JP2003128901A - Biodegradable polyester resin composition, method for producing the same and foam and molded article obtained therefrom - Google Patents

Biodegradable polyester resin composition, method for producing the same and foam and molded article obtained therefrom

Info

Publication number
JP2003128901A
JP2003128901A JP2002037047A JP2002037047A JP2003128901A JP 2003128901 A JP2003128901 A JP 2003128901A JP 2002037047 A JP2002037047 A JP 2002037047A JP 2002037047 A JP2002037047 A JP 2002037047A JP 2003128901 A JP2003128901 A JP 2003128901A
Authority
JP
Japan
Prior art keywords
polyester resin
biodegradable polyester
resin composition
biodegradable
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002037047A
Other languages
Japanese (ja)
Other versions
JP3824547B2 (en
Inventor
Kazue Ueda
一恵 上田
Fumio Matsuoka
文夫 松岡
Kazunobu Yamada
和信 山田
Shigeru Hayase
茂 早瀬
Takuma Yano
拓磨 矢野
Kazuko Yoshimura
和子 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2002037047A priority Critical patent/JP3824547B2/en
Publication of JP2003128901A publication Critical patent/JP2003128901A/en
Application granted granted Critical
Publication of JP3824547B2 publication Critical patent/JP3824547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biodegradable polyester resin composition excellent in mechanical strength and heat resistance and having rheological properties which are advantageous to molding of foam, etc., and to provide a method for producing the polyester resin composition and to provide a molded article thereof. SOLUTION: This biodegradable polyester resin composition comprises 100 pts.wt. biodegradable polyester resin containing >=50 mol% hydroxycarboxylic acid unit and 0.01-20 pts.wt. (meth)acrylate compound. This method for producing the biodegradable polyester resin composition comprises melting and kneading the biodegradable polyester resin with (meth)acrylate compound and a peroxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は生分解性ポリエステ
ル樹脂と(メタ)アクリル酸エステル化合物とからな
り、機械的強度、耐熱性に優れ、操業性に問題のない発
泡体、押出成形体、射出成形体、ブロー成形体等の成形
に有利なレオロジー特性を有する生分解性ポリエステル
樹脂組成物、その製造方法、及びそれから得られる発泡
体、押出成形体、射出成形体、ブロー成形体に関する。
TECHNICAL FIELD The present invention comprises a biodegradable polyester resin and a (meth) acrylic acid ester compound, is excellent in mechanical strength and heat resistance, and has no problem in operability. The present invention relates to a biodegradable polyester resin composition having a rheological property advantageous for molding a molded product, a blow molded product, etc., a method for producing the same, and a foam, an extrusion molded product, an injection molded product, and a blow molded product obtained therefrom.

【0002】[0002]

【従来の技術】ポリ乳酸は他の生分解性樹脂と比較して
融点が高く耐熱性に優れる特徴を持つ反面、溶融粘度が
低く、例えば、押出発泡成形する際に破泡を起こして十
分な発泡倍率が得られなかったり、インフレーション成
形やブロー成形する際にバブルが安定せず、成形体に偏
肉を生じ易いといった問題があるため、成形条件に厳し
い制約を受けたり、結晶化速度が遅いために射出成形な
どでの生産効率が悪い等の様々な欠点を有していた。従
って実用に供するためには、溶融張力の向上及び伸長粘
度測定時の歪み硬化性の発現や結晶化速度の向上が必要
であった。
2. Description of the Related Art Polylactic acid has a characteristic that it has a high melting point and excellent heat resistance as compared with other biodegradable resins, but it has a low melt viscosity. There are problems that the expansion ratio cannot be obtained, bubbles are not stable during inflation molding or blow molding, and uneven thickness is likely to occur in the molded product, so the molding conditions are severely restricted, and the crystallization speed is slow. Therefore, it has various drawbacks such as poor production efficiency in injection molding. Therefore, in order to put it into practical use, it was necessary to improve the melt tension, develop the strain hardening property at the time of measuring extensional viscosity, and improve the crystallization rate.

【0003】一般に、歪み硬化性を発現させるには高重
合度ポリマーを添加する方法や長鎖分岐を有するポリマ
ーを用いる方法が有効と考えられている。高重合度ポリ
マーの製造では、重合に長時間を要し生産性効率が悪く
なるばかりか、長時間の熱履歴による着色や分解等が見
られるため、例えば重量平均分子量(Mw)が50万以
上の生分解性ポリエステルは実用化されていない。また
一方で、分岐ポリ乳酸を製造する方法としては、重合時
に多官能性開始剤を添加する方法が知られているが(特
開平10−7778号公報、特開2000−13625
6号公報)、重合時に分岐鎖を導入してしまうと、樹脂
の払出などに支障が出たり、分岐の度合いを自由に変更
できないなどの点で問題があった。また、層状珪酸塩を
溶融混練する方法が検討されているが、層状珪酸塩の分
散性に問題があり、生分解性樹脂ではまだ実用化されて
いない。
[0003] In general, a method of adding a polymer having a high degree of polymerization or a method of using a polymer having a long chain branch is considered to be effective for developing the strain hardening property. In the production of a high degree of polymerization polymer, not only the polymerization takes a long time and the productivity efficiency is deteriorated, but also coloring and decomposition due to a long heat history are observed. For example, the weight average molecular weight (Mw) is 500,000 or more. No biodegradable polyester has been put to practical use. On the other hand, as a method for producing branched polylactic acid, a method of adding a polyfunctional initiator during polymerization is known (Japanese Patent Laid-Open No. 10-7778, Japanese Patent Laid-Open No. 2000-13625).
No. 6), if a branched chain is introduced during the polymerization, there are problems in that the delivery of the resin is hindered and the degree of branching cannot be freely changed. Further, a method of melt-kneading the layered silicate has been studied, but there is a problem in the dispersibility of the layered silicate, and it has not been put to practical use as a biodegradable resin.

【0004】一方、生分解性樹脂を作製後、過酸化物や
反応性化合物等との溶融混練により架橋を生じさせる方
法は、簡便で、分岐度合いを自由に変更できる点から、
多くの研究が行われている。しかしながら、特開平11
−60928号公報に用いられている酸無水物や、多価
カルボン酸は反応性にムラが生じやすかったり、減圧に
する必要があるなど実用的でない。特許第257132
9号公報や特開2000−17037号公報等に使用さ
れている多価イソシアネートは再溶融時に分子量が低下
しやすかったり、操業時の安全性に問題があるなど、実
用化レベルに達した技術は確立されていない。
On the other hand, a method of producing a biodegradable resin and then forming a cross-link by melt-kneading with a peroxide or a reactive compound is simple and the degree of branching can be freely changed.
Much research has been done. However, JP-A-11
The acid anhydride and polycarboxylic acid used in JP-A-60928 are not practical because the reactivity tends to be uneven and it is necessary to reduce the pressure. Patent No. 257132
The polyisocyanate used in JP-A No. 9-2000, JP-A-2000-17037 and the like has a molecular weight which tends to decrease during re-melting and has a problem in safety during operation. Not established.

【0005】特開平10−324766号公報には、二
塩基酸とグリコールとから合成された生分解性ポリエス
テル樹脂を、有機過酸化物と不飽和結合を有する化合物
とを組み合わせて架橋すると、有効に発泡できることが
開示されている。この方法は樹脂微粒子にこれらの架橋
剤を樹脂の融点よりも低い温度で含浸させる方法の例で
あり、架橋助剤としてジビニルベンゼンを用いた場合は
詳しく記述されているが、(メタ)アクリル酸エステル
化合物の使用については検討されておらず、また二塩基
酸とグリコールから合成される耐熱性の低い生分解性ポ
リエステル樹脂への適用しか検討されていなかった。さ
らに、これらの架橋剤や架橋助剤の添加にあたって、安
定的に長期操業できる方法は提案されていなかった。
JP-A-10-324766 discloses that when a biodegradable polyester resin synthesized from a dibasic acid and a glycol is crosslinked by combining an organic peroxide and a compound having an unsaturated bond, it is effective. It is disclosed that foaming is possible. This method is an example of a method of impregnating resin fine particles with these cross-linking agents at a temperature lower than the melting point of the resin. When divinylbenzene is used as a cross-linking aid, it has been described in detail. The use of ester compounds has not been studied, and only application to biodegradable polyester resins having low heat resistance, which are synthesized from dibasic acid and glycol, has been studied. Further, no method has been proposed for stably adding a long-term operation to these crosslinking agents or crosslinking aids.

【0006】一方、α−及び/又はβ−ヒドロキシカル
ボン酸単位を主体とし、耐熱性が高い生分解性ポリエス
テルは、結晶化速度が遅いため、射出成形等の各種成形
加工において、操業性が悪いという欠点を有している。
しかし、結晶化速度を向上させる方法としては、無機微
粉体を添加する等の方法しか検討されておらず、抜本的
解決策がなされていないものであった。
On the other hand, a biodegradable polyester mainly composed of α- and / or β-hydroxycarboxylic acid units and having high heat resistance has a slow crystallization rate, and therefore has poor operability in various molding processes such as injection molding. It has the drawback of
However, as a method for improving the crystallization rate, only a method of adding an inorganic fine powder has been studied and a drastic solution has not been made.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決しようとするものであり、機械的強度、耐熱性
に優れ、操業性に問題のない発泡体、押出成形体、射出
成形体、ブロー成形体等の成形に有利なレオロジー特性
を有する生分解性ポリエステル樹脂組成物、その製造方
法、及びその発泡体、押出成形体、射出成形体、ブロー
成形体を提供することにある。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above problems, and is excellent in mechanical strength and heat resistance, and has no problem in operability. Foams, extrusion moldings, injection moldings. It is intended to provide a biodegradable polyester resin composition having a rheological property advantageous for molding a body, a blow molded body, etc., a method for producing the same, and a foamed body, an extrusion molded body, an injection molded body, and a blow molded body.

【0008】[0008]

【課題を解決するための手段】本発明者らは、このよう
な課題を解決するために鋭意研究を重ねた結果、生分解
性ポリエステル樹脂と(メタ)アクリル酸エステル化合
物とからなる特定の組成物が、溶融粘度の向上及び伸長
粘度測定における歪み硬化性の発現により、発泡成形性
に優れたレオロジー特性を有するのみならず、得られた
成形加工品は耐熱性や機械的強度にも優れ、結晶化速度
が格段に向上することで操業性の問題も解決できること
を見出し、本発明に到達した。
Means for Solving the Problems As a result of intensive studies to solve such problems, the present inventors have found that a specific composition comprising a biodegradable polyester resin and a (meth) acrylic acid ester compound. The product not only has excellent rheological properties in foam moldability due to the improvement of melt viscosity and the strain hardening property in elongational viscosity measurement, but the obtained molded product also has excellent heat resistance and mechanical strength, The inventors have found that the problem of operability can be solved by remarkably increasing the crystallization rate, and have reached the present invention.

【0009】すなわち本発明の要旨は,次のとおりであ
る。 (1)α−及び/又はβ−ヒドロキシカルボン酸単位を
50モル%以上含有する生分解性ポリエステル樹脂10
0質量部と、(メタ)アクリル酸エステル化合物0.0
1〜20質量部とからなる発泡用生分解性ポリエステル
樹脂組成物。 (2)α―及び/又はΒ―ヒドロキシカルボン酸単位を
50モル%以上含有する生分解性ポリエステル樹脂、
(メタ)アクリル酸エステル化合物、及び有機過酸化物
を溶融混練することを特徴とする生分解性ポリエステル
樹脂組成物の製造方法。 (3)α―及び/又はΒ―ヒドロキシカルボン酸単位を
50モル%以上含有する生分解性ポリエステル樹脂と、
(メタ)アクリル酸エステル化合物とからなる生分解性
ポリエステル樹脂組成物を成形して得られる生分解性樹
脂発泡体、押出成形体、射出成形体、ブロー成形体。
That is, the gist of the present invention is as follows. (1) Biodegradable polyester resin 10 containing 50 mol% or more of α- and / or β-hydroxycarboxylic acid units
0 parts by mass and (meth) acrylic acid ester compound 0.0
A biodegradable polyester resin composition for foaming, which comprises 1 to 20 parts by mass. (2) a biodegradable polyester resin containing 50 mol% or more of α- and / or β-hydroxycarboxylic acid units,
A method for producing a biodegradable polyester resin composition, which comprises melt-kneading a (meth) acrylic acid ester compound and an organic peroxide. (3) A biodegradable polyester resin containing 50 mol% or more of α- and / or β-hydroxycarboxylic acid units,
A biodegradable resin foam obtained by molding a biodegradable polyester resin composition comprising a (meth) acrylic acid ester compound, an extrusion molded article, an injection molded article, and a blow molded article.

