JP2003124054A - Method of manufacturing laminated ceramic electronic part - Google Patents

Method of manufacturing laminated ceramic electronic part

Info

Publication number
JP2003124054A
JP2003124054A JP2001317791A JP2001317791A JP2003124054A JP 2003124054 A JP2003124054 A JP 2003124054A JP 2001317791 A JP2001317791 A JP 2001317791A JP 2001317791 A JP2001317791 A JP 2001317791A JP 2003124054 A JP2003124054 A JP 2003124054A
Authority
JP
Japan
Prior art keywords
temperature
ceramic electronic
laminated
electronic component
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001317791A
Other languages
Japanese (ja)
Inventor
Hiroaki Matsuyama
広明 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001317791A priority Critical patent/JP2003124054A/en
Publication of JP2003124054A publication Critical patent/JP2003124054A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a laminated ceramic electronic part which is high in reliability and has stable characteristics, where green sheets formed of a mixture of ceramic material and organic binding material and Ni-based internal electrodes are laminated for the formation of the laminated ceramic electronic part. SOLUTION: Green sheets formed of a mixture of ceramic material and organic binding material and internal electrodes whose main component is Ni are laminated into a laminated ceramic green chip. When the laminated ceramic green chip is heated up from a room temperature to a burning temperature of nearly 1300 deg.C so as to be burned and to remove the binder, the temperature rise rate is set at 25 deg.C or below in a range from 20 to 400 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は例えば積層セラミッ
クコンデンサに代表される積層セラミック電子部品の製
造方法に関するもので、特にNi等の卑金属を電極に用
いた積層セラミックグリーンチップの脱バイ焼成方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a laminated ceramic electronic component represented by, for example, a laminated ceramic capacitor, and more particularly to a debye firing method for a laminated ceramic green chip using a base metal such as Ni as an electrode. Is.

【0002】[0002]

【従来の技術】以下に一般的な積層セラミック電子部品
として積層セラミックコンデンサの構成を説明する。
2. Description of the Related Art The structure of a laminated ceramic capacitor as a general laminated ceramic electronic component will be described below.

【0003】図3は脱バイ焼成における温度図、図4は
積層セラミックコンデンサの一部切欠斜視図である。
FIG. 3 is a temperature diagram in de-baking firing, and FIG. 4 is a partially cutaway perspective view of a monolithic ceramic capacitor.

【0004】図4において101は積層セラミックコン
デンサであり、この積層セラミックコンデンサ101は
誘電体で形成したグリーンシート102と内部電極10
3,104とを交互に積層して圧着し積層セラミックグ
リーンチップ105を形成し、前記積層セラミックグリ
ーンチップ105を高温下で焼成した後に前記内部電極
103,104とそれぞれ接続した外部電極106,1
07を形成してこの外部電極106,107の間にコン
デンサを構成している。
In FIG. 4, reference numeral 101 denotes a monolithic ceramic capacitor. The monolithic ceramic capacitor 101 includes a green sheet 102 made of a dielectric material and an internal electrode 10.
3 and 104 are alternately laminated and pressure-bonded to form a laminated ceramic green chip 105, and the laminated ceramic green chip 105 is fired at a high temperature, and then external electrodes 106 and 1 connected to the internal electrodes 103 and 104, respectively.
07 is formed to form a capacitor between the external electrodes 106 and 107.

【0005】以上のように構成された積層セラミックコ
ンデンサ101について、以下にその製造方法を説明す
る。
A method of manufacturing the monolithic ceramic capacitor 101 having the above-described structure will be described below.

【0006】まず、セラミックス原料と有機結合材成分
とを混合して形成した前記グリーンシート102と内部
電極103,104とを積層して圧着し積層セラミック
グリーンチップ105を形成する。
First, the green sheet 102 formed by mixing a ceramic raw material and an organic binder component and the internal electrodes 103, 104 are laminated and pressure-bonded to form a laminated ceramic green chip 105.

【0007】次いで、前記積層セラミックグリーンチッ
プ105を脱脂炉内に入れてこの積層セラミックグリー
ンチップ105の成形のために加えられた可塑剤及び有
機バインダーを熱分解して除去するために脱バイ焼成を
行う。
Next, the laminated ceramic green chip 105 is placed in a degreasing furnace and de-baked to remove the plasticizer and organic binder added for molding the laminated ceramic green chip 105 by thermal decomposition. To do.

【0008】前記脱バイ焼成は図3の温度図に示す通
り、前記脱脂炉内の温度を常温から600℃まで1時間
に100℃〜200℃の割合で昇温し600℃で5時間
維持する。
As shown in the temperature diagram of FIG. 3, the de-baking firing raises the temperature in the degreasing furnace from room temperature to 600 ° C. at a rate of 100 ° C. to 200 ° C. for 1 hour and maintains the temperature at 600 ° C. for 5 hours. .

【0009】その後、前記恒温炉内から本焼成炉内に前
記積層セラミックグリーンチップ105を搬送し、前記
本焼成炉内を1300℃まで除々に昇温して焼成を行い
焼結体とし、この焼結体の端面に前記内部電極103,
104と接続するように外部電極106,107を塗布
して焼き付け積層セラミックコンデンサ101を完成す
る。
Thereafter, the monolithic ceramic green chip 105 is conveyed from the constant temperature oven into the main firing furnace, and the inside of the main firing furnace is gradually heated to 1300 ° C. to be fired to obtain a sintered body. The internal electrodes 103,
External electrodes 106 and 107 are applied so as to be connected to 104, and a baked monolithic ceramic capacitor 101 is completed.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、近年の
積層セラミック電子部品は、高性能化と低コスト化とい
う相反する市場要望に応えるため、積層セラミック電子
部品を構成するグリーンシートの薄層化及び多積層化と
が急激な勢いで進んでおり、前記従来の積層セラミック
コンデンサ101の脱バイ焼成方法は、内部電極10
3,104として卑金属のNiあるいはNiを主成分と
する金属を用いる場合、前記Niの酸化を防止するため
低い酸素分圧下での脱バイ焼成が余儀なくされるので脱
バイが不十分となり易く、前記積層セラミックグリーン
チップ105を焼成した焼結体の内部にバインダー成分
が残留カーボンとして残り、これが製品特性を劣化させ
る要因となり、高い信頼性を確保することが困難である
という問題点があった。
However, in recent years, in order to meet the conflicting market demands for higher performance and lower cost, the multilayer ceramic electronic components of recent years are made thin and have a large number of green sheets constituting the multilayer ceramic electronic components. The multilayering is rapidly progressing, and the conventional debye firing method for the monolithic ceramic capacitor 101 is the internal electrode 10
When a base metal Ni or a metal containing Ni as a main component is used as 3,104, de-baking is unavoidably performed under a low oxygen partial pressure in order to prevent the oxidation of Ni, and de-bye tends to be insufficient. A binder component remains as residual carbon inside the sintered body obtained by firing the multilayer ceramic green chip 105, which causes deterioration of product characteristics, and there is a problem that it is difficult to secure high reliability.

