there is no excess or deficiency. It is possible to continue to use for a long time. Here, the auxiliary heat exchanger for exchanging heat with the auxiliary heat source facility means a heat exchanger for exchanging heat with the use of equipment such as a boiler, a refrigerator / heat pump, a cooling tower and a heat storage tank.

【0007】前記地中熱交換器は、一年間を通じて、暖
房負荷に応じて発生する地中採熱量と、冷房負荷に応じ
て発生する地中放熱量とが等しくなるように運転するこ
とが望ましい。
It is desirable that the underground heat exchanger be operated so that the amount of underground heat generated according to the heating load and the amount of underground heat generated according to the cooling load become equal throughout the year. .

【0008】すなわち、地中に放熱された熱量よりも多
くの熱量が地中から採熱されたり、地中から採熱された
熱量より多くの熱量が地中に放熱されることがないの
で、地中熱交換器による地中放熱量と地中採熱量とのバ
ランスを保つことができ、もって地中温度が年々上昇又
は下降するヒートアップやクールダウンを防止すること
ができる。これにより、地中温度を所定の温度範囲内に
維持することができるので、地中熱交換器を長期にわた
って使用することが可能となり、かつ、適正な温度の熱
媒を供給できるため、効率よく空気調和することができ
る。
That is, since more heat than the amount of heat radiated to the ground is not collected from the ground, or more than the amount of heat collected from the ground is not radiated to the ground, It is possible to maintain a balance between the amount of underground heat radiated by the underground heat exchanger and the amount of underground heat collected, and thus prevent heat-up or cool-down in which the underground temperature rises or falls year by year. As a result, since the underground temperature can be maintained within the predetermined temperature range, the underground heat exchanger can be used for a long period of time, and the heat medium at an appropriate temperature can be supplied, so that the underground medium can be efficiently supplied. Can be air conditioned.

【0009】また、前記地中熱交換器は、この地中熱交
換器を一年間連続稼動したときに、前記地中採熱量と前
記地中放熱量との少ない方の熱量を、冷房または暖房時
の最も出力を必要とする時期に合わせて消費するように
運転することが望ましい。
In addition, the underground heat exchanger, when the underground heat exchanger is continuously operated for one year, cools or heats the lower heat quantity of the ground heat collection quantity and the ground heat radiation quantity. It is desirable to operate so as to consume at the time when the most output is needed.

【0010】空気調和システムが、地中採熱量と地中放
熱量との少ない方を基準とするので、地中採熱量より多
く放熱することなく、また、地中放熱量より多く採熱す
ることを防止できる。特に、気温が高い真夏や、気温が
低い真冬時のように最も出力を必要とする時期に合わせ
て、外気に影響されにくい地中熱交換器を使用するの
で、より効率よく空気調和システムを稼動させることが
できる。
Since the air conditioning system is based on the smaller of the amount of heat collected in the ground and the amount of heat dissipated in the ground, it is necessary not to dissipate more heat than the amount of heat collected in the ground and to collect more heat than the amount of heat dissipated in the ground. Can be prevented. In particular, the underground heat exchanger, which is not easily affected by the outside air, is used according to the time when the output is most required, such as when the temperature is high in the midsummer or when the temperature is low in the midwinter, so the air conditioning system operates more efficiently. Can be made.

【0011】さらに、前記地中熱交換器の前記地中採熱
量と前記地中放熱量とは、地上における前記熱媒の地中
への入り口と、地上への出口とでそれぞれ計測すること
を特徴とする。
Further, the amount of underground heat collected by the underground heat exchanger and the amount of heat released from the ground should be measured at the entrance of the heating medium to the ground and the exit to the ground, respectively. Characterize.

【0012】前記地中採熱量と前記地中放熱量とは、地
上において計測できるので、計測設備の設置およびメン
テナンスが容易であるとともに、計測状態を地上におい
て容易に確認することができる。
Since the amount of collected heat in the ground and the amount of released heat in the ground can be measured on the ground, the installation and maintenance of the measuring equipment are easy, and the measurement state can be easily confirmed on the ground.