【0010】[0010]

【発明の実施の形態】本発明において、生分解性ポリエ
ステル樹脂は、α−及び/又はβ−ヒドロキシカルボン
酸単位を50モル%以上含有することが必要である。α
−及び/又はβ−ヒドロキシカルボン酸単位としては、
D−乳酸、L−乳酸、又はこれらの混合物、グリコール
酸、3−ヒドロキシ酪酸、3−ヒロドキシ吉草酸、3−
ヒドロキシカプロン酸等が挙げられる。D−乳酸、L−
乳酸又はこれらの混合物を含有する生分解性ポリエステ
ル樹脂は、機械的強度、耐熱性に優れるため好ましい。
これらのα−及び/又はβ−ヒドロキシカルボン酸単位
の含有量は50モル%以上であることが必要である。含
有量が50モル%未満であると、生分解性、耐熱性が低
下するという問題がある。従って、本発明の生分解性ポ
リエステル樹脂は、ポリ乳酸、ポリグリコール酸、ポリ
(3−ヒドロキシ酪酸)、ポリ(3−ヒロドキシ吉草
酸)、ポリ(3−ヒドロキシカプロン酸)、これらの共
重合体、及びこれらの混合物等を50モル%以上含有し
ている。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the biodegradable polyester resin must contain 50 mol% or more of α- and / or β-hydroxycarboxylic acid units. α
-And / or the β-hydroxycarboxylic acid unit,
D-lactic acid, L-lactic acid, or a mixture thereof, glycolic acid, 3-hydroxybutyric acid, 3-hydroxyvaleric acid, 3-
Examples thereof include hydroxycaproic acid. D-lactic acid, L-
A biodegradable polyester resin containing lactic acid or a mixture thereof is preferable because it has excellent mechanical strength and heat resistance.
The content of these α- and / or β-hydroxycarboxylic acid units needs to be 50 mol% or more. When the content is less than 50 mol%, there is a problem that biodegradability and heat resistance are deteriorated. Therefore, the biodegradable polyester resin of the present invention includes polylactic acid, polyglycolic acid, poly (3-hydroxybutyric acid), poly (3-hydroxyvaleric acid), poly (3-hydroxycaproic acid), and copolymers thereof. , And a mixture of these and the like is contained in an amount of 50 mol% or more.

【0011】ここで用いられる生分解性ポリエステル樹
脂は通常公知の溶融重合法で、あるいはさらに固相重合
法を併用して製造される。また、ポリ(3−ヒドロキシ
酪酸)及びポリ(3−ヒロドキシ吉草酸)等については
微生物による生産も可能である。
The biodegradable polyester resin used here is usually produced by a known melt polymerization method, or in combination with a solid phase polymerization method. In addition, poly (3-hydroxybutyric acid) and poly (3-hydroxyvaleric acid) can be produced by microorganisms.

【0012】本発明に用いるα−及び/又はβ−ヒドロ
キシカルボン酸単位を50モル%以上含有する生分解性
ポリエステル樹脂には、ポリ(α−及び/又はβ−ヒド
ロキシカルボン酸)の耐熱性を大幅に損ねない範囲で、
必要に応じてその他の生分解性樹脂成分を共重合ないし
は混合することもできる。その他の生分解性樹脂として
は、ポリ(エチレンサクシネート)やポリ(ブチレンサ
クシネート)等に代表されるジオールとジカルボン酸か
らなる脂肪族ポリエステル、ポリ(ε−カプロラクト
ン)に代表されるポリ(ω−ヒドロキシアルカノエー
ト)、さらに芳香族成分を含んでいても生分解を示すポ
リ(ブチレンサクシネート−co−ブチレンテレフタレ
ート)や、(ブチレンアジペート−co−ブチレンテレ
フタレート)の他、ポリエステルアミド、ポリエステル
カーボネート、デンプンなどの多糖類等が挙げられる。
The biodegradable polyester resin containing 50% by mole or more of α- and / or β-hydroxycarboxylic acid units used in the present invention has the heat resistance of poly (α- and / or β-hydroxycarboxylic acid). To the extent that it does not significantly deteriorate,
If necessary, other biodegradable resin components may be copolymerized or mixed. Other biodegradable resins include aliphatic polyesters composed of dicarboxylic acids and diols represented by poly (ethylene succinate) and poly (butylene succinate), and poly (ω-caprolactone) represented by poly (ε-caprolactone). -Hydroxyalkanoate), poly (butylene succinate-co-butylene terephthalate) and polybutylene succinate-co-butylene terephthalate) which are biodegradable even if they further contain an aromatic component, other than (butylene adipate-co-butylene terephthalate), polyesteramide, polyester carbonate, Examples thereof include polysaccharides such as starch.

【0013】本発明で用いられる生分解性ポリエステル
樹脂の分子量としては特に制限はないが、重量平均分子
量が5万以上100万未満であることが好ましく、さら
には10万以上100万未満であることが好ましい。重
量平均分子量が5万未満である場合には樹脂組成物の溶
融粘度が低すぎるので好ましくない。逆に、これが10
0万を超える場合には樹脂組成物の成形性が急速に低下
するので好ましくない。
The molecular weight of the biodegradable polyester resin used in the present invention is not particularly limited, but the weight average molecular weight is preferably 50,000 or more and less than 1,000,000, more preferably 100,000 or more and less than 1,000,000. Is preferred. When the weight average molecular weight is less than 50,000, the melt viscosity of the resin composition is too low, which is not preferable. On the contrary, this is 10
When it exceeds 0,000, the moldability of the resin composition is rapidly lowered, which is not preferable.

【0014】本発明で用いられる(メタ)アクリル酸エ
ステル化合物としては、生分解性樹脂との反応性が高く
モノマーが残りにくく、毒性が比較的少なく、樹脂の着
色も少ないことから、分子内に2個以上の(メタ)アク
リル基を有するか、又は1個以上の(メタ)アクリル基
と1個以上のグリシジル基もしくはビニル基を有する化
合物が好ましい。具体的な化合物としては、グリシジル
メタクリレート、グリシジルアクリレート、グリセロー
ルジメタクリレート、トリメチロールプロパントリメタ
クリレート、トリメチロールプロパントリアクリレー
ト、アリロキシポリエチレングリコールモノアクリレー
ト、アリロキシポリエチレングリコールモノメタクリレ
ート、ポリエチレングリコールジメタクリレート、ポリ
エチレングリコールジアクリレート、ポリプロピレング
リコールジメタクリレート、ポリプロピレングリコール
ジアクリレート、ポリテトラメチレングリコールジメタ
クリレート、またこれらのアルキレングリコール部が様
々な長さのアルキレンの共重合体でもよく、さらにブタ
ンジオールメタクリレート、ブタンジオールアクリレー
ト等が挙げられる。
The (meth) acrylic acid ester compound used in the present invention has a high reactivity with the biodegradable resin, is less likely to leave a monomer, is relatively less toxic, and has less coloring of the resin. A compound having two or more (meth) acrylic groups, or one or more (meth) acrylic groups and one or more glycidyl groups or vinyl groups is preferable. Specific compounds include glycidyl methacrylate, glycidyl acrylate, glycerol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, allyloxy polyethylene glycol monoacrylate, allyloxy polyethylene glycol monomethacrylate, polyethylene glycol dimethacrylate, polyethylene glycol. Diacrylates, polypropylene glycol dimethacrylates, polypropylene glycol diacrylates, polytetramethylene glycol dimethacrylates, and copolymers of these alkylene glycol moieties with alkylenes of various lengths may be used. Butanediol methacrylate, butanediol acrylate, etc. Can be mentioned.

【0015】(メタ)アクリル酸エステル化合物の配合
量は、生分解性ポリエステル樹脂100質量部に対して
0.01〜20質量部、好ましくは0.05〜10質量
部である。0.01質量部未満では本発明の目的とする
機械的強度、耐熱性、寸法安定性の改良効果が得られ
ず、20質量部を超える場合には架橋の度合いが強すぎ
て、操業性に支障が出るため好ましくない。
The blending amount of the (meth) acrylic acid ester compound is 0.01 to 20 parts by mass, preferably 0.05 to 10 parts by mass, based on 100 parts by mass of the biodegradable polyester resin. If it is less than 0.01 parts by mass, the effect of improving mechanical strength, heat resistance and dimensional stability, which is the object of the present invention, cannot be obtained, and if it exceeds 20 parts by mass, the degree of crosslinking is too strong, resulting in poor operability. It is not preferable because it causes trouble.

【0016】本発明における生分解性ポリエステル樹脂
組成物は、その融点より10℃高い温度での伸張粘度測
定で得られる時間−伸張粘度の対数プロット(図1参
照)において、屈曲点があらわれるまでの伸張初期の線
形領域の傾きa1と屈曲点以降の伸張後期の傾きa2と
の比(a2/a1)であらわされる歪み硬化係数が、
1.05以上、50未満であるような、歪み硬化性が発
現されることが好ましい。より好ましい歪み硬化係数は
1.5〜30である。歪み硬化係数が1.05未満であ
ると、押出発泡成形時に破泡を起こしたり、成形体に偏
肉を生じやすい。また歪み硬化係数が50以上であると
成形時にゲルが発生しやすく流動性も大きく低下して好
ましくない。
In the biodegradable polyester resin composition of the present invention, in the logarithmic plot of time-extensional viscosity (see FIG. 1) obtained by measuring extensional viscosity at a temperature 10 ° C. higher than its melting point, a bending point appears. The strain hardening coefficient represented by the ratio (a2 / a1) between the slope a1 of the linear region at the initial stage of stretching and the slope a2 of the latter stage of stretching after the bending point is
It is preferable that the strain-hardening property is expressed such that the strain hardening property is 1.05 or more and less than 50. A more preferable strain hardening coefficient is 1.5 to 30. When the strain hardening coefficient is less than 1.05, foaming may occur during extrusion foam molding and uneven thickness may easily occur in the molded body. Further, when the strain hardening coefficient is 50 or more, gel is apt to be generated during molding, and the fluidity is greatly reduced, which is not preferable.

【0017】本発明の生分解性ポリエステル樹脂組成物
は、DSC装置において、いったん200℃で溶融した
後、130℃にて等温結晶化させた時の結晶化速度指数
が50(分)以下であることが好ましい。結晶化速度指
数は、樹脂を200℃の溶融状態から130℃にて結晶
化させたときに最終的に到達する結晶化度の2分の1に
到達するまでの時間(分)(図2参照)で示され、指数
が小さいほど結晶化速度が速いことを意味する。結晶化
速度指数が50(分)よりも高いと、結晶化するのに時
間がかかりすぎ、希望する成形体の形状が得られなかっ
たり、射出成形などでのサイクルタイムが長くなって、
生産性が悪くなる。また、結晶化速度が速すぎると成形
性が悪くなるため、結晶化速度指数の下限は0.1
(分)程度であることが好ましい。結晶化速度指数は、
架橋剤量及び/又は過酸化物量が増加するほど小さくな
り、結晶化速度を速くすることができる。またタルクや
炭酸カルシウムなどの無機微粉末を0.1〜5質量%添
加すると相乗効果でより速くすることができる。さらに
架橋剤の官能基数を多くするほど速くすることができ
る。
The biodegradable polyester resin composition of the present invention has a crystallization rate index of 50 (minutes) or less when once melted at 200 ° C. and then isothermally crystallized at 130 ° C. in a DSC apparatus. It is preferable. The crystallization rate index is the time (minutes) required to reach half of the crystallinity finally reached when the resin is crystallized from a molten state at 200 ° C. at 130 ° C. (see FIG. 2). ), The smaller the index, the faster the crystallization rate. When the crystallization rate index is higher than 50 (minutes), it takes too long to crystallize, the desired shape of the molded body cannot be obtained, and the cycle time in injection molding becomes long,
Productivity deteriorates. Further, if the crystallization rate is too fast, the moldability deteriorates, so the lower limit of the crystallization rate index is 0.1.
It is preferably about (minutes). The crystallization rate index is
The smaller the amount of the crosslinking agent and / or the amount of peroxide, the smaller the amount, and the faster the crystallization rate. Further, by adding 0.1 to 5 mass% of inorganic fine powder such as talc or calcium carbonate, it is possible to increase the speed by a synergistic effect. Further, the higher the number of functional groups in the cross-linking agent, the higher the speed.

【0018】本発明の生分解性ポリエステル樹脂組成物
は、生分解性ポリエステル樹脂、(メタ)アクリル酸エ
ステル化合物、及び後述する過酸化物を原料として、一
般的な押出機を用いて溶融混練して製造することができ
る。混練状態をよくする意味で二軸の押出機を使用する
ことが好ましい。混練温度は(樹脂の融点+5℃)〜
(樹脂の融点+100℃)の範囲が、また、混練時間は
20秒〜30分が好ましい。この範囲より低温や短時間
であると、混練や反応が不充分となり、また高温や長時
間であると樹脂の分解や着色が起きることがある。この
場合、本発明で用いる(メタ)アクリル酸エステル化合
物及び過酸化物は、固体状であればドライブレンドや粉
体フィーダーを用いて供給する方法が望ましく、液体状
の場合は、加圧ポンプを用いて、押出機の途中から注入
する方法が望ましい。特に、(メタ)アクリル酸エステ
ル化合物及び/または過酸化物を媒体に溶解又は分散し
て混練機に注入すると操業性が格段に良くなり望まし
い。すなわち、生分解性ポリエステル樹脂と過酸化物と
を溶融混練中に、(メタ)アクリル酸エステル化合物の
溶解液又は分散液を注入したり、生分解性ポリエステル
樹脂を溶融混練中に、(メタ)アクリル酸エステル化合
物と過酸化物の溶解液又は分散液を注入して溶融混練す
ることが好ましい。
The biodegradable polyester resin composition of the present invention is melt-kneaded with a biodegradable polyester resin, a (meth) acrylic acid ester compound, and a peroxide described below as a raw material using a general extruder. Can be manufactured. It is preferable to use a twin-screw extruder in order to improve the kneading state. The kneading temperature is (melting point of resin + 5 ° C) ~
The range of (melting point of resin + 100 ° C.) is preferable, and the kneading time is preferably 20 seconds to 30 minutes. If the temperature is lower than this range or for a short time, kneading or reaction may be insufficient, and if the temperature is high or for a long time, decomposition or coloring of the resin may occur. In this case, the (meth) acrylic acid ester compound and the peroxide used in the present invention are preferably supplied by using a dry blend or a powder feeder when they are solid, and when they are liquid, a pressure pump is used. It is preferable to use the method of pouring from the middle of the extruder. In particular, it is desirable to dissolve or disperse the (meth) acrylic acid ester compound and / or the peroxide in a medium and to inject it into a kneader so that the workability is remarkably improved. That is, during the melt-kneading of the biodegradable polyester resin and the peroxide, a solution or dispersion of the (meth) acrylic acid ester compound is injected, or during the melt-kneading of the biodegradable polyester resin, (meth) It is preferable to inject a solution or dispersion of an acrylate compound and a peroxide and melt and knead them.

【0019】(メタ)アクリル酸エステル化合物及び/
または過酸化物を溶解又は分散させる媒体としては一般
的なものが用いられ、特に限定されないが、本発明の脂
肪族ポリエステルとの相溶性に優れた可塑剤が好まし
く、また生分解性のものが好ましい。例えば、脂肪族多
価カルボン酸エステル誘導体、脂肪族多価アルコールエ
ステル誘導体、脂肪族オキシエステル誘導体、脂肪族ポ
リエーテル誘導体、脂肪族ポリエーテル多価カルボン酸
エステル誘導体などから選ばれた1種以上の可塑剤など
が挙げられる。具体的な化合物としては、ジメチルアジ
ペート、ジブチルアジペート、トリエチレングリコール
ジアセテート、アセチルリシノール酸メチル、アセチル
トリブチルクエン酸、ポリエチレングリコール、ジブチ
ルジグリコールサクシネートなどが挙げられる。可塑剤
の使用量としては、樹脂量100質量部に対し30質量
部以下が好ましく、0.1〜20質量部が更に好まし
い。架橋剤の反応性が低い場合、可塑剤を使用量しなく
てもよいが、反応性が高い場合には0.1質量部以上用
いることが好ましい。また、(メタ)アクリル酸エステ
ル化合物と過酸化物は、別々に注入してもよい。
(Meth) acrylic acid ester compound and /
Or as a medium to dissolve or disperse the peroxide, a general medium is used, and is not particularly limited, but a plasticizer excellent in compatibility with the aliphatic polyester of the present invention is preferable, and a biodegradable one is also preferable. preferable. For example, at least one selected from an aliphatic polyvalent carboxylic acid ester derivative, an aliphatic polyhydric alcohol ester derivative, an aliphatic oxyester derivative, an aliphatic polyether derivative, an aliphatic polyether polyvalent carboxylic acid ester derivative, and the like. Examples include plasticizers. Specific compounds include dimethyl adipate, dibutyl adipate, triethylene glycol diacetate, methyl acetylricinoleate, acetyltributylcitric acid, polyethylene glycol, dibutyldiglycol succinate and the like. The amount of the plasticizer used is preferably 30 parts by mass or less, and more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the resin. When the reactivity of the crosslinking agent is low, the plasticizer may not be used, but when the reactivity is high, it is preferable to use 0.1 part by mass or more. Moreover, you may inject a (meth) acrylic acid ester compound and a peroxide separately.

【0020】本発明で用いられる過酸化物の例として
は、分散性が良好な有機過酸化物が好ましく、具体的に
は、ベンゾイルパーオキサイド、ビス(ブチルパーオキ
シ)トリメチルシクロヘキサン、ビス(ブチルパーオキ
シ)シクロドデカン、ブチルビス(ブチルパーオキシ)
バレレート、ジクミルパーオキサイド、ブチルパーオキ
シベンゾエート、ジブチルパーオキサイド、ビス(ブチ
ルパーオキシ)ジイソプロピルベンゼン、ジメチルジ
(ブチルパーオキシ)ヘキサン、ジメチルジ(ブチルパ
ーオキシ)ヘキシン、ブチルパーオキシクメン等が挙げ
られる。
As an example of the peroxide used in the present invention, an organic peroxide having good dispersibility is preferable, and specific examples thereof include benzoyl peroxide, bis (butylperoxy) trimethylcyclohexane, and bis (butylperoxide). (Oxy) cyclododecane, butyl bis (butyl peroxy)
Examples thereof include valerate, dicumyl peroxide, butylperoxybenzoate, dibutylperoxide, bis (butylperoxy) diisopropylbenzene, dimethyldi (butylperoxy) hexane, dimethyldi (butylperoxy) hexyne, and butylperoxycumene.

【0021】過酸化物の配合量は生分解性ポリエステル
樹脂100質量部に対して0.1〜20質量部、好まし
くは0.1〜10質量部である。0.1質量部未満では
本発明の目的とする機械的強度、耐熱性、寸法安定性の
改良効果が得られず、20質量部を超える場合には未利
用となり、コスト面で好ましくない。
The amount of the peroxide compounded is 0.1 to 20 parts by weight, preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the biodegradable polyester resin. If it is less than 0.1 parts by mass, the effect of improving the mechanical strength, heat resistance, and dimensional stability that is the object of the present invention cannot be obtained, and if it exceeds 20 parts by mass, it is not used and is not preferable in terms of cost.

【0022】本発明の生分解性ポリエステル樹脂組成物
は、上記のように、生分解性ポリエステル樹脂、(メ
タ)アクリル酸エステル化合物、及び過酸化物を原料と
してこれらを溶融混練して製造することができるが、一
般に過酸化物は溶融混練中に分解するため、得られた樹
脂組成物中に過酸化物が必ず含有されているとは限らな
い。また、(メタ)アクリル酸エステル化合物及び/ま
たは過酸化物の添加に際して可塑剤などの媒体を使用す
ることが好ましいが、この媒体も溶融混練時に揮発する
ことがあるため、得られた樹脂組成物中に媒体が必ず含
有されているとは限らない。
The biodegradable polyester resin composition of the present invention is produced by melt-kneading the biodegradable polyester resin, the (meth) acrylic acid ester compound, and the peroxide as raw materials as described above. However, since the peroxide generally decomposes during melt-kneading, the obtained resin composition does not always contain the peroxide. Further, it is preferable to use a medium such as a plasticizer when adding the (meth) acrylic acid ester compound and / or the peroxide, but since this medium may also volatilize during melt-kneading, the obtained resin composition The medium is not always contained in the medium.

【0023】本発明の生分解性ポリエステル樹脂組成物
にはその特性を大きく損なわない限りにおいて、さらに
顔料、熱安定剤、酸化防止剤、耐候剤、難燃剤、可塑
剤、滑剤、離型剤、帯電防止剤、充填材等を添加するこ
とも可能である。熱安定剤や酸化防止剤としては、たと
えばヒンダードフェノール類、リン化合物、ヒンダード
アミン、イオウ化合物、銅化合物、アルカリ金属のハロ
ゲン化物あるいはこれらの混合物を使用することができ
る。無機充填材としては、タルク、炭酸カルシウム、炭
酸亜鉛、ワラストナイト、シリカ、アルミナ、酸化マグ
ネシウム、ケイ酸カルシウム、アルミン酸ナトリウム、
アルミン酸カルシウム、アルミノ珪酸ナトリウム、珪酸
マグネシウム、ガラスバルーン、カーボンブラック、酸
化亜鉛、三酸化アンチモン、ゼオライト、ハイドロタル
サイト、金属繊維、金属ウイスカー、セラミックウイス
カー、チタン酸カリウム、窒化ホウ素、グラファイト、
ガラス繊維、炭素繊維等が挙げられる。有機充填材とし
ては、澱粉、セルロース微粒子、木粉、おから、モミ
殻、フスマ等の天然に存在するポリマーやこれらの変性
品が挙げられる。
The biodegradable polyester resin composition of the present invention may further contain a pigment, a heat stabilizer, an antioxidant, a weatherproofing agent, a flame retardant, a plasticizer, a lubricant, a release agent, as long as the characteristics are not significantly impaired. It is also possible to add an antistatic agent, a filler and the like. As the heat stabilizer and antioxidant, for example, hindered phenols, phosphorus compounds, hindered amines, sulfur compounds, copper compounds, halides of alkali metals, or a mixture thereof can be used. As the inorganic filler, talc, calcium carbonate, zinc carbonate, wollastonite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate,
Calcium aluminate, sodium aluminosilicate, magnesium silicate, glass balloon, carbon black, zinc oxide, antimony trioxide, zeolite, hydrotalcite, metal fiber, metal whiskers, ceramic whiskers, potassium titanate, boron nitride, graphite,
Examples thereof include glass fiber and carbon fiber. Examples of the organic filler include naturally occurring polymers such as starch, cellulose fine particles, wood flour, okara, fir shell, and bran, and modified products thereof.

【0024】なお、本発明の生分解性ポリエステル樹脂
組成物に上記添加剤や他の熱可塑性樹脂を混合する方法
は特に限定されるものではなく、通常の加熱溶融後、例
えば、従来より知られている一軸押出機、二軸押出機、
ロール混練機、ブラベンダー等を用いる混練法によって
混練するとよい。また、スタティックミキサーやダイナ
ミックミキサーを併用することも効果的である。また、
生分解性樹脂の重合時に加えてもよい。
The method of mixing the above-mentioned additives and other thermoplastic resins with the biodegradable polyester resin composition of the present invention is not particularly limited, and it is conventionally known, for example, after heating and melting. Single screw extruder, twin screw extruder,
Kneading may be performed by a kneading method using a roll kneader, a Brabender, or the like. It is also effective to use a static mixer or a dynamic mixer together. Also,
It may be added during the polymerization of the biodegradable resin.

【0025】本発明の生分解性ポリエステル樹脂組成物
から発泡体を製造する際の発泡方法には、一般的な方法
全てを適用することができる。例えば、押出機を用い
て、樹脂にあらかじめ樹脂の溶融温度で分解する分解型
発泡剤をブレンドしておき、スリット状ノズルから押出
してシート状にしたり、丸形ノズルから押出してストラ
ンド形状にすることができる。分解型発泡材の例として
は、アゾジカルボンアミドやバリウムアゾジカルボキシ
レートに代表されるアゾ化合物、N,N’−ジニトロソ
ペンタメチレンテトラミンに代表されるニトロソ化合
物、4,4’−オキシビス(ベンゼンスルホニルヒドラ
ジド)やヒドラジカルボンアミドに代表されるヒドラジ
ン化合物、あるいは炭酸水素ナトリウムなどの無機系の
発泡剤などを挙げることが出来る。また、押出機途中か
ら揮発型発泡剤を注入して発泡することも可能である。
この場合の発泡剤としては、窒素、二酸化炭素、水等の
無機化合物や、メタン、エタン、ブタンなどの各種炭化
水素、フロン化合物、エタノールやメタノール等の各種
アルコール類に代表される有機溶媒などを挙げることが
出来る。また、あらかじめ樹脂組成物の微粒子を作製し
有機溶媒や水など上記に示した発泡剤を含浸させた後、
温度や圧力の変化で発泡させて発泡微粒子を作製する方
法も適用できる。
As a foaming method for producing a foam from the biodegradable polyester resin composition of the present invention, all general methods can be applied. For example, use an extruder to blend a resin with a decomposable foaming agent that decomposes at the melting temperature of the resin in advance, and extrude it from a slit nozzle into a sheet, or extrude it from a round nozzle into a strand shape. You can Examples of the decomposition type foaming material include azo compounds represented by azodicarbonamide and barium azodicarboxylate, nitroso compounds represented by N, N′-dinitrosopentamethylenetetramine, and 4,4′-oxybis (benzene. Examples thereof include hydrazine compounds represented by sulfonyl hydrazides) and hydradicarbonamides, and inorganic foaming agents such as sodium hydrogen carbonate. It is also possible to inject a volatile foaming agent from the middle of the extruder to foam.
Examples of the foaming agent in this case include inorganic compounds such as nitrogen, carbon dioxide and water, various hydrocarbons such as methane, ethane and butane, freon compounds and organic solvents represented by various alcohols such as ethanol and methanol. I can name it. In addition, after fine particles of the resin composition are prepared in advance and impregnated with the above-mentioned foaming agent such as an organic solvent or water,
It is also possible to apply a method of producing foamed fine particles by foaming by changing temperature or pressure.

