JP2003121431A - Disinfection treatment method and device of wet-weather sewage in combined sewerage - Google Patents

Disinfection treatment method and device of wet-weather sewage in combined sewerage

Info

Publication number
JP2003121431A
JP2003121431A JP2001321804A JP2001321804A JP2003121431A JP 2003121431 A JP2003121431 A JP 2003121431A JP 2001321804 A JP2001321804 A JP 2001321804A JP 2001321804 A JP2001321804 A JP 2001321804A JP 2003121431 A JP2003121431 A JP 2003121431A
Authority
JP
Japan
Prior art keywords
sewage
turbidity
disinfectant
rainwater
disinfecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001321804A
Other languages
Japanese (ja)
Other versions
JP3884638B2 (en
Inventor
Hiroshi Chokai
弘 鳥海
Hiroshi Takasu
弘 高須
Tadashi Nakawa
忠志 名川
Sumio Anzai
純雄 安斎
Sumio Komine
純夫 小峯
Junichi Inamura
准一 稲村
Kazuhiro Hasegawa
和広 長谷川
Hidekiyo Yoshida
秀潔 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Tokyo Metropolitan Government
Original Assignee
Ebara Corp
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Tokyo Metropolitan Government filed Critical Ebara Corp
Priority to JP2001321804A priority Critical patent/JP3884638B2/en
Publication of JP2003121431A publication Critical patent/JP2003121431A/en
Application granted granted Critical
Publication of JP3884638B2 publication Critical patent/JP3884638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and device capable of preventing excessive injection or under- injection by determining simply the optimum disinfectant injection rate, and performing properly disinfection treatment, when performing disinfection treatment of wet-weather sewage. SOLUTION: The optimum disinfectant injection rate is determined by using the number of coliform groups and the turbidity in the wet-weather sewage as indexes. This device is equipped with a disinfecting chamber for disinfecting the wet-weather sewage by the disinfectant, and a sewage discharge means for discharging the sewage disinfected in the disinfecting chamber into a discharge water area. The device is characterized by being also equipped with a turbidity measuring means for measuring the turbidity of the sewage introduced into the disinfecting chamber, a rainfall measuring means for measuring the amount of rainfall, and a control means for controlling an addition rate of the disinfectant to be added to the sewage by using as indexes the turbidity of the sewage measured by the turbidity measuring means and the number of the coliform groups estimated by using as indexes the amount of rainfall measured by the rainfall measuring means in each elapsed time range from the time when inflow of the wet-weather sewage of more than a prescribed quantity into a sewage expulsion facility is started and the turbidity of the sewage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、合流式下水道にお
いて、雨水を含む下水(以下、雨天時下水という)を消
毒剤により消毒処理する方法及び装置に関し、更に詳細
には、雨天時下水の大腸菌群数と濁度とを指標として消
毒剤注入率を求め、雨天時下水を消毒剤により消毒処理
する方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for disinfecting sewage containing rainwater (hereinafter referred to as "rainwater sewage") with a disinfectant in a combined sewer system. The present invention relates to a method and a device for obtaining a disinfectant injection rate by using the number of groups and turbidity as indexes and disinfecting sewage in rainy weather with a disinfectant.

【0002】[0002]

【従来の技術】合流式下水道は、一般に、図1に示すよ
うに、一般家庭、事務所、公共施設などの汚水排出源1
から排出される汚水や雨水源2から排出される雨水を集
めて流す下水道管渠3、集めた下水を処理場まで送るた
めの中継基地となるポンプ所5、送られてきた下水を浄
化して河川や海などの放流水域に放流する下水処理場6
などにより構成されている。
2. Description of the Related Art In general, a combined sewer system, as shown in FIG. 1, is a wastewater discharge source 1 for general households, offices, public facilities, etc.
Sewer pipe 3 that collects and discharges the sewage discharged from the plant and rainwater discharged from the rainwater source 2, a pump station 5 that serves as a relay station for sending the collected sewage to the treatment plant, and purifies the sent sewage Sewage treatment plant 6 that discharges to rivers and sea
It is composed of.

【0003】前記合流式下水道では、通常、下水処理場
6に送られた下水は、砂などを除去するための沈砂池処
理、活性汚泥処理、次いで消毒処理などを経て、放流水
域に放流される。
In the combined sewer system, the sewage sent to the sewage treatment plant 6 is normally discharged to a discharge water area after being subjected to a sand basin treatment for removing sand and the like, an activated sludge treatment, and then a disinfection treatment. .

【0004】しかし、集中豪雨などで浄化処理能力を超
える大量の雨天時下水が下水処理場6に流れ込んできた
場合に、その超過分は一次処理(沈砂池処理)の状態で
放流される(7a)。また、雨水吐き室4、ポンプ所5
においても、雨天時下水の流量が計画流量を超えたとき
に超過分は未処理で河川や海域に放流される(7b及び
7c)。このように処理予定量を上回る雨天時下水を含
み、一次処理又は未処理で放流水域に放流されるものを
雨天時越流水という。
However, when a large amount of rainwater sewage that exceeds the purification treatment capacity flows into the sewage treatment plant 6 due to heavy rainfall, the excess is discharged in the state of primary treatment (settling basin treatment) (7a ). Also, rainwater spouting room 4 and pump station 5
Also, when the flow rate of sewage in case of rain exceeds the planned flow rate, the excess is untreated and discharged into rivers and sea areas (7b and 7c). In this way, sewage in rainy weather that exceeds the planned treatment amount and that is discharged to the discharge water area after primary treatment or untreatment is called rainwater overflow water.

【0005】これらの雨天時越流水の放流は、浸水被害
などを未然に防ぐために行われている。一方、雨天時越
流水は、雨水によって希釈されているとはいえ汚水を含
むので、未処理の汚水が河川や海域に放流されることに
なり、水質汚濁学的見地からは大腸菌群を指標とした消
毒処理が必要である。
Discharge of these overflow water during rainy days is carried out in order to prevent flood damage and the like. On the other hand, rainwater overflow contains sewage even though it is diluted by rainwater, so untreated sewage will be discharged to rivers and sea areas, and coliforms will be used as an indicator from the viewpoint of water pollution. Disinfection treatment is required.

【0006】このような浄化処理能力を超える場合の消
毒処理方法として、累積降雨量と降雨強度とを指標とし
て消毒剤の注入量を決定し、ポンプ所放流水を消毒する
消毒処理方法が提案されている。
[0006] As a disinfecting method for cases where the purification capacity is exceeded, a disinfecting method is proposed in which the amount of disinfectant to be injected is determined using the cumulative rainfall amount and rainfall intensity as indicators and the water discharged from the pump is disinfected. ing.

【0007】しかしこの方法には、雨天時下水の水質、
例えば消毒剤を消費する有機物及び/又は無機物が消毒
効果に及ぼす影響を消毒剤の注入量に反映できないとい
う問題があった。
However, this method has the following problems:
For example, there is a problem in that the amount of the disinfectant injected cannot reflect the effect of the organic substance and / or the inorganic substance that consumes the disinfectant on the disinfectant effect.

【0008】下水処理場で処理された放流水とは異な
り、雨天時下水の水質は、降雨の状況により瞬時に大き
く変動するものである。すなわち、降雨初期など雨水の
含有比率が低く、汚水濃度が高く且つ還元性の有機物濃
度及び/又は無機物濃度が高い場合と、雨水による希釈
が進んで汚水濃度が低下し且つ還元性の有機物濃度及び
/又は無機物濃度が低下した場合では、酸化能力を有す
る消毒剤の必要量が異なる。このため消毒剤注入率の管
理が難しく、過剰注入や過小注入になりやすい、という
問題があった。すなわち、消毒剤過剰注入の場合には、
放流水中に活性な消毒剤成分が残存したまま放流水域に
放流されることになり、河川や海域の生物に悪影響を及
ぼすおそれが大きく、消毒剤の経済的損失も大きい。一
方、消毒剤過少注入の場合には、消毒剤量が不足し、十
分な消毒効果が得られない、という問題がある。
Unlike the effluent water treated at the sewage treatment plant, the quality of the sewage in the case of rain fluctuates greatly depending on the situation of rainfall. That is, when the content ratio of rainwater is low at the beginning of rainfall, the concentration of sewage is high and the concentration of reducible organic matter and / or the concentration of inorganic matter is high, and the concentration of sewage is reduced due to the progress of dilution with rainwater and the concentration of reducible organic matter and When the concentration of the inorganic substance is reduced, the required amount of the disinfectant having an oxidizing ability is different. Therefore, there is a problem that it is difficult to control the disinfectant injection rate, and over injection or under injection tends to occur. That is, in the case of over-injection of disinfectant,
Since the active disinfectant component remains in the discharged water and is discharged into the discharged water area, there is a great possibility that the organisms in the river and the sea will be adversely affected, and the economical loss of the disinfectant is large. On the other hand, when the disinfectant is injected too little, there is a problem that the amount of disinfectant is insufficient and a sufficient disinfecting effect cannot be obtained.

