JP2003123754A - Graphite particles for negative electrode of nonaqueous secondary battery - Google Patents

Graphite particles for negative electrode of nonaqueous secondary battery

Info

Publication number
JP2003123754A
JP2003123754A JP2001313808A JP2001313808A JP2003123754A JP 2003123754 A JP2003123754 A JP 2003123754A JP 2001313808 A JP2001313808 A JP 2001313808A JP 2001313808 A JP2001313808 A JP 2001313808A JP 2003123754 A JP2003123754 A JP 2003123754A
Authority
JP
Japan
Prior art keywords
diameter
negative electrode
graphite
graphite particles
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001313808A
Other languages
Japanese (ja)
Inventor
Katsutomo Ozeki
克知 大関
Toyoki Horizumi
豊樹 堀澄
Minoru Jihige
稔 自髭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2001313808A priority Critical patent/JP2003123754A/en
Publication of JP2003123754A publication Critical patent/JP2003123754A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide graphite particles of high binding property for a negative electrode, free from the decomposition of γ-butyrolactone on graphite surfaces in charging, and remarkable deterioration of charging and discharging efficiency in a nonaqueous secondary battery including γ-butyrolactone in an electrolyte. SOLUTION: The graphite particles are composed of scaly or single-scale-like natural graphitic particles, and heir surfaces adsorbs or are coated with the specific amount of water-soluble high molecules including polyuronide as basic structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、非水系二次電池
の負極に使用する黒鉛粒子に関するものであり、特に電
解液中にγ−ブチロラクトン(GBL)を含有する非水
系二次電池における放電負荷特性と充放電サイクル寿命
特性を向上させることが可能な負極用黒鉛粒子に関する
ものである。
TECHNICAL FIELD The present invention relates to graphite particles used for a negative electrode of a non-aqueous secondary battery, and particularly to a discharge load in a non-aqueous secondary battery containing γ-butyrolactone (GBL) in an electrolytic solution. The present invention relates to graphite particles for a negative electrode capable of improving the characteristics and charge / discharge cycle life characteristics.

【0002】[0002]

【従来の技術】非水系二次電池、例えばリチウムイオン
二次電池の負極活物質としては、炭素粒子のメソフェー
ズカーボンマイクロビーズ(MCMB)や難黒鉛化炭素
が主として用いられている。また、結着剤としてはポリ
フッ化ビニリデン(PVDF)樹脂に代表されるフッ素
系樹脂が主として用いられ、これらの樹脂をN−メチル
−2−ピロリドン(NMP)などの有機溶剤を溶媒とし
て負極活物質と共に混練することにより、リチウムイオ
ン二次電池の負極塗膜形成用スラリーとしている。リチ
ウムイオン二次電池はノート形パソコンや携帯電話など
の充電可能な電源として普及しているが、さらにその適
用範囲を拡大するために電池の高容量化や高電圧化を図
ることが望まれている。このような二次電池の高容量化
に対する要求を満たすためには、負極材料を高容量化す
ることが必須である。しかしながら、従来から負極活物
質として使用されているメソフェーズピッチ焼成炭素材
料のMCMBやメソフェーズカーボンファイバー(MC
F)は黒鉛化が不十分であるために、得られる放電容量
は320mAh/gにとどまっている。
2. Description of the Related Art Mesophase carbon microbeads (MCMB) of carbon particles and non-graphitizable carbon are mainly used as a negative electrode active material of a non-aqueous secondary battery such as a lithium ion secondary battery. Further, as the binder, a fluorine-based resin represented by polyvinylidene fluoride (PVDF) resin is mainly used, and these resins are used as a negative electrode active material with an organic solvent such as N-methyl-2-pyrrolidone (NMP) as a solvent. By kneading together, a slurry for forming a negative electrode coating film of a lithium ion secondary battery is obtained. Lithium-ion secondary batteries are widely used as rechargeable power sources for notebook computers, mobile phones, etc., but it is desired to increase the capacity and voltage of the batteries in order to further expand the applicable range. There is. In order to satisfy the demand for higher capacity of such a secondary battery, it is essential to increase the capacity of the negative electrode material. However, MCMB, which is a mesophase pitch fired carbon material and mesophase carbon fiber (MC) which have been conventionally used as a negative electrode active material.
Since the graphitization of F) is insufficient, the obtained discharge capacity is 320 mAh / g.

【0003】そこで、電池(負極材料)高容量化の要求
を達成する方策として、結晶性の高い天然黒鉛やコーク
スおよび/またはピッチ焼成の人造黒鉛を用いる検討が
進められている。また、電解液にγ−ブチロラクトン
(GBL)などの第3石油類を含有した非水系二次電池
が、近年注目を浴びている。従来、非水系二次電池の電
解液としては、エチレンカーボネート(EC)にジメチ
ルカーボネート(DMC)やジエチルカーボネート(D
EC)を混合した有機溶媒を用いたものであったが、E
Cは融点が39℃で常温下では固体の物質であり、EC
を含有した電解液では低温下でのイオン導電性が低い。
また、DMCやDECは沸点がそれぞれ90〜91℃、
126℃と低く、気化し易いので電池の内圧上昇を引き
起こす恐れがあると共に、引火性が高いので安全面でも
懸念があった。これに対し、GBLは常温液体(単体で
の凝固点は−44℃)で、誘電率も大きいために低温下
でのイオン導電性が高く、電池を低温環境下で使用する
際の放電特性が改善されるという利点がある。また、G
BL単体の沸点は204℃であり、DMCまたはDEC
と混合して電解液とした電池が高温になった場合でも熱
によるガスの発生が少ないため、電池パッケージの膨張
を抑制でき、安全面でも利点を有する。
Therefore, as a measure to meet the demand for higher capacity of batteries (negative electrode materials), studies are being conducted using natural graphite having high crystallinity and coke and / or pitch-fired artificial graphite. In addition, a non-aqueous secondary battery containing a third petroleum compound such as γ-butyrolactone (GBL) in an electrolytic solution has been receiving attention in recent years. Conventionally, as an electrolytic solution for a non-aqueous secondary battery, ethylene carbonate (EC) is added to dimethyl carbonate (DMC) or diethyl carbonate (D).
EC) was mixed with an organic solvent.
C has a melting point of 39 ° C. and is a solid substance at room temperature.
The ionic conductivity at low temperature is low in the electrolytic solution containing.
The boiling points of DMC and DEC are 90 to 91 ° C.,
Since the temperature is as low as 126 ° C. and it is easily vaporized, it may cause an increase in the internal pressure of the battery, and since it has high flammability, there was a concern in terms of safety. On the other hand, GBL is a liquid at room temperature (freezing point of -44 ° C as a simple substance) and has a high dielectric constant so that it has high ionic conductivity at low temperature, improving discharge characteristics when the battery is used in a low temperature environment. There is an advantage that is done. Also, G
The boiling point of BL alone is 204 ° C, and DMC or DEC
Even if the battery mixed with is used as an electrolytic solution and the temperature of the battery becomes high, the generation of gas due to heat is small, so that the expansion of the battery package can be suppressed and there is an advantage in terms of safety.