【0013】また、請求項5に示す空気調和システムの
運転方法は、地中を循環させた熱媒によって熱交換する
地中熱交換器と、補助熱源としての補助熱交換器とを用
いて空気調和する空気調和システムの運転方法であっ
て、前記地中熱交換器と補助熱交換器とを択一的に切り
換えて使用することを特徴とする。
Further, according to a fifth aspect of the present invention, there is provided an air conditioning system operating method which uses an underground heat exchanger for exchanging heat with a heat medium circulated in the ground and an auxiliary heat exchanger as an auxiliary heat source. A method of operating a harmonious air conditioning system, characterized in that the ground heat exchanger and the auxiliary heat exchanger are selectively switched and used.

【0014】この空気調和システムの運転方法によれ
ば、空気調和システムの熱交換手段を地中熱交換器と補
助熱交換器とを択一的に切り換えて使用することができ
るので、熱源効率が高く地球温暖化防止に有効と考えら
れる地中熱交換器によって放熱または採熱した熱量をす
べて消費した後に、その不足分を補助熱交換器に切り換
えて補うことができる。すなわち、地中熱交換器による
地中放熱量および地中採熱量を過不足が生じないように
調整して消費することによって、地中のヒートアップお
よびクールダウンを防止することができ、地中熱交換器
を長期にわたって使用することが可能となる。
According to this method for operating the air conditioning system, since the heat exchange means of the air conditioning system can be selectively used by switching between the ground heat exchanger and the auxiliary heat exchanger, heat source efficiency is improved. After consuming all the amount of heat radiated or collected by the underground heat exchanger, which is highly effective for preventing global warming, the shortfall can be switched to the auxiliary heat exchanger to make up for it. That is, it is possible to prevent heat-up and cool-down in the ground by adjusting and consuming the amount of underground heat radiation and the amount of underground heat collected by the underground heat exchanger so that there is no excess or deficiency. The heat exchanger can be used for a long period of time.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態を添付図
面を参照して詳細に説明する。図1は本発明にかかる空
気調和システムの一実施形態を示すシステム系統図であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a system diagram showing an embodiment of an air conditioning system according to the present invention.

【0016】本空気調和システム10は、主熱源の地中
熱交換器をなすボアホール熱交換器12と、冷却用補助
熱源の補助熱交換器をなす冷却塔14とを備えた水冷ヒ
ートポンプ16と、例えば加熱用補助熱源の温水コイル
でなる空冷ヒートポンプ18と、建物内に設置された3
台の空調機20とが循環路をなすパイプを介して接続さ
れている。前記3台の空調機20は、ボアホール熱交換
器系統と、冷却塔系統と、温水コイル系統との3系統の
循環路を有することになり、これら循環路には、複数の
バルブ22がそれぞれ設けられ、これらバルブ22は図
示しない制御装置によって開閉可能に設けられている。
また、ボアホール熱交換器系統の循環路には、冷却水ポ
ンプ24と熱源水ポンプ26とが、温水コイル系統の循
環路には、冷温水ポンプ28が適宜設置され、パイプ内
の水を循環させている。
The air conditioning system 10 includes a waterhole heat pump 16 having a borehole heat exchanger 12 serving as an underground heat exchanger serving as a main heat source, and a cooling tower 14 serving as an auxiliary heat exchanger serving as an auxiliary heat source for cooling. For example, an air-cooled heat pump 18 including a hot water coil as an auxiliary heat source for heating, and 3 installed in a building
The air conditioner 20 of the stand is connected via a pipe forming a circulation path. The three air conditioners 20 will have three circulation paths of a borehole heat exchanger system, a cooling tower system, and a hot water coil system, and a plurality of valves 22 will be provided in these circulation paths, respectively. The valves 22 are openable and closable by a control device (not shown).
Further, a cooling water pump 24 and a heat source water pump 26 are appropriately installed in the circulation path of the borehole heat exchanger system, and a cold / hot water pump 28 is appropriately installed in the circulation path of the hot water coil system to circulate the water in the pipe. ing.