【0009】これまで、消毒剤の過剰注入や過小注入を
防ぎ、最適量を注入し効率的に消毒するためには、雨天
時下水の化学的酸素要求量(COD)、塩素必要量、ヨ
ウ素消費量、有機物濃度などを測定し、これらを還元性
の有機物濃度及び/又は無機物濃度の指標として、消毒
剤注入率を決定する必要があった。しかし、還元性の有
機物濃度及び/又は無機物濃度の指標となるCOD、塩
素必要量、ヨウ素必要量、有機物濃度の測定は煩雑であ
り、瞬時にモニタすることは難しい。したがって、降雨
の状況により瞬時に大きく変動する雨天時下水水質に対
応して、過剰注入や過小注入とならない最適な消毒剤注
入率を決定するために、還元性の有機物濃度及び/又は
無機物濃度の指標となるCODや塩素必要量、ヨウ素消
費量、有機物濃度などを測定する方法を用いることは実
用的ではなかった。例えば、下水処理場からの処理水の
消毒において、処理水の有機物濃度測定値を指標として
塩素注入率を演算し、消毒する消毒処理方法が提案され
ているが、降雨の状況により瞬時に大きく変動する雨天
時下水の消毒には適用することができなかった。
[0009] So far, in order to prevent over- or under-injection of disinfectant and to inject an optimum amount for efficient disinfection, chemical oxygen demand (COD), chlorine requirement, iodine consumption in sewage in rainy weather. It was necessary to determine the disinfectant injection rate by measuring the amount, the concentration of organic substances, etc., and using these as indicators of the concentration of reducing organic substances and / or the concentration of inorganic substances. However, measurement of COD, chlorine required amount, iodine required amount, and organic substance concentration, which are indicators of reducing organic substance concentration and / or inorganic substance concentration, is complicated and difficult to instantaneously monitor. Therefore, in order to determine the optimum disinfectant injection rate that does not result in over- or under-injection in response to rainwater sewage quality that fluctuates greatly depending on rainfall conditions, the concentration of reducing organic and / or inorganic substances should be adjusted. It was not practical to use a method of measuring COD, a required chlorine amount, an iodine consumption amount, an organic matter concentration, and the like, which are indexes. For example, in disinfecting treated water from a sewage treatment plant, a disinfection treatment method has been proposed in which the chlorine injection rate is calculated using the measured organic concentration of treated water as an index to disinfect it. It could not be applied to disinfect sewage in the rain.

【0010】[0010]

【本発明が解決しようとする課題】したがって、本発明
の目的は、降雨状況により変動する雨天時下水の消毒処
理において、過剰注入又は過小注入とならないような最
適な消毒剤注入率を簡易且つ瞬時に決定し、雨天時越流
水として放流水域に放流される雨天時下水の消毒処理を
効果的に行う方法及び装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to easily and instantaneously obtain an optimum disinfectant injection rate that does not result in excessive injection or under injection in the disinfection treatment of sewage in rainy weather that varies depending on the rainfall condition. The present invention is to provide a method and an apparatus for effectively disinfecting sewage in rainy weather that is discharged to the discharge water area as overflow water in rainy weather.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく、種々の条件での雨天時下水の水質を分析
した結果、雨天時下水の濁度と、還元性の有機物濃度及
び/又は無機物濃度の指標となるCODとの間には、高
い相関関係があることを知見した。更に、本発明者ら
は、還元性の有機物及び/又は無機物での消毒剤の消費
量が同じであっても、消毒対象である大腸菌群などが多
い場合と少ない場合とでは消毒剤の必要量が異なること
をも知見した。これらの知見に基づいて、下水の濁度と
大腸菌群数とを指標として最適な消毒剤注入率を求める
ことにより、前記目的を達成しうることを見出し、本発
明を完成するに至った。
Means for Solving the Problems In order to solve the above problems, the present inventors analyzed the water quality of rain sewage under various conditions, and as a result, the turbidity of rain sewage and the concentration of reducing organic matter It was found that there is a high correlation between COD and / or COD, which is an index of the concentration of inorganic substances. Furthermore, the present inventors have found that even if the amount of disinfectant consumed by reducing organic substances and / or inorganic substances is the same, the required amount of disinfectant depends on whether the disinfecting target Escherichia coli group is large or small. It was also found that Based on these findings, the inventors have found that the above-mentioned object can be achieved by obtaining an optimum disinfectant injection rate by using the turbidity of sewage and the number of coliform bacteria as indexes, and have completed the present invention.

【0012】すなわち、本発明は、合流式下水道の雨天
時下水を消毒剤により消毒するに際し、雨天時下水の大
腸菌群数と濁度とを指標として消毒剤注入率を決めるこ
とを特徴とする消毒処理方法を提供するものである。
That is, the present invention is characterized in that when disinfecting rainwater sewage in a combined sewer with a disinfectant, the disinfectant injection rate is determined using the number of coliform bacteria and turbidity of the rainwater sewer as indexes. It provides a processing method.

【0013】前記雨天時下水とは、汚水排出源からの汚
水と雨水とが合流して得られる混合下水を意味する。前
記消毒剤としては、通常、放流下水の消毒に用いること
ができるものであれば特に制限なく用いることができる
が、本発明においては、酸化能力を有する消毒剤が特に
好ましく用いられる。
The rainy sewage means a mixed sewage obtained by merging sewage from a sewage discharge source with rainwater. As the disinfectant, any disinfectant that can be used for disinfecting discharged sewage can be used without particular limitation. In the present invention, a disinfectant having an oxidizing ability is particularly preferably used.

【0014】酸化能力を有する消毒剤としては、次亜塩
素酸ソーダ、塩素、さらし粉などの塩素系消毒剤や、B
CDMH(1−ブロモ−3−クロロ−5,5−ジメチル
ヒダントイン)等の臭素系消毒剤などが挙げられるが、
これらに制限されない。
As the disinfectant having an oxidizing ability, chlorine-based disinfectants such as sodium hypochlorite, chlorine and bleaching powder, and B
Examples include bromine-based disinfectants such as CDMH (1-bromo-3-chloro-5,5-dimethylhydantoin).
It is not limited to these.

【0015】雨天時下水の大腸菌群数と濁度とは、雨天
時下水を適宜サンプリングして得られた下水サンプルに
ついて測定するが、特に、ポンプ所流入下水、下水処理
場流入下水又は雨水吐き室流入下水をサンプリングして
得られた下水サンプルについて大腸菌群数と濁度とを測
定することが好ましい。なお、ポンプ所流入下水、下水
処理場流入下水及び雨水吐き室流入下水については、後
述する。
The number of coliform bacteria and turbidity of sewage in rainy weather is measured on a sewage sample obtained by appropriately sampling sewage in rainy weather. Especially, the sewage flowing into a pump station, the sewage flowing into a sewage treatment plant, or the rainwater discharge chamber is measured. It is preferable to measure the coliform count and turbidity of a sewage sample obtained by sampling the influent sewage. The sewage that flows into the pump station, the sewage that flows into the sewage treatment plant, and the sewage that flows into the rainwater discharge chamber will be described later.

【0016】雨天時下水中の大腸菌群数は、酵素抗原抗
体反応や蛍光酵素発色反応などを応用した大腸菌群数測
定器等(例えば、明電舎(株)製のUPD−7700E
など)の、当該技術において公知の手法を用いて測定す
ることができる。
The number of coliform bacteria in the sewage during rainy weather can be determined by measuring the number of coliform bacteria using an enzyme-antigen antibody reaction or a fluorescent enzyme color reaction (for example, UPD-7700E manufactured by Meidensha Co., Ltd.).
Etc.) can be measured using a method known in the art.

【0017】濁度は、排水などの濁り具合を評価するた
めの数値であり、一般に市販されている濁度計(例えば
電気化学計器(株)製のSST−5など)を用いて、極
めて容易に測定することができる。濁度は、瞬時に測定
可能であるばかりか、非常に簡易な方法で測定できる。
このため、濁度を測定することにより前記消毒剤の消費
量を瞬時に推定することが可能となる。
The turbidity is a numerical value for evaluating the degree of turbidity of drainage, and it is extremely easy to use a commercially available turbidimeter (eg SST-5 manufactured by Denki Kagaku Keiki Co., Ltd.). Can be measured. Turbidity can be measured not only instantaneously, but also by a very simple method.
Therefore, it is possible to instantly estimate the consumption amount of the disinfectant by measuring the turbidity.