【0004】[0004]

【発明が解決しようとする課題】このように、電解液に
γ−ブチロラクトン(GBL)を含有した非水系二次電
池は、従来の二次電池の特性を改善できるものとなるこ
とは分かっているが、普及していない状況にある。その
理由は、負極活物質として結晶性の高い黒鉛を用いた場
合、充電時に黒鉛表面でGBLが分解し、充放電効率が
著しく低下するためである。
As described above, it has been known that the non-aqueous secondary battery containing γ-butyrolactone (GBL) in the electrolytic solution can improve the characteristics of the conventional secondary battery. However, it is not in widespread use. The reason is that when graphite having high crystallinity is used as the negative electrode active material, GBL is decomposed on the surface of the graphite during charging, and charge / discharge efficiency is significantly reduced.

【0005】[0005]

【課題を解決するための手段】この発明は、上記課題を
解決するために、γ−ブチロラクトン(GBL)を含有
する電解液を用いた非水系二次電池の負極用黒鉛粒子に
おいて、この負極用黒鉛粒子はリン状またはリン片状の
天然黒鉛粒子から構成される塊状黒鉛粒子群であり、こ
の塊状黒鉛粒子群の表面にポリウロニドを基本構造とし
た水溶性高分子が該塊状黒鉛粒子群に対して0.3〜3.
0質量%の範囲で吸着または被覆されており、さらにこ
の水溶性高分子は20℃における1質量%水溶液の粘度
が2〜60mPa・sであることを特徴とする非水系二
次電池の負極用黒鉛粒子を提供するものである。
In order to solve the above-mentioned problems, the present invention provides graphite particles for a negative electrode of a non-aqueous secondary battery using an electrolytic solution containing γ-butyrolactone (GBL). Graphite particles are a group of aggregated graphite particles composed of natural graphite particles in the form of phosphorus or flakes, and a water-soluble polymer having a basic structure of polyuronide on the surface of the aggregated graphite particles is used for the aggregated graphite particles. 0.3 to 3.
For a negative electrode of a non-aqueous secondary battery, wherein the water-soluble polymer is adsorbed or coated in a range of 0% by mass, and the viscosity of a 1% by mass aqueous solution at 20 ° C. is 2 to 60 mPa · s. A graphite particle is provided.

【0006】また、この発明の塊状黒鉛粒子群は、レー
ザー光回折法による累積50%径(以下、「D50径」
と略す)が10〜25μm、窒素ガス吸着法による比表
面積が2.5〜6m/g、静置法による見掛け密度が
0.45g/cm以上、タップ法による見掛け密度が
0.70g/cm以上であり、さらに、タップ法によ
る見掛け密度は静置法による見掛け密度の1.3倍〜2.
0倍の範囲であることが特徴である。
The aggregated graphite particle group of the present invention has a cumulative 50% diameter (hereinafter referred to as "D50 diameter") measured by a laser light diffraction method.
Abbreviated) is 10 to 25 μm, specific surface area by nitrogen gas adsorption method is 2.5-6 m 2 / g, apparent density by stationary method is 0.45 g / cm 3 or more, apparent density by tap method is 0.70 g / cm 3 or more, and the apparent density by the tap method is 1.3 times to 2.0 times the apparent density by the static method.
The characteristic is that the range is 0 times.

【0007】さらに、この塊状黒鉛粒子群は、レーザー
光回折法によるD50径の値は同法による累積10%径
(以下、「D10径」と略す)値の1.5倍〜2.5倍の
範囲であり、同法による累積90%径(以下、「D90
径」と略す)値はD50径の値の1.5倍〜2.5倍の範
囲であることが特徴である。加えて、この塊状黒鉛粒子
群は、マクロポア体積、メソポア体積およびミクロポア
体積からなる全ポア体積が0.035cm/g以下で
あり、全ポア体積に占めるマクロポア体積の比率が20
%以上であることが特徴である。
Further, in this agglomerated graphite particle group, the value of D50 diameter by the laser light diffraction method is 1.5 times to 2.5 times the cumulative 10% diameter (hereinafter referred to as "D10 diameter") value by the same method. The cumulative 90% diameter (hereinafter referred to as “D90
The value is abbreviated as "diameter") and is characterized by being in the range of 1.5 times to 2.5 times the value of the D50 diameter. In addition, this aggregated graphite particle group has a total pore volume consisting of macropore volume, mesopore volume and micropore volume of 0.035 cm 3 / g or less, and the ratio of the macropore volume to the total pore volume is 20.
The feature is that it is at least%.

【0008】[0008]

【発明の実施の形態】本発明の非水系二次電池の負極用
黒鉛粒子における第一の特徴は、黒鉛粒子はリン状また
はリン片状の天然黒鉛粒子から構成される塊状黒鉛粒子
群で、この塊状黒鉛粒子群の表面にポリウロニドを基本
構造とした水溶性高分子が塊状黒鉛粒子群に対して0.
3〜3.0質量%の範囲で吸着または被覆されており、
さらにこの水溶性高分子は20℃における1質量%水溶
液の粘度が2〜60mPa・sであることである。γ−
ブチロラクトン(GBL)が充電時に分解するのは、高
結晶の黒鉛表面に存在する活性点に因るものと推測され
る。ポリウロニドが何故GBL分解抑制効果が高いの
か、詳細なメカニズムは現在のところ不明であるが、ポ
リウロニド類が結晶性の高い黒鉛表面の活性点に吸着
し、GBLの分解を抑制するものと考えられる。なお、
ポリウロニドを基本構造とする水溶性高分子としては、
アルギン酸カリウムやアルギン酸ナトリウムなどのアル
ギン酸塩およびアルギン酸プロピレングリコールエステ
ルが挙げられ、GBL含有電解液においてGBL分解抑
制効果が高いのは、20℃における1質量%水溶液の粘
度が2〜60mPa・sであることを見出した。高分子
を一定濃度で溶解した水溶液の粘度は、溶解させた高分
子の分子量や重合度の指標となり、粘度数値が低いもの
ほど低分子量または低重合度のものと言える。前記水溶
液の粘度が60mPa・sを超えると黒鉛表面への緻密
な吸着膜または被覆膜を形成できない。その結果、GB
Lの分解を十分に抑制できなくなる。一方、水溶液の粘
度が2mPa・s未満のものは製造が困難であり、実用
的範囲を超えている。
BEST MODE FOR CARRYING OUT THE INVENTION The first feature of the graphite particles for a negative electrode of the non-aqueous secondary battery of the present invention is that the graphite particles are a group of massive graphite particles composed of phosphorus-like or flake-like natural graphite particles, A water-soluble polymer having a basic structure of polyuronide was added to the surface of the aggregated graphite particles in an amount of 0.
Adsorbed or coated in the range of 3 to 3.0% by mass,
Further, this water-soluble polymer has a viscosity of a 1% by mass aqueous solution at 20 ° C. of 2 to 60 mPa · s. γ-
It is speculated that the decomposition of butyrolactone (GBL) during charging is due to the active sites present on the surface of highly crystalline graphite. The detailed mechanism of why polyuronide has a high GBL decomposition inhibitory effect is currently unknown, but it is considered that the polyuronides are adsorbed on the active sites on the highly crystalline graphite surface to suppress the GBL decomposition. In addition,
As a water-soluble polymer having polyuronide as a basic structure,
Examples thereof include alginates such as potassium alginate and sodium alginate, and propylene glycol alginate. In the GBL-containing electrolytic solution, the effect of suppressing GBL decomposition is high when the viscosity of a 1% by mass aqueous solution at 20 ° C. is 2 to 60 mPa · s. Found. The viscosity of an aqueous solution in which a polymer is dissolved at a constant concentration serves as an index of the molecular weight and the degree of polymerization of the dissolved polymer, and it can be said that the lower the viscosity value, the lower the molecular weight or the degree of polymerization. When the viscosity of the aqueous solution exceeds 60 mPa · s, a dense adsorption film or coating film on the graphite surface cannot be formed. As a result, GB
The decomposition of L cannot be suppressed sufficiently. On the other hand, if the viscosity of the aqueous solution is less than 2 mPa · s, it is difficult to produce and exceeds the practical range.