【0017】前記ボアホール熱交換器12は、地中地盤
30に直径15cm、深さ50mから200mの縦穴を
なすボアホールを掘削し、その内部にU字状パイプ12
aを配設し、ボアホールはその内部にグラウトが充填さ
れて埋め戻されて形成されている。そして、U字状パイ
プ12aの一方から水が流入し地中のU字状パイプ12
a内を通って、他方側から流出するように設置されてい
る。このとき、流入した水の温度が地中温度より高い場
合には、地中に放熱されて蓄熱されるとともに、水は冷
却されてU字状パイプ12aから流出し、流入した水の
温度が地中温度より低い場合には、地中から採熱して流
出するとともに地中は冷やされることになる。
The borehole heat exchanger 12 excavates a borehole having a vertical hole of 15 cm in diameter and 50 m to 200 m in depth in the underground ground 30, and has a U-shaped pipe 12 therein.
a is provided, and the bore hole is formed by filling the inside with grout and backfilling it. Then, the water flows in from one side of the U-shaped pipe 12a and the U-shaped pipe 12 in the ground
It is installed so as to pass through the inside of a and flow out from the other side. At this time, when the temperature of the inflowing water is higher than the underground temperature, the water is radiated into the ground to store heat, and the water is cooled and flows out from the U-shaped pipe 12a, and the temperature of the inflowing water is When the temperature is lower than the medium temperature, heat is taken from the ground and flows out, and the ground is cooled.

【0018】前記U字状パイプ12aの地上から突出し
た位置には、それぞれ地中への入口における入口温度と
地中への出口における出口温度及び熱媒流量を地上で測
定する計測器(図示せず)が設けられている。この計測
器による計測データは、前記制御装置によって、ボアホ
ール熱交換器12の入口温度および流量と、出口温度お
よび流量として記憶される。また、制御装置において
は、前記計測データから地中放熱量、地中採熱量等が算
出され、これらの計算結果に基づいて、空気調和システ
ムが制御される。制御の詳細については後述する。
At the position of the U-shaped pipe 12a protruding from the ground, a measuring device (not shown) for measuring the inlet temperature at the entrance to the ground, the outlet temperature at the exit to the ground and the heat medium flow rate, respectively. No) is provided. The data measured by this measuring device is stored as the inlet temperature and the flow rate and the outlet temperature and the flow rate of the borehole heat exchanger 12 by the control device. Further, in the control device, the underground heat radiation amount, the underground heat collection amount, and the like are calculated from the measurement data, and the air conditioning system is controlled based on the calculation results. Details of the control will be described later.

【0019】前記冷却塔14は、冷却塔系統の循環路内
を流れる水を冷却することによって熱交換を行い、前記
温水コイルは外面にフィンが設けられた管内に熱媒をな
す温水を通して熱交換している。
The cooling tower 14 performs heat exchange by cooling the water flowing in the circulation path of the cooling tower system, and the hot water coil exchanges heat by passing hot water serving as a heating medium in a pipe having fins on its outer surface. is doing.

【0020】次に図2を参照して本空気調和システムの
運転方法について説明する。図2は本実施形態における
年間熱負荷形態と運転方法を示し、(a)は年間冷房負
荷が年間暖房負荷より大きい場合、(b)は年間暖房負
荷が年間冷房負荷より大きい場合、(c)は本システム
を用いた場合のボアホール出口温度の長期推移を示して
いる。ここでは、図2(a)に示した年間冷房負荷が大
きい場合を例に説明する。
Next, a method of operating the air conditioning system will be described with reference to FIG. FIG. 2 shows an annual heat load form and an operating method in the present embodiment. (A) is a case where the annual cooling load is larger than the annual heating load, (b) is a case where the annual heating load is larger than the annual cooling load, and (c). Shows the long-term transition of the borehole outlet temperature when this system is used. Here, a case where the annual cooling load shown in FIG. 2A is large will be described as an example.

【0021】近年のように温暖化現象や事務機器の増加
によるオフィス高温化などによって、一年を通して冷房
負荷が暖房負荷より大きいことが予め明らかな場合に
は、暖房開始日よりボアホール熱交換器系統の循環路の
バルブ22を開くとともに、他の循環路のバルブ22を
閉じ、水冷ヒートポンプ16をボアホール熱交換器12
を使用して運転する。このとき、地中からは暖房負荷に
応じて採熱され、この地中採熱量が前記計測装置によっ
て計測され(例えば1時間毎)、前記制御装置によって
積算され累計地中採熱量が記憶される。
When it is clear in advance that the cooling load is larger than the heating load throughout the year due to the warming phenomenon or the increase in office equipment due to the increase of office equipment as in recent years, the borehole heat exchanger system is started from the heating start date. The valve 22 of the circulation passage of the above is opened and the valves 22 of the other circulation passages are closed, and the water cooling heat pump 16 is connected to the borehole heat exchanger 12.
Use to drive. At this time, heat is collected from the ground in accordance with the heating load, and this underground heat collection amount is measured by the measuring device (for example, every one hour) and accumulated by the control device to store the cumulative underground heat collection amount. .