【0018】雨天時下水への消毒剤の最適注入率は、例
えば、以下の方法によって求めることができる。すなわ
ち、種々の下水を試水として用いる机上消毒試験によっ
て、試水の大腸菌群数の範囲ごとに、(ア)試水の濁度
と、(イ)処理目標とする消毒効果(例えば大腸菌群数
を水質汚濁防止法の放流規制値である3000CFU/mL以
下にする)を、目標とする残留ハロゲン濃度で達成する
ために必要な消毒剤の注入率との関係を求めておき、こ
の関係を用いて、実際の施設において測定された雨天時
下水の大腸菌群数及び濁度から求められる消毒剤の最適
注入率を求め、求められた注入率で雨天時下水に消毒剤
を投入することによって、その条件下での最適の消毒を
行うことができる。
The optimum injection rate of the disinfectant into the sewage in rainy weather can be determined, for example, by the following method. That is, by a desk disinfection test using various sewage as test water, (a) sample water turbidity and (b) treatment target disinfection effect (for example Is set to 3000 CFU / mL or less, which is the emission control value of the Water Pollution Control Law), and the relationship with the injection rate of the disinfectant necessary to achieve the target residual halogen concentration is obtained, and this relationship is used. The optimum injection rate of the disinfectant is calculated from the number of coliform bacteria and turbidity measured in the actual rainwater sewage, and the disinfectant is added to the sewer in the rain at the calculated injection rate. Optimal disinfection under conditions can be performed.

【0019】なお、雨天時下水中の大腸菌群数は上述し
たような測定法によって測定することもできるが、この
代わりに、下水排除施設に所定量以上の雨天時下水が流
入開始してから流入が終了するまでの時間を複数の時間
帯に分割し、それぞれの時間帯ごとに降雨量と濁度とを
測定し、得られた降雨量と濁度とを指標として下水中の
大腸菌群数を推定することもできる。すなわち、ポンプ
所、下水処理場、雨水吐き室などの下水排除施設に所定
流量以上の雨天時下水が流入開始してからの経過時間範
囲毎に、降雨量と濁度とを測定し、測定された降雨量と
濁度とを必須の指標として推定的に算出することができ
る。これにより、大腸菌群数を実際に測定する場合に比
して簡易且つ瞬時に推定できる。
The number of coliform bacteria in the rainwater sewage can be measured by the above-mentioned measuring method. Alternatively, however, a predetermined amount or more of the rainwater sewage can be introduced into the sewage removal facility after the inflow. The time until the end is divided into multiple time zones, the rainfall and turbidity are measured for each time zone, and the number of coliform bacteria in the sewage is calculated using the obtained rainfall and turbidity as indicators. It can also be estimated. That is, the rainfall and turbidity are measured and measured for each elapsed time range after the start of inflow of rainwater sewage at a predetermined flow rate or more into sewage removal facilities such as pump stations, sewage treatment plants, and rainwater discharge chambers. The rainfall and turbidity can be presumedly calculated as essential indexes. As a result, the number of coliform bacteria can be estimated more easily and instantaneously than when actually measured.

【0020】更に具体的に説明すると、ポンプ所、下水
処理場、雨水吐き室等の施設に、所定流量以上の雨天時
下水が流入開始してから、経過時間0〜X分、X+1〜
Y分(X,Yは、いずれも整数を示し、Y>Xである)
の各範囲において、濁度と降雨量とを測定する。次いで
得られたデータを独立変数として、下記式(1)に代入
することにより大腸菌群数を推定できる。
More specifically, elapsed time 0 to X minutes, X + 1 to X + 1 from the start of inflow of rainwater sewage to a facility such as a pump station, a sewage treatment plant, a rainwater discharge chamber, etc.
Y minutes (X and Y are integers, and Y> X)
In each range, measure turbidity and rainfall. Then, the number of coliforms can be estimated by substituting the obtained data into the following formula (1) as an independent variable.

【0021】[0021]

【式1】C=a×R+b×T+c…(1) 〔式中、Cは大腸菌群数(CFU/mL)を示し、Rは、所定時
間あたりの降雨量(mm)を示し、Tは、濁度(度)を示
す。また、a,b,cは、それぞれ定数である。〕前記
式(1)において、定数a,b,cは、それぞれ所定流
量以上の雨天時下水が流入を開始してからの経過時間や
ポンプ所、雨水吐き室、処理場などの対象となる雨天時
下水排除施設、流域環境により異なる。定数a,b,c
は、例えば、対象となる雨天時下水排除施設において、
種々の気象条件下での雨天時下水について、降雨量、雨
天時下水の大腸菌群数及び濁度を測定し、測定された数
値を変数として重回帰分析することによって求めること
ができる。なお、この手法において、流入開始から流入
終了までの時間を複数の時間帯に分割しないで、降雨量
と濁度を測定しただけでは、重回帰分析の決定係数が低
く、信頼性のある結果が得られない。
[Formula 1] C = a × R + b × T + c (1) [wherein C represents the number of coliform bacteria (CFU / mL), R represents the amount of rainfall (mm) per predetermined time, and T represents Indicates the turbidity (degree). In addition, a, b, and c are constants. In the above formula (1), the constants a, b, and c are the time elapsed since the start of inflow of rainwater sewage having a predetermined flow rate or more and the target rainwater such as a pump station, a rainwater discharge chamber, and a treatment plant. Occasionally, it depends on the sewage removal facility and basin environment. Constants a, b, c
For example, in the target sewage removal facility in rainy weather,
It can be obtained by measuring the rainfall amount, the number of coliform bacteria and the turbidity of rainwater sewage in rainy weather sewage under various meteorological conditions, and performing multiple regression analysis using the measured values as variables. It should be noted that in this method, the coefficient of determination of multiple regression analysis is low and reliable results are obtained only by measuring rainfall and turbidity without dividing the time from the start of inflow to the end of inflow into multiple time zones. I can't get it.

【0022】また、降雨量及び濁度の他に、電気伝導
率、SS(懸濁物質)、SSの粒度、pH、アンモニア
性窒素濃度などの水質項目を変数に加えて大腸菌群数を
推定しても良い。
In addition to rainfall and turbidity, the number of coliform bacteria is estimated by adding water quality items such as electrical conductivity, SS (suspended substance), SS particle size, pH, and ammoniacal nitrogen concentration to the variables. May be.

【0023】このようにして大腸菌群数が推定できる論
拠については、詳細は不明であるが、下水排除施設に流
入する大腸菌群数が、以下のような挙動をとることに関
係していると考えられる。
The rationale for estimating the number of coliform bacteria in this way is unknown, but it is considered that the number of coliform bacteria flowing into the sewage removal facility is related to the following behavior. To be

【0024】すなわち、下水道管渠内に堆積している大
腸菌群を含有する汚濁物は、下水流量が所定流量に達す
ると流動しやすくなり、雨天時下水排除施設に本格的に
流入し始める。大腸菌群は、下水道管渠内に堆積してい
る汚濁物中に多量に含有されているので、下水流量が所
定流量に達して、下水道管渠内に堆積している汚濁物が
本格的に流動を開始した直後は、雨天時下水排除施設へ
の大腸菌群の流入量が多い。しかし、時間の経過と共
に、下水道管渠内の堆積物量は減少し、同じ下水流量で
あっても、雨水の含有割合が高くなり汚濁物の含有割合
が減少するので、大腸菌群の流入量は減少すると考えら
れる。また、下水の濁度は、汚濁物含有割合が高いほど
高く、汚濁物含有割合が低くなるほど低下する。すなわ
ち、下水の濁度が高いほど、汚濁物含有割合が高く、大
腸菌群数も高いと考えられる。一方、降雨量は、路面や
家屋の屋根などに堆積している大腸菌群を含有する土壌
の流入量及び雨天時下水の汚水と雨水との含有比率すな
わち汚水の希釈割合に影響を与えると考えられる。
That is, the pollutant containing coliform bacteria that has accumulated in the sewer pipe becomes easy to flow when the sewage flow rate reaches a predetermined flow rate, and begins to flow into the sewage drainage facility in rainy weather in earnest. Since a large amount of coliform bacteria are contained in the pollutants accumulated in the sewer pipe, the sewage flow rate reaches a predetermined flow rate, and the pollutants accumulated in the sewer pipe flow in earnest. Immediately after the start of, the inflow of coliform bacteria to the sewer system for rainy days was high. However, with the passage of time, the amount of sediment in the sewer pipe decreases, and even with the same sewage flow rate, the content ratio of rainwater increases and the content ratio of pollutants decreases, so the inflow of coliform bacteria decreases. It is thought that. Further, the turbidity of sewage increases as the pollutant content rate increases, and decreases as the pollutant content rate decreases. That is, it is considered that the higher the turbidity of sewage, the higher the pollutant content and the higher the number of coliforms. On the other hand, the amount of rainfall is considered to affect the inflow of soil containing coliform bacteria that accumulates on the road surface and roofs of houses, and the ratio of sewage and rainwater sewage in rainy weather, that is, the dilution ratio of sewage. .