【0009】この発明の非水系二次電池の負極用黒鉛粒
子における第二の特徴は、リン状またはリン片状の天然
黒鉛粒子から構成される塊状の黒鉛粒子群であり、この
塊状黒鉛粒子群は、レーザー光回折法によるD50径、
すなわち平均粒子径の値が10〜25μmであり、窒素
ガス吸着法による比表面積が2.5〜6m/g、静置
法による見掛け密度が0.45g/cm以上、タップ
法による見掛け密度が0.70g/cm以上であり、
さらに、タップ法による見掛け密度は静置法による見掛
け密度の1.3倍〜2.0倍となっていることである。D
50径(平均粒子径)の値が10μm未満では、塊状黒
鉛粒子群の粒子径としては小さすぎ、黒鉛粒子間の接触
抵抗が増加して形成した塗膜の導電性が劣化する傾向が
ある。したがって、得られる電池特性としては充放電容
量や充放電負荷特性が低下すると共に、電解液の分解に
伴う充放電効率が低下する。逆に、D50径の値が25
μmを超えると、黒鉛粒子群の粒子径としては大きす
ぎ、充放電時のリチウムイオンの黒鉛内部および外部へ
の拡散に時間を要し、充放電負荷特性が低下すると共
に、形成した塗膜の平滑性が悪くなり、充電時に局部的
にリチウムが析出する恐れがある。
The second feature of the graphite particles for a negative electrode of the non-aqueous secondary battery of the present invention is a lump graphite particle group composed of phosphorus-shaped or scaly natural graphite particles. Is the D50 diameter measured by the laser diffraction method,
That is, the value of the average particle size is 10 to 25 μm, the specific surface area by the nitrogen gas adsorption method is 2.5-6 m 2 / g, the apparent density by the stationary method is 0.45 g / cm 3 or more, the apparent density by the tap method. Is 0.70 g / cm 3 or more,
Furthermore, the apparent density by the tap method is 1.3 to 2.0 times the apparent density by the static method. D
When the value of 50 diameter (average particle diameter) is less than 10 μm, the particle diameter of the aggregated graphite particles is too small, the contact resistance between the graphite particles increases, and the conductivity of the coating film formed tends to deteriorate. Therefore, as the obtained battery characteristics, the charge / discharge capacity and the charge / discharge load characteristics are lowered, and the charge / discharge efficiency due to the decomposition of the electrolytic solution is lowered. Conversely, the value of D50 diameter is 25
When it exceeds μm, the particle size of the graphite particle group is too large, and it takes time for lithium ions to diffuse inside and outside the graphite during charging / discharging, and the charging / discharging load characteristics are deteriorated, and the formed coating film is The smoothness may deteriorate, and lithium may be locally deposited during charging.

【0010】また、このD50径(平均粒子径)の値と
相関性があるが、窒素ガス吸着法にょる比表面積が2.
5m/g未満では、黒鉛粒子群としては比表面積の値
が低く、粗大な粒子群となる。したがって、充放電時の
リチウムイオンの黒鉛内部および外部への拡散に時間を
要し、充放電負荷特性が低下すると共に、形成した塗膜
の平滑性が悪くなり、充電時に局部的にリチウムが析出
する恐れがある。逆に、窒素ガス吸着法による比表面積
が6m/gを超えると、黒鉛粒子は微細な粒子群とな
り、黒鉛粒子間の接触抵抗が増加して形成した塗膜の導
電性が劣化し、充放電容量や充放電負荷特性が低下する
と共に、電解液の分解に伴う充放電効率が低下し、凝集
が進んで嵩密度の低い粒子群になる傾向もあり、比表面
積がこの値より大きいと好ましくない。
Further, there is a correlation with the value of the D50 diameter (average particle diameter), but the specific surface area according to the nitrogen gas adsorption method is 2.
If it is less than 5 m 2 / g, the graphite particle group has a low specific surface area and becomes a coarse particle group. Therefore, it takes time to diffuse lithium ions into and out of graphite during charging / discharging, and the charging / discharging load characteristics deteriorate, and the smoothness of the formed coating film deteriorates, and lithium deposits locally during charging. There is a risk of On the other hand, when the specific surface area by the nitrogen gas adsorption method exceeds 6 m 2 / g, the graphite particles become a fine particle group, the contact resistance between the graphite particles increases, and the conductivity of the formed coating film deteriorates. Along with the decrease in discharge capacity and charge / discharge load characteristics, the charge / discharge efficiency accompanying the decomposition of the electrolytic solution decreases, and there is a tendency for aggregation to proceed to particles having a low bulk density, and it is preferable that the specific surface area be larger than this value. Absent.