【0026】次に、本発明の生分解性ポリエステル樹脂
組成物から押出成形体を製造する際の押出成形法につい
て述べる。押出成形法としては、Tダイ法及び丸ダイ法
を適用することができる。押出成形温度は生分解性ポリ
エステル樹脂組成物の融点(Tm)または流動開始温度
以上であることが必要であり、好ましくは180〜23
0℃、さらに好ましくは190〜220℃の範囲であ
る。成形温度が低すぎると成形が不安定になったり、過
負荷に陥りやすく、逆に成形温度が高すぎると生分解性
ポリエステル樹脂が分解し、得られる押出成形体の強度
が低下したり、着色する等の問題が発生するため好まし
くない。押出成形により、生分解性シートやパイプ等を
作製することが出来るが、これらの耐熱性を高める目的
で、生分解性ポリエステル樹脂組成物のガラス転移温度
(Tg)以上、(Tm−20℃)以下で熱処理すること
もできる。
Next, an extrusion molding method for producing an extrusion molded body from the biodegradable polyester resin composition of the present invention will be described. As the extrusion molding method, a T die method and a round die method can be applied. The extrusion molding temperature needs to be equal to or higher than the melting point (Tm) or the flow initiation temperature of the biodegradable polyester resin composition, and preferably 180 to 23.
The temperature is 0 ° C, more preferably 190 to 220 ° C. If the molding temperature is too low, molding becomes unstable or easily overloaded.On the other hand, if the molding temperature is too high, the biodegradable polyester resin is decomposed and the strength of the obtained extrusion molded product is reduced, or coloring is caused. This is not preferable because it causes problems such as Although biodegradable sheets, pipes, etc. can be produced by extrusion molding, the glass transition temperature (Tg) or higher of the biodegradable polyester resin composition (Tm-20 ° C.) is used for the purpose of enhancing the heat resistance of these. The following heat treatment can also be performed.

【0027】押出成形法により製造される生分解性シー
トまたはパイプの具体的用途としては、深絞り成形用原
反シート、バッチ式発泡用原反シート、クレジットカー
ド等のカード類、下敷き、クリアファイル、ストロー、
農業・園芸用硬質パイプ等が挙げられる。また、生分解
性シートは、真空成形、圧空成形、及び真空圧空成形等
の深絞り成形を行うことで、食品用容器、農業・園芸用
容器、ブリスターパック容器、及びプレススルーパック
容器などを製造することができる。深絞り成形温度及び
熱処理温度は、(Tg+20℃)〜(Tm−20℃)で
あることが好ましい。深絞り温度が(Tg+20℃)未
満では深絞りが困難になったり、得られる容器の耐熱性
が不十分となる場合があり、逆に深絞り温度が(Tm−
20℃)を超えると偏肉が生じたり、配向がくずれて耐
衝撃性が低下する場合がある。
Specific applications of the biodegradable sheet or pipe produced by the extrusion molding method include deep drawing raw fabric sheets, batch type foam raw fabric sheets, cards such as credit cards, underlays, and clear files. ,straw,
Examples include hard pipes for agriculture and gardening. In addition, biodegradable sheets are manufactured by deep drawing such as vacuum forming, pressure forming, and vacuum pressure forming to produce food containers, agricultural / horticultural containers, blister pack containers, press-through pack containers, etc. can do. The deep drawing temperature and the heat treatment temperature are preferably (Tg + 20 ° C) to (Tm-20 ° C). If the deep drawing temperature is lower than (Tg + 20 ° C.), deep drawing may be difficult, or the heat resistance of the resulting container may be insufficient. On the contrary, the deep drawing temperature is (Tm−
If it exceeds 20 ° C., uneven thickness may occur, or orientation may be broken and impact resistance may be reduced.

【0028】食品用容器、農業・園芸用容器、ブリスタ
ーパック容器、及びプレススルーパック容器の形態は特
に限定しないが、食品、物品、及び薬品等を収容するた
めには深さ2mm以上に深絞りされていることが好まし
い。容器の厚さは特に限定されないが、強力の点から、
50μm以上であることが好ましく、150〜500μ
mであることがより好ましい。食品用容器の具体的例と
しては、生鮮食品のトレー、インスタント食品容器、フ
ァーストフード容器、弁当箱等が挙げられる。農業・園
芸用容器の具体例としては、育苗ポット等が挙げられ
る。また、ブリスターパック容器の具体的例としては、
食品以外にも事務用品、玩具、乾電池等の多様な商品群
の包装容器が挙げられる。
The forms of the food container, the agricultural / horticultural container, the blister pack container, and the press-through pack container are not particularly limited, but for drawing foods, articles, medicines, etc., deep drawing is performed to a depth of 2 mm or more. Is preferably provided. The thickness of the container is not particularly limited, but from the viewpoint of strength,
It is preferably 50 μm or more, and 150 to 500 μm
More preferably m. Specific examples of the food container include a fresh food tray, an instant food container, a fast food container, and a lunch box. Specific examples of the agricultural / horticultural container include a nursery pot. Also, as a specific example of the blister pack container,
In addition to food products, there are packaging containers for various products such as office supplies, toys, and dry batteries.

【0029】次に、本発明の生分解性ポリエステル樹脂
組成物からブロー成形体を製造する際のブロー成形法に
ついて述べる。ブロー成形法としては、原料チップから
直接成形を行うダイレクトブロー法や、まず射出成形で
予備成形体(有底パリソン)を成形後にブロー成形を行
う射出ブロー成形法、さらには延伸ブロー成形等も採用
することができる。また予備成形体成形後に連続してブ
ロー成形を行うホットパリソン法、いったん予備成形体
を冷却し取り出してから再度加熱してブロー成形を行う
コールドパリソン法のいずれの方法も採用できる。ブロ
ー成形温度は(Tg+20℃)〜(Tm−20℃)であ
ることが必要である。ブロー成形温度が(Tg+20
℃)未満では成形が困難になったり、得られる容器の耐
熱性が不十分となる場合があり、逆にブロー成形温度が
(Tm−20℃)を超えると偏肉が生じたり、粘度低下
によりブローダウンする等の問題が発生するため、好ま
しくない。
Next, a blow molding method for producing a blow molded product from the biodegradable polyester resin composition of the present invention will be described. As the blow molding method, a direct blow method in which raw material chips are directly molded, an injection blow molding method in which a preform (a bottomed parison) is first molded by injection molding and then blow molding, and further stretch blow molding is adopted. can do. Further, either a hot parison method in which blow molding is continuously performed after molding of the preformed body or a cold parison method in which the premolded body is once cooled and taken out and then heated again for blow molding can be adopted. The blow molding temperature needs to be (Tg + 20 ° C) to (Tm-20 ° C). Blow molding temperature is (Tg + 20
If the temperature is less than (° C), molding may be difficult, or the heat resistance of the resulting container may be insufficient. Conversely, if the blow molding temperature exceeds (Tm-20 ° C), uneven thickness may occur or the viscosity may decrease. This is not preferable because problems such as blowdown occur.

【0030】次に、本発明の生分解性ポリエステル樹脂
組成物から射出成形体を製造する際の射出成形法として
は、一般的な射出成形法を用いることができ、さらには
ガス射出成形、射出プレス成形等も採用できる。射出成
形時のシリンダ温度はTmまたは流動開始温度以上であ
ることが必要であり、好ましくは180〜230℃、さ
らに好ましくは190〜220℃の範囲である。成形温
度が低すぎると成形がショートが発生したりして成形が
不安定になったり、過負荷に陥りやすく、逆に成形温度
が高すぎると生分解性ポリエステル樹脂が分解し、得ら
れる成形体の強度が低下したり、着色する等の問題が発
生するため、好ましくない。一方、金型温度は(Tm−
20℃)以下にする必要がある。生分解性ポリエステル
樹脂の耐熱性を高める目的で金型内で結晶化を促進する
場合は、(Tg+20℃)〜(Tm−20℃)で所定時
間保った後、Tg以下に冷却することが好ましく、逆に
後結晶化する場合は、直接Tg以下に冷却した後、再度
Tg〜(Tm−20℃)で熱処理することが好ましい。
Next, as an injection molding method for producing an injection molded body from the biodegradable polyester resin composition of the present invention, a general injection molding method can be used, and further gas injection molding or injection molding can be used. Press molding or the like can also be adopted. The cylinder temperature at the time of injection molding needs to be equal to or higher than Tm or the flow starting temperature, and is preferably 180 to 230 ° C, more preferably 190 to 220 ° C. If the molding temperature is too low, molding will be short-circuited and the molding will become unstable, or it will easily fall into overload. Conversely, if the molding temperature is too high, the biodegradable polyester resin will decompose and the resulting molded article will be obtained. This is not preferable, because problems such as decrease in strength and coloring occur. On the other hand, the mold temperature is (Tm-
20 ° C.) or lower. When crystallization is promoted in the mold for the purpose of increasing the heat resistance of the biodegradable polyester resin, it is preferable to maintain the temperature at (Tg + 20 ° C.) to (Tm-20 ° C.) for a predetermined time and then cool it to Tg or lower. On the contrary, in the case of post-crystallization, it is preferable to cool directly to Tg or lower and then heat-treat again at Tg to (Tm-20 ° C).

【0031】上記射出成形法により製造する射出成形品
の形態は特に限定されず、具体例としては、皿、椀、
鉢、箸、スプーン、フォーク、ナイフ等の食器、流動体
用容器、容器用キャップ、定規、筆記具、クリアケー
ス、CDケース等の事務用品、台所用三角コーナー、ゴ
ミ箱、洗面器、歯ブラシ、櫛、ハンガー等の日用品、植
木鉢、育苗ポット等の農業・園芸用資材、プラモデル等
の各種玩具類、エアコンパネル、冷蔵庫トレイ、各種筐
体等の電化製品用樹脂部品、バンパー、インパネ、ドア
トリム等の自動車用樹脂部品等が挙げられる。なお、流
動体用容器の形態は、特に限定されないが、流動体を収
容するためには深さ20mm以上に成形されていること
が好ましい。容器の厚さは特に限定されないが、強力の
点から、0.1mm以上であることが好ましく、0.1
〜5mmであることがより好ましい。流動体用容器の具
体例としては、乳製品や清涼飲料水及び酒類等の飲料用
コップ及び飲料用ボトル、醤油、ソース、マヨネーズ、
ケチャップ、食用油等の調味料の一時保存容器、シャン
プー・リンス等の容器、化粧品用容器、農薬用容器等が
挙げられる。
The form of the injection-molded article produced by the above-mentioned injection molding method is not particularly limited, and specific examples include a plate, a bowl, and
Tableware such as bowls, chopsticks, spoons, forks and knives, containers for fluids, container caps, rulers, office supplies such as writing instruments, clear cases, CD cases, triangular corners for kitchen, trash cans, washbasins, toothbrushes, combs, Daily necessities such as hangers, agricultural and horticultural materials such as flower pots and nursery pots, various toys such as plastic models, resin parts for electrical appliances such as air conditioner panels, refrigerator trays, various cases, automobiles such as bumpers, instrument panels and door trims. Resin parts etc. are mentioned. The form of the fluid container is not particularly limited, but it is preferably molded to a depth of 20 mm or more to accommodate the fluid. The thickness of the container is not particularly limited, but from the viewpoint of strength, it is preferably 0.1 mm or more,
More preferably, it is -5 mm. Specific examples of fluid containers include dairy products, soft drinks and beverages such as alcoholic beverages and beverage bottles, soy sauce, sauce, mayonnaise,
Examples include temporary storage containers for seasonings such as ketchup and edible oil, containers for shampoo / rinse, cosmetics containers, pesticide containers, and the like.

【0032】[0032]

【実施例】以下本発明を実施例によりさらに具体的に説
明するが、本発明は実施例のみに限定されるものではな
い。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.