【0025】なお、本発明において、雨天時下水の大腸
菌群数を降雨量と濁度とから推定する場合には、下水排
除施設に所定量以上の雨天時下水が流入開始してから流
入が終了するまでの時間を複数の時間帯に分割し、それ
ぞれの時間帯ごとに降雨量を測定するが、ここでいう所
定量とは、例えば、雨天時下水排除施設で雨天時越流水
の放流が始まるときの雨天時下水の流入量としても良い
し、或いはその他任意に設定された流入量を設定しても
良い。
In the present invention, when the number of coliform bacteria in rainwater is estimated from rainfall and turbidity, a predetermined amount or more of rainwater sewage begins to flow into the sewage removal facility before inflow ends. The time until it is divided into multiple time zones and the amount of rainfall is measured for each time zone, but the predetermined amount here is, for example, the release of overflow water during rainy weather at a sewer removal facility during rainy weather. At this time, the inflow amount of sewage during rainy weather may be set, or another set inflow amount may be set.

【0026】また、本発明は、上記に説明した本発明に
係る技術思想に基づいて雨天時下水を消毒処理する装置
も提供する。即ち、本発明の他の態様は、雨天時下水を
消毒剤により消毒する消毒槽と;該消毒槽で消毒した下
水を放流水域に放流する下水放流手段と;を備え、更
に、該消毒槽に導入される下水の濁度及び大腸菌群数を
測定する測定手段と;該測定手段によって測定された下
水の濁度及び大腸菌群数を指標として下水に加える消毒
剤の添加率を制御する制御手段と;を備えることを特徴
とする雨天時下水の消毒処理装置に関する。更に本発明
の更なる態様は、雨天時下水を消毒剤により消毒する消
毒槽と;該消毒槽で消毒した下水を放流水域に放流する
下水放流手段と;を備え、更に、該消毒槽に導入される
下水の濁度を測定する濁度測定手段と;降雨量を測定す
る降雨量測定手段と;該濁度測定手段によって測定され
た下水の濁度と、該降雨量測定手段によって測定された
下水排除施設に所定量以上の雨天時下水が流入開始して
からの経過時間範囲毎における降雨量と下水の濁度とを
指標として推定された大腸菌群数とを指標として下水に
加える消毒剤の添加率を制御する制御手段と;を備える
ことを特徴とする雨天時下水の消毒処理装置に関する。
The present invention also provides a device for disinfecting sewage in rainy weather based on the above-described technical idea of the present invention. That is, another aspect of the present invention is provided with a disinfecting tank for disinfecting sewage in rainy weather with a disinfectant; and a sewage discharging means for discharging the sewage disinfected in the disinfecting tank into a discharge water area, and further, the disinfecting tank Measuring means for measuring the turbidity of the introduced sewage and the number of coliform bacteria; control means for controlling the addition rate of the disinfectant added to the sewage using the turbidity of the sewage and the number of coliform bacteria measured by the measuring means as indicators And a disinfecting apparatus for sewage in rainy weather. Furthermore, a further aspect of the present invention comprises a disinfecting tank for disinfecting sewage in rainy weather with a disinfectant; and a sewage discharging means for discharging the sewage disinfected in the disinfecting tank to a discharge water area, and further being introduced into the disinfecting tank. Turbidity measuring means for measuring the turbidity of sewage; rainfall measuring means for measuring rainfall; turbidity of sewage measured by the turbidity measuring means, and turbidity measured by the rainfall measuring means The disinfectant added to the sewage using the number of coliform bacteria estimated using the rainfall amount and the turbidity of the sewage in each elapsed time range after the start of inflow of more than a predetermined amount of rainwater sewage into the sewage removal facility as an index The present invention relates to a disinfecting apparatus for sewage in rainy weather, comprising: control means for controlling an addition rate;

【0027】前記消毒槽は、沈砂地としても作用するよ
うになされていることが好ましい。
It is preferable that the disinfecting tank also functions as a sandy ground.

【0028】[0028]

【発明の実施の形態】以下、図面を参照しながら、本発
明の雨天時下水消毒処理装置の好ましい一実施形態につ
いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A preferred embodiment of the rainwater sewage disinfection treatment apparatus of the present invention will be described below with reference to the drawings.

【0029】本発明の消毒処理方法を実施するための装
置の一具体例を図2に示す。図2に示す装置10は、雨天
時下水19を消毒剤により消毒する消毒槽11と、該消毒槽
11で消毒した下水を放流水域17に放流する下水放流手段
13及び通常の活性汚泥処理や消毒処理などの処理工程に
移送する移送手段14と、該消毒槽11に導入される下水の
濁度を測定する濁度測定手段18と、を具備する。
A specific example of an apparatus for carrying out the disinfection treatment method of the present invention is shown in FIG. The apparatus 10 shown in FIG. 2 includes a disinfection tank 11 for disinfecting sewage 19 during rainy weather with a disinfectant, and the disinfection tank.
Sewage discharge means for discharging the sewage disinfected in 11 to the discharge water area 17.
13 and a transfer means 14 for transferring to an ordinary treatment process such as activated sludge treatment and disinfection treatment, and a turbidity measuring means 18 for measuring the turbidity of the sewage introduced into the disinfection tank 11.

【0030】図2に示す処理装置は、大腸菌群数の測定
装置を設けずに、濁度計で測定された雨天時下水の濁度
と、降雨量計(図示せず)によって測定された降雨量と
から大腸菌群数を推定するものであるが、雨天時下水中
の大腸菌群数を直接測定する大腸菌群数測定装置を設置
することも可能である。
The processing apparatus shown in FIG. 2 does not have a measuring device for the number of coliform bacteria, but the turbidity of rainwater measured by a turbidimeter and the rainfall measured by a rainfall meter (not shown). Although the number of coliform bacteria is estimated from the amount, it is also possible to install a device for measuring the number of coliform bacteria that directly measures the number of coliform bacteria in the sewage in rainy weather.

【0031】図2に示す処理装置10は、図1における下
水道管渠3、雨水吐き室4、ポンプ所5及び下水処理場
6のいずれかに設けることができる。具体的には、本実
施形態において、雨水排除施設がポンプ所の場合を例に
とると、消毒槽としては、1次処理のために下水が導入
される沈砂池11を用いることができ、沈砂池11には消毒
剤を貯留する消毒剤貯留槽15が設けられている。また、
下水放流手段としては、沈砂池11にポンプ井12を介して
連結された雨水ポンプ13が設けられており、移送手段14
としてはポンプ井12を介して連結された槽排水ポンプ14
が設けられている。そして濁度測定手段18としては、沈
砂池11に雨天時下水を供給する下水管渠に濁度計18が設
けられている。
The treatment apparatus 10 shown in FIG. 2 can be provided in any of the sewer pipe 3, rainwater discharge chamber 4, pump station 5 and sewage treatment plant 6 in FIG. Specifically, in the present embodiment, taking the case where the rainwater removal facility is a pumping station as an example, a sand basin 11 into which sewage is introduced for primary treatment can be used as a disinfection tank. The pond 11 is provided with a disinfectant storage tank 15 for storing the disinfectant. Also,
As a sewage discharge means, a rainwater pump 13 connected to a sand basin 11 via a pump well 12 is provided, and a transfer means 14
Tank drain pump 14 connected via pump well 12
Is provided. As the turbidity measuring means 18, a turbidity meter 18 is provided in a sewer pipe that supplies sewage to the sand basin 11 in case of rain.