【0011】さらに、この発明における塊状黒鉛粒子群
の静置法による見掛け密度は0.45g/cm以上、
タップ法による見掛け密度が0.70g/cm以上で
ある。静置法による見掛け密度およびタップ法による見
掛け密度の測定方法は、顔料試験方法(JIS K 51
01)に記載されている。この発明における静置法およ
びタップ法による見掛け密度は、ホソカワミクロン製パ
ウダーテスターPT−R型を用いて測定したものであ
る。静置法による見掛け密度の測定方法は、篩網を通し
て受器に試料を入れて、容積が100cmになったと
きの質量を測定することにより評価する。これに対し
て、タップ法による見掛け密度の測定方法は、試料を受
器に投入しながら受器を180回タッピングした後の容
積100cm 当たりの質量を測定することにより評価
する。
Further, the aggregated graphite particle group in the present invention
Apparent density by static method of 0.45g / cmThreethat's all,
Apparent density by tap method is 0.70g / cmThreeAbove
is there. Apparent density by static method and appearance by tap method
The coating density is measured by the pigment test method (JIS K 51
01). The static method and the
The apparent density by tapping and tapping is the Hosokawa Micron
It was measured using the Udertester PT-R type.
It The apparent density is measured by the static method by passing it through a sieve mesh.
Put the sample in the receiver and the volume is 100 cmThreeBecame
It is evaluated by measuring the mass of mushrooms. On the other hand
The apparent density measurement method using the tap method
After tapping the receiver 180 times while putting it in the container,
Product 100cm ThreeEvaluation by measuring the mass per hit
To do.

【0012】静置法による見掛け密度の0.45g/c
およびタップ法による見掛け密度の0.70g/c
の値は、この発明に適用される黒鉛粒子群の下限値
である。リチウムイオン電池の高エネルギー密度化の要
求に対しては、活物質の充填密度を高めること、言い換
えれば塗膜の高密度化が必須であり、そのためには、で
きるだけ厚い塗膜を形成することが必要である。発明者
らが検討した結果、塗膜を形成するためのスラリー固形
分が45質量%以上であれば良好な塗膜を形成できるこ
とを見出した。その固形分含量を達成するためには、静
置法による見掛け密度が0.45g/cm以上、タッ
プ法による見掛け密度が0.70g/cm 以上の値が
好ましいことが分かった。また、これらの見掛け密度未
満では、塗工時の膜厚の変動が大きくなり、十分な密着
強度を得るために必要な結着剤の配合量も多くなり、実
効容量の低下を引き起こす懸念がある。
Apparent density of 0.45 g / c by static method
mThreeAnd apparent density of 0.70 g / c by tap method
mThreeThe value of is the lower limit of the graphite particle group applied to the present invention.
Is. The key to increasing the energy density of lithium-ion batteries
In other words, to increase the packing density of the active material,
If so, it is essential to increase the density of the coating film.
It is necessary to form the coating as thick as possible. Inventor
As a result of a study by the authors, the slurry solid for forming the coating film
If the content is 45% by mass or more, a good coating film can be formed.
And found out. To achieve that solids content,
Apparent density of 0.45 g / cmThreeThat's all
Apparent density of 0.70 g / cm ThreeIs greater than or equal to
It turned out to be preferable. Also, these apparent densities
When it is full, the fluctuation of the film thickness during coating becomes large and sufficient adhesion is achieved.
The amount of binder required to obtain strength increases,
There is a concern that the effective capacity may decrease.

【0013】上記測定方法のとおり、タップ法による見
掛け密度は受器に振動を与える分、受器内の試料は充填
が進むため、静置法による見掛け密度と比べるとその値
は高くなる。この発明のさらに他の特徴は、タップ法に
よる見掛け密度は静置法による見掛け密度の1.3倍〜
2.0倍の範囲にあるという点である。すなわち、タッ
ピングにより受器内の黒鉛粒子群の充填が進まないも
の、および進みすぎるものは、この発明の範囲外とな
る。また、前記密度の比が1.3未満では、タッピング
による充填が進まない材料となり、実際の負極塗膜形成
工程では、塗膜のプレスによる密度制御が困難になる。
逆に、密度の比が2.0を超えるものは、タッピングに
よる充填が進みすぎる材料となり、乾燥条件等により塗
膜厚さが変動し易く、プレスによる塗膜密度上昇時にも
変動が生じ易く、さらにプレスによる残留応力が大きい
ために、銅箔界面から剥離し易くなる。
As in the above-mentioned measuring method, the apparent density by the tap method is higher than the apparent density by the static method because the sample in the receiver is filled because the vibration vibrates the receiver. Still another feature of the present invention is that the apparent density by the tap method is 1.3 times the apparent density by the static method.
It is in the range of 2.0 times. That is, the case where the graphite particle group in the receiver is not advanced due to tapping and the case where the graphite particle group is excessively advanced is outside the scope of the present invention. If the density ratio is less than 1.3, the material will not be filled by tapping, and it will be difficult to control the density by pressing the coating film in the actual negative electrode coating film forming step.
On the other hand, if the density ratio exceeds 2.0, the material will be filled too much by tapping, the coating thickness tends to fluctuate due to drying conditions, etc. Further, since the residual stress due to the press is large, it is easy to peel from the copper foil interface.

【0014】この発明の非水系二次電池の負極用黒鉛粒
子における第三の特徴は、塊状黒鉛粒子群のレーザー光
回折法によるD50径の値は同法による累積10%径の
値D10径の1.5倍〜2.5倍の範囲であり、同法によ
る累積90%径の値D90径はD50径の値の1.5倍
〜2.5倍の範囲にすることである。D50径の値がD
10径の値の1.5倍未満の場合には、形成した塗膜中
の粒子の充填性が悪く、得られる塗膜の電気抵抗値が高
くなり、充放電負荷特性が劣化すると共に密着性も低下
する。一方、D50径の値がD10径の値の2.5倍を
越える場合、粒子の充填性が過度に高まり電解液の浸透
性が悪くなり、また充放電サイクルにおいて初回から高
い容量を得ることができず、さらに最大容量に達するま
でのサイクル数が多くなる。また、D90径の値がD5
0径の値の1.5倍未満の場合も、前述の理由と同様
に、形成した塗膜中の粒子の充填性が悪く、得られる塗
膜の電気抵抗値が高くなり、充放電負荷特性が劣化する
と共に密着性も低下する。さらに、D90径の値がD5
0径の値の2.5倍を越える場合には、粗大粒子が多く
なり、平滑な塗膜を形成し難く、局部的なリチウムの析
出を起こし易くなると共に密着性の低下を引き起こす懸
念があるので好ましくない。
The third characteristic of the graphite particles for negative electrode of the non-aqueous secondary battery of the present invention is that the value of D50 diameter of the agglomerated graphite particle group by the laser light diffraction method is the value of cumulative 10% diameter by the same method, D10 diameter. It is in the range of 1.5 times to 2.5 times, and the value of cumulative 90% diameter D90 diameter by the same method is to be in the range of 1.5 times to 2.5 times the value of D50 diameter. The value of D50 diameter is D
If it is less than 1.5 times the value of 10 diameters, the filling property of the particles in the formed coating film is poor, the electric resistance value of the obtained coating film becomes high, and the charge / discharge load characteristics deteriorate and the adhesion Also decreases. On the other hand, when the value of D50 diameter exceeds 2.5 times the value of D10 diameter, the packing property of the particles is excessively increased, the permeability of the electrolytic solution is deteriorated, and a high capacity can be obtained from the first time in the charge / discharge cycle. This is not possible, and the number of cycles until reaching the maximum capacity increases. Also, the value of D90 diameter is D5
Even when the value is less than 1.5 times the value of 0 diameter, the filling property of the particles in the formed coating film is poor and the electric resistance value of the obtained coating film becomes high for the same reason as described above. Deteriorates and the adhesiveness also decreases. Furthermore, the value of D90 diameter is D5
If it exceeds 2.5 times the value of 0 diameter, the number of coarse particles increases, it is difficult to form a smooth coating film, local lithium is likely to be deposited, and the adhesion may be deteriorated. It is not preferable.

