JP2003123821A - Fuel cell cartridge - Google Patents

Fuel cell cartridge

Info

Publication number
JP2003123821A
JP2003123821A JP2001316197A JP2001316197A JP2003123821A JP 2003123821 A JP2003123821 A JP 2003123821A JP 2001316197 A JP2001316197 A JP 2001316197A JP 2001316197 A JP2001316197 A JP 2001316197A JP 2003123821 A JP2003123821 A JP 2003123821A
Authority
JP
Japan
Prior art keywords
fuel cell
chamber
hydrogen
raw material
cell cartridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001316197A
Other languages
Japanese (ja)
Other versions
JP3764862B2 (en
Inventor
Norimasa Yamamoto
紀征 山本
Naomasa Shiomi
直正 塩見
Yasuharu Morinishi
康晴 森西
Mutsuko Komoda
睦子 菰田
Tomohisa Yoshie
智寿 吉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001316197A priority Critical patent/JP3764862B2/en
Publication of JP2003123821A publication Critical patent/JP2003123821A/en
Application granted granted Critical
Publication of JP3764862B2 publication Critical patent/JP3764862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • C12M43/08Bioreactors or fermenters combined with devices or plants for production of electricity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate hydrogen to be used as fuel for a fuel cell making use of microbes which generate hydrogen from water solution of oxygenated hydrocarbon compound. SOLUTION: The fuel cell cartridge is composed at least of two rooms, of which one contains water solution of an oxygenated hydrocarbon compound and the other contains liquid including microbes which generate hydrogen using an oxygenated hydrocarbon compound as energy source. The water solution of oxygenated hydrocarbon compound is supplied arbitrarily by a pump from one room to another and generated hydrogen is supplied to a negative electrode side of the fuel cell. Further, the hydrogen is generated to be supplied to the fuel cell by reforming the oxygenated hydrocarbon compound making use of function of microbes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、燃料電池に水素
を供給するための燃料電池用カートリッジに関し、より
詳しくは燃料電池用カートリッジを二室に分け、一方の
室には第1の原料を、他方の室は第1の原料と反応して
水素を生成する第2の原料を収納し、生成された水素を
燃料電池の負極側に供給するものである。さらに本発明
は含酸素炭化水素化合物を微生物利用により改質するこ
とで、水素を生成し、燃料電池に供給するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell cartridge for supplying hydrogen to a fuel cell. More specifically, the fuel cell cartridge is divided into two chambers, and one chamber contains a first raw material. The other chamber contains a second raw material that reacts with the first raw material to generate hydrogen, and supplies the generated hydrogen to the negative electrode side of the fuel cell. Further, according to the present invention, hydrogen is generated by reforming an oxygen-containing hydrocarbon compound by utilizing a microorganism, and the hydrogen is supplied to a fuel cell.

【0002】[0002]

【従来の技術】環境負荷を低減する技術として燃料電池
により発電される電気を動力源とする発電システムの開
発がすすめられている。燃料電池は供給される水素と酸
素を電気化学反応させて電流を発生するもので、この燃
料電池に水素を供給するために、高圧水素ガスボンベ、
水素貯蔵合金内蔵ボンベや炭化水素化合物を熱分解して
水素を生成する燃料改質装置を備える事が必須であっ
た。
2. Description of the Related Art Development of a power generation system using electricity generated by a fuel cell as a power source has been promoted as a technique for reducing environmental load. The fuel cell electrochemically reacts the supplied hydrogen with oxygen to generate an electric current. In order to supply hydrogen to the fuel cell, a high-pressure hydrogen gas cylinder,
It was essential to provide a cylinder with a built-in hydrogen storage alloy and a fuel reformer that thermally decomposes hydrocarbon compounds to produce hydrogen.

【0003】[0003]

【発明が解決しようとする課題】高圧水素ボンベ、水素
貯蔵合金内蔵ボンベは、ボンベに収納した高圧水素を減
圧しながら燃料電池に供給するもので、CO2の排出が
ゼロであり、温暖化現象などの原因となるCO2の問題
はクリアできるものの、水素の供給サイトが限られる事
とボンベ重量が大きい欠点を有している。
A high-pressure hydrogen cylinder and a cylinder with a built-in hydrogen storage alloy supply high-pressure hydrogen stored in the cylinder to a fuel cell while decompressing it, and CO 2 emission is zero, which causes a global warming phenomenon. Although the problem of CO 2 which causes the above can be solved, it has a drawback that the hydrogen supply site is limited and the cylinder weight is large.

【0004】これに対して、アルコールや化石燃料から
水素を生成する燃料改質装置は、燃料の供給は比較的容
易であるが、600℃以上の高温で貴金属を触媒とする
熱分解反応で水素を生成すること、COの副生があるこ
と、燃料電池の電極触媒を被毒し燃料電池の性能劣化を
大きくする事、熱分解温度を維持するために75%以上
の熱効率を期待できない等の問題がある。
On the other hand, in the fuel reformer for producing hydrogen from alcohol or fossil fuel, it is relatively easy to supply the fuel, but hydrogen is produced by a thermal decomposition reaction using a precious metal as a catalyst at a high temperature of 600 ° C. or higher. Is generated, CO is by-produced, the electrode catalyst of the fuel cell is poisoned to greatly deteriorate the performance of the fuel cell, and thermal efficiency of 75% or more cannot be expected to maintain the thermal decomposition temperature. There's a problem.