【0011】また、近年の薄層多積層化品においては、
積層体内部にひずみが生じ易く、有機バインダーの急激
な分解により、ヒビやクラックといった構造欠陥が発生
しやすいという問題点があった。
Further, in recent thin layer multi-layered products,
There has been a problem that strain is likely to occur inside the laminate and structural defects such as cracks and cracks are likely to occur due to rapid decomposition of the organic binder.

【0012】本発明は前記従来の問題点を解決するもの
で、ヒビやクラックといった構造欠陥の発生を抑制し、
信頼性が高く安定した特性を得る積層セラミック電子部
品の製造方法を提供することを目的とするものである。
The present invention solves the above-mentioned conventional problems by suppressing the occurrence of structural defects such as cracks and cracks,
An object of the present invention is to provide a method for manufacturing a monolithic ceramic electronic component that is highly reliable and has stable characteristics.

【0013】[0013]

【課題を解決するための手段】前記の課題を解決するた
めに本発明は以下の構成を有するものである。
In order to solve the above problems, the present invention has the following constitution.

【0014】本発明の請求項1に記載の発明は、セラミ
ックス原料と有機結合材成分とを混合して形成したグリ
ーンシートとNiを主成分とする内部電極とを積層した
積層セラミックグリーンチップを常温〜略1300℃の
焼成温度まで昇温し脱バイ焼成する際に、前記焼成温度
の20℃〜400℃の昇温範囲ではその昇温速度を25
℃/Hr以下とする積層セラミック電子部品の製造方法
であり、これにより、グリーンシートとNiを主成分と
する内部電極中に含まれる可塑剤を急激な分解を避けて
徐々に十分分解除去し、その後の有機バインダーの分解
除去を円滑にするという作用効果が得られる。
The invention according to claim 1 of the present invention is a laminated ceramic green chip in which a green sheet formed by mixing a ceramic raw material and an organic binder component and an internal electrode containing Ni as a main component are laminated at room temperature. ~ When de-baking is performed by raising the temperature to a firing temperature of approximately 1300 ° C, the temperature raising rate is 25 in the temperature raising range of 20 ° C to 400 ° C.
C./Hr or less, which is a method for manufacturing a multilayer ceramic electronic component, whereby a plasticizer contained in the green sheet and the internal electrode containing Ni as a main component is gradually and sufficiently decomposed and removed while avoiding rapid decomposition, The effect of facilitating the subsequent decomposition and removal of the organic binder can be obtained.

【0015】本発明の請求項2に記載の発明は、セラミ
ックス原料と有機結合材成分とを混合して形成したグリ
ーンシートとNiを主成分とする内部電極とを積層した
積層セラミックグリーンチップを常温〜略1300℃の
焼成温度まで昇温し脱バイ焼成する際に、前記焼成温度
の400℃〜600℃の昇温範囲ではその昇温速度を2
0℃/Hr以下とする積層セラミック電子部品の製造方
法であり、これにより、有機バインダーの急激な分解を
避けて徐々に十分分解除去でき、最終の焼結体内部にカ
ーボンが残留することを防止することができるという作
用効果が得られる。
The invention according to claim 2 of the present invention is a laminated ceramic green chip in which a green sheet formed by mixing a ceramic raw material and an organic binder component and an internal electrode containing Ni as a main component are laminated at room temperature. ~ When de-baking is performed by raising the temperature to a firing temperature of approximately 1300 ° C, the heating rate is 2 in the temperature raising range of 400 ° C to 600 ° C.
This is a method for producing a monolithic ceramic electronic component at 0 ° C./hr or less, which allows the organic binder to be gradually decomposed and removed while avoiding a rapid decomposition, and prevents carbon from remaining inside the final sintered body. The effect of being able to do is obtained.

【0016】本発明の請求項3に記載の発明は、焼成温
度の400℃〜450℃の昇温範囲では、その昇温速度
を10℃/Hr以下とする請求項1または2に記載の積
層セラミック電子部品の製造方法であり、これにより、
有機バインダーの分解が最も盛んな温度範囲における急
激な分解を避けつつ徐々に十分分解除去し、最終の焼結
体内部にカーボンが残留することを防止することができ
るという作用効果が得られる。
The invention according to claim 3 of the present invention is the lamination according to claim 1 or 2, wherein the heating rate is 10 ° C./Hr or less in the heating temperature range of 400 ° C. to 450 ° C. It is a method for manufacturing a ceramic electronic component.
It is possible to obtain an effect that the organic binder can be gradually decomposed and removed while avoiding the rapid decomposition in the temperature range where decomposition is most active, and carbon can be prevented from remaining inside the final sintered body.

【0017】本発明の請求項4に記載の発明は、焼成温
度の400℃〜600℃の昇温範囲では、その昇温速度
を20℃/Hr以下とする請求項1または2に記載の積
層セラミック電子部品の製造方法であり、これにより、
グリーンシートとNiを主成分とする内部電極中に含ま
れる可塑剤を、急激な分解を避けつつ徐々に十分分解除
去し、その後の有機バインダーの分解除去を円滑化する
という作用効果と、有機バインダーを急激な分解を避け
つつ徐々に十分分解除去し、最終の焼結体内部にカーボ
ンが残留することを防止することができるという作用効
果とが得られる。
The invention according to claim 4 of the present invention is the lamination according to claim 1 or 2, wherein the heating rate is 20 ° C./Hr or less in the heating temperature range of 400 ° C. to 600 ° C. It is a method for manufacturing a ceramic electronic component.
The plasticizer contained in the green sheet and the internal electrode containing Ni as a main component is gradually and sufficiently decomposed and removed while avoiding rapid decomposition, and the subsequent organic binder is smoothly decomposed and removed. Is gradually and sufficiently decomposed and removed while avoiding abrupt decomposition, and carbon can be prevented from remaining inside the final sintered body.

【0018】本発明の請求項5に記載の発明は、焼成温
度の400℃〜600℃の昇温範囲では、その昇温速度
を20℃/Hr以下とし、この昇温範囲の400℃〜4
50℃の範囲では、その昇温速度を10℃/Hr以下と
する請求項1または2に記載の積層セラミック電子部品
の製造方法であり、これにより、グリーンシートとNi
を主成分とする内部電極中に含まれる可塑剤を、急激な
分解を避けつつ徐々に十分分解除去し、その後の有機バ
インダーの分解除去を円滑化するという作用効果と、有
機バインダーを急激な分解を避けつつ徐々に十分分解除
去し、最終の焼結体内部にカーボンが残留することを防
止することができるという作用効果とが得られる。
According to the fifth aspect of the present invention, in the heating temperature range of 400 ° C. to 600 ° C., the heating rate is 20 ° C./Hr or less, and the heating range is 400 ° C. to 4 ° C.
The method for producing a monolithic ceramic electronic component according to claim 1 or 2, wherein the temperature rising rate is 10 ° C / Hr or less in the range of 50 ° C.
The plasticizer contained in the internal electrode that contains as a main component is gradually decomposed and removed while avoiding rapid decomposition, and the subsequent effect of facilitating the decomposition and removal of the organic binder and the rapid decomposition of the organic binder. It is possible to obtain a working effect that carbon can be prevented from remaining in the final sintered body by gradually decomposing and removing it while avoiding the above.

【0019】本発明の請求項6に記載の発明は、窒素ガ
ス、水素ガス、炭酸ガス、水蒸気の中から選ばれたガス
雰囲気及びこれらの中から2つ以上選ばれたガス雰囲気
中で脱バイ焼成を行う請求項1または2に記載の積層セ
ラミック電子部品の製造方法であり、これらのガスを所
定割合で混合することにより、酸素分圧を容易に精度良
く制御することができるという作用効果が得られる。
The invention according to claim 6 of the present invention is a degassing process in a gas atmosphere selected from nitrogen gas, hydrogen gas, carbon dioxide gas and water vapor, and in a gas atmosphere selected from two or more of these. The method for producing a monolithic ceramic electronic component according to claim 1 or 2, wherein firing is performed, and by mixing these gases at a predetermined ratio, the oxygen partial pressure can be easily and accurately controlled. can get.

【0020】本発明の請求項7に記載の発明は、有機結
合成分が重量平均分子量40万以上のポリオレフィンで
ある請求項1または2に記載の積層セラミック電子部品
の製造方法であり、これにより、分解しやすい有機バイ
ンダーを用いて、その分解が盛んな温度範囲の昇温をゆ
っくり行うことで有機バインダーの除去を容易にし、さ
らに急激な分解を避けつつ徐々に十分分解除去し、最終
の焼結体内部にカーボンが残留することを防止すること
ができるという作用効果が得られる。
The invention according to claim 7 of the present invention is the method for producing a monolithic ceramic electronic component according to claim 1 or 2, wherein the organic binding component is a polyolefin having a weight average molecular weight of 400,000 or more. Using an organic binder that is easy to decompose, the organic binder is easily removed by slowly raising the temperature in a temperature range where decomposition is active. It is possible to obtain the effect of preventing carbon from remaining inside the body.

【0021】本発明の請求項8に記載の発明は、ポリオ
レフィンがポリエチレン、ポリビニルアルコール及びそ
れらの共重合体からなる群より選ばれた少なくとも一種
のポリオレフィンである請求項7に記載の積層セラミッ
ク電子部品の製造方法であり、これにより、分解しやす
い有機バインダーを用いてその分解が盛んな温度範囲の
昇温をゆっくり行い、有機バインダーの除去を容易に
し、さらに急激な分解を避けつつ徐々に十分分解除去
し、最終の焼結体内部にカーボンが残留することを防止
することができるという作用効果が得られる。
The invention according to claim 8 of the present invention is the laminated ceramic electronic component according to claim 7, in which the polyolefin is at least one polyolefin selected from the group consisting of polyethylene, polyvinyl alcohol and copolymers thereof. This is a method of manufacturing, in which the organic binder that is easily decomposed is used to slowly raise the temperature in a temperature range where decomposition is active, facilitates removal of the organic binder, and gradually decomposes sufficiently while avoiding rapid decomposition. It is possible to obtain the effect of removing carbon and preventing carbon from remaining inside the final sintered body.

【0022】[0022]

【発明の実施の形態】(実施の形態1)以下、実施の形
態1を用いて本発明の特に請求項1及び請求項4,5,
6,7,8に記載の発明について、積層セラミック電子
部品の代表として前記従来例に示した積層セラミックコ
ンデンサ101を例にとり説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) Hereinafter, Embodiment 1 will be used to particularly describe Claim 1 and Claims 4, 5, and 5 of the present invention.
The inventions 6, 7, and 8 will be described by taking the monolithic ceramic capacitor 101 shown in the conventional example as a representative of monolithic ceramic electronic components.

【0023】図1は本発明の実施の形態1における脱バ
イ焼成の温度図である。
FIG. 1 is a temperature diagram of debye firing in the first embodiment of the present invention.