【0015】この発明の非水系二次電池の負極用黒鉛粒
子における第四の特徴は、塊状黒鉛粒子群のマクロポア
体積、メソポア体積およびミクロポア体積からなる全ポ
ア体積を0.035cm/g以下とし、全ポア体積に
占めるマクロポア体積を20%以上にすることである。
なおここで言うマクロポア、メソポアおよびミクロポ
アは、塊状黒鉛粒子群中に存在する細孔のことであり、
IUPAC(International Union of Pure and Applie
d Chemistry)の規格によれば、細孔の径が50nmを
越えるものをマクロポア、細孔の径が2nm〜50nm
の範囲のものをメソポア、2nm以下のものをマイクロ
ポアとして区別している。
The fourth characteristic of the graphite particles for negative electrode of the non-aqueous secondary battery of the present invention is that the total pore volume of macroscopic volume, mesopore volume and micropore volume of the aggregated graphite particle group is 0.035 cm 3 / g or less. That is, the macropore volume in the total pore volume is set to 20% or more.
The macropores, mesopores, and micropores referred to here are the pores present in the aggregated graphite particle group,
IUPAC (International Union of Pure and Applie
According to the standards of d Chemistry), macropores are those with a pore diameter of more than 50 nm, and pore diameters of 2 nm to 50 nm.
Those in the range of 2 are distinguished as mesopores and those of 2 nm or less are distinguished as micropores.

【0016】これらポア(細孔)の分布状態を求める解
析手法としては、BJH(Barrett-Joyner-Halenda)法、
CI(Cranston-Inkley)法、MP(Micropore)法やHK
(Horvath-Kawazoe)法などが知られているが、本件発明で
は、比表面積との相関、細孔範囲の拡張性からBJH法を
採用した。なお、全ポア体積と吸着等温線上のある相対
圧における吸着量の差は、半径がポア半径(rp)より大き
い部分の総和である。BJH法は、ポア形状を円柱状と仮
定して、ポア表面積の積算値がBET(Brunauer-Emmett
-Teller)比表面積に最も近い値となるように解析を行
う手法であり、以下の(式1)に従うものである。
As an analytical method for obtaining the distribution state of these pores (pores), the BJH (Barrett-Joyner-Halenda) method,
CI (Cranston-Inkley) method, MP (Micropore) method and HK
Although the (Horvath-Kawazoe) method and the like are known, in the present invention, the BJH method was adopted because of its correlation with the specific surface area and the expandability of the pore range. The difference between the total pore volume and the adsorption amount at a certain relative pressure on the adsorption isotherm is the sum of the portions where the radius is larger than the pore radius (r p ). In the BJH method, assuming that the pore shape is cylindrical, the integrated value of the pore surface area is BET (Brunauer-Emmett
-Teller) This is a method of performing an analysis so that the value is closest to the specific surface area, and follows the following (Equation 1).

【数1】 ここで、v12は相対圧をxからxに変化させたと
き(但し、x<x)の吸着量の増加分、rは求め
るポア半径の平均値、△tは多分子吸着層の厚みの変化
量、rはポア半径の平均値、V12はポア半径rから
の間のポア体積、Cxは変数(但し、0.75、0.
80、0.85、0.90から選択)、Sはポア表面積で
ある。なお、このBJH解析はASAPデーター処理ソ
フトウェアASAP−PCI((株)島津製作所製)に
よって行った。
[Equation 1] Here, v 12 is an increase in the adsorption amount when the relative pressure is changed from x 1 to x 2 (where x 1 <x 2 ), r K is the average value of the pore radius to be obtained, and Δt is a multi-molecule The amount of change in the thickness of the adsorption layer, r is the average value of the pore radius, V 12 is the pore volume between the pore radii r 1 and r 2 , and Cx is a variable (however, 0.75, 0.75).
80, 0.85, 0.90), S is the pore surface area. The BJH analysis was performed by ASAP data processing software ASAP-PCI (manufactured by Shimadzu Corporation).

【0017】全ポア体積が0.035g/cmを越え
ると、塊状黒鉛粒子群内部の空隙が増すことになる。こ
のことは、塊状黒鉛粒子群の真密度を低下させることと
なり、ひいては、結晶性および粒子強度が低下すること
がある。また、マクロポア体積は全ポア体積の20%以
上が好ましく、より好ましくは25%以上である。全ポ
ア体積中のマクロポア体積の比率が20%未満、換言す
ると中程度の細孔であるメソポアと小細孔であるマイク
ロポアの存在比率が多くなる場合には、結晶性の低下に
よるリチウムイオンの可逆性の低下を引き起こすことが
ある。
When the total pore volume exceeds 0.035 g / cm 3 , voids inside the massive graphite particle group increase. This lowers the true density of the aggregated graphite particle group, which may lower the crystallinity and particle strength. The macropore volume is preferably 20% or more, more preferably 25% or more of the total pore volume. When the ratio of the macropore volume to the total pore volume is less than 20%, in other words, when the abundance ratios of mesopores, which are medium pores, and micropores, which are small pores, increase, the lithium ions due to the decrease in crystallinity are formed. May cause reduced reversibility.

【0018】[0018]

【実施例】<実施例1〜6> (試料の調製)表1に示すポリウロニド類としてアルギ
ン酸プロピレングリコールエステル(PGA)およびア
ルギン酸ナトリウム(Arg−Na)、アルギン酸カリ
ウム(Arg−K)を用いた。これらを100重量部の
純水に溶解した。次いで、天然リン状および天然リン片
状の黒鉛から構成される塊状の黒鉛粒子を投入して撹拌
し、放置した。黒鉛粒子が沈降した後、上澄みを除去し
て黒鉛スラリーを乾燥、解砕してポリウロニドが表面に
吸着または被覆させた黒鉛試料を調製した。
Examples <Examples 1 to 6> (Preparation of Samples) As polyuronides shown in Table 1, propylene glycol alginate (PGA), sodium alginate (Arg-Na), and potassium alginate (Arg-K) were used. These were dissolved in 100 parts by weight of pure water. Next, massive graphite particles composed of natural phosphorus-like and natural scaly graphite were charged, stirred, and left to stand. After the graphite particles settled, the supernatant was removed and the graphite slurry was dried and crushed to prepare a graphite sample in which polyuronide was adsorbed or coated on the surface.