【0032】次に、図2に示す装置をポンプ所に設置し
た場合を例にとり、本発明の雨天時下水の消毒処理方法
について具体的に説明する。本発明の雨天時下水の消毒
処理方法は、合流式下水道の雨天時下水を消毒剤により
消毒するに際し、雨天時下水のサンプルの大腸菌群数と
濁度とを指標として消毒剤注入率を決めることを特徴と
する。
Next, the method of disinfecting sewage in rainy weather of the present invention will be specifically described by taking the case where the apparatus shown in FIG. 2 is installed at a pump station as an example. The method of disinfecting rainwater sewage of the present invention, when disinfecting the rainwater sewage of the combined sewer with a disinfectant, determine the disinfectant injection rate using the number of coliform bacteria and turbidity of the sample of rainwater sewage as indicators. Is characterized by.

【0033】本発明の消毒処理方法を図2の装置を用い
て実施するには、先ず、上記に説明した方法によって、
予め雨天時下水の濁度及び大腸菌群数と消毒剤最適注入
率との関係を求めておくと共に、消毒処理を行う下水排
除施設において、降雨量及び雨天時下水の濁度と大腸菌
群数との関係を求めておく。
In order to carry out the disinfection treatment method of the present invention by using the apparatus shown in FIG. 2, first, the method described above is used.
The relationship between the turbidity of sewage in rainy weather and the number of coliform bacteria and the optimal disinfectant injection rate is obtained in advance. Seeking a relationship.

【0034】雨天時下水の消毒処理にあたっては、1次
処理を施すべく沈砂池11に雨天時下水を供給する際に、
下水の濁度を濁度計18により測定する。また、これとは
別に降雨量を外部の降雨計(図示せず)により測定す
る。そして、これらの測定値を予め机上で作成しておい
た回帰式に代入して消毒剤注入率を決定し、消毒剤貯留
槽15から消毒剤注入点16において所定量の消毒剤を沈砂
池11中の下水に混入する。
When disinfecting sewage in rainy weather, when supplying sewage in rainy weather to the sand basin 11 for primary treatment,
The turbidity of sewage is measured by a turbidimeter 18. Separately, the rainfall is measured by an external rain gauge (not shown). Then, these measured values are substituted into a regression formula prepared on a desk in advance to determine the disinfectant injection rate, and a predetermined amount of disinfectant is applied from the disinfectant storage tank 15 to the disinfectant injection point 16 in the sand basin 11 Mix in the sewage inside.

【0035】そして、消毒剤と雨天時下水とを撹拌して
十分に接触させることにより所定時間消毒処理を行った
後、二次処理可能な量の下水は槽排水ポンプ14などの移
送手段を通じて下水処理場に移送し、下水処理場の許容
量を超える場合にはポンプ井12を切り替えて雨水ポンプ
13などの下水放流手段により放流水域17に放流する。
After the disinfectant and the sewage in rainy weather are agitated and brought into sufficient contact with each other to perform the sterilization treatment for a predetermined time, the sewage which can be secondarily treated is transferred to the sewage drainage pump 14 or other transfer means. If it is transferred to the treatment plant and exceeds the allowable amount of the sewage treatment plant, the pump well 12 is switched and the rainwater pump
It is discharged to the discharge water area 17 by sewage discharge means such as 13.

【0036】このように実施される本発明の合流式下水
道雨天時下水の消毒処理方法によれば、消毒剤を過剰に
注入したり、過少に注入することなく、最適な消毒剤注
入率で十分に消毒することが可能である。
According to the method for disinfecting combined sewer sewage in the case of rain, which is carried out in this way, the optimum disinfectant injection rate is sufficient without injecting the disinfectant excessively or excessively. It is possible to disinfect it.

【0037】[0037]

【実施例】以下本発明を実施例及び比較例により更に具
体的に説明するが本発明はこれらに限定されるものでは
ない。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0038】試験例1:雨天時下水の濁度及び大腸菌群
数と、消毒剤注入率との関係 雨天時下水を試水として、消毒剤としてBCDMH(1-
ブロモ-3-クロロ-5,5-ジメチルヒダントイン)を用い、
消毒剤注入率を変えて、雨天時下水の濁度及び大腸菌群
数と、消毒後の大腸菌群数及び残留ハロゲン濃度との関
係を机上で試験した。
Test Example 1: Relationship between the turbidity of sewage in rainy weather and the number of coliform bacteria, and the disinfectant injection rate Using sewage in rainy weather as a test water, BCDMH (1-
Bromo-3-chloro-5,5-dimethylhydantoin),
The relationship between the turbidity of sewage in rainy weather and the number of coliform bacteria, the number of coliform bacteria after disinfection, and the residual halogen concentration was tested by changing the disinfectant injection rate.

【0039】この試験は、消毒後に残留ハロゲンを検出
させることなく、大腸菌群数を水質汚濁防止法の放流基
準である3×103(CFU/mL)以下に処理することを消毒
目標とし、処理目標を達成するのに必要な消毒剤注入率
を雨天時下水の濁度及び大腸菌群数の範囲毎に明らかに
するために実施したものである。
In this test, the disinfection target was to treat the number of coliform bacteria to 3 × 10 3 (CFU / mL) or less, which is the discharge standard of the Water Pollution Control Act, without detecting residual halogen after disinfection. This was carried out to clarify the disinfectant injection rate required to achieve the target for each range of turbidity and coliform count of rainwater sewage.

【0040】具体的には、各試験条件ごとに、ガラスビ
ーカーに試水500mLをとり、大腸菌群数と濁度を測定
した後に、攪拌羽根にて周速度0.5m/秒で攪拌しなが
ら、表1に示す所定量のBCDMHを添加した。添加
後、攪拌を継続しながら、1分経過後採水し、大腸菌群
数と残留ハロゲン濃度とを測定した。なお、試水の濁度
は散乱光測定法により、大腸菌群数はデソキシコール酸
塩培地法により、残留ハロゲン濃度はオルトトリジン法
により測定した。残留ハロゲン濃度は、残留する消毒剤
の活性成分量の指標となる。このように試験を行い、雨
天時下水の濁度及び大腸菌群数の範囲、消毒剤注入率、
消毒後の大腸菌群数及び消毒後の残留ハロゲン濃度を求
めた。その結果を表1に示す。
Specifically, 500 mL of sample water was placed in a glass beaker for each test condition, the number of coliforms and turbidity were measured, and then the mixture was stirred with a stirring blade at a peripheral speed of 0.5 m / sec. A predetermined amount of BCDMH shown in Table 1 was added. After the addition, water was collected after 1 minute while stirring was continued, and the number of coliform bacteria and the residual halogen concentration were measured. The turbidity of the sample water was measured by the scattered light measurement method, the number of coliform bacteria was measured by the desoxycholate medium method, and the residual halogen concentration was measured by the orthotolidine method. The residual halogen concentration is an indicator of the amount of residual active ingredient of the disinfectant. The test was conducted in this way, and the range of turbidity of sewage in rainy weather and the number of coliform bacteria, the disinfectant injection rate,
The number of coliform bacteria after disinfection and the residual halogen concentration after disinfection were determined. The results are shown in Table 1.

【0041】[0041]

【表1】 [Table 1]

【0042】表1に示す結果から、雨天時下水の濁度、
大腸菌群数及び消毒剤注入率の関係について、一例を挙
げて説明する。雨天時下水の濁度Tが25<T≦50
(度)、試水の大腸菌群数Cが104<C≦105(CFU/mL)
のときの各消毒剤注入率における消毒効果を比較する
と、消毒剤注入率が3〜5mg/Lの場合(試験条件5)に
は、残留ハロゲンを検出させることなく、大腸菌群数を
3×103(CFU/mL)以下に消毒できたことがわかる。しか
し、消毒剤注入率が6〜8mg/Lの場合(試験条件17)
には、大腸菌群数は3.0×103(CFU/mL)以下に消毒
できるものの、残留ハロゲンが検出された(0.1〜
0.2mg/L as Cl)。また、消毒剤注入率が1〜2mg/L
の場合(試験条件29)には、残留ハロゲンは検出され
なかったが、大腸菌群数を3×103(CFU/mL)以下に消
毒できなかった。
From the results shown in Table 1, the turbidity of sewage in rainy weather,
The relationship between the number of coliform bacteria and the disinfectant injection rate will be described with an example. Turbidity T of sewage in rainy weather is 25 <T ≦ 50
(Degree), the coliform count C of the test water is 10 4 <C ≦ 10 5 (CFU / mL)
Comparing the disinfectant effect at each disinfectant injection rate at the time of, the disinfectant injection rate was 3 to 5 mg / L (test condition 5) and the number of coliform bacteria was 3 × 10 3 without detecting residual halogen. It can be seen that disinfection was performed at 3 (CFU / mL) or less. However, when the disinfectant injection rate is 6-8 mg / L (Test condition 17)
, The number of coliform bacteria could be disinfected to 3.0 × 10 3 (CFU / mL) or less, but residual halogen was detected (0.1 to 0.1).
0.2 mg / L as Cl). The disinfectant injection rate is 1-2 mg / L.
In the case of (Test condition 29), residual halogen was not detected, but disinfection could not be performed at a coliform count of 3 × 10 3 (CFU / mL) or less.

【0043】これらの結果から、雨天時下水の濁度T及
び大腸菌群数Cの範囲が、それぞれ、25<T≦50
(度)、104<C≦105(CFU/mL)の条件下においては、
残留ハロゲンを検出させることなく、大腸菌群数が3×1
03(CFU/mL)以下になるように消毒するための最適消毒剤
注入率は、3〜5mg/Lであると求められる。
From these results, the ranges of turbidity T of sewage in rainy weather and the number C of coliform bacteria were 25 <T ≦ 50, respectively.
(Degree) under the condition of 10 4 <C ≦ 10 5 (CFU / mL),
The number of coliform bacteria is 3 x 1 without detecting residual halogen.
The optimum disinfectant injection rate for disinfecting to be 0 3 (CFU / mL) or less is required to be 3 to 5 mg / L.

【0044】表1から、試験条件1〜12では、残留ハ
ロゲンを検出させることなく、大腸菌群数を目標値の3
×103(CFU/mL)以下に消毒でき、雨天時下水の濁度と
大腸菌群数ごとに、最適な消毒剤注入率の範囲を得た。
しかし、試験条件13〜24では、大腸菌群数を3×1
3(CFU/mL)以下に消毒できたが、残留ハロゲンが検出
され(過剰注入)、試験条件25〜36では、残留ハロ
ゲンは検出されなかったが、大腸菌群数を3×103(CF
U/mL)以下に消毒できなかった(過小注入)。
From Table 1, under the test conditions 1 to 12, the number of coliform bacteria was set to the target value of 3 without detecting residual halogen.
It was possible to disinfect to less than × 10 3 (CFU / mL), and the optimum range of the disinfectant injection rate was obtained depending on the turbidity of sewage in rainy weather and the number of coliform bacteria.
However, under the test conditions 13 to 24, the number of coliform bacteria was 3 × 1.
It was able to disinfect below 0 3 (CFU / mL), but residual halogen was detected (excess injection), and no residual halogen was detected under test conditions 25 to 36, but the coliform count was 3 × 10 3 (CF
It could not be disinfected below (U / mL) (under-injection).

【0045】これらの結果から、雨天時下水の濁度T及
び大腸菌群数Cの範囲毎に、残留ハロゲンを検出させる
ことなく、大腸菌群数を3×103(CFU/mL)以下とする
ための最適消毒剤注入率を表2にまとめた。
From these results, the number of coliform bacteria is set to 3 × 10 3 (CFU / mL) or less without detecting residual halogen for each range of turbidity T of sewage in rainy weather and number C of coliform bacteria. Table 2 summarizes the optimum disinfectant injection rates for

【0046】[0046]

【表2】 [Table 2]

【0047】試験例2:降雨量及び雨天時下水の濁度
と、大腸菌群数との関係 実際に稼動しているポンプ所において、種々の気象条件
下での雨天時下水について、流入下水の大腸菌群数、濁
度、及び降雨量を測定した。大腸菌群数及び濁度の測定
は、試験例1と同様に行い、降雨量の測定は、転倒ます
式によって計測した。雨天時下水の流入量が、放流する
ために設置されている雨水ポンプが稼動する流量(本実
施例においては80m3/min)に達し、雨水ポンプが可動
し始めてからの経過時間Pが、P<30(分)、30(分)
≦Pの各範囲において、流入下水の大腸菌群数を従属変
数とし、降雨量と、流入下水の濁度を独立変数として、
重回帰分析したところ、決定係数(R2)0.5以上の
相関で回帰式が得られた。その結果を表3及び表4に示
す。また、雨水ポンプが稼動し始めてからの経過時間P
が0(分)<Pにおいて、流入下水の大腸菌群数を従属
変数とし、降雨量と、流入下水の濁度を独立変数とし
て、重回帰分析したところ、決定係数(R2)は0.3
5以下であった。この結果を表5に示す。
Test Example 2: Relationship between rainfall and turbidity of sewage in rainy weather and the number of coliform bacteria In a pump station that is actually operating, the sewage in rainwater under various meteorological conditions was subjected to Escherichia coli The number of groups, turbidity, and rainfall were measured. The number of coliform bacteria and the turbidity were measured in the same manner as in Test Example 1, and the amount of rainfall was measured by the tipping type. The elapsed time P after the rainwater sewage inflow reaches the flow rate (80 m 3 / min in this embodiment) at which the rainwater pump installed to discharge the rainwater operates and the rainwater pump starts to move is P <30 (minutes), 30 (minutes)
In each range of ≦ P, the number of coliform bacteria inflowing sewage was set as a dependent variable, and the rainfall and the turbidity of inflowing sewage were set as independent variables.
When multiple regression analysis was performed, a regression equation was obtained with a correlation having a coefficient of determination (R 2 ) of 0.5 or more. The results are shown in Tables 3 and 4. Also, the elapsed time P since the rainwater pump started operating
When 0 (minutes) <P, the coefficient of determination (R 2 ) was 0.3 when a multiple regression analysis was performed using the number of coliform bacteria in the influent sewage as the dependent variable and the rainfall and the turbidity of the influent sewage as the independent variables.
It was 5 or less. The results are shown in Table 5.

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【表4】 [Table 4]

【0050】[0050]

【表5】 [Table 5]

【0051】実施例及び比較例 試験例2と同じポンプ所において、流入する雨天時下水
を以下の方法で消毒処理した。
Examples and Comparative Examples At the same pump station as in Test Example 2, the inflowing rainwater sewage was sterilized by the following method.

【0052】図2に示す装置を用い、消毒処理は、雨水
ポンプ13が稼動して、雨天時越流水が放流水域に放流さ
れる条件で行った。消毒剤としては、BCDMHを用い
た。雨天時下水サンプルの濁度は、ポンプ所に流入する
箇所で、濁度計18(電気化学計器(株)製のSST−
5)で測定して、実測値を得た。大腸菌群数は、雨水ポ
ンプ稼動開始からの経過時間PがP<30(分)の場合
は表3に示した回帰式から推定し、雨水ポンプ稼動開始
からの経過時間PがP≧30(分)の場合は表4に示し
た回帰式から推定した。
Using the apparatus shown in FIG. 2, the disinfection treatment was carried out under the condition that the rainwater pump 13 was operated and the overflow water in the rain was discharged into the discharge water area. BCDMH was used as the disinfectant. The turbidity of the rainwater sewage sample is measured by the turbidimeter 18 (SST-manufactured by Denki Kagaku Keiki Co., Ltd.)
The measurement value was obtained by measuring in 5). When the elapsed time P from the start of the rainwater pump operation is P <30 (minutes), the number of coliform bacteria is estimated from the regression equation shown in Table 3, and the elapsed time P from the start of the rainwater pump operation is P ≧ 30 (minutes). ) Was estimated from the regression equation shown in Table 4.

【0053】所定量の消毒剤を沈砂池11入り口の消毒剤
注入点16で注入した。消毒剤が注入された雨天時下水の
一部は、雨水ポンプ13により放流水域17に放流した。こ
の放流された消毒処理後の下水を採取し、消毒処理後の
下水サンプル中の大腸菌群数をデソキシコレート寒天培
地法によって測定した。また、消毒処理後の下水の残留
ハロゲン濃度をポーラログラフ法により測定した。な
お、消毒処理前の流入雨天時下水中の大腸菌群数につい
ても、上記と同様のデソキシコレート寒天培地法によっ
て測定し、実測値を得た。
A predetermined amount of disinfectant was injected at the disinfectant injection point 16 at the entrance of the sand basin 11. Part of the sewage in rainy weather in which the disinfectant was injected was discharged to the discharge water area 17 by the rainwater pump 13. The discharged sewage after the disinfection treatment was collected, and the number of coliform bacteria in the sewage sample after the disinfection treatment was measured by the desoxycholate agar medium method. Further, the residual halogen concentration of the sewage after the disinfection treatment was measured by the polarographic method. The number of coliform bacteria in the influent rainwater sewage before the disinfection treatment was also measured by the same desoxycholate agar medium method as above to obtain an actually measured value.

【0054】表6に雨水ポンプ稼動開始からの経過時間
PがP<30(分)の時の、降雨量、流入雨天時下水の
濁度、表3の回帰式から求めた流入雨天時下水サンプル
中の推定大腸菌群数、デソキシコレート寒天培地法によ
って求めた流入雨天時下水サンプル中の大腸菌群数の実
測値、流入雨天時下水の濁度T及び大腸菌群数Cから決
定した設定注入率(表2から求めた)、実際の注入率、
消毒後の大腸菌群数と残留ハロゲン濃度を示す。
Table 6 shows the rainfall amount, the turbidity of the sewage in the rainy weather, and the sewage sample in the rainy weather obtained from the regression equation in Table 3 when the elapsed time P from the start of the operation of the rainwater pump is P <30 (minutes). Estimated number of coliform bacteria in water, actual measured number of coliform bacteria in influent rainwater sewage sample determined by desoxycholate agar medium method, turbidity T of influent rainwater sewage and set infusion rate determined from number C of coliform bacteria (Table 2 Actual injection rate,
The number of coliform bacteria after disinfection and the residual halogen concentration are shown.

【0055】同様に、表7に雨水ポンプ稼動開始からの
経過時間PがP≧30(分)のときの、降雨量、流入雨
天時下水の濁度、表4の回帰式から求めた流入雨天時下
水サンプル中の推定大腸菌群数、デソキシコレート寒天
培地法によって求めた流入雨天時下水大腸菌群数、流入
雨天時下水の濁度T及び大腸菌群数Cから決定した設定
注入率(表2から求めた)、実際の注入率と、消毒後の
大腸菌群数と残留ハロゲン濃度を示す。
Similarly, Table 7 shows the amount of rainfall, the turbidity of sewage during inflowing rain, and the inflowing rainwater obtained from the regression equation in Table 4 when the elapsed time P from the start of operation of the rainwater pump is P ≧ 30 (minutes). Set injection rate determined from the estimated number of coliform bacteria in the sewage sample, the number of sewage coliforms in the inflowing rainy weather determined by the desoxycholate agar medium method, the turbidity T of the sewage in the inflowing rainy weather, and the number of coliforms C (determined from Table 2 ), The actual injection rate, the number of coliform bacteria after disinfection, and the residual halogen concentration are shown.

【0056】[0056]

【表6】 [Table 6]

【0057】[0057]

【表7】 [Table 7]

【0058】表6及び7に示す結果から、実施例1〜
3、5〜8では、設定注入率の範囲内で消毒剤を注入し
たところ、消毒後下水からは、残留ハロゲンが検出され
ず、大腸菌群数を3×103(CFU/mL)以下に消毒できた
ことがわかる。一方、比較例1〜4及び比較例6〜7で
は、実際の注入率が設定注入率より低く、消毒後下水の
大腸菌群数が3×103(CFU/mL)を越えており、充分に
消毒できなかったことがわかる。比較例5及び比較例8
〜10では、実際の注入率が設定注入率より高く、処理
後下水の大腸菌群数を3×103(CFU/mL)以下に消毒す
ることはできたものの、残留ハロゲンが検出されたこと
がわかる。
From the results shown in Tables 6 and 7, Examples 1 to 1
In Nos. 3 and 5-8, when disinfectant was injected within the set injection rate range, residual halogen was not detected in the sewage after disinfection, and the coliform bacteria were disinfected to 3 × 10 3 (CFU / mL) or less. You can see that it was done. On the other hand, in Comparative Examples 1 to 4 and Comparative Examples 6 to 7, the actual injection rate was lower than the set injection rate, and the coliform count of the sewage after sterilization exceeded 3 × 10 3 (CFU / mL). You can see that it could not be disinfected. Comparative Example 5 and Comparative Example 8
In 10 to 10, the actual injection rate was higher than the set injection rate, and although the number of coliform bacteria after treatment could be disinfected to 3 × 10 3 (CFU / mL) or less, residual halogen was detected. Recognize.

【0059】[0059]

【発明の効果】以上詳述したように、本発明の消毒処理
方法によれば、水質が瞬時に大きく変動する雨天時下水
の消毒処理において、雨天時下水中の汚水濃度が高く、
汚染指標細菌である大腸菌群数や酸化性消毒剤を消費す
る還元性の有機物濃度及び/又は無機物濃度が高い場合
でも、あるいは低い場合でも、雨天時下水中の大腸菌群
数及び濁度を指標として、最適な消毒剤注入率を求める
ことができ、消毒剤の過剰注入又は過少注入などを防止
できる。この結果、過剰に注入した場合に懸念される消
毒剤の活性成分が残留したまま河川や海域に放流される
ことに起因する生態系への悪影響や、過少注入による不
十分な消毒効果などの問題を起こすことなく、雨天時下
水を消毒処理することができ、しかも、消毒剤を過剰に
注入することがなくなるので経済的である。更には、本
発明の更なる態様においては、下水中の大腸菌群数を、
下水の濁度と、降雨量から推定することができ、より簡
便に最適の消毒剤注入率を求めることができる。
As described above in detail, according to the disinfecting method of the present invention, in the disinfecting process of rainy sewage in which the water quality fluctuates greatly instantaneously, the sewage concentration in rainy sewage is high,
Contamination index Even if the number of coliform bacteria that are bacteria and the concentration of reducing organic substances and / or inorganic substances that consume oxidative disinfectants are high or low, the number of coliform bacteria and turbidity in rainwater sewage are used as indicators. It is possible to obtain an optimum disinfectant injection rate and prevent excessive or insufficient disinfectant injection. As a result, problems such as adverse effects on the ecosystem caused by the active components of the disinfectant, which may be caused by excessive injection, remaining in rivers and seas, and insufficient disinfection effects due to insufficient injection It is economical because the sewage can be disinfected during rainy weather without causing the above phenomenon and the disinfectant is not excessively injected. Furthermore, in a further embodiment of the present invention, the coliform count in the sewage is
It can be estimated from the turbidity of the sewage and the amount of rainfall, and the optimum disinfectant injection rate can be obtained more easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の消毒処理方法を適用すること
のできる合流式下水道の構成の一例を示す概略図であ
る。
FIG. 1 is a schematic diagram showing an example of the configuration of a combined sewer system to which the disinfection treatment method of the present invention can be applied.

【図2】図2は、本発明の雨天時下水の消毒処理装置の
要部を概略的に示す模式図である。
FIG. 2 is a schematic diagram schematically showing a main part of a disinfecting apparatus for sewage in rainy weather of the present invention.

【符号の説明】[Explanation of symbols]

1:汚水排出源 2:雨水源 3:下水道管渠 4:雨水吐き室 5:ポンプ所 6:下水処理場 7:放流水域 10:雨天時下水消毒処理装置 11:消毒槽(沈砂池) 12:ポンプ井 13:雨水ポンプ 14:槽排水ポンプ 15:消毒剤貯留槽 16:消毒剤注入点 17:放流水域 18:濁度計 19:雨天時下水 1: Sewage source 2: Rainwater source 3: Sewer pipe 4: Rainwater spouting room 5: Pump station 6: Sewage treatment plant 7: Discharged water area 10: Sewage disinfection device in rainy weather 11: Disinfection tank (sand basin) 12: Pump well 13: Rainwater pump 14: Tank drainage pump 15: Disinfectant storage tank 16: Disinfectant injection point 17: Discharged water area 18: Turbidimeter 19: Sewage in rainy weather

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 C02F 1/50 531P 532 532C 532D 532H 550 550C 550L (72)発明者 高須 弘 東京都新宿区西新宿2丁目8番1号 東京 都下水道局内 (72)発明者 名川 忠志 東京都新宿区西新宿2丁目8番1号 東京 都下水道局内 (72)発明者 安斎 純雄 東京都新宿区西新宿2丁目8番1号 東京 都下水道局内 (72)発明者 小峯 純夫 東京都新宿区西新宿2丁目8番1号 東京 都下水道局内 (72)発明者 稲村 准一 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 長谷川 和広 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 吉田 秀潔 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 1/50 C02F 1/50 531P 532 532C 532D 532H 550 550C 550L (72) Inventor Hiroshi Takasu Shinjuku-ku, Tokyo Nishi-Shinjuku 2-8-1, Tokyo Metropolitan Sewer Bureau (72) Inventor Tadashi Nagawa 2-8-1, Nishi-Shinjuku, Shinjuku-ku, Tokyo Tokyo Metropolitan Sewer Bureau (72) Inventor Juno Ansai 2 Shinjuku-ku, Tokyo Shinjuku-ku Inc. 8-1 Tokyo Metropolitan Sewerage Bureau (72) Inventor Sumio Komine 2-8-1 Nishishinjuku, Shinjuku-ku, Tokyo Intra-Tokyo Metropolitan Sewer Bureau (72) Inventor Junichi Inamura 11-1 Haneda-Asahi-cho, Ota-ku, Tokyo No. 1 within EBARA CORPORATION (72) Inventor Kazuhiro Hasegawa 11-1 Haneda-Asahicho, Ota-ku, Tokyo Inside EBARA CORPORATION (72) Inventor Hideyoshi Yoshida 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Inside EBARA CORPORATION

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 合流式下水道の雨天時下水を消毒剤によ
り消毒するに際し、雨天時下水の大腸菌群数と濁度とを
指標として消毒剤注入率を決めることを特徴とする消毒
処理方法。
1. A method of disinfecting, wherein when disinfecting rainwater sewage in a combined sewer with a disinfectant, the disinfectant injection rate is determined using the number of coliform bacteria and turbidity of the rainwater sewage as indexes.
【請求項2】 前記雨天時下水の大腸菌群数と濁度は、
ポンプ所流入下水、下水処理場流入下水又は雨水吐き室
流入下水をサンプリングして得られた雨天時下水につい
て求められたものである請求項1記載の消毒処理方法。
2. The number of coliforms and turbidity of the rainwater-derived sewage are:
The disinfection treatment method according to claim 1, which is obtained for sewage in rainy weather obtained by sampling sewage flowing into a pump station, sewage flowing into a sewage treatment plant, or sewage flowing into a rainwater discharge chamber.
【請求項3】 前記大腸菌群数は、下水排除施設に所定
量以上の雨天時下水が流入開始してから流入が終了する
までの時間を複数の時間帯に分割し、それぞれの時間帯
ごとに降雨量と濁度とを測定し、得られた該降雨量と該
濁度とを指標として推定されることを特徴とする請求項
1又は2記載の消毒処理方法。
3. The number of coliform bacteria is divided into a plurality of time zones from the start of inflow of rainwater sewage to a sewage removal facility to the end of inflow into a plurality of time zones. The disinfection treatment method according to claim 1 or 2, wherein the rainfall amount and the turbidity are measured, and the obtained rainfall amount and the turbidity are estimated as indexes.
【請求項4】 雨天時下水を消毒剤により消毒する消毒
槽と;該消毒槽で消毒した下水を放流水域に放流する下
水放流手段と;を備え、更に、該消毒槽に導入される下
水の濁度及び大腸菌群数を測定する測定手段と;該測定
手段によって測定された下水の濁度及び大腸菌群数を指
標として下水に加える消毒剤の添加率を制御する制御手
段と;を備えることを特徴とする雨天時下水の消毒処理
装置。
4. A disinfecting tank for disinfecting sewage in rainy weather with a disinfectant; and a sewage discharging means for discharging the sewage disinfected in the disinfecting tank into a discharge water area, and further, the sewage introduced into the disinfecting tank. Measuring means for measuring turbidity and the number of coliform bacteria; and control means for controlling the addition rate of the disinfectant added to the sewage using the turbidity of the sewage and the number of coliform bacteria measured by the measuring means as indicators. A characteristic disinfection device for sewage in rainy weather.
【請求項5】 雨天時下水を消毒剤により消毒する消毒
槽と;該消毒槽で消毒した下水を放流水域に放流する下
水放流手段と;を備え、更に、該消毒槽に導入される下
水の濁度を測定する濁度測定手段と;降雨量を測定する
降雨量測定手段と;該濁度測定手段によって測定された
下水の濁度と、該降雨量測定手段によって測定された下
水排除施設に所定量以上の雨天時下水が流入開始してか
らの経過時間範囲毎における降雨量と下水の濁度とを指
標として推定された大腸菌群数とを指標として下水に加
える消毒剤の添加率を制御する制御手段と;を備えるこ
とを特徴とする雨天時下水の消毒処理装置。
5. A disinfectant tank for disinfecting sewage in rainy weather with a disinfectant; and a sewage discharge means for discharging the sewage disinfected by the disinfectant tank to a discharge water area, and further, the sewage introduced into the disinfectant tank. Turbidity measuring means for measuring turbidity; rainfall measuring means for measuring rainfall; turbidity of sewage measured by the turbidity measuring means, and sewage removal facility measured by the rainfall measuring means Controls the rate of addition of disinfectant added to sewage using the number of coliform bacteria estimated using the amount of rainfall and the turbidity of the sewage as an index in each elapsed time range after the start of inflow of rainwater sewage above a certain amount Disinfection processing apparatus for sewage in rainy weather, comprising:
【請求項6】 前記消毒槽は、沈砂地としても作用する
ようになされていることを特徴とする請求項4又は5記
載の雨天時下水の消毒処理装置。
6. The disinfecting apparatus for sewage in rainy weather according to claim 4 or 5, wherein the disinfecting tank is adapted to act also as a sandy ground.
JP2001321804A 2001-10-19 2001-10-19 Method and apparatus for disinfecting sewage in rainy weather in combined sewers Expired - Lifetime JP3884638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001321804A JP3884638B2 (en) 2001-10-19 2001-10-19 Method and apparatus for disinfecting sewage in rainy weather in combined sewers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001321804A JP3884638B2 (en) 2001-10-19 2001-10-19 Method and apparatus for disinfecting sewage in rainy weather in combined sewers

Publications (2)

Publication Number Publication Date
JP2003121431A true JP2003121431A (en) 2003-04-23
JP3884638B2 JP3884638B2 (en) 2007-02-21

Family

ID=19138960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001321804A Expired - Lifetime JP3884638B2 (en) 2001-10-19 2001-10-19 Method and apparatus for disinfecting sewage in rainy weather in combined sewers

Country Status (1)

Country Link
JP (1) JP3884638B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054373A1 (en) * 2004-11-19 2006-05-26 Ebara Corporation Sewage treatment plant and method
JP2006167579A (en) * 2004-12-15 2006-06-29 Toshiba Corp Disinfection system for combined sewage
KR101118030B1 (en) * 2011-05-20 2012-02-27 (주) 휴마스 Spring water monitoring system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054373A1 (en) * 2004-11-19 2006-05-26 Ebara Corporation Sewage treatment plant and method
JP2006167579A (en) * 2004-12-15 2006-06-29 Toshiba Corp Disinfection system for combined sewage
KR101118030B1 (en) * 2011-05-20 2012-02-27 (주) 휴마스 Spring water monitoring system

Also Published As

Publication number Publication date
JP3884638B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
US6423234B1 (en) Air and water purification using continuous breakpoint halogenation
US6083386A (en) Method of treating animal waste
EP1008559A1 (en) Method of treating animal waste
US20050189277A1 (en) Denitrification system for nitrified wastewater or nitrified water
AU2009275991A1 (en) Process and installation for the treatment of waste waters with a view to combating the endocrine disrupting effect and/or the toxic or genotoxic effect thereof
Gervin et al. Removal of nutrients from combined sewer overflows and lake water in a vertical-flow constructed wetland system
Raveendran et al. Manganese removal in drinking water systems
JP2003121431A (en) Disinfection treatment method and device of wet-weather sewage in combined sewerage
CA2018051A1 (en) Wastewater disinfection with a combination of biocides
JP4029719B2 (en) Waste water disinfection method and apparatus
JP3321876B2 (en) Ozone treatment apparatus, ozone treatment method, and water purification treatment method
KR100659252B1 (en) Method and apparatus for disinfecting drainage
JP3857071B2 (en) Wastewater disinfection method
JP2000167563A (en) Method and apparatus for disinfecting waste water
JP4643365B2 (en) Sewage disinfection system
JP4628132B2 (en) Method and apparatus for disinfecting waste water
JP2003128506A (en) Antiseptic solution, and method and apparatus for disinfecting wastewater by using the same
AU2002216705A1 (en) Air and water purification using continuous breakpoint halogenation and peroxygenation
JP4011305B2 (en) Wastewater disinfection method and apparatus
Ragazzo et al. The Use of Hyproform Disinfection system in wastewater treatment: batch and full scale trials
JP2005138109A (en) Method and apparatus for disinfecting drainage
Liu et al. Water quality profiles during nitrification in a pilot distribution system study
Gross et al. Ultra‐Violet Disinfection of Sewage Effluents: A Pilot Study at Bellozanne, Jersey
JP2003062580A (en) Disinfecting method of sewage
Greene et al. Ozone disinfection of urban storm drain water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061117

R150 Certificate of patent or registration of utility model

Ref document number: 3884638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250