【0022】その後、暖房から冷房に切り換えるが、外
気の湿球温度が低い時期には、冷却塔系統の循環路のバ
ルブ22を開くとともに、他の循環路のバルブ22を閉
じて水冷ヒートポンプ16を冷却塔14を使用して運転
する。当然のことながら暖房から冷房に切り換える際に
空気調和システム10を使用しない時期があっても構わ
ない。
Thereafter, heating is switched to cooling, but when the wet-bulb temperature of the outside air is low, the valve 22 of the circulation passage of the cooling tower system is opened and the valves 22 of the other circulation passages are closed to turn on the water-cooled heat pump 16. It operates using the cooling tower 14. As a matter of course, there may be times when the air conditioning system 10 is not used when switching from heating to cooling.

【0023】そして、例えば梅雨明けした後のように空
調機20を最大出力で使用し、年間を通じて冷房負荷が
ピークとなるような外気条件が厳しい時期に合わせて、
水冷ヒートポンプ16の熱源を冷却塔14からボアホー
ル熱交換器12に切り換えて運転する。この時、前記計
測器の計測データから地中放熱量を積算し、累計地中放
熱量を計算する。
Then, for example, after the rainy season is over, the air conditioner 20 is used at the maximum output, and when the outside air condition in which the cooling load reaches a peak throughout the year is severe,
The heat source of the water-cooled heat pump 16 is switched from the cooling tower 14 to the borehole heat exchanger 12 for operation. At this time, the amount of underground heat radiation is integrated from the measurement data of the measuring device, and the cumulative amount of underground heat radiation is calculated.

【0024】ボアホール熱交換器12により水冷ヒート
ポンプ16を運転し続けるとともに、前記累計地中採熱
量と前記累計地中放熱量とを比較し、これらが等しくな
った時点で、水冷ヒートポンプ16の熱源をボアホール
熱交換器12から冷却塔14に切り換える。これらの冷
暖房の切り換えおよび熱源の切り換えは、作業者が手動
で行っても構わない。
While the water cooling heat pump 16 is continuously operated by the borehole heat exchanger 12, the cumulative amount of underground heat collected and the cumulative amount of underground heat radiation are compared, and when they become equal, the heat source of the water cooling heat pump 16 is turned on. The borehole heat exchanger 12 is switched to the cooling tower 14. An operator may manually switch between the heating and cooling and the switching of the heat source.

【0025】また、年間暖房負荷が年間冷房負荷より大
きい場合には、前記冷却塔系統の循環路に換えて温水コ
イル系統の循環路を用いる。この際には、冷房開始時よ
りボアホール熱交換器12により水冷ヒートポンプ16
を運転し、暖房開始時からは温水コイルによる空冷ヒー
トポンプ18に切り換え、暖房負荷がピークとなる時期
に再びボアホール熱交換器12により水冷ヒートポンプ
16を運転し、累計地中放熱量と累計地中採熱量とが等
しくなった時点で、水冷ヒートポンプ16の熱源をボア
ホール熱交換器12から空冷ヒートポンプ18に切り換
えることになる。
When the annual heating load is larger than the annual cooling load, the circulation channel of the hot water coil system is used instead of the circulation channel of the cooling tower system. At this time, the water cooling heat pump 16 is operated by the borehole heat exchanger 12 from the start of cooling.
From the start of heating, switch to the air-cooled heat pump 18 by the hot water coil, and at the time when the heating load reaches its peak, operate the water-cooled heat pump 16 again by the borehole heat exchanger 12 to collect the cumulative underground heat radiation and the cumulative underground sampling. When the heat quantity becomes equal, the heat source of the water cooling heat pump 16 is switched from the borehole heat exchanger 12 to the air cooling heat pump 18.

【0026】このように、空気調和システム10の熱源
をボアホール熱交換器12と冷却塔14とに切り換えた
り、補助熱源である空冷ヒートポンプ18を択一的に切
り換えて使用することによって、ボアホール熱交換器1
2による地中放熱量及び地中採熱量を余すことなく使用
することができ、ボアホール熱交換器12による地中放
熱量及び地中採熱量の不足分を冷却塔14や空冷ヒート
ポンプ18によって補うことができる。
As described above, the heat source of the air conditioning system 10 is switched between the borehole heat exchanger 12 and the cooling tower 14, or the air-cooling heat pump 18 which is an auxiliary heat source is selectively switched to be used. Bowl 1
It is possible to fully use the amount of underground heat radiation and the amount of underground heat collected by 2, and make up for the shortage of the amount of underground heat discharged by the borehole heat exchanger 12 and the amount of underground heat collected by the cooling tower 14 and the air-cooling heat pump 18. You can

【0027】また、ボアホール熱交換器12の入口およ
び出口において、水温や流量を測定するので、地中採熱
量と地中放熱量とをほぼ正確に把握することができると
ともに、それらの少ない方の熱量を基準とするので、こ
の測定データに基づいて放熱、または採熱を行うため、
地中に放熱された熱量よりも多くの熱量が地中から採熱
されたり、地中から採熱された熱量より多くの熱量が地
中に放熱されることを防止できる。よって、地中温度が
年々上昇又は下降するヒートアップやクールダウンを確
実に防止することができるため、地中熱交換器12の寿
命が短縮されてしまうことを防止でき、長期使用が可能
となる。
Further, since the water temperature and the flow rate are measured at the inlet and the outlet of the borehole heat exchanger 12, the underground heat collection amount and the underground heat radiation amount can be grasped almost accurately, and the smaller one of them can be grasped. Since it is based on the amount of heat, in order to radiate or collect heat based on this measurement data,
It is possible to prevent more heat than the amount of heat radiated into the ground from being taken from the ground, or prevent more than the amount of heat taken from the ground to be radiated into the ground. Therefore, since it is possible to reliably prevent heat-up or cool-down in which the underground temperature rises or falls year by year, it is possible to prevent the life of the underground heat exchanger 12 from being shortened, and long-term use becomes possible. .

【0028】さらに、ボアホール熱交換器12を使用す
る時期を、最も空調機20の出力を必要とする時期に合
わせて消費するので、外気温度に関係なく適正な温度の
熱媒を供給することができるので、ボアホール熱交換器
12をより効率よく稼動させることができ、空気調和シ
ステム10の効率も向上させることができる。
Further, since the time when the borehole heat exchanger 12 is used is consumed in accordance with the time when the output of the air conditioner 20 is the most necessary, it is possible to supply the heat medium having an appropriate temperature regardless of the outside air temperature. Therefore, the borehole heat exchanger 12 can be operated more efficiently, and the efficiency of the air conditioning system 10 can be improved.

【0029】また、その測定装置を地上に設置したの
で、計測設備の構成が簡単になり、設置およびメンテナ
ンスが容易であるとともに、計測状態を地上において容
易に確認することができる。
Further, since the measuring device is installed on the ground, the structure of the measuring equipment is simplified, installation and maintenance are easy, and the measuring state can be easily confirmed on the ground.

【0030】[0030]

【発明の効果】以上説明したように本発明の地中熱交換
器を利用した空気調和システムおよびその空気調和シス
テムの運転方法にあっては、空気調和システムの熱交換
手段を地中熱交換器と補助熱交換器とを択一的に切り換
えて使用することができるので、地中熱交換器によって
地中に放熱または地中から採熱した熱量をすべて消費
し、その不足分のみを補助熱交換器に切り換えて補うこ
とができる。したがって、地中のヒートアップおよびク
ールダウンを防止することができ、地中熱交換器を長期
にわたって使用することが可能となる。
As described above, in the air conditioning system using the underground heat exchanger and the method of operating the air conditioning system of the present invention, the heat exchange means of the air conditioning system is the underground heat exchanger. Since it can be used by selectively switching between the heat exchanger and the auxiliary heat exchanger, the underground heat exchanger radiates heat to the ground or consumes all the heat collected from the ground, and only the shortage is used as auxiliary heat. You can switch to the exchanger to make up for it. Therefore, heat up and cool down in the ground can be prevented, and the ground heat exchanger can be used for a long period of time.

【0031】また、地中熱交換器は、一年間を通じて地
中採熱量と地中放熱量とが等しくなるように運転するの
で、ヒートアップやクールダウンを防止することがで
き、地中温度を所定の温度に保つことで効率よく空気調
和することができる。特に、地中採熱量と地中放熱量と
の少ない方を基準とするので、地中採熱量より多く放熱
することなく、また、地中放熱量より多く採熱すること
を確実に防止できる。
Further, since the underground heat exchanger is operated so that the amount of underground heat collected and the amount of underground heat released are equal throughout the year, heat-up and cool-down can be prevented, and the underground temperature can be reduced. By keeping the temperature at a predetermined level, air conditioning can be efficiently performed. In particular, since the smaller of the underground heat collection amount and the underground heat radiation amount is used as a reference, it is possible to surely prevent the heat radiation from exceeding the underground heat radiation amount and to prevent the heat radiation from exceeding the underground heat radiation amount.

【0032】さらに、前記地中採熱量と前記地中放熱量
とを地上で計測するので、計測設備の構成が簡単にな
り、設置およびメンテナンスが容易となる。
Furthermore, since the amount of underground heat collected and the amount of underground heat released are measured on the ground, the construction of the measuring equipment is simplified and the installation and maintenance are facilitated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる空気調和システムの一実施形態
を示すシステム系統図である。
FIG. 1 is a system diagram showing an embodiment of an air conditioning system according to the present invention.

【図2】本発明にかかる空気調和システムの運転概念を
示す概念図である。
FIG. 2 is a conceptual diagram showing an operating concept of the air conditioning system according to the present invention.

【図3】ボアホール熱交換器を示す概略図である。FIG. 3 is a schematic view showing a borehole heat exchanger.

【図4】従来の空気調和システムの運転概念を示す概念
図である。
FIG. 4 is a conceptual diagram showing the operating concept of a conventional air conditioning system.

【符号の説明】[Explanation of symbols]

10 空気調和システム 12 ボアホール熱交換器 12a U字状パイプ 14 冷却塔 16 水冷ヒートポンプ 18 空冷ヒートポンプ 20 空調機 22 バルブ 24 冷却水ポンプ 26 熱源水ポンプ 28 冷温水ポンプ 30 地中地盤 10 Air conditioning system 12 borehole heat exchanger 12a U-shaped pipe 14 Cooling tower 16 Water-cooled heat pump 18 Air-cooled heat pump 20 air conditioners 22 valves 24 cooling water pump 26 Heat source water pump 28 Cold / hot water pump 30 underground ground

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 地中を循環させた熱媒によって熱交換す
る地中熱交換器と、補助熱源として補助熱交換器とを用
いて空気調和する空気調和システムであって、 前記地中熱交換器と前記補助熱交換器とを択一的に切り
換えて使用して空気調和することを特徴とする空気調和
システム。
1. An air conditioning system for air conditioning using an underground heat exchanger for exchanging heat with a heat medium circulated in the ground and an auxiliary heat exchanger as an auxiliary heat source, wherein the underground heat exchange is performed. An air conditioning system, characterized in that the air conditioning is performed by selectively switching between the air conditioner and the auxiliary heat exchanger.
【請求項2】 前記地中熱交換器は、一年間を通じて、
暖房負荷に応じて発生する地中採熱量と、冷房負荷に応
じて発生する地中放熱量とが等しくなるように運転する
ことを特徴とする請求項1に記載の空気調和システム。
2. The geothermal heat exchanger,
The air conditioning system according to claim 1, wherein the air conditioning system is operated so that the amount of underground heat generated according to the heating load is equal to the amount of underground heat generated according to the cooling load.
【請求項3】 前記地中熱交換器は、この地中熱交換器
を一年間連続稼動したときに、前記地中採熱量と前記地
中放熱量との少ない方の熱量を、冷房または暖房時の最
も出力を必要とする時期に合わせて消費するように運転
することを特徴とする請求項1または2に記載の空気調
和システム。
3. The geothermal heat exchanger, when the geothermal heat exchanger is continuously operated for one year, the one of the geothermal heat collection amount and the geothermal heat radiation amount, whichever is smaller, is used for cooling or heating. The air conditioning system according to claim 1 or 2, wherein the air conditioning system is operated so as to be consumed at a time when the most output is required.
【請求項4】 前記地中熱交換器の前記地中採熱量と前
記地中放熱量とは、地上における前記熱媒の地中への入
り口と、地上への出口とでそれぞれ計測することを特徴
とする請求項1〜3のいずれかに記載の空気調和システ
ム。
4. The underground heat collection amount and the underground heat radiation amount of the underground heat exchanger are measured at an entrance to the ground of the heating medium and an exit to the ground, respectively. The air conditioning system according to any one of claims 1 to 3, which is characterized.
【請求項5】 地中を循環させた熱媒によって熱交換す
る地中熱交換器と、補助熱源としての補助熱交換器とを
用いて空気調和する空気調和システムの運転方法であっ
て、 前記地中熱交換器と補助熱交換器とを択一的に切り換え
て使用することを特徴とする空気調和システムの運転方
法。
5. A method of operating an air conditioning system for air conditioning using an underground heat exchanger for exchanging heat with a heat medium circulated in the ground, and an auxiliary heat exchanger as an auxiliary heat source, comprising: A method for operating an air conditioning system, characterized in that an underground heat exchanger and an auxiliary heat exchanger are selectively switched and used.
JP2001322622A 2001-10-19 2001-10-19 Air conditioning system utilizing underground heat exchanger, and operating method for the same Pending JP2003130494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001322622A JP2003130494A (en) 2001-10-19 2001-10-19 Air conditioning system utilizing underground heat exchanger, and operating method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001322622A JP2003130494A (en) 2001-10-19 2001-10-19 Air conditioning system utilizing underground heat exchanger, and operating method for the same

Publications (1)

Publication Number Publication Date
JP2003130494A true JP2003130494A (en) 2003-05-08

Family

ID=19139640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001322622A Pending JP2003130494A (en) 2001-10-19 2001-10-19 Air conditioning system utilizing underground heat exchanger, and operating method for the same

Country Status (1)

Country Link
JP (1) JP2003130494A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100602797B1 (en) 2005-01-29 2006-07-20 나노콘트롤(주) Geothermal energy system for both heating and cooling using a garbage dump
JP2007085675A (en) * 2005-09-22 2007-04-05 Nippon Steel Engineering Co Ltd Design method, design support system, and computer program for soil heat source heat pump system
JP2007327738A (en) * 2006-05-26 2007-12-20 Tai-Her Yang System equalizing temperature by using natural temperature accumulation body for installation device
JP2010065862A (en) * 2008-09-08 2010-03-25 Osaka Gas Co Ltd Second class absorption heat pump system
JP2012233669A (en) * 2011-05-09 2012-11-29 Nippon Steel Engineering Co Ltd Method and device for analyzing ground heat characteristic in soil heat source heat pump system, method and device for adjusting operation of soil heat source heat pump system, and program
JP2013533449A (en) * 2010-05-05 2013-08-22 グリーンスリーブス、エルエルシー Energy chassis and energy exchange device
JP2013190202A (en) * 2013-05-22 2013-09-26 Kajima Corp Geothermal heat utilizing device
JP2015028418A (en) * 2013-07-03 2015-02-12 東日本旅客鉄道株式会社 Geothermal heat pump system
KR101840385B1 (en) * 2015-08-10 2018-03-20 주식회사 제이앤지 Heat pump system comprising heat source side joint heat storage tank and controlling method of the heat pump system
WO2018163347A1 (en) * 2017-03-09 2018-09-13 三菱電機株式会社 Geothermal heat pump device
US10387581B2 (en) 2013-09-05 2019-08-20 Greensleeves, LLC System for optimization of building heating and cooling systems
KR20190115854A (en) * 2018-04-04 2019-10-14 이준희 Geothermal heat pump system which can keep geothermal energy stable for long time and control method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100602797B1 (en) 2005-01-29 2006-07-20 나노콘트롤(주) Geothermal energy system for both heating and cooling using a garbage dump
JP2007085675A (en) * 2005-09-22 2007-04-05 Nippon Steel Engineering Co Ltd Design method, design support system, and computer program for soil heat source heat pump system
JP4694932B2 (en) * 2005-09-22 2011-06-08 新日鉄エンジニアリング株式会社 Soil heat source heat pump system design method, design support system, and computer program
JP2007327738A (en) * 2006-05-26 2007-12-20 Tai-Her Yang System equalizing temperature by using natural temperature accumulation body for installation device
JP2010065862A (en) * 2008-09-08 2010-03-25 Osaka Gas Co Ltd Second class absorption heat pump system
US10180268B2 (en) 2010-05-05 2019-01-15 Greensleeves, LLC Energy chassis and energy exchange device
JP2013533449A (en) * 2010-05-05 2013-08-22 グリーンスリーブス、エルエルシー Energy chassis and energy exchange device
US9080789B2 (en) 2010-05-05 2015-07-14 Greensleeves, LLC Energy chassis and energy exchange device
JP2012233669A (en) * 2011-05-09 2012-11-29 Nippon Steel Engineering Co Ltd Method and device for analyzing ground heat characteristic in soil heat source heat pump system, method and device for adjusting operation of soil heat source heat pump system, and program
JP2013190202A (en) * 2013-05-22 2013-09-26 Kajima Corp Geothermal heat utilizing device
JP2015028418A (en) * 2013-07-03 2015-02-12 東日本旅客鉄道株式会社 Geothermal heat pump system
US10387581B2 (en) 2013-09-05 2019-08-20 Greensleeves, LLC System for optimization of building heating and cooling systems
US11092353B2 (en) 2013-09-05 2021-08-17 Greensleeves Technologies Corp. System for optimization of building heating and cooling systems
KR101840385B1 (en) * 2015-08-10 2018-03-20 주식회사 제이앤지 Heat pump system comprising heat source side joint heat storage tank and controlling method of the heat pump system
WO2018163347A1 (en) * 2017-03-09 2018-09-13 三菱電機株式会社 Geothermal heat pump device
JPWO2018163347A1 (en) * 2017-03-09 2019-11-07 三菱電機株式会社 Geothermal heat pump device
KR20190115854A (en) * 2018-04-04 2019-10-14 이준희 Geothermal heat pump system which can keep geothermal energy stable for long time and control method thereof
KR102217034B1 (en) * 2018-04-04 2021-02-17 이준희 Geothermal heat pump system which can keep geothermal energy stable for long time and control method thereof

Similar Documents

Publication Publication Date Title
RU2486416C2 (en) Network for heating and cooling of buildings
JP2019500566A (en) Heat pumping method and system
JP2019500565A (en) Heat pumping method and system
CN201161766Y (en) Constant temperature water tank
JP2003130494A (en) Air conditioning system utilizing underground heat exchanger, and operating method for the same
JP2007183023A (en) Heating/cooling method and device utilizing geothermal heat
JP4706836B2 (en) Cooling system
US20120152232A1 (en) Energy system with a heat pump
JP2018534525A (en) Heat pumping method and system
JP2011501089A (en) Heat pump equipment
JP2010144968A (en) Heating device, hot water storage device, water heater, cooling device and composite device
JP2008209042A (en) Heat pump type air conditioning system, heat pump type hot water supply system, and heat pump type air conditioning-hot water supply integrative system
KR101454282B1 (en) Storage heat pump system with compensated heat source
JP2006145059A (en) Hybrid type underground heat utilization heat pump device and its operating method
WO2008096157A1 (en) A method of changing the temperature of a thermal load
KR101984242B1 (en) Method for calculation of heating value of brine-refrigerant type heat pump system using geothermal heat energy
JP5217624B2 (en) Heating system
JPH11159891A (en) Geothermal heat pump system
US20240102668A1 (en) Linking above ground and underground green energy technologies
JP2009257656A (en) Hot water storage facility using cogeneration means, and hot water storage method
CN101315228A (en) Radiation and/or energy accumulation method, heat exchange system and heat pump system
JP6576746B2 (en) Geothermal heat source system, target value determination method, and operation method of geothermal heat source system
KR200430990Y1 (en) Heat pump type Cooling and heating by subterranean heat on the water
JP6318050B2 (en) Underground heat source system
KR101402837B1 (en) Air conditioner using the geothermal

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127