【0019】[0019]

【表1】 [Table 1]

【0020】この黒鉛試料97重量部に対して、1重量
部のカルボキシメチルセルロースと2重量部のSBRエ
マルジョンを結着剤とし、100重量部の純水を溶媒と
して用い、スラリーを調製した。 これらのスラリーを
集電体となる圧延銅箔の上に、ギャップ200μmのド
クターブレードを用いて塗布し、120℃で10分間乾
燥し、更にロールプレスを行い塗膜密度1.5g/cm
の負極塗膜とした。
With respect to 97 parts by weight of this graphite sample, 1 part by weight of carboxymethyl cellulose and 2 parts by weight of SBR emulsion were used as a binder, and 100 parts by weight of pure water was used as a solvent to prepare a slurry. These slurries were applied onto a rolled copper foil serving as a current collector using a doctor blade with a gap of 200 μm, dried at 120 ° C. for 10 minutes, and further roll pressed to give a coating film density of 1.5 g / cm.
This was No. 2 negative electrode coating film.

【0021】(密着性)負極塗膜上に幅18mmのセロ
ファンテープを貼って2kgの荷重で圧着した後、セロ
ファンテープを引き剥がすために必要な荷重をプッシュ
プルゲージで測定した。また、負極塗膜の剥離(破壊)
状態を観察した。 (電極特性)負極塗膜を銅箔と共にポンチで打ち抜いて
電極を作製した。対極として金属リチウムを用い、電解
液として1mol/l−LiBF/EC+GBL
(1:3)を用いたコイン形モデルセルを作製し、0.
5mA/cmの電流密度で0.01V(vs.Li/
Li)まで定電流でリチウムを負極内に吸蔵(充電)
させ充電容量を求めた。また、初回の放電容量は、0.
5mA/cmの定電流で1.1V(vs.Li/Li
)まで放電させて求めた。さらに、0.5mA/cm
で充電を行った後、6mA/cmの電流密度で1.
1V(vs.Li/Li )まで放電させたときの放電
容量を求め、0.5mA/cmで放電したときの容量
との比率を求め、放電負荷特性を評価した。
(Adhesion) A cellulosic film having a width of 18 mm was formed on the negative electrode coating film.
After attaching the fan tape and crimping with a load of 2 kg,
Push the load required to pull off the fan tape
It was measured with a pull gauge. Also, peeling (destruction) of the negative electrode coating film
The condition was observed. (Electrode characteristics) Punch out the negative electrode coating film together with the copper foil with a punch.
An electrode was prepared. Electrolysis using metallic lithium as the counter electrode
1 mol / l-LiBF as liquidFour/ EC + GBL
A coin-shaped model cell using (1: 3) was prepared, and
5 mA / cmTwoCurrent density of 0.01 V (vs. Li /
Li+) Occludes (charges) lithium in the negative electrode at a constant current up to
Then, the charge capacity was obtained. The initial discharge capacity is 0.
5 mA / cmTwoConstant current of 1.1 V (vs. Li / Li
+) Was discharged. Furthermore, 0.5 mA / cm
Two6mA / cm after charging atTwoWith current density of 1.
1V (vs. Li / Li +) Discharge when discharged up to
Calculate the capacity, 0.5mA / cmTwoCapacity when discharged by
And the discharge load characteristics were evaluated.

【0022】各黒鉛試料における、上記の各種評価の結
果を表2に示す。
Table 2 shows the results of the above-mentioned various evaluations for each graphite sample.

【表2】 [Table 2]

【0023】見掛け密度が静置法で0.45g/cm
以上、タップ法で0.70g/cm以上であれば、固
形分45質量%以上のスラリーを調製することができ
る。その結果得られる乾燥塗膜の厚さは120μm〜1
30μmであり、塗膜密度は0.8g/cm程度であ
った。なお、得られた塗膜をプレスした際の塗膜密度の
変化は、静置法およびタップ法による見掛け密度の比率
が大きいものほど変化し易いことが分かる。なお、表中
に記した本発明の範囲となる実施例の各試料では、得ら
れる塗膜強度および塗膜密度、また電極特性はいずれも
良好であった。
The apparent density is 0.45 g / cm 3 by the static method.
As described above, when the tap method is 0.70 g / cm 3 or more, a slurry having a solid content of 45% by mass or more can be prepared. The resulting dry coating has a thickness of 120 μm to 1
It was 30 μm and the coating film density was about 0.8 g / cm 3 . It is understood that the change in the coating film density when the obtained coating film is pressed is more likely to change as the ratio of the apparent density by the static method and the tap method is larger. In addition, in each of the samples of Examples described in the table, which are within the scope of the present invention, the obtained coating film strength and coating film density and the electrode characteristics were all good.

【0024】<比較例1〜4>表3に記した材料を比較
試料として実施例と同様の測定方法で評価を行った。な
お、評価の結果を表4に示す。
<Comparative Examples 1 to 4> The materials shown in Table 3 were used as comparative samples and evaluated in the same manner as in the examples. The evaluation results are shown in Table 4.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】試料番号11を用いた比較例1において
は、使用したポリウロニドの水溶液粘度および吸着量は
本発明の範囲を満たし、GBL添加系電解液中でも電解
液の分解による充放電効率の低下は少ない。また、比表
面積および粒子径D50は本発明の請求項2、粒度比率
D50/D10並びにD90/D50は本発明の請求項
3、そしてマクロポア比率は請求項4の範囲を満たす
が、見掛け密度に関して請求項2の範囲外となるリン状
の天然黒鉛粒子を用いたものである。この場合、スラリ
ー固形分が低く、乾燥膜厚は110μmで塗膜密度も低
く、密着強度が低い。このために、放電負荷の値が低
い。
In Comparative Example 1 using Sample No. 11, the aqueous solution viscosity and adsorption amount of the polyuronide used satisfy the range of the present invention, and even in the GBL-added type electrolytic solution, the deterioration of the charge / discharge efficiency due to the decomposition of the electrolytic solution is small. . Further, the specific surface area and the particle diameter D50 satisfy the scope of claim 2 of the present invention, the particle size ratios D50 / D10 and D90 / D50 satisfy the scope of claim 3 of the present invention, and the macropore ratio satisfies the scope of claim 4, but claims regarding the apparent density. The phosphorous natural graphite particles falling outside the range of Item 2 are used. In this case, the solid content of the slurry is low, the dry film thickness is 110 μm, the coating film density is low, and the adhesion strength is low. For this reason, the value of the discharge load is low.

【0028】試料番号12を用いた比較例2は従来の負
極用材料のMCMBを用いたものである。ポリウロニド
を吸着させていないため、GBL添加系電解液において
GBLの分解が著しく、十分にリチウムイオンが負極内
にインターカレーションできず、放電容量も低く、放電
負荷も低下した。また、見掛け密度は静置法、タップ法
によるものとも高い値であり、スラリー固形分、密着強
度も高いものではあるが、プレスによる塗膜密度の制御
が不可能であった。
Comparative Example 2 using Sample No. 12 uses MCMB which is a conventional negative electrode material. Since polyuronide was not adsorbed, the GBL was remarkably decomposed in the GBL-added electrolyte solution, lithium ions could not be sufficiently intercalated in the negative electrode, the discharge capacity was low, and the discharge load was low. Further, the apparent density was high in both the static method and the tap method, and although the slurry solid content and the adhesion strength were also high, the control of the coating film density by pressing was impossible.

【0029】試料番号13を用いた比較例3は、使用し
たポリウロニドの水溶液粘度が範囲外であり緻密な吸着
膜が形成できていないものと考えられ、GBLの分解に
よる充放電効率の低下が見られる。また、塊状の天然黒
鉛粒子を使用したがD90径の値はD50径の値の2.
5倍を越えたものである。見掛け密度およびスラリー固
形分は高いが、塗膜の密着強度が低く、また放電負荷特
性も低い。
In Comparative Example 3 using Sample No. 13, it is considered that the aqueous solution viscosity of the polyuronide used was out of the range and a dense adsorption film could not be formed, and the charge / discharge efficiency was lowered due to the decomposition of GBL. To be Also, lumpy natural graphite particles were used, but the value of D90 diameter is 2.
It is more than 5 times. Although the apparent density and the solid content of the slurry are high, the adhesion strength of the coating film is low and the discharge load characteristic is also low.

【0030】また、試料番号14を用いた比較例4は、
比表面積および見掛け密度は請求項2の範囲外である
が、ポリウロニドは多く吸着しているので、GBLの分
解は抑制しているがリチウムイオンの移動を妨げてお
り、放電容量と放電負荷の低下が見られる。
Comparative Example 4 using Sample No. 14 is
The specific surface area and the apparent density are out of the scope of claim 2, but since many polyuronides are adsorbed, the decomposition of GBL is suppressed but the movement of lithium ions is hindered, and the discharge capacity and the discharge load are reduced. Can be seen.

【0031】[0031]

【発明の効果】本発明の負極用黒鉛粒子を用いることに
より、GBLを含有する非水電解液二次電池負極に結晶
性の高い黒鉛材料を使用することができ、高容量で安全
性の高い電池負極を得ることができる。さらに、電池の
塗膜強度および塗膜密度が良好となり、かつ各種電極特
性に優れた非水系二次電池の負極を得ることができる。
EFFECT OF THE INVENTION By using the graphite particles for a negative electrode of the present invention, a highly crystalline graphite material can be used for a negative electrode of a non-aqueous electrolyte secondary battery containing GBL, which has a high capacity and high safety. A battery negative electrode can be obtained. Furthermore, the coating film strength and coating film density of the battery are improved, and the negative electrode of the non-aqueous secondary battery excellent in various electrode characteristics can be obtained.

フロントページの続き Fターム(参考) 4G046 EA04 EA06 EC02 EC05 5H029 AJ02 AK11 AL07 AM03 AM07 CJ22 DJ09 DJ16 DJ17 EJ12 HJ01 HJ05 HJ07 HJ08 HJ10 HJ14 5H050 AA02 BA16 CA17 CB08 DA13 EA23 GA22 HA01 HA05 HA07 HA08 HA10 HA14 Continued front page    F-term (reference) 4G046 EA04 EA06 EC02 EC05                 5H029 AJ02 AK11 AL07 AM03 AM07                       CJ22 DJ09 DJ16 DJ17 EJ12                       HJ01 HJ05 HJ07 HJ08 HJ10                       HJ14                 5H050 AA02 BA16 CA17 CB08 DA13                       EA23 GA22 HA01 HA05 HA07                       HA08 HA10 HA14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 γ−ブチロラクトンを含有する電解液を
用いた非水系二次電池の負極用黒鉛粒子において、 該
負極用黒鉛粒子はリン状またはリン片状の天然黒鉛粒子
から構成される塊状黒鉛粒子群であり、 該塊状黒鉛粒
子群の表面にはポリウロニドを基本構造とした水溶性高
分子が該塊状黒鉛粒子群に対して0.3〜3.0質量%の
範囲で吸着または被覆されており、 さらに該水溶性高分子は20℃における1質量%水溶液
の粘度が2〜60mPa・sであることを特徴とする非
水系二次電池の負極用黒鉛粒子。
1. A graphite particle for a negative electrode of a non-aqueous secondary battery using an electrolytic solution containing γ-butyrolactone, wherein the graphite particle for a negative electrode is a bulk graphite composed of phosphorus-like or flake-like natural graphite particles. Particle group, and a water-soluble polymer having a basic structure of polyuronide is adsorbed or coated on the surface of the group of graphite particles in the range of 0.3 to 3.0 mass% with respect to the group of graphite particles. Further, the water-soluble polymer has a viscosity of a 1% by mass aqueous solution at 20 ° C. of 2 to 60 mPa · s, the graphite particles for a negative electrode of a non-aqueous secondary battery.
【請求項2】 前記の塊状黒鉛粒子群は、レーザー光回
折法による累積50%径(D50径)が10〜25μ
m、窒素ガス吸着法による比表面積が2.5〜6m
g、静置法による見掛け密度が0.45g/cm
上、タップ法による見掛け密度が0.70g/cm
上であり、 さらに、タップ法による見掛け密度が静置法による見掛
け密度の1.3倍〜2.0倍の範囲である請求項1に記載
の負極用黒鉛粒子。
2. The aggregated graphite particle group has a cumulative 50% diameter (D50 diameter) of 10 to 25 μm measured by a laser light diffraction method.
m, specific surface area by nitrogen gas adsorption method is 2.5-6 m 2 /
g, the apparent density by the stationary method is 0.45 g / cm 3 or more, an apparent density by tapping method 0.70 g / cm 3 or more, further, the apparent density by tapping method for apparent density according stationary method 1. The graphite particles for a negative electrode according to claim 1, which are in a range of 3 times to 2.0 times.
【請求項3】 前記塊状黒鉛粒子群のレーザー光回折法
による累積50%径(D50径)の値が同法による累積
10%径(D10径)の値の1.5倍〜2.5倍の範囲で
あり、同法による累積90%径(D90径)の値が累積
50%径(D50径)の値の1.5倍〜2.5倍の範囲で
ある請求項1または2に記載の非水系二次電池の負極用
黒鉛粒子。
3. The cumulative 50% diameter (D50 diameter) of the agglomerated graphite particle group measured by a laser light diffraction method is 1.5 to 2.5 times the cumulative 10% diameter (D10 diameter) of the same method. The range of 90% cumulative diameter (D90 diameter) according to the same method is in the range of 1.5 times to 2.5 times the value of cumulative 50% diameter (D50 diameter). Graphite particles for negative electrode of non-aqueous secondary battery of.
【請求項4】 前記塊状黒鉛粒子群のマクロポア体積、
メソポア体積およびミクロポア体積からなる全ポア体積
が0.035cm/g以下であり、全ポア体積に占め
るマクロポア体積の比率が20%以上である請求項1な
いし3のいずれかに記載の非水系二次電池の負極用黒鉛
粒子。
4. The macropore volume of the massive graphite particle group,
4. The nonaqueous system according to claim 1, wherein the total pore volume consisting of the mesopore volume and the micropore volume is 0.035 cm 3 / g or less, and the ratio of the macropore volume to the total pore volume is 20% or more. Graphite particles for negative electrode of secondary battery.
JP2001313808A 2001-10-11 2001-10-11 Graphite particles for negative electrode of nonaqueous secondary battery Pending JP2003123754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001313808A JP2003123754A (en) 2001-10-11 2001-10-11 Graphite particles for negative electrode of nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001313808A JP2003123754A (en) 2001-10-11 2001-10-11 Graphite particles for negative electrode of nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2003123754A true JP2003123754A (en) 2003-04-25

Family

ID=19132220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001313808A Pending JP2003123754A (en) 2001-10-11 2001-10-11 Graphite particles for negative electrode of nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2003123754A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005267938A (en) * 2004-03-17 2005-09-29 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2008150270A (en) * 2006-12-15 2008-07-03 Nippon Carbon Co Ltd Carbonaceous porous powder for active material for negative electrode of secondary cell and method for manufacturing the powder
JP2011082101A (en) * 2009-10-09 2011-04-21 Furukawa Battery Co Ltd:The Method of manufacturing lithium ion secondary battery
JP2014170724A (en) * 2013-02-05 2014-09-18 Jfe Chemical Corp Material for lithium ion secondary battery negative electrode, manufacturing method thereof, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP2015153664A (en) * 2014-02-17 2015-08-24 三菱化学株式会社 Carbon material, negative electrode for nonaqueous secondary battery, nonaqueous secondary battery and method for producing carbon material
JP2017188451A (en) * 2016-03-31 2017-10-12 三洋化成工業株式会社 Coated negative electrode active material for lithium ion battery
KR20210068497A (en) * 2018-10-10 2021-06-09 후난 진예 하이-테크 컴퍼니 리미티드 Lithium ion battery negative active material, lithium ion battery negative electrode, lithium ion battery, battery pack and battery power vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005267938A (en) * 2004-03-17 2005-09-29 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2008150270A (en) * 2006-12-15 2008-07-03 Nippon Carbon Co Ltd Carbonaceous porous powder for active material for negative electrode of secondary cell and method for manufacturing the powder
JP2011082101A (en) * 2009-10-09 2011-04-21 Furukawa Battery Co Ltd:The Method of manufacturing lithium ion secondary battery
JP2014170724A (en) * 2013-02-05 2014-09-18 Jfe Chemical Corp Material for lithium ion secondary battery negative electrode, manufacturing method thereof, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP2015153664A (en) * 2014-02-17 2015-08-24 三菱化学株式会社 Carbon material, negative electrode for nonaqueous secondary battery, nonaqueous secondary battery and method for producing carbon material
JP2017188451A (en) * 2016-03-31 2017-10-12 三洋化成工業株式会社 Coated negative electrode active material for lithium ion battery
KR20210068497A (en) * 2018-10-10 2021-06-09 후난 진예 하이-테크 컴퍼니 리미티드 Lithium ion battery negative active material, lithium ion battery negative electrode, lithium ion battery, battery pack and battery power vehicle
JP2022502827A (en) * 2018-10-10 2022-01-11 フーナン ジンイェ ハイ−テック カンパニー リミテッドHunan Jinye High−Tech Co., Ltd. Lithium Ion Battery Negative Active Material, Lithium Ion Battery Negative, Lithium Ion Battery, Battery Pack, and Battery Powered Vehicle
JP7128961B2 (en) 2018-10-10 2022-08-31 フーナン ジンイェ ハイ-テック カンパニー リミテッド Lithium-ion battery negative electrode active material, lithium-ion battery negative electrode, lithium-ion battery, battery pack, and battery-powered vehicle
KR102620780B1 (en) * 2018-10-10 2024-01-05 후난 진예 하이-테크 컴퍼니 리미티드 Lithium-ion battery cathode active material, lithium-ion battery cathode, lithium-ion battery, battery pack and battery power vehicle

Similar Documents

Publication Publication Date Title
CN110148708B (en) Negative plate and lithium ion battery
TWI533495B (en) Negative-electrode active material for lithium secondary cell
TWI499119B (en) Graphite based negative-electrode active material for lithium secondary cell
EP2665073B1 (en) Electrode active material, electrode and electrical storage device
US8501047B2 (en) Mixed carbon material and negative electrode for a nonaqueous secondary battery
Rauhala et al. Lithium-ion capacitors using carbide-derived carbon as the positive electrode–A comparison of cells with graphite and Li4Ti5O12 as the negative electrode
JP4748949B2 (en) Nonaqueous electrolyte secondary battery
JP6223466B2 (en) Lithium ion capacitor
KR20140099987A (en) Anode comprising spherical natural graphite and lithium secondary battery comprising the same
KR20150073107A (en) Anode active material and lithium secondary battery comprising the same
JP3841611B2 (en) Graphite particles for negative electrode of non-aqueous secondary battery
KR101602526B1 (en) Anode active material for lithium secondary battery and lithium secondary battery comprising the same
JP6543428B1 (en) Negative electrode active material for secondary battery and secondary battery
CA2790582C (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
EP4318647A1 (en) Negative electrode, electrochemical device comprising negative electrode, and electronic device
JP2003308841A (en) Slurry for forming negative electrode coating film of nonaqueous secondary battery
JP3849769B2 (en) Graphite particles for negative electrode of non-aqueous secondary battery
JP2011521404A (en) Cathode active material for secondary battery, electrode for secondary battery containing the same, secondary battery and method for producing the same
JP2011138680A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2003168433A (en) Graphite particle for negative electrode of nonaqueous secondary battery
JP2003123754A (en) Graphite particles for negative electrode of nonaqueous secondary battery
JP3908892B2 (en) Graphite material for negative electrode of non-aqueous secondary battery
Kwon et al. Preparation and characteristics of core-shell structure with nano si/graphite nanosheets hybrid layers coated on spherical natural graphite as anode material for lithium-ion batteries
KR100663178B1 (en) Anode active material for lithium secondary battery having high energy density
JP2007234348A (en) Nonaqueous secondary battery