【0033】実施例及び比較例の評価に用いた測定法は
次のとおりである。 (1)分子量:示差屈折率検出器を備えたゲル浸透クロ
マトグラフィ(GPC)装置(島津製作所製)を用い、
テトラヒドロフランを溶出液として40℃で標準ポリス
チレン換算で求めた。 (2)曲げ弾性率:ASTM−790に準じて150m
m×10mm×6mmの試験片を作製し、変形速度1m
m/分で荷重をかけ、曲げ弾性率を測定した。 (3)融点:示差走査熱量計DSC―7(パーキンエル
マー社製)を用い、昇温速度10℃/分の条件で測定し
た。 (4)MFR:JIS K7210に従い、附属書A表
1のFの条件にて測定した。 (5)伸長粘度:伸長粘度測定装置RME(レオメトリ
ック社製)を用い、60mm×7mm×1mmの試験片
を作製し、その両端を金属ベルトクランプにより支持し
た後、樹脂組成物の融点よりも10℃高い温度で、歪み
速度0.1sec-1で回転させて測定サンプルに伸長変
形を加え、変形中にピンチローラにかかるトルクを検出
することにより伸長粘度を求めた。 (6)歪み硬化係数(a2/a1)(図1参照):伸長
時間と伸長粘度の両対数プロットにおいて、屈曲点が現
れるまでの伸長初期の線形領域の傾きa1と屈曲点以降
の伸長後期の傾きa2との比(a2/a1)を算出し
た。 (7)結晶化速度指数(図2参照) DSC装置(パーキンエルマー社製Pyrisl DS
C)を用い、20℃→200℃(+500℃/分)で昇
温後、200℃で5分間保持し、200℃→130℃
(−500℃/分)で降温後、130℃で保持し結晶化
させた。最終的に到達する結晶化度を1としたとき、結
晶化度が0.5に達した時間を結晶化速度指数(分)と
して求めた。 (8)発泡倍率:生分解性ポリエステル樹脂組成物のペ
レットをいったん乾燥した後、発泡剤として液化炭酸ガ
スを用い、バッチ発泡試験(耐圧容器を用い、融点より
10℃低い温度で,10MPaで二酸化炭素を含浸後、
常圧へ戻す)並びに連続発泡シート作製実験(二軸押出
成形機PCM−30(池貝製、ダイのスリット長さ40
mm、スリット巾1mm)を用い、押出ヘッド温度;2
00℃、ダイ出口温度;160℃)を行った。得られた
発泡体を水中に浸漬した際に増加する体積と、発泡体の
質量と樹脂密度から求まる体積との比から算出した。 (8)発泡体外観: ○:均一なロッド状になり、表面の肌荒れが無い。 △:一部不均一なロッド状になるが、表面の肌荒れが無
い。 ×:不均一なロッド状になり、表面の肌荒れある。 (9)射出成形性の評価 射出成形装置(東芝機械製IS−100E)を用い、離
型カップ型(直径38mm、高さ300mm)に射出成
形を行い(成形温度200℃、金型温度15℃)、良好
にカップが離型出来るまでのサイクル時間を調べた。 (10)ブロー成形性の評価 ブロー成形装置(日精エーエスビー社製ASB−50H
T)を用い、成形温度200℃で直径30mm、高さ1
00mm、厚み3.5mmのブリフォームを作製後、こ
れを表面温度80℃に加温し、ボトル形状の金型(直径
90mm、高さ250mm)にブロー成形を行った。得
られた厚み0.35mmの成形体の外観を評価した。 ○:良好で目的通り。 △:ほぼ目的通り成形できたが一部に不具合あり。 ×:目的通り成形できなかった。 ××:全く形をなさなかった。
The measuring methods used in the evaluation of Examples and Comparative Examples are as follows. (1) Molecular weight: using a gel permeation chromatography (GPC) device (manufactured by Shimadzu Corporation) equipped with a differential refractive index detector,
Tetrahydrofuran was used as an eluent and determined at 40 ° C. in terms of standard polystyrene. (2) Flexural modulus: 150 m according to ASTM-790
A test piece measuring mx 10 mm x 6 mm was prepared and the deformation speed was 1 m.
The load was applied at m / min, and the flexural modulus was measured. (3) Melting point: Measured using a differential scanning calorimeter DSC-7 (manufactured by Perkin Elmer Co., Ltd.) at a temperature rising rate of 10 ° C./min. (4) MFR: Measured according to JIS K7210 under the conditions of F in Annex A Table 1. (5) Elongational viscosity: Using an elongational viscosity measuring device RME (manufactured by Rheometrics Inc.), a test piece of 60 mm × 7 mm × 1 mm was prepared, and both ends thereof were supported by metal belt clamps. The elongation viscosity was obtained by rotating the strain at a strain rate of 0.1 sec −1 at a temperature higher by 10 ° C. to subject the measurement sample to extension deformation, and detecting the torque applied to the pinch roller during the deformation. (6) Strain hardening coefficient (a2 / a1) (see FIG. 1): In the logarithmic plot of elongation time and elongation viscosity, the slope a1 of the linear region at the initial stage of elongation until the inflection point appears and the latter period of elongation after the inflection point The ratio (a2 / a1) to the slope a2 was calculated. (7) Crystallization rate index (see FIG. 2) DSC device (Pyrisl DS manufactured by Perkin Elmer Co., Ltd.
C), the temperature is raised from 20 ° C to 200 ° C (+ 500 ° C / min), and then held at 200 ° C for 5 minutes, and 200 ° C to 130 ° C.
After lowering the temperature at (-500 ° C / min), it was kept at 130 ° C for crystallization. When the finally reached crystallinity was 1, the time when the crystallinity reached 0.5 was determined as a crystallization rate index (minute). (8) Expansion ratio: After once drying the pellets of the biodegradable polyester resin composition, liquefied carbon dioxide gas was used as a foaming agent, and a batch foaming test (using a pressure vessel, at a temperature 10 ° C. lower than the melting point and at 10 MPa carbon dioxide). After impregnating carbon,
Return to normal pressure) and continuous foamed sheet production experiment (biaxial extruder PCM-30 (made by Ikegai, die slit length 40
mm, slit width 1 mm), extrusion head temperature: 2
00 ° C., die exit temperature; 160 ° C.). It was calculated from the ratio of the volume increased when the obtained foam was dipped in water and the volume obtained from the mass of the foam and the resin density. (8) Appearance of foam: ◯: A uniform rod shape without surface roughness. Δ: Partially non-uniform rod shape, but no rough surface. X: The shape of the rod was uneven, and the surface was rough. (9) Evaluation of injection moldability Using an injection molding device (IS-100E manufactured by Toshiba Machine Co., Ltd.), injection molding was performed on a release cup mold (diameter 38 mm, height 300 mm) (molding temperature 200 ° C, mold temperature 15 ° C). ), And examined the cycle time until the cup could be released from the mold satisfactorily. (10) Evaluation of blow moldability Blow molder (ASB-50H manufactured by Nissei ASB Co., Ltd.
T) with a molding temperature of 200 ° C., a diameter of 30 mm and a height of 1
After producing a briform having a size of 00 mm and a thickness of 3.5 mm, the briform was heated to a surface temperature of 80 ° C. and blow-molded into a bottle-shaped mold (diameter 90 mm, height 250 mm). The appearance of the obtained molded product having a thickness of 0.35 mm was evaluated. ○: Good and as intended Δ: Molded almost as intended, but with some defects. X: Could not be molded as intended. XX: No shape was formed.

【0034】実施例及び比較例に用いた原料は次のとお
りである。 (1)生分解性ポリエステル樹脂: A:ポリ乳酸(重量平均分子量20万、L体99%、D
体1%、結晶化速度指数95) B:ポリ乳酸(重量平均分子量18万、L体90%、D
体10%、結晶化速度指数>100) C:ポリ乳酸(重量平均分子量18万、L体80%、D
体20%、結晶化速度指数>100) D:ポリ乳酸(重量平均分子量9万、L体85%、D体
15%、結晶化速度指数>100) (2)(メタ)アクリル酸エステル化合物: PEGDM:ポリエチレングリコールジメタクリレート
(日本油脂製) TMPTM:トリメチロールプロパントリメタクリレー
ト(日本油脂製) PEGDA:ポリエチレングリコールジアクリレート
(日本油脂製) GM:グリシジルメタクリレート(日本油脂製) (3)過酸化物: I:ジ−t−ブチルパーオキサイド(日本油脂製) J:2,5−ジメチル−2,5−ビス(t−ブチルパー
オキシ)ヘキシン−3(日本油脂製、可塑剤であるアセ
チルトリブチルクエン酸に10%溶液となるよう溶解し
て用いた。) K:2,5−ジメチル−2,5−ビス(t−ブチルパー
オキシ)ヘキシン−3の不活性固体希釈粉体(日本油脂
製、生分解性ポリエステル樹脂にあらかじめドライブレ
ンドして用いた。)
The raw materials used in Examples and Comparative Examples are as follows. (1) Biodegradable polyester resin: A: polylactic acid (weight average molecular weight 200,000, L-form 99%, D
Body 1%, crystallization rate index 95) B: Polylactic acid (weight average molecular weight 180,000, L body 90%, D
Body 10%, crystallization rate index> 100) C: Polylactic acid (weight average molecular weight 180,000, L body 80%, D
Body 20%, crystallization rate index> 100) D: Polylactic acid (weight average molecular weight 90,000, L-form 85%, D-body 15%, crystallization rate index> 100) (2) (meth) acrylic acid ester compound: PEGDM: Polyethylene glycol dimethacrylate (manufactured by NOF Corporation) TMPTM: Trimethylolpropane trimethacrylate (manufactured by NOF CORPORATION) PEGDA: Polyethylene glycol diacrylate (manufactured by NOF CORPORATION) GM: Glycidyl methacrylate (manufactured by NOF CORPORATION) (3) Peroxide: I: Di-t-butylperoxide (manufactured by NOF CORPORATION) J: 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3 (manufactured by NOF CORPORATION, acetyltributylcitrate which is a plasticizer) Used as a 10% solution.) K: 2,5-dimethyl-2,5-bis (t-butyl) Luperoxy) hexin-3 inert solid diluted powder (made by NOF Corporation, used by dry blending in advance with biodegradable polyester resin)

【0035】実施例1 二軸押出成形機(池貝製PCM−30、ダイス直径;4
mm×3孔、押出ヘッド温度;200℃、ダイ出口温
度;180℃)を用い、重量平均分子量20万のポリ乳
酸(L体99%、D体1%)(A)100質量部を供給
した。発泡核剤としてタルク(林化成製)0.5質量部
を添加した。混練機途中からポンプを用いてポリエチレ
ングリコールジメタクリレート(日本油脂製)(PEG
DM)2質量部とジ−t−ブチルパーオキサイド(日本
油脂製)(I)2質量部を可塑剤アセチルトリブチルク
エン酸5質量部に溶解した溶液を注入し、押出し、ペレ
ット状に加工し、生分解性ポリエステル樹脂組成物を得
た。得られた組成物の物性と、発泡試験の結果を表1に
示した。
Example 1 Twin-screw extruder (PCM-30 made by Ikegai, Die diameter; 4
mm × 3 holes, extrusion head temperature: 200 ° C., die exit temperature: 180 ° C.), and 100 parts by mass of polylactic acid having a weight average molecular weight of 200,000 (99% L-form, 1% D-form) (A) was supplied. . 0.5 parts by mass of talc (manufactured by Hayashi Kasei) was added as a foam nucleating agent. Using a pump from the middle of the kneader, polyethylene glycol dimethacrylate (made by NOF CORPORATION) (PEG
DM) 2 parts by mass and di-t-butyl peroxide (manufactured by NOF CORPORATION) (I) 2 parts by mass dissolved in 5 parts by mass of a plasticizer acetyltributylcitric acid, and the mixture is extruded and processed into pellets, A biodegradable polyester resin composition was obtained. Table 1 shows the physical properties of the obtained composition and the results of the foaming test.

【0036】実施例2〜12、比較例1〜7 生分解性ポリエステル樹脂、(メタ)アクリル酸エステ
ル化合物、及び過酸化物をそれぞれ表1に示す種類と量
に変えた以外は実施例1と同様にして組成物を得、発泡
試験を行った。得られた組成物の物性と、発泡試験の結
果を表1に示した。また、実施例4、6、9、12、及
び比較例1、2、7で得られた生分解性ポリエステル樹
脂組成物を用いて、評価方法(9)、(10)に記載し
た条件で、離型カップ型(直径38mm×高さ300m
m)の射出成形体を、また、ボトル形状(直径90m
m、高さ250mm、厚み0.35mm)のブロー成形
体を得た。射出成形性、ブロー成形性の評価結果を表1
にまとめた。
Examples 2 to 12, Comparative Examples 1 to 7 Example 1 except that the type and amount of biodegradable polyester resin, (meth) acrylic acid ester compound, and peroxide were changed to those shown in Table 1, respectively. A composition was obtained in the same manner and a foaming test was conducted. Table 1 shows the physical properties of the obtained composition and the results of the foaming test. Further, using the biodegradable polyester resin compositions obtained in Examples 4, 6, 9, 12 and Comparative Examples 1, 2, 7, under the conditions described in Evaluation Methods (9) and (10), Release cup type (diameter 38 mm x height 300 m
m) injection-molded body, bottle shape (diameter 90 m
m, height 250 mm, thickness 0.35 mm) was obtained. Table 1 shows the evaluation results of injection moldability and blow moldability.
Summarized in.