【0024】まず、チタン酸バリウムを主成分とする誘
電体材料粉末と重量平均分子量が400,000以上の
超高分子ポリエチレン(融点:約140℃)とを用いて
誘電体層となるグリーンシート102を作製する。この
グリーンシート102は一般に多孔率が高く50%以上
の多孔率を有するものである。
First, a dielectric material powder containing barium titanate as a main component and ultra-high molecular weight polyethylene having a weight average molecular weight of 400,000 or more (melting point: about 140 ° C.) are used as a dielectric sheet green sheet 102. To make. The green sheet 102 generally has a high porosity and a porosity of 50% or more.

【0025】次に、一方、ニッケル電極ペーストをニッ
ケル粉末と溶剤、樹脂、可塑剤等のビヒクルを混合して
作製し、前記グリーンシート102にスクリーン印刷法
を用いて塗布して内部電極103又は104を形成し
た。
On the other hand, a nickel electrode paste is prepared by mixing nickel powder with a vehicle such as a solvent, a resin and a plasticizer, and is applied to the green sheet 102 by a screen printing method to form the internal electrode 103 or 104. Was formed.

【0026】次いで、前記内部電極103を形成したグ
リーンシート102と前記内部電極104を形成したグ
リーンシート102とを交互に所定寸法ずらして80枚
積層した後、その上段と下段に電極ペーストを塗布して
いないグリーンシート102を積層して積層体グリーン
ブロック(図示せず)を作製した。
Next, the green sheets 102 having the internal electrodes 103 and the green sheets 102 having the internal electrodes 104 are alternately staggered by a predetermined dimension to form 80 sheets, and then an electrode paste is applied to the upper and lower layers. A green sheet (not shown) was manufactured by stacking green sheets 102 that were not stacked.

【0027】次いで、前記積層体グリーンブロックをこ
の積層体グリーンブロック中に含有するポリエチレンの
融点の−30℃以上に加熱しながら、15Mpaにて加
圧して圧着した。
Next, the laminate green block was pressure-bonded under pressure of 15 MPa while being heated to -30 ° C. or higher, which is the melting point of polyethylene contained in the laminate green block.

【0028】次いで、積層体グリーンブロックを3.2
mm×1.6mm×1.6mmの寸法に切断して、積層
セラミックグリーンチップ105を作製した。このとき
積層セラミックグリーンチップ105の両端面は前記内
部電極103,104の一方の端部がグリーンシート1
02を挟んで一層おき交互に相対向する異なる端面に露
出した構造とした。
Next, the laminated green block is set to 3.2.
A multilayer ceramic green chip 105 was produced by cutting into a size of mm × 1.6 mm × 1.6 mm. At this time, one end of each of the internal electrodes 103, 104 on both end faces of the laminated ceramic green chip 105 is the green sheet 1.
Layers with No. 02 sandwiched between them were exposed on different end faces that are alternately facing each other.

【0029】次いで、前記積層セラミックグリーンチッ
プ105をバッチ式雰囲気炉を用いて、窒素ガスを毎分
100リットル流しながら、図1の温度図に示すように
脱バイ焼成を行った。尚、本発明の効果を確認するため
に(表1)に示すように昇温速度を変えて最高温度60
0℃、保持時間5時間で脱バイ焼成した。
Next, the laminated ceramic green chips 105 were subjected to debye firing as shown in the temperature diagram of FIG. 1 while flowing 100 liters of nitrogen gas per minute using a batch type atmosphere furnace. In order to confirm the effect of the present invention, as shown in (Table 1), the maximum temperature 60
Debye baking was performed at 0 ° C. and a holding time of 5 hours.

【0030】[0030]

【表1】 [Table 1]

【0031】その後、脱バイ焼成に用いたのと同様のバ
ッチ式雰囲気炉を用いて、600℃までは窒素ガスを毎
分50リットル流しながら、600から1300℃まで
は窒素ガスを毎分50リットルと水素ガスを毎分0.2
〜2リットル流しながら、1300℃で2時間焼成し、
外部電極106,107を形成して積層セラミックコン
デンサ101を得た。前記積層セラミックコンデンサ1
01の構造欠陥の発生状況、及び絶縁抵抗の寿命試験
(125℃,DC32V−250hr印加)の結果を前
記(表1)に併せて示す。(表1)において構造欠陥の
発生状況はそれぞれ500個の試料についての発生状況
を示し、また絶縁抵抗の寿命試験結果は初期値が1×1
9以上の50個の試料が試験後に1×107以下になっ
た個数を示している。尚、#を付した試料5は本発明の
範囲外で比較例である。
Then, using the same batch type atmosphere furnace as that used for de-baking firing, nitrogen gas was flowed at 50 liters per minute up to 600 ° C., and nitrogen gas was 50 liters per minute up to 600 to 1300 ° C. And hydrogen gas 0.2 per minute
Bake at ~ 2300 for 2 hours at 1300 ° C,
External electrodes 106 and 107 were formed to obtain a monolithic ceramic capacitor 101. The multilayer ceramic capacitor 1
The occurrence status of structural defects of No. 01 and the result of the insulation resistance life test (125 ° C., DC32V-250 hr application) are also shown in (Table 1) above. In Table 1, the occurrence status of structural defects is shown for each of 500 samples, and the insulation resistance life test result has an initial value of 1 × 1.
The number of 50 samples of 0 9 or more that became 1 × 10 7 or less after the test is shown. Incidentally, Sample 5 with # is a comparative example outside the scope of the present invention.

【0032】(表1)に示したように、本発明の製造方
法による積層セラミックコンデンサ101は、ヒビやク
ラックといった構造欠陥の発生がなく、また絶縁抵抗が
劣化したものは僅かであるのに対し、比較例#5では構
造欠陥及び絶縁抵抗の劣化が多発し正規の特性が得られ
ていないことがわかる。特に20℃〜400℃の昇温速
度を25℃/Hr以下とするとヒビやクラックといった
構造欠陥の抑制効果が大きく、400℃〜600℃の昇
温速度を20℃/Hr以下とすると絶縁抵抗劣化の抑制
効果が大きい。これは内部電極103,104となるニ
ッケル電極ペースト中に含まれる溶剤、樹脂、可塑剤は
20℃〜400℃の温度範囲において分解除去され、さ
らに400℃〜600℃の温度範囲においては誘電体層
となるグリーンシート102中に含まれるポリエチレン
が分解除去されることから、それらの分解が盛んな温度
範囲の昇温をゆっくり行うことにより、有機バインダー
の除去を容易にし、さらに急激な分解を避けつつ徐々に
十分分解除去し、最終の焼結体内部にカーボンが残留す
ることを防止することができるという作用によるもので
ある。中でも特に、誘電体層となるグリーンシート10
2中に含まれるポリエチレンは、400℃〜450℃の
ごとく狭い温度範囲においてその大部分が急激に分解除
去されるため、その温度範囲の昇温をさらにゆっくり行
うことがより効果的であった。
As shown in (Table 1), in the laminated ceramic capacitor 101 manufactured by the method of the present invention, structural defects such as cracks and cracks are not generated, and the insulation resistance is deteriorated. In Comparative Example # 5, it can be seen that structural defects and insulation resistance deterioration frequently occur and normal characteristics are not obtained. In particular, if the heating rate of 20 ° C to 400 ° C is 25 ° C / Hr or less, the effect of suppressing structural defects such as cracks and cracks is large, and if the heating rate of 400 ° C to 600 ° C is 20 ° C / Hr or less, insulation resistance deterioration Has a large effect of suppressing. This is because the solvent, resin, and plasticizer contained in the nickel electrode paste to be the internal electrodes 103 and 104 are decomposed and removed in the temperature range of 20 ° C to 400 ° C, and the dielectric layer is further removed in the temperature range of 400 ° C to 600 ° C. Since the polyethylene contained in the green sheet 102 is decomposed and removed, the organic binder is easily removed by slowly raising the temperature in a temperature range in which the decomposition is active, while avoiding further rapid decomposition. This is because the carbon can be gradually decomposed and removed sufficiently to prevent carbon from remaining inside the final sintered body. Above all, the green sheet 10 which becomes the dielectric layer is particularly preferable.
Since most of the polyethylene contained in 2 is rapidly decomposed and removed in a narrow temperature range such as 400 ° C. to 450 ° C., it is more effective to raise the temperature in that temperature range more slowly.

【0033】以上の結果から本発明の製造方法は歩留お
よび製品特性を向上させるのに有効な手段であることが
明らかである。
From the above results, it is clear that the production method of the present invention is an effective means for improving the yield and product characteristics.

【0034】尚、絶縁劣化しなかった試料と、絶縁劣化
した試料を分析した結果、絶縁劣化した試料からは残留
カーボンが検出された。尚、本実施の形態1では、60
0℃までは窒素ガスを、600から1300℃までは窒
素ガスと水素ガスとの混合ガスを用いたが、600℃ま
でを窒素ガス、水素ガス、炭酸ガス、水蒸気の何れかの
雰囲気中で、600から1300℃の範囲を窒素ガス、
水素ガス、炭酸ガス、水蒸気の中から選ばれた2つ以上
のガスを所定の割合で混合したものを用いた場合におい
ても同様な結果が得られた。また窒素ガス、水素ガス、
炭酸ガス、水蒸気の混合ガスを用いるのは精度良く酸素
分圧を容易に制御することができるためである。また有
機結合材成分として、重量平均分子量が400,000
以上の超高分子ポリエチレンを用いた例を説明したが、
これに限定されるものではなく、他の有機結合材を用い
た場合でも同様の効果が得られる。また、本実施の形態
1では積層セラミックコンデンサを例に説明したが、こ
れに限定されるものではなく、他の電子部品例えば積層
アクチュエータ、積層バリスタなどに適用しても同様の
効果が得られる。
As a result of analyzing the sample which did not have insulation deterioration and the sample which had insulation deterioration, residual carbon was detected from the sample having insulation deterioration. In the first embodiment, 60
Nitrogen gas was used up to 0 ° C., and a mixed gas of nitrogen gas and hydrogen gas was used from 600 to 1300 ° C., but up to 600 ° C. in an atmosphere of nitrogen gas, hydrogen gas, carbon dioxide gas, or steam, Nitrogen gas in the range of 600 to 1300 ° C,
Similar results were obtained when a mixture of two or more gases selected from hydrogen gas, carbon dioxide gas and steam at a predetermined ratio was used. In addition, nitrogen gas, hydrogen gas,
The mixed gas of carbon dioxide and water vapor is used because the oxygen partial pressure can be easily controlled with high accuracy. As the organic binder component, the weight average molecular weight is 400,000.
An example using the above ultra high molecular weight polyethylene has been described,
The present invention is not limited to this, and the same effect can be obtained even when another organic binder is used. Further, although the first embodiment has been described by taking the laminated ceramic capacitor as an example, the present invention is not limited to this, and the same effect can be obtained by applying it to other electronic components such as a laminated actuator and a laminated varistor.

【0035】(実施の形態2)以下、実施の形態2を用
いて本発明の特に請求項2及び請求項3に記載の発明に
ついて、実施の形態1と同様に積層セラミック電子部品
の代表として前記積層セラミックコンデンサ101を例
にとり説明する。
(Embodiment 2) Hereinafter, with reference to Embodiment 2 of the present invention, the invention described in claim 2 and claim 3 will be described as a representative of a laminated ceramic electronic component as in Embodiment 1. The multilayer ceramic capacitor 101 will be described as an example.

【0036】図2は本発明の実施の形態2における脱バ
イ焼成の温度図である。
FIG. 2 is a temperature diagram of the debye firing in the second embodiment of the present invention.

【0037】まず、熱処理に用いたのと同様のバッチ式
雰囲気炉を用いて、実施の形態1で作製した積層セラミ
ックグリーンチップ105を投入し、次いで、前記積層
セラミックグリーンチップ105をバッチ式雰囲気炉を
用いて、窒素ガスを毎分100リットル流しながら、図
2の温度図に示すように脱バイ焼成を行った。尚、本発
明の効果を確認するために(表2)に示すように昇温速
度を変えて最高温度600℃、保持時間5時間で脱バイ
焼成し、その後、実施の形態1と同様に、1300℃で
2時間焼成し、外部電極106,107を形成して積層
セラミックコンデンサ101を作製した。
First, using the same batch type atmospheric furnace as that used for the heat treatment, the laminated ceramic green chips 105 produced in the first embodiment are charged, and then the laminated ceramic green chips 105 are put into the batch type atmospheric furnace. 2 was used to perform de-by-baking as shown in the temperature diagram of FIG. 2 while flowing 100 liters of nitrogen gas per minute. In order to confirm the effect of the present invention, as shown in (Table 2), the temperature rising rate was changed, the maximum temperature was 600 ° C., the holding time was 5 hours, and de-baking was performed, and thereafter, as in the first embodiment, By firing at 1300 ° C. for 2 hours, external electrodes 106 and 107 were formed, and a monolithic ceramic capacitor 101 was produced.

【0038】[0038]

【表2】 [Table 2]

【0039】前記積層セラミックコンデンサの構造欠陥
の発生状況及び絶縁抵抗の寿命試験(125℃,DC3
2V−250hr印加)の結果を(表2)に併せて示
す。(表2)において構造欠陥の発生状況はそれぞれ5
00個の試料についての発生状況を示し、また絶縁抵抗
の寿命試験結果は初期値が1×109以上の50個の試
料が試験後に1×107以下になった個数を示してい
る。尚、#を付した試料は本発明の範囲外で比較例であ
る。
Occurrence of structural defects and life test of insulation resistance (125 ° C., DC3
The results of 2V-250 hr application) are also shown in (Table 2). In Table 2, the occurrence status of structural defects is 5 each.
The occurrence status of 00 samples is shown, and the result of the insulation resistance life test shows the number of 50 samples having an initial value of 1 × 10 9 or more and 1 × 10 7 or less after the test. Samples marked with # are comparative examples outside the scope of the present invention.

【0040】(表2)に示したように、本発明の製造方
法による積層セラミックコンデンサ101は、ヒビやク
ラックといった構造欠陥の発生がなく、また絶縁抵抗が
劣化したものは僅かであるのに対し、比較例#10では
構造欠陥及び絶縁抵抗の劣化が多発し正規の特性が得ら
れていないことがわかる。これは内部電極103,10
4となるニッケル電極ペースト中に含まれる溶剤、樹
脂、可塑剤は20℃〜400℃の温度範囲において分解
除去され、さらに400℃〜600℃の温度範囲におい
ては誘電体層となるセラミックシート中に含まれるポリ
エチレンが分解除去されることから、それらの分解が盛
んな温度範囲の昇温をゆっくり行うことにより、有機バ
インダーの除去を容易にし、さらに急激な分解を避けつ
つ徐々に十分分解除去し、最終の焼結体内部にカーボン
が残留することを防止することができるという作用によ
るものである。中でも特に、誘電体層となるグリーンシ
ート102中に含まれるポリエチレンは、400℃〜4
50℃のごく狭い温度範囲においてその大部分が急激に
分解除去されるため、その温度範囲の昇温をさらにゆっ
くり行うことがより効果的であった。
As shown in (Table 2), in the laminated ceramic capacitor 101 manufactured by the manufacturing method of the present invention, structural defects such as cracks and cracks are not generated, and the insulation resistance is deteriorated in a few cases. In Comparative Example # 10, it can be seen that structural defects and insulation resistance deterioration frequently occur and normal characteristics are not obtained. This is the internal electrode 103, 10
The solvent, resin, and plasticizer contained in the nickel electrode paste to be No. 4 are decomposed and removed in the temperature range of 20 ° C to 400 ° C, and further in the ceramic sheet to be the dielectric layer in the temperature range of 400 ° C to 600 ° C. Since the contained polyethylene is decomposed and removed, the organic binder is easily removed by slowly raising the temperature in a temperature range where the decomposition is active, and the organic binder is gradually decomposed and removed while avoiding rapid decomposition, This is because carbon can be prevented from remaining inside the final sintered body. Above all, polyethylene contained in the green sheet 102, which becomes the dielectric layer, is 400 ° C. to 4 ° C.
Since most of it is rapidly decomposed and removed in a very narrow temperature range of 50 ° C., it was more effective to raise the temperature in that temperature range more slowly.

【0041】以上の結果から本発明の製造方法は歩留お
よび製品特性を向上させるのに有効な手段であることが
明らかである。
From the above results, it is clear that the production method of the present invention is an effective means for improving the yield and product characteristics.

【0042】尚、絶縁劣化しなかった試料と、絶縁劣化
した試料を分析した結果、絶縁劣化した試料からは残留
カーボンが検出された。尚、本実施の形態2では、60
0℃までは窒素ガスを、600から1300℃までは窒
素ガスと水素ガスとの混合ガスを用いたが、600℃ま
でを窒素ガス、水素ガス、炭酸ガス、水蒸気の何れかの
雰囲気中で、600から1300℃の範囲を窒素ガス、
水素ガス、炭酸ガス、水蒸気の中から選ばれた2つ以上
のガスを所定の割合で混合したものを用いた場合におい
ても同様な結果が得られた。また窒素ガス、水素ガス、
炭酸ガス、水蒸気の混合ガスを用いるのは精度良く酸素
分圧を容易に制御することができるためである。また有
機結合材成分として、重量平均分子量が400,000
以上の超高分子ポリエチレンを用いた例を説明したが、
これに限定されるものではなく、他の有機結合材を用い
た場合でも同様の効果が得られる。また更に、積層セラ
ミックコンデンサを例に説明したが、これに限定される
ものではなく、他の電子部品例えば積層アクチュエー
タ、積層バリスタなどに適用しても同様の効果が得られ
る。
As a result of analyzing the sample which did not have insulation deterioration and the sample which had insulation deterioration, residual carbon was detected from the sample having insulation deterioration. In the second embodiment, 60
Nitrogen gas was used up to 0 ° C., and a mixed gas of nitrogen gas and hydrogen gas was used from 600 to 1300 ° C., but up to 600 ° C. in an atmosphere of nitrogen gas, hydrogen gas, carbon dioxide gas, or steam, Nitrogen gas in the range of 600 to 1300 ° C,
Similar results were obtained when a mixture of two or more gases selected from hydrogen gas, carbon dioxide gas and steam at a predetermined ratio was used. In addition, nitrogen gas, hydrogen gas,
The mixed gas of carbon dioxide and water vapor is used because the oxygen partial pressure can be easily controlled with high accuracy. As the organic binder component, the weight average molecular weight is 400,000.
An example using the above ultra high molecular weight polyethylene has been described,
The present invention is not limited to this, and the same effect can be obtained even when another organic binder is used. Furthermore, although the multilayer ceramic capacitor has been described as an example, the present invention is not limited to this, and the same effect can be obtained by applying it to other electronic components such as a multilayer actuator and a multilayer varistor.

【0043】[0043]

【発明の効果】本発明の積層セラミック電子部品の製造
方法によれば、積層セラミックグリーンチップを常温〜
略1300℃の焼成温度まで昇温し脱バイ焼成する際
に、前記焼成温度の20℃〜400℃の昇温範囲では、
その昇温速度を25℃/Hr以下とすることにより、グ
リーンシートやNiを主成分とする内部電極中に含まれ
る可塑剤を、急激な分解を避けつつ徐々に十分分解除去
し、その後の有機バインダーの分解除去が十分に行われ
焼結体内部にカーボンが残留することを防止することが
できる。従って、この製造方法によって得られた積層セ
ラミック電子部品は、信頼性の高い安定した性能を再現
性良く生産することができるという効果を有する。
According to the method of manufacturing a monolithic ceramic electronic component of the present invention, the monolithic ceramic green chip is kept at room temperature to room temperature.
When the temperature is raised to a firing temperature of approximately 1300 ° C. and debye firing is performed, the firing temperature is in the range of 20 ° C. to 400 ° C.
By setting the temperature rising rate to 25 ° C./Hr or less, the plasticizer contained in the green sheet or the internal electrode containing Ni as a main component is gradually decomposed and removed while avoiding rapid decomposition, and the organic layer It is possible to sufficiently decompose and remove the binder and prevent carbon from remaining inside the sintered body. Therefore, the monolithic ceramic electronic component obtained by this manufacturing method has an effect that reliable and stable performance can be produced with good reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1の積層セラミック電子部
品の製造方法における脱バイ焼成の温度図
FIG. 1 is a temperature diagram of debye firing in a method for manufacturing a monolithic ceramic electronic component according to a first embodiment of the present invention.

【図2】本発明の実施の形態2の積層セラミック電子部
品の製造方法における脱バイ焼成の温度図
FIG. 2 is a temperature diagram of debye firing in the method for manufacturing a monolithic ceramic electronic component according to the second embodiment of the present invention.

【図3】従来例における脱バイ焼成の温度図FIG. 3 is a temperature diagram of de-baking firing in a conventional example.

【図4】積層セラミックグリーンチップの一部切欠斜視
FIG. 4 is a partially cutaway perspective view of a laminated ceramic green chip.

【符号の説明】[Explanation of symbols]

101 積層セラミックコンデンサ 102 グリーンシート 103,104 内部電極 105 積層セラミックグリーンチップ 106,107 外部電極 101 Multilayer Ceramic Capacitor 102 green sheets 103, 104 internal electrodes 105 Multilayer Ceramic Green Chip 106,107 external electrodes

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス原料と有機結合材成分とを
混合して形成したグリーンシートとNiを主成分とする
内部電極とを積層した積層セラミックグリーンチップを
常温〜略1300℃の焼成温度まで昇温し脱バイ焼成す
る際に、前記焼成温度の20℃〜400℃の昇温範囲で
はその昇温速度を25℃/Hr以下とする積層セラミッ
ク電子部品の製造方法。
1. A laminated ceramic green chip in which a green sheet formed by mixing a ceramic raw material and an organic binder component and an internal electrode containing Ni as a main component are laminated is heated from room temperature to about 1300 ° C. Then, the method for manufacturing a monolithic ceramic electronic component in which the temperature rising rate is set to 25 ° C./Hr or less in the temperature rising range of 20 ° C. to 400 ° C. at the time of debye firing.
【請求項2】 セラミックス原料と有機結合材成分とを
混合して形成したグリーンシートとNiを主成分とする
内部電極とを積層した積層セラミックグリーンチップを
常温〜略1300℃の焼成温度まで昇温し脱バイ焼成す
る際に、前記焼成温度の400℃〜600℃の昇温範囲
ではその昇温速度を20℃/Hr以下とする積層セラミ
ック電子部品の製造方法。
2. A laminated ceramic green chip in which a green sheet formed by mixing a ceramic raw material and an organic binder component and an internal electrode containing Ni as a main component are laminated is heated from room temperature to about 1300 ° C. A method for manufacturing a monolithic ceramic electronic component in which the temperature rising rate is set to 20 ° C./Hr or less in the temperature rising range of 400 ° C. to 600 ° C. of the firing temperature.
【請求項3】 焼成温度の400℃〜450℃の昇温範
囲では、その昇温速度を10℃/Hr以下とする請求項
1または2に記載の積層セラミック電子部品の製造方
法。
3. The method for producing a monolithic ceramic electronic component according to claim 1, wherein the heating rate is 10 ° C./Hr or less in the firing temperature range of 400 ° C. to 450 ° C.
【請求項4】 焼成温度の400℃〜600℃の昇温範
囲では、その昇温速度を20℃/Hr以下とする請求項
1または2に記載の積層セラミック電子部品の製造方
法。
4. The method for producing a monolithic ceramic electronic component according to claim 1, wherein the temperature rising rate is 20 ° C./Hr or less in the firing temperature range of 400 ° C. to 600 ° C.
【請求項5】 焼成温度の400℃〜600℃の昇温範
囲では、その昇温速度を20℃/Hr以下とし、この昇
温範囲の400℃〜450℃の範囲では、その昇温速度
を10℃/Hr以下とする請求項1または2に記載の積
層セラミック電子部品の製造方法。
5. The heating rate is set to 20 ° C./Hr or less in the heating temperature range of 400 ° C. to 600 ° C., and the heating rate is set in the heating temperature range of 400 ° C. to 450 ° C. The method for producing a monolithic ceramic electronic component according to claim 1, wherein the temperature is 10 ° C./Hr or less.
【請求項6】 窒素ガス、水素ガス、炭酸ガス、水蒸気
の中から選ばれたガス雰囲気及びこれらの中から2つ以
上選ばれたガス雰囲気中で脱バイ焼成を行う請求項1ま
たは2に記載の積層セラミック電子部品の製造方法。
6. The debye firing is performed in a gas atmosphere selected from nitrogen gas, hydrogen gas, carbon dioxide gas, and steam, and in a gas atmosphere selected from two or more of these. Manufacturing method of multilayer ceramic electronic component.
【請求項7】 有機結合材成分が重量平均分子量40万
以上のポリオレフィンである請求項1または2に記載の
積層セラミック電子部品の製造方法。
7. The method for producing a laminated ceramic electronic component according to claim 1, wherein the organic binder component is a polyolefin having a weight average molecular weight of 400,000 or more.
【請求項8】 ポリオレフィンがポリエチレン、ポリビ
ニルアルコール及びそれらの共重合体からなる群より選
ばれる少なくとも一種のポリオレフィンである請求項7
に記載の積層セラミック電子部品の製造方法。
8. The polyolefin is at least one polyolefin selected from the group consisting of polyethylene, polyvinyl alcohol and copolymers thereof.
A method for manufacturing a monolithic ceramic electronic component according to.
JP2001317791A 2001-10-16 2001-10-16 Method of manufacturing laminated ceramic electronic part Pending JP2003124054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001317791A JP2003124054A (en) 2001-10-16 2001-10-16 Method of manufacturing laminated ceramic electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001317791A JP2003124054A (en) 2001-10-16 2001-10-16 Method of manufacturing laminated ceramic electronic part

Publications (1)

Publication Number Publication Date
JP2003124054A true JP2003124054A (en) 2003-04-25

Family

ID=19135604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001317791A Pending JP2003124054A (en) 2001-10-16 2001-10-16 Method of manufacturing laminated ceramic electronic part

Country Status (1)

Country Link
JP (1) JP2003124054A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039486A (en) * 2005-08-01 2007-02-15 Toray Ind Inc Heat-resistant resin precursor composition and semiconductor device using the same
KR100741835B1 (en) 2005-06-24 2007-07-24 삼성전기주식회사 High-speed rising temperature plasticity method of multi layer chip
WO2019167753A1 (en) * 2018-03-01 2019-09-06 日本碍子株式会社 Method for degreasing ceramic molded body and method for manufacturing ceramic sintered body
CN117079974A (en) * 2023-09-28 2023-11-17 潮州三环(集团)股份有限公司 Glue discharging method of ceramic green body and preparation method of multilayer ceramic capacitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741835B1 (en) 2005-06-24 2007-07-24 삼성전기주식회사 High-speed rising temperature plasticity method of multi layer chip
JP2007039486A (en) * 2005-08-01 2007-02-15 Toray Ind Inc Heat-resistant resin precursor composition and semiconductor device using the same
WO2019167753A1 (en) * 2018-03-01 2019-09-06 日本碍子株式会社 Method for degreasing ceramic molded body and method for manufacturing ceramic sintered body
CN111417612A (en) * 2018-03-01 2020-07-14 日本碍子株式会社 Method for degreasing ceramic molded body and method for producing ceramic fired body
KR20200111785A (en) 2018-03-01 2020-09-29 엔지케이 인슐레이터 엘티디 Degreasing method of ceramic molded body and manufacturing method of ceramic fired body
JPWO2019167753A1 (en) * 2018-03-01 2021-02-25 日本碍子株式会社 Solventing method of ceramic molded body and manufacturing method of ceramic fired body
KR102441214B1 (en) 2018-03-01 2022-09-06 엔지케이 인슐레이터 엘티디 Degreasing method of ceramic compact and manufacturing method of ceramic sintered body
CN117079974A (en) * 2023-09-28 2023-11-17 潮州三环(集团)股份有限公司 Glue discharging method of ceramic green body and preparation method of multilayer ceramic capacitor
CN117079974B (en) * 2023-09-28 2024-04-26 潮州三环(集团)股份有限公司 Glue discharging method of ceramic green body and preparation method of multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
US6704191B2 (en) Multilayer ceramic electronic components and methods for manufacturing the same
JP4434617B2 (en) Burnout sheet and method for producing ceramic laminate using the same
JP2003124054A (en) Method of manufacturing laminated ceramic electronic part
JP3142014B2 (en) Manufacturing method of multilayer ceramic capacitor
JP3685656B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH05335177A (en) Manufacture of laminated electronic component
JP2000290077A (en) Production of multilayer ceramic electronic component
JP3239718B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH07106187A (en) Manufacture of laminated ceramic electronic component
JPH04317309A (en) Laminated capacitor and manufacturing method thereof
JP3780798B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4088594B2 (en) Conductor paste, electronic component and manufacturing method thereof
JP3744427B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3873928B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2000302558A (en) Production of multilayer ceramic electronic parts
JP4396190B2 (en) Manufacturing method of laminated varistor
JP2002064029A (en) Method for manufacturing laminated ceramic electronic part
JP3082532B2 (en) Manufacturing method of ceramic electronic components
JPH05275273A (en) Manufacture of multilayer ceramic electronic component
JPH06196352A (en) Manufacture of layered capacitor
JPH11111558A (en) Production of ceramic electrical component
JP3523399B2 (en) Manufacturing method of ceramic electronic components
JP2004079556A (en) Method of manufacturing laminated ceramic electronic component
JP3250400B2 (en) Manufacturing method of ceramic electronic components
JP3166953B2 (en) Manufacturing method of ceramic electronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403