【0005】本発明はこのような問題を解決するために
提案されたもので、含酸素炭化水素化合物をエネルギー
源として水素生成する微生物を利用して燃料の改質を行
なうことで、COの副生をほとんど伴うことなく、室温
付近の低温で高純度水素を生成できる装置を提供するも
のである。
The present invention has been proposed in order to solve such a problem. By reforming a fuel by utilizing a microorganism that produces hydrogen using an oxygen-containing hydrocarbon compound as an energy source, CO by-products are reformed. It is intended to provide a device capable of producing high-purity hydrogen at a low temperature near room temperature with almost no generation.

【0006】[0006]

【課題を解決するための手段】第1の発明は、燃料電池
に水素を供給するカートリッジであって、該カートリッ
ジが少なくとも二室を有し、一方の室には第1の原料を
収納し、他方の室には前記第1の原料と反応して水素を
生成し、前記燃料電池に水素を供給する第2の原料を収
納してなることを特徴とする燃料電池用カートリッジで
ある。
A first aspect of the present invention is a cartridge for supplying hydrogen to a fuel cell, the cartridge having at least two chambers, one chamber containing the first raw material, A fuel cell cartridge, wherein the other chamber contains a second raw material which reacts with the first raw material to generate hydrogen and supplies hydrogen to the fuel cell.

【0007】第2の発明は、第1の発明に記載の燃料電
池用カートリッジにおいて、前記一方の室から第1の原
料を前記他方の室へ任意に供給可能なポンプ機能を備え
たことを特徴とする燃料電池用カートリッジである。
A second invention is the fuel cell cartridge according to the first invention, which is provided with a pump function capable of arbitrarily supplying the first raw material from the one chamber to the other chamber. And a fuel cell cartridge.

【0008】第3の発明は、第1または第2の発明に記
載の燃料電池用カートリッジにおいて、前記一方の室に
は含酸素炭化水素化合物水溶液を、前記他方の室には含
酸素炭化水素化合物をエネルギー源として水素を発生す
る微生物を含む液体を収納し、前記一方の室と他方の室
の間に形成した供給口から含酸素炭化水素化合物水溶液
を供給し、該含酸素炭化水素化合物を基にして前記微生
物と反応して生成した水素を、前記供給口の他方に形成
した排気口から取り出すことを特徴とする燃料電池用カ
ートリッジである。
A third aspect of the present invention is the fuel cell cartridge according to the first or second aspect, wherein the one chamber contains an oxygen-containing hydrocarbon compound aqueous solution and the other chamber contains the oxygen-containing hydrocarbon compound. A liquid containing a microorganism that generates hydrogen as an energy source is stored, and an oxygen-containing hydrocarbon compound aqueous solution is supplied from a supply port formed between the one chamber and the other chamber, and the oxygen-containing hydrocarbon compound is used as a base. The fuel cell cartridge is characterized in that hydrogen produced by reacting with the microorganisms is taken out from an exhaust port formed in the other of the supply ports.

【0009】第4の発明は、第3の発明に記載の燃料電
池用カートリッジにおいて、前記排気口付近に前記第1
の原料、第2の原料が前記他方の室から排出されないよ
うにフィルターを設置することを特徴とする燃料電池用
カートリッジである。
A fourth aspect of the present invention is the fuel cell cartridge according to the third aspect, wherein the first portion is provided near the exhaust port.
The fuel cell cartridge is characterized in that a filter is installed so that the raw material and the second raw material are not discharged from the other chamber.

【0010】第5の発明は、第3の発明に記載の燃料電
池用カートリッジにおいて、前記微生物が以下の4種の
大腸菌Escherichia coli MG165
5、Clostridium Lactoacetop
hilum、Clostridium Actobut
ylicum、Clostridium Butyli
cumのうちいずれか1つ、またはコリネ菌である事を
特徴とする燃料電池用カートリッジである。
A fifth aspect of the present invention is the fuel cell cartridge according to the third aspect, wherein the microorganisms are the following four types of Escherichia coli MG165.
5, Clostridium Lactacetop
hilum, Clostridium Actobut
ylicum, Clostridium Butyli
The fuel cell cartridge is characterized in that any one of the cums or corynebacterium is used.

【0011】第6の発明は、第5の発明に記載の燃料電
池用カートリッジにおいて、前記大腸菌又はコリネ菌
が、その遺伝子を組み替え操作して、ギ酸デヒドロゲナ
ーゼ、ヒドロゲナーゼ、tRNAの酵素群を高発現させ
たことを特徴とする遺伝子操作菌体を使用することを特
徴とする燃料電池用カートリッジである。
A sixth aspect of the present invention is the fuel cell cartridge according to the fifth aspect, wherein the Escherichia coli or corynebacterium is subjected to a recombination operation of its gene to highly express an enzyme group of formate dehydrogenase, hydrogenase and tRNA. A cartridge for a fuel cell, characterized by using a genetically modified bacterial cell characterized by the above.

【0012】第7の発明は、燃料電池用カートリッジに
おいて、前記含酸素炭化水素化合物としてギ酸を使用す
る事を特徴とする。
A seventh invention is characterized in that, in the fuel cell cartridge, formic acid is used as the oxygen-containing hydrocarbon compound.

【0013】第8の発明は、前記ポンプ機能が前記燃料
電池で発電された電気によって駆動されることを特徴と
する燃料電池用カートリッジである。
An eighth invention is a fuel cell cartridge, wherein the pump function is driven by electricity generated by the fuel cell.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1において、燃料電池用カートリッジ1
は、燃料の生物的燃料改質装置であり、A室2とB室3
に分離されている。A室2には原料I4が、B室3には
原料II5が収納されている。B室3には供給口6と排
気口7が備えられている。A室2とB室3は供給口6で
連結されている。原料I4と原料II5が混合するのを
防止するため、B室3側の供給口6には封し弁8が設置
されスプリング9によって押えられている。本発明で用
いる燃料電池用カートリッジは、酸素含有炭化水素や生
化学的触媒により分解されないものを用いて円筒形、角
筒形のような形状に形成する。例えば、硬質樹脂製、金
属製、ガラス製等が挙げられ、具体的にはポリエチレン
のようなポリマーのものを用いることができる。燃料電
池用カートリッジ中のA室とB室を隔てる隔壁も、同様
のものを用いるのが良い。
In FIG. 1, a fuel cell cartridge 1 is provided.
Is a biological fuel reformer for fuel, and is in A chamber 2 and B chamber 3
Is separated into. Raw material I4 is stored in the A chamber 2, and raw material II5 is stored in the B chamber 3. The B chamber 3 is provided with a supply port 6 and an exhaust port 7. The A chamber 2 and the B chamber 3 are connected by a supply port 6. In order to prevent the raw material I4 and the raw material II5 from being mixed, a sealing valve 8 is installed at the supply port 6 on the B chamber 3 side and is pressed by a spring 9. The fuel cell cartridge used in the present invention is formed in a shape such as a cylindrical shape or a rectangular tube shape using an oxygen-containing hydrocarbon or a material that is not decomposed by a biochemical catalyst. Examples thereof include hard resin, metal, glass and the like, and specifically, a polymer such as polyethylene can be used. It is preferable to use the same partition wall for separating the chamber A and the chamber B in the fuel cell cartridge.

【0016】図1のシステムにおいては燃料電池のアノ
ードに燃料を供給する導入部に燃料電池用カートリッジ
1の排気口7を接続し、A室2を手で押えるなどで圧縮
するとA室2内の圧力が上がりスプリング9が圧縮され
て封し弁8が開放される事で、A室2内の原料I4がB
室3に導入される。B室3に導入された原料I4はB室
3に収納されていた原料II5と反応して水素を生成
し、排気口7より燃料電池のアノードに水素を供給して
発電される。
In the system of FIG. 1, when the exhaust port 7 of the fuel cell cartridge 1 is connected to the introduction portion for supplying fuel to the anode of the fuel cell and the A chamber 2 is compressed by being pressed by hand, the inside of the A chamber 2 is compressed. When the pressure rises and the spring 9 is compressed and the sealing valve 8 is opened, the raw material I4 in the A chamber 2 is
Introduced into chamber 3. The raw material I4 introduced into the B chamber 3 reacts with the raw material II5 contained in the B chamber 3 to generate hydrogen, and hydrogen is supplied from the exhaust port 7 to the anode of the fuel cell to generate electricity.

【0017】図2は図1と同様のシステムでA室2に収
納された原料I4が電動ポンプ10によりB室3に供給
される方式の燃料電池用カートリッジの概略図である。
電動ポンプ10はA室2の供給口6に設置されている。
この実施例では電子機器本体内部に内蔵された燃料電池
のアノードに燃料を供給する導入部と排気口7を接続し
た際、電子機器本体側の導入部周辺に設置された電極端
子と燃料電池カートリッジ1の外面の一部に設置された
電極端子11が接触し導電可能となっている。このポン
プを作動させる電気は燃料電池により駆動させる電子機
器内部のカートリッジ挿入口近傍に予め設置された二次
電池20より給電される。このときの回路図を図3に示
す。二次電池20は燃料電池で発電した電気の一部を利
用して充電される。例えば、電子機器の消費電力以上に
発電された余剰の電力、あるいは電子機器がオフされた
時に、A室2からB室3への原料I4の供給をストップ
されるが、その時点で既にB室3に供給されていた原料
I4は、引き続き原料II5と反応して水素を発生する
ため、その間燃料電池は発電を続けるので、このときの
余剰電力が制御回路21により2次電池20に充電さ
れ、次に電子機器がオンされたときにポンプを作動させ
るために利用する。制御回路21は上記のように電子機
器の消費電力以上に発電された電力、あるいは電子機器
のオフ後の余剰電力を2次電池20に供給するように切
換える回路である。
FIG. 2 is a schematic diagram of a fuel cell cartridge of a system in which the raw material I4 stored in the A chamber 2 is supplied to the B chamber 3 by the electric pump 10 in the same system as in FIG.
The electric pump 10 is installed at the supply port 6 of the room A 2.
In this embodiment, when the introduction part for supplying fuel to the anode of the fuel cell built in the main body of the electronic device and the exhaust port 7 are connected, the electrode terminal and the fuel cell cartridge installed around the introduction part on the electronic device main body side. The electrode terminal 11 installed on a part of the outer surface of the electrode 1 is in contact with the electrode terminal 11 so as to be conductive. Electricity for operating this pump is supplied from a secondary battery 20 installed in advance near the cartridge insertion opening inside the electronic device driven by the fuel cell. The circuit diagram at this time is shown in FIG. The secondary battery 20 is charged by using a part of electricity generated by the fuel cell. For example, when the surplus power generated more than the power consumption of the electronic device or the electronic device is turned off, the supply of the raw material I4 from the room A 2 to the room B 3 is stopped, but at that time, the room B is already Since the raw material I4 supplied to No. 3 continues to react with the raw material II5 to generate hydrogen, the fuel cell continues to generate electricity during that time, and the surplus power at this time is charged in the secondary battery 20 by the control circuit 21, It is then used to activate the pump when the electronics are turned on. As described above, the control circuit 21 is a circuit that switches to supply the electric power generated more than the power consumption of the electronic device or the surplus power after the electronic device is turned off to the secondary battery 20.

【0018】図1、図2において、A室2からB室3へ
原料I4の供給をスムーズにするため、図4に示すよう
にA室2に原料I4が漏れず空気だけが入る空気孔12
を設け、さらにはA室2の一部をゴアテックス(商品
名)のような透湿性防水布13で形成しても良い。
In FIGS. 1 and 2, in order to make the supply of the raw material I4 from the A chamber 2 to the B chamber 3 smooth, as shown in FIG.
Further, a part of the room A 2 may be formed with a moisture permeable waterproof cloth 13 such as GORE-TEX (trade name).

【0019】このシステムの燃料電池により発電された
電気で稼働される電子機器を使用の為に、A室2を手で
押す、または電源スイッチをオン状態にすると、その信
号により電動ポンプ10が稼働し、A室2に収納された
原料I4がB室3に送られ、B室3に予め収納されてい
る原料II5と反応して水素を生成し排気口7より燃料
電池のアノードに供給され発電する事で電子機器が使用
出来る。
When the electronic equipment operated by electricity generated by the fuel cell of this system is used, when the room A 2 is pushed by hand or the power switch is turned on, the electric pump 10 is operated by the signal. Then, the raw material I4 stored in the A chamber 2 is sent to the B chamber 3, and reacts with the raw material II5 stored in the B chamber 3 in advance to generate hydrogen, which is supplied from the exhaust port 7 to the anode of the fuel cell to generate electricity. By doing so, electronic devices can be used.

【0020】本実施の形態におけるカートリッジを、燃
料電池を搭載した携帯電話15に接続する外観図を図6
に示す。燃料電池本体16は携帯電話15のプッシュホ
ン部と反対側に設置されている。
FIG. 6 is an external view of the cartridge according to the present embodiment, which is connected to a mobile phone 15 equipped with a fuel cell.
Shown in. The fuel cell main body 16 is installed on the opposite side of the touch-tone phone part of the mobile phone 15.

【0021】本発明の実施の形態を示す各図において、
A室2とB室3は一列に並び、供給口6と排気口7も一
列に並ぶように配置されているが、本発明はこのような
配置に限定されず、A室2とB室3を横に並べて配置
し、供給口6をA室とB室の側壁に設けても良い。
In each figure showing the embodiment of the present invention,
The A chamber 2 and the B chamber 3 are arranged in a line, and the supply port 6 and the exhaust port 7 are also arranged in a line. However, the present invention is not limited to this arrangement, and the A chamber 2 and the B chamber 3 are arranged. May be arranged side by side and the supply ports 6 may be provided in the side walls of the chambers A and B.

【0022】本発明の含酸素炭化水素化合物であるギ酸
を分解する微生物は、反応媒体に水を使用しているの
で、含酸素炭化水素化合物として使用するギ酸も水溶性
のものが好ましい。 (実施例1)一室に含酸素炭化水素化合物としてギ酸水
溶液を、他の一室に微生物として大腸菌Escheri
chia coli MG1655株をリン酸緩衝液に
懸濁させて収納した。
Since the microorganism decomposing formic acid which is the oxygen-containing hydrocarbon compound of the present invention uses water as a reaction medium, the formic acid used as the oxygen-containing hydrocarbon compound is preferably water-soluble. (Example 1) Formic acid aqueous solution as an oxygen-containing hydrocarbon compound was provided in one chamber, and Escherichia coli Escheri was used as a microorganism in another chamber.
The chia coli MG1655 strain was suspended in a phosphate buffer and stored.

【0023】ポンプ機能により、ギ酸水溶液を大腸菌E
scherichia coliMG1655株に供給
したところ、COの副生なしで、常温で7.5ml/h
/gの水素の生成を確認した。
By the pump function, the aqueous formic acid solution was used to transform E. coli E
When supplied to the strain S. cherichia coli MG1655, 7.5 ml / h at room temperature without CO by-product
Generation of hydrogen / g was confirmed.

【0024】上記、大腸菌Escherichia c
oli MG1655株と同様にして、大腸菌Clos
tridium Lactoacetophilum、
Clostridium Acetobutylicu
m、ClostridiumButylicum Es
cherichia coli K12についても、水
素の生成を確認した結果、生成量の差異はあれども水素
の生成を確認した。
The above-mentioned Escherichia coli Escherichia c
E. coli Clos in the same manner as the oli MG1655 strain
tridium Lactoacetophilum,
Clostridium acetobutylicu
m, Clostridium Butyricum Es
As for the cherichia coli K12, the hydrogen production was confirmed, and as a result, the hydrogen production was confirmed although there was a difference in the production amount.

【0025】以上の結果から、ギ酸から水素を生成する
には 酵素I:ギ酸から水素原子を引き抜く反応を起こすギ酸
デヒドロゲナーゼ 酵素II:2個の水素原子から水素分子を生成する反応
を起こすヒドロゲナーゼ酵素α:電子伝播系のtRNA の3種類の要素があると推定され、大腸菌にはこれらの
酵素が含まれていると考えられた。 (実施例2)一室に含酸素炭化水素化合物としてギ酸水
溶液を収納した。他の一室には、以下のようにして作成
した遺伝子組み替え菌JM109−503をリン酸緩衝
液に懸濁させたものを収納した。組み替え操作を以下に
記す。大腸菌JM109−503を大腸菌Escher
ichia coli MG1655株のゲノムより、
酵素の働きを行なう目的遺伝子hycE,fdhF,s
elCを取り出して、これらの遺伝子をpTrc99A
に接続して増幅し、更にpDG8というプラスミドに接
続する。こうして増幅させた遺伝子を、大腸菌JM10
9株に組み込んで遺伝子組み替え菌JM109−503
を作成した。
From the above results, in order to generate hydrogen from formic acid, enzyme I: formate dehydrogenase enzyme II which causes a reaction of extracting a hydrogen atom from formic acid II: hydrogenase enzyme α which causes a reaction of generating a hydrogen molecule from two hydrogen atoms It is presumed that there are three kinds of elements of tRNA of the electron propagation system, and Escherichia coli was considered to contain these enzymes. (Example 2) A formic acid aqueous solution as an oxygen-containing hydrocarbon compound was stored in one chamber. In another chamber, a recombinant bacterial strain JM109-503 prepared as described below was suspended in a phosphate buffer. The recombination operation is described below. E. coli JM109-503 was transformed into E. coli Escher
From the genome of ichia coli MG1655 strain,
Target genes hycE, fdhF, s that act as enzymes
elC was removed and these genes were cloned into pTrc99A
Amplification is carried out, and the plasmid is connected to a plasmid called pDG8. The gene thus amplified was transformed into Escherichia coli JM10.
9 recombinant strains JM109-503
It was created.

【0026】ポンプ機能により、ギ酸水溶液を遺伝子組
み替え菌JM109−503に供給すると、COの副生
なしで、常温で104ml/h/gの水素生成が確認で
きた。
When the aqueous formic acid solution was supplied to the genetically engineered bacterium JM109-503 by the pump function, it was confirmed that hydrogen was produced at a normal temperature of 104 ml / h / g without CO by-product.

【0027】これより、上記目的とする酵素I、II、
αを増幅させた遺伝子組み替え菌の方が、大腸菌そのも
のを使用するよりも、水素生成能力が著しく高くなって
いることがわかる。 (実施例3)大腸菌の代りに、増幅した遺伝子を組み込
んだpDG8の遺伝子をコリネ菌に移植し、スクロース
10%溶液に培養した遺伝子操作コリネ菌を収納した他
は、実施例1と同様にして実験を行なった結果、COの
副生なしで、常温で306ml/h/gの水素生成を確
認した。
From the above, the target enzymes I, II, and
It can be seen that the genetically modified bacterium in which α is amplified has a remarkably higher hydrogen-producing ability than the case of using Escherichia coli itself. (Example 3) In the same manner as in Example 1 except that the gene for pDG8 incorporating the amplified gene was transplanted into Corynebacterium instead of Escherichia coli, and the genetically modified Corynebacterium was cultured in a 10% sucrose solution. As a result of the experiment, hydrogen production of 306 ml / h / g was confirmed at room temperature without CO by-product.

【0028】これより、遺伝子組み替えにより増幅させ
た遺伝子を大腸菌に組み込むより、コリネ菌に組み込ん
だ方が、より水素生成能力が高まることがわかった。
From the above, it was found that the hydrogen-producing ability is further enhanced by incorporating the gene amplified by the gene recombination into Escherichia coli than the Escherichia coli.

【0029】これらの菌の大きさは1〜2μmと微少で
あるため、生成水素とともに燃料電池へ供給されてしま
う。長期にわたる燃料電池の使用において、その菌体の
たんぱく質が燃料電池の構成材料であるアノード表面を
覆ってしまうため、燃料電池が発電しなくなってしま
う。
Since the size of these bacteria is as small as 1 to 2 μm, they are supplied to the fuel cell together with the produced hydrogen. When the fuel cell is used for a long period of time, the protein of the bacterial cell covers the anode surface, which is a constituent material of the fuel cell, so that the fuel cell stops generating electricity.

【0030】その防止の為に図5に示すように燃料電池
カートリッジ1の排気口7の内部にフィルター14を設
置しなければならない。フィルター14は菌体の透過を
防止し水素ガスを透過させる必要があり、通常分子量7
000程度のUF膜を使用する。
To prevent this, a filter 14 must be installed inside the exhaust port 7 of the fuel cell cartridge 1 as shown in FIG. The filter 14 needs to prevent permeation of bacterial cells and permeate hydrogen gas.
000 UF membrane is used.

【0031】また、本発明で使用する遺伝子操作された
大腸菌及びコリネ菌は、繁殖能力を持たないため、カー
トリッジに収納された後は徐々に菌の老化が進み、通常
一ヶ月程で水素生成能力は著しく低下するが、カートリ
ッジを必要に応じて定期的に交換することで、問題は解
決する。
Since the genetically engineered Escherichia coli and Corynebacterium used in the present invention have no reproductive ability, the aging of the bacterium gradually progresses after being stored in the cartridge, and the hydrogen producing ability is usually about one month. Is significantly reduced, but replacing the cartridge on a regular basis as needed solves the problem.

【0032】したがって、燃料電池での発電作用のため
に、燃料電池用カートリッジから生物的燃料改質で生成
した水素を供給することで、化学的燃料改質装置と異な
り、COの副生がほとんど無く常温での運転が可能とな
り、より一層排気のクリーンなシステムを提供すること
が可能となる。
Therefore, by supplying hydrogen generated by biological fuel reforming from the fuel cell cartridge for the power generation action in the fuel cell, unlike the chemical fuel reforming apparatus, CO by-product is almost generated. It becomes possible to operate at room temperature without any need, and it becomes possible to provide an even cleaner exhaust system.

【0033】本発明は上記の実施の形態に限定されず
に、その技術的な思想の範囲内において種々の変更がな
しうることは明白である。
It is obvious that the present invention is not limited to the above-mentioned embodiments and various modifications can be made within the scope of the technical idea.

【0034】[0034]

【発明の効果】本発明は、含酸素炭化水素化合物をエネ
ルギー源として生物的な改質反応により水素を発生する
微生物に、含酸素炭化水素化合物水溶液を供給し発生し
た水素を容器の排気口より外部に取り出す。これを燃料
電池のアノードに供給するため、アノード触媒は含酸素
炭化水素化合物由来のCOにより被毒されることなく、
また、低温での電池の稼働も可能となるものである。こ
のように、生物的な燃料改質により生成した水素を利用
して燃料電池を発電させ、環境にクリーンなシステムを
提供できる。
INDUSTRIAL APPLICABILITY According to the present invention, an oxygen-containing hydrocarbon compound aqueous solution is supplied to a microorganism which generates hydrogen by a biological reforming reaction using an oxygen-containing hydrocarbon compound as an energy source, and the generated hydrogen is discharged from an exhaust port of a container. Take it out. Since this is supplied to the anode of the fuel cell, the anode catalyst is not poisoned by CO derived from the oxygen-containing hydrocarbon compound,
Further, the battery can be operated at a low temperature. As described above, the hydrogen generated by the biological fuel reforming can be used to generate the power of the fuel cell, thereby providing a clean system to the environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の手動による燃料電池用カートリッジの
実施形態の概略構成図である。
FIG. 1 is a schematic configuration diagram of an embodiment of a manual fuel cell cartridge of the present invention.

【図2】本発明の電動による燃料電池用カートリッジの
実施形態の概略構成図である。
FIG. 2 is a schematic configuration diagram of an embodiment of an electric fuel cell cartridge of the present invention.

【図3】本発明の電動による燃料電池用カートリッジの
実施形態の概略回路図である。
FIG. 3 is a schematic circuit diagram of an embodiment of an electric fuel cell cartridge of the present invention.

【図4】本発明の燃料電池用カートリッジの実施形態に
空気孔を付加した概略構成図である。
FIG. 4 is a schematic configuration diagram in which air holes are added to the embodiment of the fuel cell cartridge of the present invention.

【図5】本発明の燃料電池用カートリッジの実施形態に
フィルターを付加した概略構成図である。
FIG. 5 is a schematic configuration diagram in which a filter is added to the embodiment of the fuel cell cartridge of the present invention.

【図6】本発明の燃料電池用カートリッジを携帯電話に
接続した概略構成図である。
FIG. 6 is a schematic configuration diagram in which the fuel cell cartridge of the present invention is connected to a mobile phone.

【符号の説明】[Explanation of symbols]

1 燃料電池用カートリッジ 2 A室 3 B室 4 原料I 5 原料II 6 供給口 7 排気口 8 封し弁 9 スプリング 10 電動ポンプ 11 電極端子 12 空気孔 13 透湿性防水布 14 フィルター 20 2次電池 1 Fuel cell cartridge 2 Room A Room 3 B 4 Raw material I 5 Raw material II 6 supply ports 7 exhaust port 8 sealed valves 9 springs 10 Electric pump 11 electrode terminals 12 air holes 13 Breathable waterproof cloth 14 filters 20 secondary battery

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森西 康晴 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 菰田 睦子 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 吉江 智寿 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 Fターム(参考) 4B029 AA27 BB02 CC01 5H027 AA02 BA01 DD00 DD03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yasuharu Morinishi             22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka             Inside the company (72) Inventor Mutsuko Komoda             22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka             Inside the company (72) Inventor Tomohisa Yoshie             22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka             Inside the company F-term (reference) 4B029 AA27 BB02 CC01                 5H027 AA02 BA01 DD00 DD03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池に水素を供給するカートリッジ
であって、該カートリッジが少なくとも二室を有し、一
方の室には第1の原料を収納し、他方の室には前記第1
の原料と反応して水素を生成し、前記燃料電池に水素を
供給する第2の原料を収納してなることを特徴とする燃
料電池用カートリッジ。
1. A cartridge for supplying hydrogen to a fuel cell, the cartridge having at least two chambers, one chamber containing a first raw material, and the other chamber containing the first raw material.
A fuel cell cartridge containing a second raw material which reacts with the raw material to produce hydrogen and supplies hydrogen to the fuel cell.
【請求項2】 請求項1に記載の燃料電池用カートリッ
ジにおいて、前記一方の室から第1の原料を前記他方の
室へ任意に供給可能なポンプ機能を備えたことを特徴と
する燃料電池用カートリッジ。
2. The fuel cell cartridge according to claim 1, further comprising a pump function capable of arbitrarily supplying the first raw material from the one chamber to the other chamber. cartridge.
【請求項3】 請求項1または2に記載の燃料電池用カ
ートリッジにおいて、前記一方の室には含酸素炭化水素
化合物水溶液を、前記他方の室には含酸素炭化水素化合
物をエネルギー源として水素を発生する微生物を含む液
体を収納し、前記一方の室と他方の室の間に形成した供
給口から前記含酸素炭化水素化合物水溶液を供給し、該
含酸素炭化水素化合物を基にして前記微生物と反応して
生成した水素を、前記供給口の他方に形成した排気口か
ら取り出すことを特徴とする燃料電池用カートリッジ。
3. The fuel cell cartridge according to claim 1 or 2, wherein the one chamber contains an oxygen-containing hydrocarbon compound aqueous solution, and the other chamber contains hydrogen using the oxygen-containing hydrocarbon compound as an energy source. A liquid containing a microorganism to be generated is stored, the oxygen-containing hydrocarbon compound aqueous solution is supplied from a supply port formed between the one chamber and the other chamber, and the microorganism is based on the oxygen-containing hydrocarbon compound. A fuel cell cartridge, wherein hydrogen generated by the reaction is taken out from an exhaust port formed on the other side of the supply port.
【請求項4】 請求項3に記載の燃料電池用カートリッ
ジにおいて、前記排気口付近に前記第1の原料、第2の
原料が前記他方の室から排出されないようにフィルター
を設置することを特徴とする燃料電池用カートリッジ。
4. The fuel cell cartridge according to claim 3, wherein a filter is installed near the exhaust port so that the first raw material and the second raw material are not discharged from the other chamber. Fuel Cell Cartridge
【請求項5】 請求項3に記載の燃料電池用カートリッ
ジにおいて、前記微生物が以下の4種の大腸菌Esch
erichia coli MG1655、Clost
ridium Lactoacetophilum、C
lostridium Actobutylicum、
Clostridium Butylicumのうちい
ずれか1つ、またはコリネ菌であることを特徴とする燃
料電池用カートリッジ。
5. The fuel cell cartridge according to claim 3, wherein the microorganisms are the following four types of Escherichia coli Esch.
erichia coli MG1655, Clost
ridium lactoacetophilum, C
Lostridium Actobutylicum,
A fuel cell cartridge comprising any one of Clostridium Butyricum or Corynebacterium.
【請求項6】 請求項5に記載の燃料電池用カートリッ
ジにおいて、前記微生物、大腸菌とコリネ菌が、その遺
伝子を組み替え操作して、ギ酸デヒドロゲナーゼ、ヒド
ロゲナーゼ、tRNAの酵素群を高発現させたことを特
徴とする遺伝子操作菌体を使用することを特徴とする燃
料電池用カートリッジ。
6. The fuel cell cartridge according to claim 5, wherein the microorganisms, Escherichia coli and Corynebacterium, have recombined their genes to highly express the enzyme groups of formate dehydrogenase, hydrogenase and tRNA. A cartridge for a fuel cell, which is characterized by using a genetically engineered bacterium.
【請求項7】 請求項5または6に記載の燃料電池用カ
ートリッジにおいて、前記含酸素炭化水素化合物がギ酸
であることを特徴とする燃料電池用カートリッジ。
7. The fuel cell cartridge according to claim 5 or 6, wherein the oxygen-containing hydrocarbon compound is formic acid.
【請求項8】 請求項2に記載の燃料電池用カートリッ
ジにおいて、前記ポンプ機能は前記燃料電池で発電され
た電気によって駆動されることを特徴とする燃料電池用
カートリッジ。
8. The fuel cell cartridge according to claim 2, wherein the pump function is driven by electricity generated by the fuel cell.
JP2001316197A 2001-10-15 2001-10-15 Fuel cell cartridge Expired - Fee Related JP3764862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001316197A JP3764862B2 (en) 2001-10-15 2001-10-15 Fuel cell cartridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001316197A JP3764862B2 (en) 2001-10-15 2001-10-15 Fuel cell cartridge

Publications (2)

Publication Number Publication Date
JP2003123821A true JP2003123821A (en) 2003-04-25
JP3764862B2 JP3764862B2 (en) 2006-04-12

Family

ID=19134244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001316197A Expired - Fee Related JP3764862B2 (en) 2001-10-15 2001-10-15 Fuel cell cartridge

Country Status (1)

Country Link
JP (1) JP3764862B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001973A1 (en) * 2003-06-27 2005-01-06 Nokia Corporation Fuel supply device and fuel supply system
JP2005108559A (en) * 2003-09-29 2005-04-21 Casio Comput Co Ltd Fuel container
JP2006134823A (en) * 2004-11-09 2006-05-25 Seiko Instruments Inc Fuel gas generation system
JP2006217829A (en) * 2005-02-08 2006-08-24 Research Institute Of Innovative Technology For The Earth Hydrogen-producing apparatus using microorganism, and fuel battery system using the same
KR100696688B1 (en) * 2005-07-27 2007-03-20 삼성에스디아이 주식회사 Direct oxidation fuel cell
KR100790688B1 (en) 2006-12-26 2008-01-02 삼성전기주식회사 Fuel cell having a hydrogen storage tank
RU2316079C2 (en) * 2003-07-29 2008-01-27 Сосьете Бик Fuel flask with flexible inner chamber
US7432091B2 (en) 2003-02-24 2008-10-07 Research Institute Of Innovative Technology For The Earth Highly efficient hydrogen production method using microorganism
JP2009296709A (en) * 2008-06-02 2009-12-17 Toshiba Corp Mobile terminal
WO2012115278A1 (en) * 2011-02-24 2012-08-30 ソニー株式会社 Microbial fuel cell, fuel and microbes for said fuel cell, bioreactor and biosensor
US8846358B2 (en) 2008-05-12 2014-09-30 Sharp Kabushiki Kaisha Method and device for producing hydrogen
US9556211B2 (en) 2010-11-25 2017-01-31 National University Corporation Okayama University Metal complex compound, hydrogen production catalyst and hydrogenation reaction catalyst each comprising the metal complex compound, and hydrogen production method and hydrogenation method each using the catalyst

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7432091B2 (en) 2003-02-24 2008-10-07 Research Institute Of Innovative Technology For The Earth Highly efficient hydrogen production method using microorganism
US7674536B2 (en) 2003-06-27 2010-03-09 Nokia Corporation Fuel supply device and fuel supply system
WO2005001973A1 (en) * 2003-06-27 2005-01-06 Nokia Corporation Fuel supply device and fuel supply system
CN100438176C (en) * 2003-06-27 2008-11-26 诺基亚公司 Fuel supply device and fuel supply system
RU2316079C2 (en) * 2003-07-29 2008-01-27 Сосьете Бик Fuel flask with flexible inner chamber
JP2005108559A (en) * 2003-09-29 2005-04-21 Casio Comput Co Ltd Fuel container
JP2006134823A (en) * 2004-11-09 2006-05-25 Seiko Instruments Inc Fuel gas generation system
JP2006217829A (en) * 2005-02-08 2006-08-24 Research Institute Of Innovative Technology For The Earth Hydrogen-producing apparatus using microorganism, and fuel battery system using the same
JP4574375B2 (en) * 2005-02-08 2010-11-04 財団法人地球環境産業技術研究機構 Hydrogen production apparatus using microorganisms and fuel cell system using the same
KR100696688B1 (en) * 2005-07-27 2007-03-20 삼성에스디아이 주식회사 Direct oxidation fuel cell
US7985511B2 (en) 2005-07-27 2011-07-26 Samsung Sdi Co., Ltd. Direct oxidation fuel cell system
KR100790688B1 (en) 2006-12-26 2008-01-02 삼성전기주식회사 Fuel cell having a hydrogen storage tank
US8846358B2 (en) 2008-05-12 2014-09-30 Sharp Kabushiki Kaisha Method and device for producing hydrogen
JP2009296709A (en) * 2008-06-02 2009-12-17 Toshiba Corp Mobile terminal
US9556211B2 (en) 2010-11-25 2017-01-31 National University Corporation Okayama University Metal complex compound, hydrogen production catalyst and hydrogenation reaction catalyst each comprising the metal complex compound, and hydrogen production method and hydrogenation method each using the catalyst
WO2012115278A1 (en) * 2011-02-24 2012-08-30 ソニー株式会社 Microbial fuel cell, fuel and microbes for said fuel cell, bioreactor and biosensor
CN103380527A (en) * 2011-02-24 2013-10-30 索尼公司 Microbial fuel cell, fuel and microbes for said fuel cell, bioreactor and biosensor

Also Published As

Publication number Publication date
JP3764862B2 (en) 2006-04-12

Similar Documents

Publication Publication Date Title
Ren et al. Miniaturizing microbial fuel cells for potential portable power sources: promises and challenges
Schröder Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency
US7922878B2 (en) Electrohydrogenic reactor for hydrogen gas production
Schröder Discover the possibilities: microbial bioelectrochemical systems and the revival of a 100-year–old discovery
CA2544882C (en) Hydrogen/hydrogen peroxide fuel cell
Guo et al. Microbial fuel cells: electricity generation from organic wastes by microbes
US20070104996A1 (en) Water reclamation in a micropower generator
JP2003123821A (en) Fuel cell cartridge
US20070254195A1 (en) Combination fuel cell and ion pump, and methods and infrastructure systems employing same
US6686075B2 (en) Process for producing electrical energy with the aid of a fuel cell
US20070062820A1 (en) Fuel cell cogeneration system
KR20040000334A (en) Hydrogen generating apparatus
WO2005001981A3 (en) Biofuel cell
WO2004046408B1 (en) Electrochemical reformer and fuel cell system
JP2005501387A (en) Fuel cell
JPH1064572A (en) Fuel supply system for fuel cell and portable electrical device
WO2009003006A1 (en) Electrohydrogenic reactor for hydrogen gas production
WO2005086262A1 (en) Carbon-fueled fuel cell
JP5060065B2 (en) Biofuel cell and biofuel cell electrode
US20090087690A1 (en) Microbial fuel cell with anion exchange membrane and solid oxide catalyst
JP2014093200A (en) Microbial fuel cell
JP2002270210A (en) Solid polymer fuel cell set
Włodarczyk et al. Electricity production in microbial fuel cell with Cu-B alloy as catalyst of anode
CN109075361B (en) Rechargeable electrochemical device for generating electrical energy
US20140072890A1 (en) Fuel cell power generation system with oxygen inlet instead of air

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051018

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees