JP2003121021A - Double effect absorption refrigerating machine - Google Patents

Double effect absorption refrigerating machine

Info

Publication number
JP2003121021A
JP2003121021A JP2001313895A JP2001313895A JP2003121021A JP 2003121021 A JP2003121021 A JP 2003121021A JP 2001313895 A JP2001313895 A JP 2001313895A JP 2001313895 A JP2001313895 A JP 2001313895A JP 2003121021 A JP2003121021 A JP 2003121021A
Authority
JP
Japan
Prior art keywords
heat exchanger
low temperature
solution
high temperature
temperature heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001313895A
Other languages
Japanese (ja)
Other versions
JP3812934B2 (en
Inventor
Osayuki Inoue
修行 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001313895A priority Critical patent/JP3812934B2/en
Publication of JP2003121021A publication Critical patent/JP2003121021A/en
Application granted granted Critical
Publication of JP3812934B2 publication Critical patent/JP3812934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a double effect absorption refrigerating machine sufficiently recovering heat from a heat source, sufficiently cooling a concentrated solution with a low temperature heat exchanger, and reducing a load to an absorber. SOLUTION: In the double effect absorption refrigerating machine using an outside heat source fluid 5 as a heat source, a passage through which the outside heat source fluid 5 heats and concentrates an absorption solution with a high temperature regenerator GH and is introduced into an exhaust heat recovery heat exchanger XA is installed, and through the solution passage, a dilute solution from an absorber A is introduced into a low temperature heat exchanger XL, and a branch point B1 is installed between an inlet of the dilute solution and an outlet of the low temperature heat exchanger XL, a part of the dilute solution is branched from the branch point B1 , introduced into the high temperature regenerator GH through a side to be heated of the exhaust heat recovery heat exchanger XA, the remaining dilute solution from the branch point B1 is introduced into the low temperature regenerator GL and/or the high temperature regenerator GH. The low temperature heat exchanger XL may be divided into two independent heat exchangers in the branch point B1 inside the heat exchanger, and the remaining dilute solution not branched in the low temperature heat exchanger XL can adopt optional flow of parallel, series, or reverse flow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸収冷凍機に係
り、特に、蒸気を熱源とし、該熱源の熱回収を行うこと
ができる二重効用吸収冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerating machine, and more particularly to a double-effect absorption refrigerating machine which uses steam as a heat source and can recover heat from the heat source.

【0002】[0002]

【従来の技術】従来、外部熱源流体を用いる吸収冷凍機
において、排熱回収熱交換器の取付位置は、低温熱交換
器で加熱後の希溶液を排熱回収熱交換器と高温熱交換器
にシリーズに接続して高温再生器に導く方式(特公昭5
1−11332号公報)、及び、低温熱交換器で加熱後
の希溶液を排熱回収熱交換器と高温熱交換器とをパラレ
ルに接続して高温再生器に導く方式(特公昭51−13
259号公報)などが実施されていた。これらの方式で
は、希溶液は低温熱交換器で温度が高められており、外
部熱源流体の温度を充分に低下させられず、従って、充
分には排熱回収ができないという問題があった。この問
題を解決するため、吸収器からの希溶液を低温熱交換器
及び高温熱交換器に対して、排熱回収熱交換器をパラレ
ルに接続して高温再生器に導く方式(特公昭58−57
667号公報)が提案され、排熱を低温まで充分に回収
し、前記2方式よりも少ない外部熱源流体の流量で同じ
冷凍容量を出すことができるようになった。しかし、こ
の方式では低温熱交換器への希溶液流量が減るため、熱
交換相手である低温熱交換器の濃溶液を充分には冷却で
きないことになってしまい、吸収器への熱負荷が増大す
るという問題が出てきた。
2. Description of the Related Art Conventionally, in an absorption refrigerator using an external heat source fluid, the mounting position of the exhaust heat recovery heat exchanger is such that the diluted solution heated by the low temperature heat exchanger is used as the exhaust heat recovery heat exchanger and the high temperature heat exchanger. A method of connecting to a series and leading to a high temperature regenerator (Japanese Patent Publication Sho 5)
No. 1-131332) and a method in which a dilute solution heated by a low temperature heat exchanger is connected to an exhaust heat recovery heat exchanger and a high temperature heat exchanger in parallel and introduced to a high temperature regenerator (JP-B-51-13).
No. 259) was implemented. In these methods, the temperature of the dilute solution is raised in the low temperature heat exchanger, and the temperature of the external heat source fluid cannot be lowered sufficiently, and therefore, there is a problem that exhaust heat cannot be recovered sufficiently. In order to solve this problem, the dilute solution from the absorber is connected in parallel to the low temperature heat exchanger and the high temperature heat exchanger, and the exhaust heat recovery heat exchanger is connected to the high temperature regenerator (Japanese Patent Publication No. 58- 57
No. 667) has been proposed, and exhaust heat can be sufficiently recovered to a low temperature, and the same refrigerating capacity can be obtained with a smaller flow rate of the external heat source fluid than in the above two methods. However, in this method, since the flow rate of the dilute solution to the low temperature heat exchanger is reduced, the concentrated solution in the low temperature heat exchanger, which is a heat exchange partner, cannot be cooled sufficiently, and the heat load on the absorber increases. I have a problem to do.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記従来技
術に鑑み、外部熱源流体の熱回収を充分に行うと共に、
低温熱交換器での濃溶液の冷却も充分に行って、吸収器
の負荷を軽減し、少ない外部熱源流体の流量で大きな冷
凍容量を出すことができる二重効用吸収冷凍機を提供す
ることを課題とする。
In view of the above-mentioned prior art, the present invention sufficiently recovers the heat of the external heat source fluid, and
To provide a double-effect absorption refrigerator that can sufficiently cool a concentrated solution in a low temperature heat exchanger, reduce the load on the absorber, and output a large refrigeration capacity with a small flow rate of an external heat source fluid. It is an issue.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、吸収器、低温再生器、高温再生器、凝
縮器、蒸発器、低温熱交換器、高温熱交換器、排熱回収
熱交換器及びこれらの機器を接続する溶液流路と冷媒流
路を備え、外部熱源流体を熱源として用いる二重効用吸
収冷凍機において、前記外部熱源流体が、高温再生器で
吸収溶液を加熱濃縮し、次いで排熱回収熱交換器に導入
される流路を有し、前記溶液流路が、吸収器からの希溶
液を低温熱交換器に導き、該低温熱交換器の希溶液入口
から出口までの間に分岐点を持ち、該分岐点から希溶液
の一部を分岐して、前記排熱回収熱交換器の被加熱側を
通り高温再生器に導くと共に、前記分岐点からの残部の
希溶液は、残りの低温熱交換器部を通り低温再生器及び
/又は高温再生器に導く構成としたものである。前記吸
収冷凍機において、低温熱交換器は、該熱交換器内の分
岐点で独立した二つの熱交換器に分割されていてもよ
い。
In order to solve the above problems, according to the present invention, an absorber, a low temperature regenerator, a high temperature regenerator, a condenser, an evaporator, a low temperature heat exchanger, a high temperature heat exchanger, an exhaust heat In a dual-effect absorption chiller that includes a recovery heat exchanger and a solution flow path connecting these devices and a refrigerant flow path, and uses an external heat source fluid as a heat source, the external heat source fluid heats the absorption solution in a high temperature regenerator. It has a flow path that is concentrated and then introduced into a waste heat recovery heat exchanger, the solution flow path guides the dilute solution from the absorber to the low temperature heat exchanger, and from the dilute solution inlet of the low temperature heat exchanger. A branch point is provided between the outlet and a part of the dilute solution is branched from the branch point to be guided to the high temperature regenerator through the heated side of the exhaust heat recovery heat exchanger, and the remainder from the branch point. The dilute solution of the low temperature regenerator and / or the high temperature regenerator passes through the remaining low temperature heat exchanger section. It is obtained by a configuration in which lead. In the absorption refrigerator, the low temperature heat exchanger may be divided into two independent heat exchangers at a branch point in the heat exchanger.

【0005】また、本発明の吸収冷凍機において、前記
低温熱交換器で分岐されなかった残りの希溶液は、該低
温熱交換器を通った後、さらに分岐されて、一部の希溶
液を低温再生器に導き、残りの希溶液を高温熱交換器の
被加熱側を通して高温再生器に導き、該高温再生器から
の加熱濃縮された濃溶液は、前記高温熱交換器の加熱側
を通り低温再生器からの濃溶液と共に、前記低温熱交換
器の加熱側に導くように溶液流路を構成するか、又は、
前記残りの希溶液は、該低温熱交換器を通った後、高温
熱交換器の被加熱側を通して高温再生器に導き、該高温
再生器からの加熱濃縮された濃溶液は、前記高温熱交換
器の加熱側を通り低温再生器に導くと共に、前記低温再
生器でさらに濃縮された濃溶液を低温熱交換器の加熱側
に導くように溶液流路を構成するか、又は、前記残りの
希溶液は、該低温熱交換器を通った後、低温再生器に導
き、該低温再生器で濃縮された濃溶液の一部を、高温熱
交換器の被加熱側を通して高温再生器に導き、該高温再
生器からの加熱濃縮された濃溶液は、前記高温熱交換器
の加熱側を通り低温再生器からの残りの濃溶液と共に、
低温熱交換器の加熱側に導くように溶液流路を構成する
ことができる。
In the absorption refrigerating machine of the present invention, the remaining dilute solution which is not branched in the low temperature heat exchanger is further branched after passing through the low temperature heat exchanger to remove a part of the dilute solution. The remaining dilute solution is introduced into the low temperature regenerator, and the remaining dilute solution is introduced into the high temperature regenerator through the heated side of the high temperature heat exchanger, and the concentrated concentrated solution heated by the high temperature regenerator passes through the heating side of the high temperature heat exchanger. With the concentrated solution from the low temperature regenerator, configure the solution flow path so as to lead to the heating side of the low temperature heat exchanger, or
After passing through the low temperature heat exchanger, the remaining dilute solution is led to the high temperature regenerator through the heated side of the high temperature heat exchanger, and the concentrated concentrated solution heated from the high temperature regenerator is the high temperature heat exchange. The solution flow path is configured so as to lead to the low temperature regenerator through the heating side of the vessel and to guide the concentrated solution further concentrated in the low temperature regenerator to the heating side of the low temperature heat exchanger, or the remaining diluted solution. After passing through the low temperature heat exchanger, the solution is introduced into the low temperature regenerator, and a part of the concentrated solution concentrated in the low temperature regenerator is introduced into the high temperature regenerator through the heated side of the high temperature heat exchanger, The concentrated concentrated solution heated from the high temperature regenerator passes through the heating side of the high temperature heat exchanger together with the remaining concentrated solution from the low temperature regenerator,
The solution flow path can be configured to lead to the heating side of the low temperature heat exchanger.

【0006】[0006]

【発明の実施の形態】次に、本発明を、図1〜図4に示
す本発明の吸収冷凍機のフロー構成図を用いて説明す
る。図1〜図4において、A、A1、A2は吸収器、G
Lは低温再生器、GHは高温再生器、Cは凝縮器、E、
E1、E2は蒸発器、XL、XL1、XL2は低温熱交
換器、XHは高温熱交換器、XA、XBは排熱回収熱交
換器、SP、SP1、SP2は溶液ポンプ、RPは冷媒
ポンプ、1と2は冷媒蒸気通路、3と4は冷却水、5は
熱源流路、6は冷水、7は隔壁、8は連通口、10〜1
9は溶液配管、20〜22は冷媒配管、B0、B1、B
2、B3は分岐点である。図1について説明すると、図
1は、吸収器Aを出た吸収溶液が、分岐されてそれぞれ
低温再生器GL、高温再生器GHに導入されるパラレル
フローの例である。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described with reference to the flow configuration diagrams of the absorption refrigerator according to the present invention shown in FIGS. 1 to 4, A, A1 and A2 are absorbers and G
L is a low temperature regenerator, GH is a high temperature regenerator, C is a condenser, E,
E1 and E2 are evaporators, XL, XL1 and XL2 are low temperature heat exchangers, XH is a high temperature heat exchanger, XA and XB are exhaust heat recovery heat exchangers, SP, SP1 and SP2 are solution pumps, RP is a refrigerant pump, 1 and 2 are refrigerant vapor passages, 3 and 4 are cooling water, 5 is a heat source passage, 6 is cold water, 7 is a partition wall, 8 is a communication port, and 10 to 1
9 is a solution pipe, 20-22 is a refrigerant pipe, B0, B1, B
2 and B3 are branch points. Referring to FIG. 1, FIG. 1 is an example of a parallel flow in which the absorbing solution that has left the absorber A is branched and introduced into the low temperature regenerator GL and the high temperature regenerator GH, respectively.

【0007】図1の吸収冷凍機の冷房運転においては、
冷媒を吸収した希溶液は、吸収器Aから溶液ポンプSP
により配管11を通り、低温熱交換器XLの被加熱側に
導入され、低温熱交換器XL内の分岐点B1より、その
一部が分岐されて配管12から排熱回収熱交換器XAの
被加熱側を経て高温再生器GHに導入される。一方、低
温熱交換器XL内の分岐点B1からの残りの希溶液は、
低温熱交換器XLの被加熱側を出て配管13から分岐点
B2で分岐され、一部の希溶液が配管15を通り高温熱
交換器XHの被加熱側を経て、高温再生器GHに導入さ
れる。高温再生器GHでは、配管12及び15から導入
された希溶液は、熱源流路5から導入される熱源流体に
より加熱されて冷媒を蒸発して濃縮され、濃縮された濃
溶液は、流路16を通り高温熱交換器XHで熱交換さ
れ、低温再生器GLからの濃溶液17と合流する。高温
再生器GHの熱源として利用された熱源流体は、熱源流
路5を通り排熱回収熱交換器XAの加熱側に導入され
て、配管12の希溶液の加熱に利用される。
In the cooling operation of the absorption refrigerator shown in FIG.
The dilute solution that has absorbed the refrigerant flows from the absorber A to the solution pump SP.
Is introduced into the heated side of the low-temperature heat exchanger XL through the pipe 11 and a part of the branching point B1 in the low-temperature heat exchanger XL is branched and the pipe 12 receives the exhaust heat recovery heat exchanger XA to be heated. It is introduced into the high temperature regenerator GH via the heating side. On the other hand, the remaining dilute solution from the branch point B1 in the low temperature heat exchanger XL is
It leaves the heated side of the low temperature heat exchanger XL and is branched from the pipe 13 at a branch point B2, and a part of the dilute solution is introduced into the high temperature regenerator GH through the pipe 15 and the heated side of the high temperature heat exchanger XH. To be done. In the high temperature regenerator GH, the dilute solution introduced from the pipes 12 and 15 is heated by the heat source fluid introduced from the heat source passage 5 to evaporate the refrigerant to be concentrated, and the concentrated concentrated solution is passed through the passage 16 Through the high temperature heat exchanger XH, and merges with the concentrated solution 17 from the low temperature regenerator GL. The heat source fluid used as the heat source of the high temperature regenerator GH is introduced to the heating side of the exhaust heat recovery heat exchanger XA through the heat source passage 5 and is used for heating the dilute solution in the pipe 12.

【0008】また、分岐点B2で分岐された残りの希溶
液は、配管14から低温再生器GLに導入される。低温
再生器に導入された希溶液は、低温再生器GLで高温再
生器GHからの冷媒蒸気による加熱により濃縮された
後、配管17を通り配管16からの濃溶液と合流して、
配管18から低温熱交換器XLの加熱側を通り吸収器A
に導入される。高温再生器GHで蒸発した冷媒ガスは、
冷媒配管20を通り、低温再生器GLの熱源として用い
られたのち凝縮器Cに導入される。凝縮器Cでは、低温
再生器GLからの冷媒ガスと共に冷却水により冷却され
て凝縮し、配管21から蒸発器Eにはいる。蒸発器Eで
は、冷媒が冷媒ポンプRPにより、配管22により循環
されて蒸発し、その際に蒸発熱を負荷側の冷水から奪
い、冷水を冷却し、冷房に供される。蒸発した冷媒は、
吸収器Aで濃溶液により吸収されて、希溶液となり溶液
ポンプで循環されるサイクルとなる。
The remaining dilute solution branched at the branch point B2 is introduced from the pipe 14 into the low temperature regenerator GL. The dilute solution introduced into the low-temperature regenerator is concentrated in the low-temperature regenerator GL by heating with the refrigerant vapor from the high-temperature regenerator GH, and then passes through the pipe 17 to join with the concentrated solution from the pipe 16,
From the pipe 18 through the heating side of the low temperature heat exchanger XL, absorber A
Will be introduced to. The refrigerant gas evaporated in the high temperature regenerator GH is
After being used as a heat source of the low temperature regenerator GL through the refrigerant pipe 20, it is introduced into the condenser C. In the condenser C, the refrigerant gas together with the refrigerant gas from the low temperature regenerator GL is cooled and condensed by the cooling water, and enters the evaporator E through the pipe 21. In the evaporator E, the refrigerant is circulated through the pipe 22 by the refrigerant pump RP to be evaporated, and at that time, the heat of evaporation is taken from the cold water on the load side, the cold water is cooled, and the air is cooled. The evaporated refrigerant is
In the absorber A, the concentrated solution absorbs the solution to form a dilute solution, which is circulated by the solution pump.

【0009】図2は、図1の吸収冷凍機において、蒸発
器と吸収器をそれぞれ2つに分割してそれらを組合せる
と共に、低温熱交換器XLを分岐点B1から2つに分割
してそれぞれをXL1、XL2とし、また、低温再生器
GLの加熱源として用いた配管20の冷媒蒸気を加熱側
とし、被加熱側を通る配管14からの希溶液を加熱する
排熱回収熱交換器XBが配備されている。図2において
は、吸収溶液は図1と同様に、それぞれの配管を通って
循環しているが、分岐点B2で分岐された希溶液は、配
管14を通り、排熱回収熱交換器XBの被加熱側を経て
低温再生器GLに導入される。
FIG. 2 shows that, in the absorption refrigerator of FIG. 1, the evaporator and the absorber are each divided into two parts, which are combined together, and the low temperature heat exchanger XL is divided into two parts from the branch point B1. Exhaust heat recovery heat exchanger XB for heating the diluted solution from the pipe 14 passing through the heated side, where XL1 and XL2 are used, and the refrigerant vapor of the pipe 20 used as the heating source of the low temperature regenerator GL is used as the heating side. Has been deployed. In FIG. 2, the absorbing solution circulates through the respective pipes as in FIG. 1, but the diluted solution branched at the branch point B2 passes through the pipe 14 and passes through the exhaust heat recovery heat exchanger XB. It is introduced into the low temperature regenerator GL via the heated side.

【0010】また、分割された吸収器A1、A2、蒸発
器E1、E2及び低温再生器GL、凝縮器Cを、一つの
角型缶胴に収め、該缶胴の下部に吸収器を左からA1、
A2と、また吸収器の斜め上部に蒸発器を上からE1、
E2、吸収器上部に凝縮器Cを配置し、さらに、凝縮器
C上部に低温再生器GLを配置し、吸収器A1、A2、
蒸発器E1、E2の低圧側と、再生器G、凝縮器Cの高
圧側とを、斜め隔壁で分け、この斜め隔壁の上側に再生
器Gから凝縮器Cへの冷媒蒸気が流れる通路1を配し、
斜め隔壁の下側には蒸発器E1から吸収器A1への冷媒
蒸気が流れる通路2を配した構造としており、吸収器を
左右にA1、A2と隔壁7で分割し、また、蒸発器を上
下にE1、E2と隔壁7で分割して、その間の通路に隔
壁7が設けられて分割されている。
Further, the divided absorbers A1 and A2, the evaporators E1 and E2, the low temperature regenerator GL, and the condenser C are housed in one rectangular can body, and the absorber is placed from the left at the bottom of the can body. A1,
A2 and also the evaporator E1 from the top on the diagonal upper part of the absorber,
E2, the condenser C is arranged on the upper part of the absorber, and the low temperature regenerator GL is arranged on the upper part of the condenser C, and the absorbers A1, A2,
The low-pressure side of the evaporators E1 and E2 and the high-pressure side of the regenerator G and the condenser C are separated by an oblique partition wall, and the passage 1 through which the refrigerant vapor from the regenerator G to the condenser C flows is divided above the oblique partition wall. Arrange
Below the slanted partition, there is a structure in which a passage 2 through which the refrigerant vapor from the evaporator E1 to the absorber A1 flows is arranged. The absorber is divided into A1 and A2 and the partition wall 7 on the left and right, and the evaporator is placed above and below. Is divided by E1 and E2 and the partition wall 7, and the partition wall 7 is provided in the passage between them.

【0011】そして、吸収器A1からの溶液を溶液ポン
プSP1により、配管10から吸収器A2に導入してお
り、また、吸収器A2からの希溶液は、溶液ポンプSP
により低温熱交換器XL1の被加熱側に導入して、分岐
点B1を経て、低温熱交換器XL2を通り、図1と同様
に循環される。図2において、排熱回収熱交換器XAへ
の分岐点をB1としているが、分岐点をB0とした場合
と比較すると、同一の冷凍出力に対し、濃溶液の吸収器
への入口温度が低下し、吸収器での冷却水への放熱量が
約4%減少し、蒸気の消費量が約0.5%減少するとい
う結果が得られた。
Then, the solution from the absorber A1 is introduced into the absorber A2 from the pipe 10 by the solution pump SP1, and the dilute solution from the absorber A2 is supplied by the solution pump SP1.
Is introduced into the heated side of the low temperature heat exchanger XL1, passes through the branch point B1, passes through the low temperature heat exchanger XL2, and is circulated as in FIG. In FIG. 2, the branch point to the exhaust heat recovery heat exchanger XA is B1, but as compared with the case where the branch point is B0, the inlet temperature of the concentrated solution to the absorber decreases for the same refrigeration output. However, it was found that the heat radiation amount to the cooling water in the absorber was reduced by about 4% and the steam consumption was reduced by about 0.5%.

【0012】図3は、吸収器Aからの希溶液が、高温再
生器GH−低温再生器GL−吸収器Aと循環するシリー
ズフローの例である。図3では、吸収器Aからの希溶液
は、溶液ポンプSPにより配管11を通り、低温熱交換
器XLの被加熱側に導入され、低温熱交換器XL内の分
岐点B1で一部が分岐されて、配管12から排熱回収熱
交換器XAを通り高温再生器GHに導入され、残部は、
低温熱交換器XLの被加熱側をそのまま通って、配管1
3から高温再生器GHに導入されて合流し、高温再生器
GHで熱源として使用される熱源流体により、加熱され
て濃縮される。濃縮された濃溶液は、流路16から高温
熱交換器XHの加熱側を通り、低温再生器GLに導入さ
れ高温再生器GHからの冷媒蒸気によって、さらに濃縮
されて、配管17を通り低温熱交換器XLの加熱側を経
て配管18から吸収器Aに導入する循環流路となる。冷
媒流路は、図1と同様である。
FIG. 3 is an example of a series flow in which the dilute solution from the absorber A is circulated through the high temperature regenerator GH-low temperature regenerator GL-absorber A. In FIG. 3, the dilute solution from the absorber A passes through the pipe 11 by the solution pump SP, is introduced to the heated side of the low temperature heat exchanger XL, and is partially branched at the branch point B1 in the low temperature heat exchanger XL. And is introduced into the high temperature regenerator GH from the pipe 12 through the exhaust heat recovery heat exchanger XA, and the rest is
Pass through the heated side of the low temperature heat exchanger XL as it is, and pipe 1
It is introduced into the high temperature regenerator GH from 3 and merges, and is heated and concentrated by the heat source fluid used as a heat source in the high temperature regenerator GH. The concentrated concentrated solution passes from the flow path 16 to the heating side of the high temperature heat exchanger XH, is introduced into the low temperature regenerator GL, and is further concentrated by the refrigerant vapor from the high temperature regenerator GH to pass through the pipe 17 to cool the low temperature heat. A circulation flow path is introduced from the pipe 18 to the absorber A via the heating side of the exchanger XL. The coolant channel is the same as in FIG.

【0013】図4は、吸収器Aからの希溶液は分岐点の
残りの希溶液が、まず、低温再生器GLに導入され、次
いで、その一部が高温再生器GHに導入されて循環する
リバースフローの例である。図4では、吸収器Aからの
希溶液は、低温熱交換器XL内で分岐されて、一部は配
管12を通り排熱回収熱交換器XAの被加熱側を経て高
温再生器GHに導入される。一方、残りの希溶液は、低
温熱交換器XLを通って配管13から低温再生器GLに
導入され、低温再生器GLでは、高温再生器GHから発
生する冷媒蒸気により加熱されて濃縮される。濃溶液
は、配管17から分岐点B3で分岐されて、一部は溶液
ポンプSP2により、配管15を通り、高温熱交換器X
Hの被加熱側を経て、高温再生器GHに導入され、配管
12からの希溶液と共に加熱濃縮される。加熱濃縮され
た濃溶液は、配管16から高温熱交換器XHの加熱側を
通り、分岐点B3からの残りの濃溶液と合流して配管1
8を通り、低温熱交換器XLの加熱側を経て吸収器Aに
導入されて循環する。本発明の排熱回収熱交換器は、ド
レン熱交換器と呼ばれることもある。しかし、高温水、
あるいは直火式冷温水機に対しても適用は可能である。
In FIG. 4, the dilute solution from the absorber A is first introduced into the low temperature regenerator GL, and then a part thereof is introduced into the high temperature regenerator GH for circulation. It is an example of a reverse flow. In FIG. 4, the dilute solution from the absorber A is branched in the low temperature heat exchanger XL, and a part of it is introduced into the high temperature regenerator GH through the pipe 12 and the heated side of the exhaust heat recovery heat exchanger XA. To be done. On the other hand, the remaining dilute solution is introduced into the low temperature regenerator GL from the pipe 13 through the low temperature heat exchanger XL, and is heated and concentrated in the low temperature regenerator GL by the refrigerant vapor generated from the high temperature regenerator GH. The concentrated solution is branched from the pipe 17 at a branch point B3, and a part of the concentrated solution passes through the pipe 15 by the solution pump SP2 and passes through the high temperature heat exchanger X.
It is introduced into the high temperature regenerator GH through the heated side of H and is heated and concentrated together with the dilute solution from the pipe 12. The concentrated solution that has been heated and concentrated passes through the pipe 16 through the heating side of the high-temperature heat exchanger XH, and joins with the remaining concentrated solution from the branch point B3 to form the pipe 1
It passes through 8, passes through the heating side of the low temperature heat exchanger XL, is introduced into the absorber A, and is circulated. The exhaust heat recovery heat exchanger of the present invention may be called a drain heat exchanger. But hot water,
Alternatively, it can be applied to a direct fire type water cooler.

【0014】[0014]

【発明の効果】本発明によれば、上記の構成としたこと
により、外部熱源流体の熱回収を充分に行うと共に、低
温熱交換器での濃溶液の冷却も充分に行って、吸収器の
負荷を軽減し、少ない外部熱源流体流量で大きな冷凍容
量をだすことができる二重効用吸収冷凍機とすることが
できた。
EFFECTS OF THE INVENTION According to the present invention, with the above structure, the heat of the external heat source fluid is sufficiently recovered, and the concentrated solution is sufficiently cooled in the low temperature heat exchanger. It was possible to obtain a dual-effect absorption refrigerator that can reduce the load and can generate a large refrigeration capacity with a small external heat source fluid flow rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の吸収冷凍機の一例を示すフロー構成
図。
FIG. 1 is a flow configuration diagram showing an example of an absorption refrigerator according to the present invention.

【図2】本発明の吸収冷凍機の他の例を示すフロー構成
図。
FIG. 2 is a flow configuration diagram showing another example of the absorption refrigerator of the present invention.

【図3】本発明の吸収冷凍機の他の例を示すフロー構成
図。
FIG. 3 is a flow configuration diagram showing another example of the absorption refrigerator of the present invention.

【図4】本発明の吸収冷凍機の他の例を示すフロー構成
図。
FIG. 4 is a flow configuration diagram showing another example of the absorption refrigerator according to the present invention.

【符号の説明】[Explanation of symbols]

A、A1、A2:吸収器、GL:低温再生器、GH:高
温再生器、C:凝縮器、E、E1、E2:蒸発器、X
L、XL1、XL2:低温熱交換器、XH:高温熱交換
器、XA、XB:排熱回収熱交換器、SP、SP1、S
P2:溶液ポンプ、RP:冷媒ポンプ、B0、B1、B
2、B3:分岐点、1、2:冷媒蒸気通路、3、4:冷
却水、5:熱源流路、6:冷水、7:隔壁、8:連通
口、10〜19:溶液配管、20〜22:冷媒配管
A, A1, A2: absorber, GL: low temperature regenerator, GH: high temperature regenerator, C: condenser, E, E1, E2: evaporator, X
L, XL1, XL2: low temperature heat exchanger, XH: high temperature heat exchanger, XA, XB: waste heat recovery heat exchanger, SP, SP1, S
P2: Solution pump, RP: Refrigerant pump, B0, B1, B
2, B3: branch point, 1, 2: refrigerant vapor passage, 3, 4: cooling water, 5: heat source flow path, 6: cold water, 7: partition wall, 8: communication port, 10 to 19: solution pipe, 20 to 20 22: Refrigerant piping

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 吸収器、低温再生器、高温再生器、凝縮
器、蒸発器、低温熱交換器、高温熱交換器、排熱回収熱
交換器及びこれらの機器を接続する溶液流路と冷媒流路
を備え、外部熱源流体を熱源として用いる二重効用吸収
冷凍機において、前記外部熱源流体が、高温再生器で吸
収溶液を加熱濃縮し、次いで排熱回収熱交換器に導入さ
れる流路を有し、前記溶液流路が、吸収器からの希溶液
を低温熱交換器に導き、該低温熱交換器の希溶液入口か
ら出口までの間に分岐点を持ち、該分岐点から希溶液の
一部を分岐して、前記排熱回収熱交換器の被加熱側を通
り高温再生器に導くと共に、前記分岐点からの残部の希
溶液は、残りの低温熱交換器部を通り低温再生器及び/
又は高温再生器に導く構成としたことを特徴とする吸収
冷凍機。
1. An absorber, a low-temperature regenerator, a high-temperature regenerator, a condenser, an evaporator, a low-temperature heat exchanger, a high-temperature heat exchanger, an exhaust heat recovery heat exchanger, and a solution flow path and a refrigerant connecting these devices. In a dual-effect absorption refrigerator having a flow path and using an external heat source fluid as a heat source, the external heat source fluid heats and concentrates an absorbing solution in a high temperature regenerator, and then is introduced into an exhaust heat recovery heat exchanger. The solution flow path introduces the dilute solution from the absorber to the low temperature heat exchanger, and has a branch point between the dilute solution inlet and the dilute solution inlet of the low temperature heat exchanger. Of the waste heat recovery heat exchanger through the heated side to the high temperature regenerator, and the remaining dilute solution from the branch point passes through the remaining low temperature heat exchanger section for low temperature regeneration. Vessels and /
Alternatively, an absorption refrigerator having a structure leading to a high temperature regenerator.
【請求項2】 前記低温熱交換器が、該熱交換器内の分
岐点で独立した二つの熱交換器に分割されていることを
特徴とする請求項1記載の吸収冷凍機。
2. The absorption refrigerator according to claim 1, wherein the low temperature heat exchanger is divided into two independent heat exchangers at branch points in the heat exchanger.
【請求項3】 前記低温熱交換器で分岐されなかった残
りの希溶液は、該低温熱交換器を通った後、さらに分岐
されて、一部の希溶液を低温再生器に導き、残りのの希
溶液を高温熱交換器の被加熱側を通して高温再生器に導
き、該高温再生器からの加熱濃縮された濃溶液は、前記
高温熱交換器の加熱側を通り低温再生器からの濃溶液と
共に、前記低温熱交換器の加熱側に導くように溶液流路
を構成したことを特徴とする請求項1又は2記載の吸収
冷凍機。
3. The remaining dilute solution which is not branched in the low temperature heat exchanger is further branched after passing through the low temperature heat exchanger to guide a part of the dilute solution to the low temperature regenerator and The diluted solution of the above is introduced into the high temperature regenerator through the heated side of the high temperature heat exchanger, and the concentrated solution heated and concentrated from the high temperature heat exchanger passes through the heating side of the high temperature heat exchanger to obtain the concentrated solution from the low temperature regenerator. The absorption refrigerator according to claim 1 or 2, wherein a solution flow path is configured so as to be guided to the heating side of the low temperature heat exchanger.
【請求項4】 前記低温熱交換器で分岐されなかった残
りの希溶液は、該低温熱交換器を通った後、高温熱交換
器の被加熱側を通して高温再生器に導き、該高温再生器
からの加熱濃縮された濃溶液は、前記高温熱交換器の加
熱側を通り低温再生器に導くと共に、前記低温再生器で
さらに濃縮された濃溶液を低温熱交換器の被加熱側に導
くように溶液流路を構成したことを特徴とする請求項1
又は2記載の吸収冷凍機。
4. The residual dilute solution which is not branched in the low temperature heat exchanger, passes through the low temperature heat exchanger, and then is introduced into the high temperature regenerator through the heated side of the high temperature heat exchanger, and the high temperature regenerator. The concentrated solution concentrated by heating from above is introduced to the low temperature regenerator through the heating side of the high temperature heat exchanger, and the concentrated solution further concentrated in the low temperature regenerator is introduced to the heated side of the low temperature heat exchanger. The solution flow path is configured in the above.
Or the absorption refrigerator according to 2.
【請求項5】 前記低温熱交換器で分岐されなかった残
りの希溶液は、該低温熱交換器を通った後、低温再生器
に導き、該低温再生器で濃縮された濃溶液の一部を、高
温熱交換器の被加熱側を通して高温再生器に導き、該高
温再生器からの加熱濃縮された濃溶液は、前記高温熱交
換器の加熱側を通り低温再生器からの残りの濃溶液と共
に、低温熱交換器の加熱側に導くように溶液流路を構成
したことを特徴とする請求項1又は2記載の吸収冷凍
機。
5. The residual dilute solution which is not branched in the low temperature heat exchanger is introduced into the low temperature regenerator after passing through the low temperature heat exchanger and a part of the concentrated solution concentrated in the low temperature regenerator. Is introduced into the high temperature regenerator through the heated side of the high temperature heat exchanger, and the concentrated solution heated and concentrated from the high temperature heat exchanger passes through the heating side of the high temperature heat exchanger and the remaining concentrated solution from the low temperature regenerator. The absorption refrigerator according to claim 1 or 2, wherein the solution flow path is configured so as to be guided to the heating side of the low temperature heat exchanger.
JP2001313895A 2001-10-11 2001-10-11 Double-effect absorption refrigerator Expired - Lifetime JP3812934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001313895A JP3812934B2 (en) 2001-10-11 2001-10-11 Double-effect absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001313895A JP3812934B2 (en) 2001-10-11 2001-10-11 Double-effect absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2003121021A true JP2003121021A (en) 2003-04-23
JP3812934B2 JP3812934B2 (en) 2006-08-23

Family

ID=19132298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001313895A Expired - Lifetime JP3812934B2 (en) 2001-10-11 2001-10-11 Double-effect absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3812934B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102085A1 (en) 2003-05-14 2004-11-25 Ebara Refrigeration Equipment & Systems Co., Ltd. Absorption chiller
CN101825371A (en) * 2010-05-10 2010-09-08 江苏双良空调设备股份有限公司 High-efficiency steam double-effect lithium bromide absorption type water chilling unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017269B (en) * 2012-12-14 2015-06-24 东南大学常州研究院 Solution dehumidification/regeneration heat and moisture independent treatment air conditioning device and energy-saving operation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102085A1 (en) 2003-05-14 2004-11-25 Ebara Refrigeration Equipment & Systems Co., Ltd. Absorption chiller
JP2004340423A (en) * 2003-05-14 2004-12-02 Ebara Refrigeration Equipment & Systems Co Ltd Absorption refrigerator
US7316126B2 (en) 2003-05-14 2008-01-08 Ebara Refrigeration Equipment & Systems Co., Ltd. Absorption refrigerating machine
CN100402950C (en) * 2003-05-14 2008-07-16 荏原冷热***株式会社 Absorption chiller
JP4521855B2 (en) * 2003-05-14 2010-08-11 荏原冷熱システム株式会社 Absorption refrigerator
CN101240950B (en) * 2003-05-14 2011-02-09 荏原冷热***株式会社 Absorption chiller
CN101825371A (en) * 2010-05-10 2010-09-08 江苏双良空调设备股份有限公司 High-efficiency steam double-effect lithium bromide absorption type water chilling unit

Also Published As

Publication number Publication date
JP3812934B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
JP2011075180A (en) Absorption type refrigerating machine
WO2002018849A1 (en) Absorption refrigerating machine
JP4521855B2 (en) Absorption refrigerator
JP2000171119A (en) Triple-effect absorption refrigerating machine
JP2012202589A (en) Absorption heat pump apparatus
KR101690303B1 (en) Triple effect absorption chiller
JP2003121021A (en) Double effect absorption refrigerating machine
KR100543484B1 (en) Single-and Double-Effect Absorption Refrigerator
JPH03152362A (en) Absorption refrigerator
JP2000154946A (en) Triple effect absorption refrigeration machine
WO2002018850A1 (en) Absorption refrigerating machine
JP2009287805A (en) Absorption refrigerator
JP3297720B2 (en) Absorption refrigerator
JP4376788B2 (en) Absorption refrigerator
CN112747494B (en) Two-stage and double-effect composite lithium bromide absorption type water chilling unit
JP4278609B2 (en) Absorption refrigerator
CN219141149U (en) Single-stage cascade series single-effect lithium bromide absorption refrigeration heat pump unit
JP3811632B2 (en) Waste heat input type absorption refrigerator
JP3851136B2 (en) Absorption refrigerator
JP2004011928A (en) Absorption refrigerator
JP4562325B2 (en) Absorption refrigerator
JP2004340424A (en) Absorption refrigerator
KR101076923B1 (en) An absorption type chiller-heater respondable to the heating load conditions
JP4540086B2 (en) Exhaust gas driven absorption chiller / heater
JP4212083B2 (en) Exhaust heat input type single-effect absorption chiller / heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3812934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250