【0037】比較例8 ポリエチレングリコールジメタクリレート(PEGD
M)とジ−t−ブチルパーオキサイド(I)をポンプで
混練機に注入する際に、可塑剤アセチルトリブチルクエ
ン酸を用いなかった以外は実施例1と同様に行ったが、
ポンプ送液開始10分後に配管が詰まって送液出来なく
なり、樹脂組成物を得ることができなかった。
Comparative Example 8 Polyethylene glycol dimethacrylate (PEGD
M) and di-t-butyl peroxide (I) were pumped into the kneader, but the procedure was the same as in Example 1 except that the plasticizer acetyltributylcitric acid was not used.
After 10 minutes from the start of pumping, the pipe was clogged and the solution could not be sent, and the resin composition could not be obtained.

【0038】[0038]

【表1】 [Table 1]

【0039】表1から明らかなように実施例1〜9にお
いては、曲げ弾性率に優れ、独立発泡で均一な発泡体が
得られることが分かった。また実施例10〜12におい
ては、生分解性樹脂を変更しても曲げ弾性率に優れ、独
立発泡で均一な発泡体が得られることが分かった。実施
例の樹脂組成物は結晶化速度が速く、射出成形法、ブロ
ー成形法のいずれでも良好な成形体を得ることが出来
た。比較例1及び比較例3〜5においては、(メタ)ア
クリル酸エステル化合物を含有していないため、曲げ弾
性率を代表とする機械的強度の改善が図れず、歪み硬化
係数も低いものであった。これらの樹脂を発泡処理を行
っても満足な発泡体が得られなかった。比較例2におい
ては、過酸化物を原料として用いないため、曲げ弾性率
を代表とする機械的強度の改善が図れず、歪硬化係数も
測定できないものであった。その樹脂の発泡体を得よう
としたが破泡して満足な発泡体を得ることができなかっ
た。比較例6では、架橋が進みすぎて押出機途中で詰ま
りが発生し、樹脂組成物を得ることはできなかった。
As is clear from Table 1, in Examples 1 to 9, it was found that the flexural modulus was excellent and uniform foams were obtained by independent foaming. Further, in Examples 10 to 12, it was found that even if the biodegradable resin was changed, the flexural modulus was excellent, and uniform foams were obtained by independent foaming. The resin compositions of the examples had a high crystallization rate, and good molded articles could be obtained by either the injection molding method or the blow molding method. In Comparative Example 1 and Comparative Examples 3 to 5, since the (meth) acrylic acid ester compound was not contained, the mechanical strength represented by the bending elastic modulus could not be improved, and the strain hardening coefficient was low. It was Satisfactory foams were not obtained even when these resins were foamed. In Comparative Example 2, since peroxide was not used as a raw material, it was not possible to improve the mechanical strength represented by flexural modulus, and the strain hardening coefficient could not be measured. An attempt was made to obtain a foam of the resin, but the foam was broken and a satisfactory foam could not be obtained. In Comparative Example 6, the resin composition could not be obtained because cross-linking proceeded too much and clogging occurred in the middle of the extruder.

【0040】実施例13 実施例2で得られた生分解性樹脂組成物に対し、発泡剤
としてはアゾジカルボンアミド系熱分解型発泡剤(永和
化成製ビニホールAC#3)が1.5質量%になるよう
にドライブレンドして発泡試験を行った。すなわち、一
軸40mm径の押出しTダイ試験機(スルーザー型スタ
ティックミキサー3.5段併設、スリット長500m
m、スリット幅1.5mm)を用い、溶融温度220
℃、ダイ出口温度160℃、スクリュー回転数16rp
m、引取り速度3m/分で製膜した。製膜時の発泡状態
は極めて均一であり、得られた発泡体の発泡倍率は4倍
で、独立型の気泡から構成されているものであった。
Example 13 1.5% by mass of an azodicarbonamide-based thermally decomposable foaming agent (Vinylhol AC # 3 manufactured by Eiwa Chemical Co., Ltd.) was used as a foaming agent based on the biodegradable resin composition obtained in Example 2. A foaming test was performed by dry blending so that That is, an extrusion T-die testing machine with a uniaxial 40 mm diameter (sruzer type static mixer 3.5 stages side by side, slit length 500 m
m, slit width 1.5 mm), melting temperature 220
℃, die outlet temperature 160 ℃, screw rotation speed 16 rp
m and the take-up speed was 3 m / min. The foaming state at the time of film formation was extremely uniform, and the foaming ratio of the obtained foam was 4 times, which consisted of independent type cells.

【0041】実施例14 発泡剤として液化二酸化炭素を生分解性樹脂樹脂の3質
量%になるように高圧ポンプで押出して押出機途中から
注入した以外は実施例13と同様に発泡試験を行った。
製膜時の発泡状態は極めて均一であり、得られた発泡体
の発泡倍率は12倍で、独立型の気泡から構成されてい
るものであった。
Example 14 A foaming test was conducted in the same manner as in Example 13 except that liquefied carbon dioxide as a foaming agent was extruded by a high pressure pump so that the content of the biodegradable resin was 3% by mass and was injected from the middle of the extruder. .
The foaming state at the time of film formation was extremely uniform, the expansion ratio of the obtained foam was 12 times, and the foam was composed of independent cells.

【0042】実施例15 実施例2で得られた生分解性樹脂組成物を、凍結粉砕
し、平均粒径1mmの粒子を作製した。この粒子をいっ
たん乾燥した後、発泡剤として液化炭酸ガスを用い、バ
ッチ発泡試験(耐圧容器を用い、融点より10℃低い温
度で,10MPaで二酸化炭素を含浸後、常圧へ戻す)
を行った。得られた発泡粒子は極めて均一であり、発泡
倍率は35倍で、独立型の気泡から構成されているもの
であった。
Example 15 The biodegradable resin composition obtained in Example 2 was freeze-pulverized to prepare particles having an average particle size of 1 mm. After drying the particles once, a batch foaming test using liquefied carbon dioxide as a foaming agent (using a pressure resistant container, impregnating carbon dioxide at 10 MPa at a temperature 10 ° C lower than the melting point, and returning to normal pressure)
I went. The obtained expanded particles were extremely uniform, had an expansion ratio of 35 times, and were composed of independent type cells.

【0043】[0043]

【発明の効果】本発明によれば、機械的強度、耐熱性に
優れ、発泡体等の成形に有利なレオロジー特性を有する
生分解性ポリエステル樹脂組成物を、簡便に、コストも
低く作製することができ、この樹脂を用いて発泡性に優
れた発泡体、成形性に優れた射出成形体、ブロー成形
体、押出成形体を提供することができる。
According to the present invention, a biodegradable polyester resin composition having excellent mechanical strength, heat resistance, and rheological properties advantageous for molding a foam or the like can be prepared simply and at low cost. This resin can be used to provide a foam having excellent foamability, an injection molded article, a blow molded article, and an extrusion molded article having excellent moldability.

【図面の簡単な説明】[Brief description of drawings]

【図1】屈曲点が現れるまでの伸長初期の線形領域の傾
きa1と屈曲点以降の伸長後期の傾きa2との比(a2
/a1、歪み硬化係数)を求める際の伸長時間と伸長粘
度の模式図を示す。
FIG. 1 is a ratio (a2) of a slope a1 of a linear region in the initial stage of extension until the appearance of a bending point and a slope a2 of the latter stage of extension after the bending point.
/ A1, strain hardening coefficient) is a schematic diagram of elongation time and elongation viscosity when obtaining.

【図2】最終的に到達する結晶化度(θ)の2分の1に
到達するまでの時間(分)で示される結晶化速度指数を
求める際の結晶化度(θ)と時間の模式図を示す。
FIG. 2 is a schematic diagram of crystallinity (θ) and time when obtaining a crystallization rate index indicated by time (minute) required to reach half of the finally reached crystallinity (θ). The figure is shown.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08K 5/14 C08K 5/14 //(C08L 67/04 C08L 67/04 33:10) 33:10 (72)発明者 早瀬 茂 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 (72)発明者 矢野 拓磨 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 (72)発明者 吉村 和子 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 Fターム(参考) 4F071 AA33 AA43 AC08 AF52 BA01 BB05 BB06 BB09 BC01 BC03 BC04 BC05 BC06 4F074 AA48 AA68 AD08 BA13 BA32 BB02 BC11 CA12 CA22 CA24 CB53 CC06X CC34X CC34Y 4F201 AA24 AB03 AB04 AB19 AG01 AG07 AG08 AG20 AH01 AH53 AH63 BA01 BC01 BC02 BC03 BC12 BC33 BC37 BC38 BD04 BD05 BD06 BK01 BK02 BK13 BK16 4J002 BG042 BG072 CF181 CH052 EK006 EK036 EK046 FD018 FD037 GB00 GC00 GG01 GN00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C08K 5/14 C08K 5/14 // (C08L 67/04 C08L 67/04 33:10) 33:10 ( 72) Inventor Shigeru Hayase 23 Uji Kozakura, Uji City, Kyoto Prefecture, Central Research Institute, Unitika Co., Ltd. (72) Takuma Yano 23, Uji Kozakura, Uji City, Kyoto Prefecture, Central Research Laboratory, Unitika Co., Ltd. (72) Inventor, Kazuko Yoshimura 23, Uji Kozakura, Uji City, Kyoto Unitika Stock Company Central Research Institute F-term (reference) 4F071 AA33 AA43 AC08 AF52 BA01 BB05 BB06 BB09 BC01 BC03 BC04 BC05 BC06 4F074 AA48 AA68 AD08 BA13 BA32 BB02 BC11 CA12 CA22 CA24 CC34X34 CC34X AA24 AB03 AB04 AB19 AG01 AG07 AG08 AG20 AH01 AH53 AH63 BA01 BC01 BC02 BC03 BC12 BC33 BC37 BC38 BD04 BD05 BD06 BK01 BK02 BK13 BK16 4J002 BG042 BG07 2 CF181 CH052 EK006 EK036 EK046 FD018 FD037 GB00 GC00 GG01 GN00

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 α−及び/又はβ−ヒドロキシカルボン
酸単位を50モル%以上含有する生分解性ポリエステル
樹脂100質量部と、(メタ)アクリル酸エステル化合
物0.01〜20質量部とからなることを特徴とする生
分解性ポリエステル樹脂組成物。
1. 100 parts by mass of a biodegradable polyester resin containing 50 mol% or more of α- and / or β-hydroxycarboxylic acid units and 0.01 to 20 parts by mass of a (meth) acrylic acid ester compound. A biodegradable polyester resin composition characterized by the following.
【請求項2】 (メタ)アクリル酸エステル化合物が、
分子内に2個以上の(メタ)アクリル基を有するか、又
は1個以上の(メタ)アクリル基と1個以上のグリシジ
ル基もしくはビニル基を有する化合物であることを特徴
とする請求項1記載の生分解性ポリエステル樹脂組成
物。
2. A (meth) acrylic acid ester compound,
2. A compound having two or more (meth) acryl groups in the molecule, or one or more (meth) acryl groups and one or more glycidyl groups or vinyl groups. Biodegradable polyester resin composition.
【請求項3】 α−及び/又はβ−ヒドロキシカルボン
酸単位が、D−乳酸、L−乳酸又はこれらの混合物であ
ることを特徴とする請求項1又は2記載の生分解性ポリ
エステル樹脂組成物。
3. The biodegradable polyester resin composition according to claim 1 or 2, wherein the α- and / or β-hydroxycarboxylic acid unit is D-lactic acid, L-lactic acid or a mixture thereof. .
【請求項4】 生分解性ポリエステル樹脂組成物の融点
より10℃高い温度での伸長粘度測定で得られる時間−
伸長粘度曲線において、屈曲点が現れるまでの伸長初期
の線形領域の傾きa1と屈曲点以降の伸長後期の傾きa
2との比(a2/a1、歪み硬化係数)が、1.05以
上、50未満であるような、歪み硬化性が発現されるこ
とを特徴とする請求項1〜3のいずれかに記載の生分解
性ポリエステル樹脂組成物。
4. The time obtained by measuring extensional viscosity at a temperature 10 ° C. higher than the melting point of the biodegradable polyester resin composition.
In the extensional viscosity curve, the slope a1 of the linear region in the initial stage of extension until the appearance of the inflection point and the inclination a1 of the latter stage of extension after the inflection point
The strain hardening property is expressed such that the ratio with 2 (a2 / a1, strain hardening coefficient) is 1.05 or more and less than 50, and the strain hardening property is expressed. Biodegradable polyester resin composition.
【請求項5】 生分解性ポリエステル樹脂組成物の結晶
化速度指数が50(分)以下であることを特徴とする請
求項1〜4のいずれかに記載の生分解性ポリエステル樹
脂組成物。
5. The biodegradable polyester resin composition according to claim 1, wherein the crystallization rate index of the biodegradable polyester resin composition is 50 (minutes) or less.
【請求項6】 生分解性ポリエステル樹脂、(メタ)ア
クリル酸エステル化合物、及び過酸化物を溶融混練する
ことを特徴とする請求項1〜5のいずれかに記載の生分
解性ポリエステル樹脂組成物の製造方法。
6. The biodegradable polyester resin composition according to claim 1, wherein the biodegradable polyester resin, the (meth) acrylic acid ester compound and the peroxide are melt-kneaded. Manufacturing method.
【請求項7】 生分解性ポリエステル樹脂と過酸化物と
を溶融混練中に、(メタ)アクリル酸エステル化合物の
溶解液又は分散液を注入して溶融混練することを特徴と
する請求項6記載の生分解性ポリエステル樹脂組成物の
製造方法。
7. The method according to claim 6, wherein the biodegradable polyester resin and the peroxide are melt-kneaded by injecting a solution or dispersion of the (meth) acrylic acid ester compound during melt-kneading. A method for producing a biodegradable polyester resin composition according to claim 1.
【請求項8】 生分解性ポリエステル樹脂を溶融混練中
に、(メタ)アクリル酸エステル化合物と過酸化物の溶
解液又は分散液を注入して溶融混練することを特徴とす
る請求項6記載の生分解性ポリエステル樹脂組成物の製
造方法。
8. The melt-kneading of the biodegradable polyester resin is performed by injecting a solution or dispersion of a (meth) acrylic acid ester compound and a peroxide into the melt-kneading. A method for producing a biodegradable polyester resin composition.
【請求項9】 請求項1〜5のいずれかに記載の生分解
性ポリエステル樹脂組成物を発泡成形して得られる生分
解性樹脂発泡体。
9. A biodegradable resin foam obtained by foam-molding the biodegradable polyester resin composition according to claim 1.
【請求項10】 請求項1〜5のいずれかに記載の生分
解性ポリエステル樹脂組成物を射出成形して得られる生
分解性樹脂成形体。
10. A biodegradable resin molded article obtained by injection molding the biodegradable polyester resin composition according to claim 1.
【請求項11】 請求項1〜5のいずれかに記載の生分
解性ポリエステル樹脂組成物を押出成形して得られる生
分解性樹脂成形体。
11. A biodegradable resin molded article obtained by extrusion molding the biodegradable polyester resin composition according to claim 1.
【請求項12】 請求項1〜5のいずれかに記載の生分
解性ポリエステル樹脂組成物をブロー成形して得られる
生分解性樹脂成形体。
12. A biodegradable resin molded article obtained by blow molding the biodegradable polyester resin composition according to claim 1.
JP2002037047A 2001-08-10 2002-02-14 Biodegradable polyester resin composition, method for producing the same, and foam and molded product obtained therefrom Expired - Fee Related JP3824547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002037047A JP3824547B2 (en) 2001-08-10 2002-02-14 Biodegradable polyester resin composition, method for producing the same, and foam and molded product obtained therefrom

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001243914 2001-08-10
JP2001-243914 2001-08-10
JP2002037047A JP3824547B2 (en) 2001-08-10 2002-02-14 Biodegradable polyester resin composition, method for producing the same, and foam and molded product obtained therefrom

Publications (2)

Publication Number Publication Date
JP2003128901A true JP2003128901A (en) 2003-05-08
JP3824547B2 JP3824547B2 (en) 2006-09-20

Family

ID=26620381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002037047A Expired - Fee Related JP3824547B2 (en) 2001-08-10 2002-02-14 Biodegradable polyester resin composition, method for producing the same, and foam and molded product obtained therefrom

Country Status (1)

Country Link
JP (1) JP3824547B2 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256809A (en) * 2003-02-06 2004-09-16 Unitika Ltd Flame-retardant polyester resin composition and molded article therefrom
WO2004099315A1 (en) * 2003-05-12 2004-11-18 Unitika Ltd. Biodegradable polyester resin composition, process for producing the same and foamed article and molded article using the same
WO2004102697A1 (en) * 2003-05-16 2004-11-25 Matsushita Electric Industrial Co., Ltd. Battery package and process for producing the same
WO2004102698A1 (en) * 2003-05-16 2004-11-25 Mathushita Electric Industrial Co., Ltd. Battery package
WO2004103682A1 (en) * 2003-05-22 2004-12-02 Sumitomo Heavy Industries, Ltd. Molding method, die for molding, molded article, and molding machine
JP2005035134A (en) * 2003-07-18 2005-02-10 Toray Ind Inc Manufacturing method of resin composition
JP2005042045A (en) * 2003-07-24 2005-02-17 Unitika Ltd Polyester resin composition and molded product produced by molding the same
JP2005232230A (en) * 2004-02-17 2005-09-02 Tosoh Corp Resin composition
JP2005232225A (en) * 2004-02-17 2005-09-02 Unitika Ltd Thermoplastic resin composition and molded product obtained by molding the same
WO2005085346A1 (en) * 2004-03-04 2005-09-15 Unitika Ltd. Biodegradable polyester resin composition, process for producing the same, and foam and molding obtained therefrom
WO2005120978A1 (en) 2004-06-10 2005-12-22 Unitika Ltd. Biodegradable gas barrier vessel and process for producing the same
WO2005123831A1 (en) * 2004-06-16 2005-12-29 Unitika Ltd. Polylactic acid-containing resin composition and molded body obtained from same
JP2006002137A (en) * 2004-05-17 2006-01-05 Sekisui Plastics Co Ltd Method for producing polylactic acid-based resin foam, method for producing polylactic acid-based resin foam molded product, and the polylactic acid-based resin foam
JP2006117768A (en) * 2004-10-20 2006-05-11 Toray Ind Inc Resin composition and molded article comprising the same
JP2006176652A (en) * 2004-12-22 2006-07-06 Unitika Ltd Polylactic acid resin composition and molded article produced by molding the same
WO2006121011A1 (en) * 2005-05-09 2006-11-16 Kaneka Corporation Biodegradable resin composition and molded article produced from the same
WO2006132187A1 (en) 2005-06-07 2006-12-14 Unitika Ltd. Biodegradable polyester resin composition, method for producing same, and molded body obtained by molding such composition
WO2007015371A1 (en) 2005-08-02 2007-02-08 Unitika Ltd. Resin compositions, method of producing the same and molded article obtained therefrom
JP2007100026A (en) * 2005-10-07 2007-04-19 Sekisui Plastics Co Ltd Method for producing pre-expanded polylactic acid-based resin particle
JP2007100025A (en) * 2005-10-07 2007-04-19 Sekisui Plastics Co Ltd Polylactic acid-based resin expansion molded product
WO2007094477A1 (en) * 2006-02-14 2007-08-23 Nec Corporation Polylactic acid resin composition and molded item
WO2007094478A1 (en) * 2006-02-14 2007-08-23 Nec Corporation Polylactic acid resin composition and molded article
JP2007254714A (en) * 2006-02-23 2007-10-04 Shiga Pref Gov Modified polyester
JP2007262295A (en) * 2006-03-29 2007-10-11 Unitika Ltd Thermoconductive resin composition and molded article consisting of the same
JP2008504404A (en) * 2004-06-23 2008-02-14 ネイチャーワークス・エル・エル・シー Branched polylactic acid polymer and its production method
JP2008069245A (en) * 2006-09-13 2008-03-27 Unitika Ltd Polylactic acid-based resin composition, and molded form obtained by molding the same
CN100396720C (en) * 2003-06-27 2008-06-25 尤尼吉可株式会社 Aliphatic polyester resin composition, method for production thereof, molded article and foamed article comprising the resin composition
WO2008078413A1 (en) 2006-12-22 2008-07-03 Unitika Ltd. Biodegradable polyester resin composition, and molded body, foamed body and molded container obtained from the biodegradable polyester resin composition
EP1942143A1 (en) * 2005-10-25 2008-07-09 Unitika Ltd. Polyester resin composition and molded body using same
WO2009004769A1 (en) * 2007-06-29 2009-01-08 Unitika Ltd. Crystalline polylactic acid resin composition and molded body made of the same
JP2009024081A (en) * 2007-07-19 2009-02-05 Unitika Ltd Crystalline polylactic acid resin composition and molding comprising the same
JP2009079215A (en) * 2007-09-03 2009-04-16 Unitika Ltd Resin composition and molded article using it
JP2009132914A (en) * 2007-11-08 2009-06-18 Dainichiseika Color & Chem Mfg Co Ltd Method of manufacturing polyester resin molded article, crystallization inducing agent for use therein, master batch, and polyester resin molded article
JP2009155378A (en) * 2007-12-25 2009-07-16 Unitika Ltd Biodegradable polyester resin composition, and cellular material and molding obtained therefrom
JP2009269991A (en) * 2008-05-07 2009-11-19 Unitika Ltd Crystalline polylactic acid resin composition and molded product obtained therefrom
JP2010284856A (en) * 2009-06-11 2010-12-24 Toyobo Co Ltd Thermoplastic resin composition molding containing deformed crosslinked dispersion phase
JP2010285529A (en) * 2009-06-11 2010-12-24 Toyobo Co Ltd Thermoplastic resin composition and production method of the same
JP2011032417A (en) * 2009-08-05 2011-02-17 Unitika Ltd Resin composition, method for producing the resin composition, and molding obtained from the resin composition
JP2011137095A (en) * 2009-12-28 2011-07-14 Kao Corp Method for manufacturing polylactic acid resin composition
JP2011157538A (en) * 2010-01-07 2011-08-18 Unitika Ltd Resin composition
JP5183204B2 (en) * 2005-05-13 2013-04-17 株式会社カネカ Biodegradable resin composition and molded article thereof
WO2013100420A1 (en) * 2011-12-26 2013-07-04 (주)엘지하우시스 Biodegradable resin composition and method using same for manufacturing a biodegradable sheet
JP2014526987A (en) * 2011-08-18 2014-10-09 エルジー・ハウシス・リミテッド Eco-friendly sheet using PLA resin
JP2015500386A (en) * 2011-12-13 2015-01-05 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Foamed sheet using cross-linked polylactic acid and method for producing the same
JPWO2014136746A1 (en) * 2013-03-07 2017-02-09 株式会社クレハ Aliphatic polyester foam and method for producing the same
CN113929831A (en) * 2021-09-08 2022-01-14 湖北中烟工业有限责任公司 Preparation method and application of polylactic acid with high melt strength
WO2023058525A1 (en) * 2021-10-04 2023-04-13 キョーラク株式会社 Resin for expansion molding, method for producing same, method for producing expansion molded body, and method for producing structure
WO2024080263A1 (en) * 2022-10-13 2024-04-18 日精樹脂工業株式会社 Polylactic acid resin composition for injection blow molding, method for producing polylactic acid resin composition, injection blow molded body, and method for producing injection blow molded body

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256809A (en) * 2003-02-06 2004-09-16 Unitika Ltd Flame-retardant polyester resin composition and molded article therefrom
JP4651952B2 (en) * 2003-02-06 2011-03-16 ユニチカ株式会社 Flame-retardant polyester resin composition and molded product obtained by molding the same
KR100935130B1 (en) * 2003-05-12 2010-01-06 유니티카 가부시끼가이샤 Biodegradable polyester resin composition, process for producing the same and foamed article and molded article using the same
WO2004099315A1 (en) * 2003-05-12 2004-11-18 Unitika Ltd. Biodegradable polyester resin composition, process for producing the same and foamed article and molded article using the same
US7449510B2 (en) 2003-05-12 2008-11-11 Unitika Ltd. Biodegradable polyester resin composition, process for producing the same and foamed article and molded article using the same
CN100354367C (en) * 2003-05-12 2007-12-12 尤尼吉可株式会社 Biodegradable polyester resin compositon, process for producing the same and foamed article and molded article using the same
WO2004102697A1 (en) * 2003-05-16 2004-11-25 Matsushita Electric Industrial Co., Ltd. Battery package and process for producing the same
WO2004102698A1 (en) * 2003-05-16 2004-11-25 Mathushita Electric Industrial Co., Ltd. Battery package
CN100426559C (en) * 2003-05-16 2008-10-15 松下电器产业株式会社 Battery package and process for producing the same
WO2004103682A1 (en) * 2003-05-22 2004-12-02 Sumitomo Heavy Industries, Ltd. Molding method, die for molding, molded article, and molding machine
CN100396720C (en) * 2003-06-27 2008-06-25 尤尼吉可株式会社 Aliphatic polyester resin composition, method for production thereof, molded article and foamed article comprising the resin composition
JP4572516B2 (en) * 2003-07-18 2010-11-04 東レ株式会社 Method for producing resin composition
JP2005035134A (en) * 2003-07-18 2005-02-10 Toray Ind Inc Manufacturing method of resin composition
JP2005042045A (en) * 2003-07-24 2005-02-17 Unitika Ltd Polyester resin composition and molded product produced by molding the same
JP4643154B2 (en) * 2004-02-17 2011-03-02 ユニチカ株式会社 A thermoplastic resin composition and a molded body formed by molding the same.
JP2005232225A (en) * 2004-02-17 2005-09-02 Unitika Ltd Thermoplastic resin composition and molded product obtained by molding the same
JP2005232230A (en) * 2004-02-17 2005-09-02 Tosoh Corp Resin composition
US7807773B2 (en) 2004-03-04 2010-10-05 Unitika Ltd. Biodegradable polyester resin composition, preparation method therefor, and foamed article and molded article produced therefrom
WO2005085346A1 (en) * 2004-03-04 2005-09-15 Unitika Ltd. Biodegradable polyester resin composition, process for producing the same, and foam and molding obtained therefrom
CN100447198C (en) * 2004-03-04 2008-12-31 尤尼吉可株式会社 Biodegradable polyester resin composition, process for producing the same, and foam and molding obtained therefrom
KR101080735B1 (en) 2004-03-04 2011-11-07 유니티카 가부시끼가이샤 Biodegradable polyester resin composition process for producing the same and foam and molding obtained therefrom
JP2006002137A (en) * 2004-05-17 2006-01-05 Sekisui Plastics Co Ltd Method for producing polylactic acid-based resin foam, method for producing polylactic acid-based resin foam molded product, and the polylactic acid-based resin foam
JP4578309B2 (en) * 2004-05-17 2010-11-10 積水化成品工業株式会社 Method for producing polylactic acid resin foam, method for producing polylactic acid resin foam molded article, and polylactic acid resin foam
WO2005120978A1 (en) 2004-06-10 2005-12-22 Unitika Ltd. Biodegradable gas barrier vessel and process for producing the same
WO2005123831A1 (en) * 2004-06-16 2005-12-29 Unitika Ltd. Polylactic acid-containing resin composition and molded body obtained from same
JP4798800B2 (en) * 2004-06-23 2011-10-19 ネイチャーワークス・エル・エル・シー Branched polylactic acid polymer and its production method
JP2008504404A (en) * 2004-06-23 2008-02-14 ネイチャーワークス・エル・エル・シー Branched polylactic acid polymer and its production method
JP2006117768A (en) * 2004-10-20 2006-05-11 Toray Ind Inc Resin composition and molded article comprising the same
JP4720142B2 (en) * 2004-10-20 2011-07-13 東レ株式会社 Resin composition and molded article comprising the same
JP2006176652A (en) * 2004-12-22 2006-07-06 Unitika Ltd Polylactic acid resin composition and molded article produced by molding the same
JP4704026B2 (en) * 2004-12-22 2011-06-15 ユニチカ株式会社 Polylactic acid-based resin composition and molded body formed by molding the same
WO2006121011A1 (en) * 2005-05-09 2006-11-16 Kaneka Corporation Biodegradable resin composition and molded article produced from the same
US7919549B2 (en) 2005-05-09 2011-04-05 Kaneka Corporation Biodegradable resin composition and molded article produced from the same
JP5183203B2 (en) * 2005-05-09 2013-04-17 株式会社カネカ Biodegradable resin composition and molded body thereof
EP1881035A1 (en) * 2005-05-09 2008-01-23 Kaneka Corporation Biodegradable resin composition and molded article produced from the same
EP1881035A4 (en) * 2005-05-09 2009-09-02 Kaneka Corp Biodegradable resin composition and molded article produced from the same
JP5183204B2 (en) * 2005-05-13 2013-04-17 株式会社カネカ Biodegradable resin composition and molded article thereof
WO2006132187A1 (en) 2005-06-07 2006-12-14 Unitika Ltd. Biodegradable polyester resin composition, method for producing same, and molded body obtained by molding such composition
JP5036539B2 (en) * 2005-06-07 2012-09-26 ユニチカ株式会社 Biodegradable polyester resin composition, method for producing the same, and molded product obtained by molding the composition
EP1911809A1 (en) * 2005-08-02 2008-04-16 Unitika Ltd. Resin compositions, method of producing the same and molded article obtained therefrom
WO2007015371A1 (en) 2005-08-02 2007-02-08 Unitika Ltd. Resin compositions, method of producing the same and molded article obtained therefrom
JPWO2007015371A1 (en) * 2005-08-02 2009-02-19 ユニチカ株式会社 Resin composition, method for producing the same, and molded product obtained therefrom
EP1911809A4 (en) * 2005-08-02 2010-05-19 Unitika Ltd Resin compositions, method of producing the same and molded article obtained therefrom
JP5246645B2 (en) * 2005-08-02 2013-07-24 ユニチカ株式会社 Method for producing resin composition
JP2007100025A (en) * 2005-10-07 2007-04-19 Sekisui Plastics Co Ltd Polylactic acid-based resin expansion molded product
JP2007100026A (en) * 2005-10-07 2007-04-19 Sekisui Plastics Co Ltd Method for producing pre-expanded polylactic acid-based resin particle
EP1942143A4 (en) * 2005-10-25 2009-08-12 Unitika Ltd Polyester resin composition and molded body using same
EP1942143A1 (en) * 2005-10-25 2008-07-09 Unitika Ltd. Polyester resin composition and molded body using same
WO2007094477A1 (en) * 2006-02-14 2007-08-23 Nec Corporation Polylactic acid resin composition and molded item
JP5661997B2 (en) * 2006-02-14 2015-01-28 日本電気株式会社 Polylactic acid resin composition and molded article
US8586658B2 (en) 2006-02-14 2013-11-19 Nec Corporation Polylactic acid resin composition and molded item
WO2007094478A1 (en) * 2006-02-14 2007-08-23 Nec Corporation Polylactic acid resin composition and molded article
JP2007254714A (en) * 2006-02-23 2007-10-04 Shiga Pref Gov Modified polyester
JP2007262295A (en) * 2006-03-29 2007-10-11 Unitika Ltd Thermoconductive resin composition and molded article consisting of the same
JP2008069245A (en) * 2006-09-13 2008-03-27 Unitika Ltd Polylactic acid-based resin composition, and molded form obtained by molding the same
WO2008078413A1 (en) 2006-12-22 2008-07-03 Unitika Ltd. Biodegradable polyester resin composition, and molded body, foamed body and molded container obtained from the biodegradable polyester resin composition
CN101535405B (en) * 2006-12-22 2012-06-20 尤尼吉可株式会社 Biodegradable polyester resin composition, and molded body, foamed body and molded container obtained from the biodegradable polyester resin composition
JP5804672B2 (en) * 2007-06-29 2015-11-04 ユニチカ株式会社 Crystalline polylactic acid resin composition and molded article comprising the same
US8268918B2 (en) 2007-06-29 2012-09-18 Unitika Ltd. Crystalline polylactic acid resin composition and product molded/formed therefrom
WO2009004769A1 (en) * 2007-06-29 2009-01-08 Unitika Ltd. Crystalline polylactic acid resin composition and molded body made of the same
JP2009024081A (en) * 2007-07-19 2009-02-05 Unitika Ltd Crystalline polylactic acid resin composition and molding comprising the same
JP2009079215A (en) * 2007-09-03 2009-04-16 Unitika Ltd Resin composition and molded article using it
JP2009132914A (en) * 2007-11-08 2009-06-18 Dainichiseika Color & Chem Mfg Co Ltd Method of manufacturing polyester resin molded article, crystallization inducing agent for use therein, master batch, and polyester resin molded article
JP2009155378A (en) * 2007-12-25 2009-07-16 Unitika Ltd Biodegradable polyester resin composition, and cellular material and molding obtained therefrom
JP2009269991A (en) * 2008-05-07 2009-11-19 Unitika Ltd Crystalline polylactic acid resin composition and molded product obtained therefrom
JP2010285529A (en) * 2009-06-11 2010-12-24 Toyobo Co Ltd Thermoplastic resin composition and production method of the same
JP2010284856A (en) * 2009-06-11 2010-12-24 Toyobo Co Ltd Thermoplastic resin composition molding containing deformed crosslinked dispersion phase
JP2011032417A (en) * 2009-08-05 2011-02-17 Unitika Ltd Resin composition, method for producing the resin composition, and molding obtained from the resin composition
JP2011137095A (en) * 2009-12-28 2011-07-14 Kao Corp Method for manufacturing polylactic acid resin composition
JP2011157538A (en) * 2010-01-07 2011-08-18 Unitika Ltd Resin composition
JP2014526987A (en) * 2011-08-18 2014-10-09 エルジー・ハウシス・リミテッド Eco-friendly sheet using PLA resin
US9321885B2 (en) 2011-08-18 2016-04-26 Lg Hausys, Ltd. Environmentally-friendly sheet using PLA resin
JP2015500386A (en) * 2011-12-13 2015-01-05 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Foamed sheet using cross-linked polylactic acid and method for producing the same
US9512265B2 (en) 2011-12-13 2016-12-06 Lg Hausys, Ltd. Foam sheet using cross-linked polylactic acid, and preparation method thereof
JP2015502448A (en) * 2011-12-26 2015-01-22 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Biodegradable resin composition and method for producing biodegradable sheet using the same
WO2013100420A1 (en) * 2011-12-26 2013-07-04 (주)엘지하우시스 Biodegradable resin composition and method using same for manufacturing a biodegradable sheet
JPWO2014136746A1 (en) * 2013-03-07 2017-02-09 株式会社クレハ Aliphatic polyester foam and method for producing the same
CN113929831A (en) * 2021-09-08 2022-01-14 湖北中烟工业有限责任公司 Preparation method and application of polylactic acid with high melt strength
WO2023058525A1 (en) * 2021-10-04 2023-04-13 キョーラク株式会社 Resin for expansion molding, method for producing same, method for producing expansion molded body, and method for producing structure
WO2024080263A1 (en) * 2022-10-13 2024-04-18 日精樹脂工業株式会社 Polylactic acid resin composition for injection blow molding, method for producing polylactic acid resin composition, injection blow molded body, and method for producing injection blow molded body

Also Published As

Publication number Publication date
JP3824547B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
JP3824547B2 (en) Biodegradable polyester resin composition, method for producing the same, and foam and molded product obtained therefrom
JP4063856B2 (en) Method for producing biodegradable polyester resin composition
JP4353902B2 (en) Biodegradable polyester resin composition, process for producing the same, and foam and molded body using the same
JP4223245B2 (en) Biodegradable polyester resin composition, method for producing the same, and foam and molded product obtained therefrom
JP4212643B2 (en) Biodegradable polyester resin composition, and molded product, foam and molded container obtained therefrom
EP2268739B1 (en) Heat resistant polylactic acid compounds
TW200424260A (en) Biodegradable polyester resin composition, method for producing same, foam material and product made from same
US5464878A (en) Degradable polymeric form and process for making
JP2009040948A (en) Polylactic acid resin composition for injection molding, and production method therefor
JP4503215B2 (en) Lactic acid-based resin composition, peroxide-modified lactic acid-based resin composition, and molded articles thereof
JP2003128899A (en) Biodegradable polyester resin composition, its manufacturing method and foams prepared from the same
JP5113508B2 (en) Biodegradable polyester resin composition and foam and molded product obtained therefrom
JP2009028988A (en) Polylactic acid based multiple-layered article excellent in gas barrier property
JP2003238789A (en) Biodegradable polyester resin composition, manufacturing method, therefor and foam obtained therefrom
JP7246223B2 (en) Polylactic acid resin foamed sheet, resin molded product, and method for producing polylactic acid resin foamed sheet
JP2006241227A (en) Biodegradable polyester resin composition, its manufacturing process and foam and molding composed of it
JP2008063582A (en) Lactic acid resin composition, peroxide-modified lactic acid resin composition and their molded products
CA2057668A1 (en) Degradable foam
JP2004217288A (en) Container made of biodegradable resin having heat resistance
JP2001181428A (en) Thermoplastic polyester resin foam and method for producing the same
PL191003B1 (en) Modified polyester
JP2006249245A (en) Aliphatic polyester composition and method for producing the same
WO2022158228A1 (en) Method for producing molded body containing poly-3-hydroxybutyrate-based resin, and use of same
JP2008280474A (en) Polymer alloy comprised of polylactic acid and polypropylene, and its molded article, and manufacturing method thereof
WO2004003077A1 (en) Container formed by stretch forming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3824547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees