JP2003116233A - Uninterruptible power supply unit - Google Patents

Uninterruptible power supply unit

Info

Publication number
JP2003116233A
JP2003116233A JP2001309420A JP2001309420A JP2003116233A JP 2003116233 A JP2003116233 A JP 2003116233A JP 2001309420 A JP2001309420 A JP 2001309420A JP 2001309420 A JP2001309420 A JP 2001309420A JP 2003116233 A JP2003116233 A JP 2003116233A
Authority
JP
Japan
Prior art keywords
transformer
power supply
secondary winding
voltage
conversion circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001309420A
Other languages
Japanese (ja)
Inventor
Masateru Igarashi
征輝 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001309420A priority Critical patent/JP2003116233A/en
Publication of JP2003116233A publication Critical patent/JP2003116233A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain size and weight reductions by utilizing a transformer of high frequency in place of that of commercial frequency for an uninterruptible power supply unit. SOLUTION: In an uninterruptible power supply unit which supplies electric power to a load through a conversion circuit from a storage battery in case of power failure in an input power supply, a first conversion circuit which comprises semiconductor switches Q1 to Q4 and produces AC voltage of high frequency and the primary winding of a transformer TR2 is connected to a storage battery B1, the secondary winding of the transformer is connected between a load 4 and an input power supply, and a second conversion circuit which comprises two-way switches 7, 8 and converts a secondary winding voltage VN2 of the transformer into an alternating current of commercial frequency is connected between the input power supply and the secondary winding of the transformer, and thus a high-frequency transformer can be used in the transformer TR2, to attain size and weight reductions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、無停電電源装
置、特に小型,軽量化が可能な無停電電源装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an uninterruptible power supply device, and more particularly to an uninterruptible power supply device that can be reduced in size and weight.

【0002】[0002]

【従来の技術】図7に無停電電源装置の従来例を示す。2. Description of the Related Art FIG. 7 shows a conventional example of an uninterruptible power supply.

【0003】これは、直列補償型の無停電電源装置で、
交流電源1にはサイリスタを逆並列接続した交流(A
C)スイッチ2,ACスイッチ6の直列回路とダイオー
ドD1とバッテリB1の直列回路が、ACスイッチ6に
は商用トランスTR1の2次巻線とコンデンサ3の直列
回路が、コンデンサ3には負荷4が、バッテリB1には
金属酸化膜型電界効果トランジスタ(MOSFET)Q
1〜Q4からなるインバータ回路5が、インバータ回路
5には商用トランスTR1の1次巻線がそれぞれ接続さ
れている。この回路で、交流電源1が定格電圧より低く
なったとき、高くなったとき、停電したときの各動作に
ついて以下に説明する。
This is a series compensation type uninterruptible power supply,
The AC power supply 1 is an alternating current (A
C) A series circuit of the switch 2 and the AC switch 6, a series circuit of the diode D1 and the battery B1, a series circuit of the secondary winding of the commercial transformer TR1 and the capacitor 3 in the AC switch 6, and a load 4 in the capacitor 3. , The metal oxide film type field effect transistor (MOSFET) Q is included in the battery B1.
The inverter circuit 5 including 1 to Q4 is connected to the primary winding of the commercial transformer TR1. In this circuit, each operation when the AC power supply 1 becomes lower than the rated voltage, becomes higher than the rated voltage, and a power failure occurs will be described below.

【0004】まず、交流電源Vinが低くなったとき
は、ACスイッチ2をオンしACスイッチ6をオフする
ことで、交流電源Vinに直列にトランス2次電圧VN
2を加えることができ、次式のような関係が成立する。
First, when the AC power source Vin becomes low, the AC switch 2 is turned on and the AC switch 6 is turned off, so that the transformer secondary voltage VN is connected in series with the AC power source Vin.
2 can be added, and the following relationship is established.

【0005】 Vin+VN2=Vin+(N2/N1)・VN1=Vout …(1) (N1:1次巻線数 N2:2次巻線数 VN1:
トランス1次電圧) したがって、インバータ回路5を調節することにより、
出力電圧Voutを一定の値に調整することができる。
なお、コンデンサ3とトランスTR1の漏れインダクタ
ンス12により、インバータ回路5からのPWM電圧V
N1を正弦波に平滑するようにしている。
Vin + VN2 = Vin + (N2 / N1) .VN1 = Vout (1) (N1: primary winding number N2: secondary winding number VN1:
Transformer primary voltage) Therefore, by adjusting the inverter circuit 5,
The output voltage Vout can be adjusted to a constant value.
In addition, the PWM voltage V from the inverter circuit 5 is caused by the leakage inductance 12 of the capacitor 3 and the transformer TR1.
N1 is smoothed into a sine wave.

【0006】一方、交流電源Vinが高くなったとき
は、インバータ回路5により交流電源Vinからトラン
ス2次電圧VN2が引かれるように、変圧器1次巻線に
PWM電圧VN1を印加する。
On the other hand, when the AC power supply Vin becomes high, the inverter circuit 5 applies the PWM voltage VN1 to the transformer primary winding so that the transformer secondary voltage VN2 is drawn from the AC power supply Vin.

【0007】 Vin−VN2=Vin−(N2/N1)・VN1=Vout …(2) この場合も、インバータ回路5を調節することにより、
出力電圧Voutを一定の値に調整することができる。
Vin−VN2 = Vin− (N2 / N1) · VN1 = Vout (2) Also in this case, the inverter circuit 5 is adjusted to
The output voltage Vout can be adjusted to a constant value.

【0008】また、交流電源Vinが停電したときは、
ACスイッチ2をオフしACスイッチ6をオンすること
で、入力電源1は切り離され、負荷4とトランスTR1
の2次巻線が並列接続され、次式が成立する。
When the AC power source Vin fails,
By turning off the AC switch 2 and turning on the AC switch 6, the input power source 1 is disconnected, and the load 4 and the transformer TR1 are disconnected.
The secondary windings of are connected in parallel, and the following equation is established.

【0009】 VN2=(N2/N1)・VN1=Vout …(3) 以上のように、入力電源Vinの変動に対しては、直列
動作でトランスの2次電圧を足したり引いたりして出力
電圧Voutを一定の値に保ち、停電時には並列動作で
出力電圧Voutを一定に保つようにしている。
VN2 = (N2 / N1) · VN1 = Vout (3) As described above, with respect to the fluctuation of the input power source Vin, the secondary voltage of the transformer is added or subtracted by the series operation to output the output voltage. Vout is kept at a constant value, and the output voltage Vout is kept constant by parallel operation during a power failure.

【0010】[0010]

【発明が解決しようとする課題】ところで上記のような
回路では、インバータ回路5の出力電圧は入力電源周波
数と同じ周波数の電圧を出力する必要があるため、商用
トランスが必要となる。一般に、商用周波数で動作する
トランスでは、鉄心が飽和しないように大きな断面積の
鉄心が必要であったり、巻線数を増大させたりしなけれ
ばならず、装置が大型化し重量も増大するという問題が
ある。
By the way, in the circuit as described above, the output voltage of the inverter circuit 5 needs to output a voltage of the same frequency as the input power supply frequency, so that a commercial transformer is required. Generally, a transformer that operates at a commercial frequency requires a core with a large cross-sectional area so that the core does not saturate, or the number of windings must be increased, which causes the device to increase in size and weight. There is.

【0011】したがって、この発明の課題は、無停電電
源装置の小型,軽量化を図ることにある。
Therefore, an object of the present invention is to reduce the size and weight of an uninterruptible power supply.

【0012】[0012]

【課題を解決するための手段】このような課題を解決す
るため、請求項1の発明では、入力電源の停電時に蓄電
池から変換回路を介して負荷に電力を供給する無停電電
源装置において、高周波の交流電圧を発生する第1の変
換回路と変圧器の1次巻線とを前記蓄電池に、変圧器の
2次巻線を前記負荷と入力電源との間に、さらに、変圧
器の2次巻線電圧を商用周波数の交流に変換する第2の
変換回路を入力電源と変圧器の2次巻線との間にそれぞ
れ接続したことを特徴とする。
In order to solve such a problem, according to the invention of claim 1, in an uninterruptible power supply for supplying power from a storage battery to a load through a conversion circuit at the time of power failure of the input power supply, The first conversion circuit for generating the AC voltage of the transformer and the primary winding of the transformer to the storage battery, the secondary winding of the transformer between the load and the input power source, and the secondary of the transformer. A second conversion circuit for converting a winding voltage into an alternating current of a commercial frequency is connected between the input power supply and the secondary winding of the transformer, respectively.

【0013】上記請求項1の発明においては、前記第1
の変換回路として蓄電池,変圧器の1次巻線および半導
体スイッチからなる一石コンバータ回路を用いることが
でき(請求項2の発明)、または、前記第1の変換回路
として半導体スイッチの直列回路とコンデンサの直列回
路とを蓄電池と並列に接続し、変圧器の1次巻線の一端
を半導体スイッチの直列接続点に、変圧器の1次巻線の
他端をコンデンサの直列接続点にそれぞれ接続したハー
フブリッジコンバータ回路を用いることができ(請求項
3の発明)、もしくは、前記第1の変換回路として半導
体スイッチの直列回路の2つを蓄電池と並列に接続し、
2つの直列回路の半導体スイッチの各直列接続点間に変
圧器の1次巻線を接続したフルブリッジコンバータ回路
を用いることができる(請求項4の発明)。
In the invention of claim 1, the first
Can be used as the conversion circuit of the storage battery, the primary winding of the transformer and the semiconductor switch (the invention of claim 2), or the series circuit of the semiconductor switch and the capacitor as the first conversion circuit. Of the transformer is connected in parallel with the storage battery, one end of the primary winding of the transformer is connected to the series connection point of the semiconductor switch, and the other end of the primary winding of the transformer is connected to the series connection point of the capacitor. A half-bridge converter circuit can be used (the invention of claim 3), or two of the series circuits of semiconductor switches are connected in parallel with the storage battery as the first conversion circuit,
A full-bridge converter circuit in which the primary winding of a transformer is connected between the series connection points of the semiconductor switches of the two series circuits can be used (the invention of claim 4).

【0014】また、請求項1ないし4のいずれかの発明
においては、前記第2の変換回路として双方向スイッチ
の直列回路を入力電源と並列に接続し、双方向スイッチ
の直列接続点に変圧器の2次巻線の一端を、変圧器の2
次巻線の他端を負荷にそれぞれ接続したものを用いるこ
とができ(請求項5の発明)、または、前記第2の変換
回路として双方向スイッチの直列回路を2つ入力電源と
並列に接続するとともに変圧器の2次巻線を2つに分割
し、変圧器の各2次巻線の一端を双方向スイッチの各直
列接続点に、変圧器の各2次巻線の他端を短絡して負荷
にそれぞれ接続したものを用いることができる(請求項
6の発明)。
Further, in the invention according to any one of claims 1 to 4, a series circuit of bidirectional switches is connected in parallel as an input power source as the second conversion circuit, and a transformer is provided at a series connection point of the bidirectional switches. One end of the secondary winding of the
It is possible to use one in which the other end of the secondary winding is connected to the load respectively (invention of claim 5), or two series circuits of bidirectional switches are connected in parallel with the input power source as the second conversion circuit. In addition, the secondary winding of the transformer is divided into two, one end of each secondary winding of the transformer is short-circuited to each series connection point of the bidirectional switch, and the other end of each secondary winding of the transformer is short-circuited. Then, those connected to the loads respectively can be used (the invention of claim 6).

【0015】さらに、請求項1ないし4のいずれかの発
明においては、前記入力電源を3相交流電源とし、双方
向スイッチの直列回路を3つ入力電源と並列に接続する
とともに変圧器の2次巻線を3つに分割し、変圧器の各
2次巻線の一端を双方向スイッチの各直列接続点に、変
圧器の各2次巻線の他端を3相負荷にそれぞれ接続する
ことができ(請求項7の発明)、あるいは、前記入力電
源を3相交流電源とし、双方向スイッチの直列回路を6
つ入力電源と並列に接続するとともに変圧器の2次巻線
を6つに分割し、変圧器の各2次巻線の一端を双方向ス
イッチの各直列接続点に、変圧器の各2次巻線の他端を
2つずつ短絡して3相負荷にそれぞれ接続することがで
きる(請求項8の発明)。
Further, in the invention according to any one of claims 1 to 4, the input power supply is a three-phase AC power supply, three series circuits of bidirectional switches are connected in parallel with the input power supply, and the secondary of the transformer is used. Divide the winding into three parts, connect one end of each secondary winding of the transformer to each series connection point of the bidirectional switch, and connect the other end of each secondary winding of the transformer to the three-phase load. Alternatively, the input power supply is a three-phase AC power supply, and the bidirectional switch series circuit is 6
And the secondary winding of the transformer is divided into six, and one end of each secondary winding of the transformer is connected to each series connection point of the bidirectional switch and each secondary of the transformer is connected. It is possible to short-circuit the other end of each of the windings by two and connect them to a three-phase load (invention of claim 8).

【0016】[0016]

【発明の実施の形態】図1はこの発明の第1の実施の形
態を示す構成図である。
1 is a block diagram showing a first embodiment of the present invention.

【0017】図7に示す従来例との相違は、サイリスタ
を逆並列接続したACスイッチ2,6の代わりに、高速
でスイッチングできる双方向スイッチ7,8を用いると
ともに、商用トランスTR1の代わりに高周波トランス
TR2を用いるようにした点である。双方向スイッチと
しては、例えばIGBT(絶縁ゲート型バイポーラトラ
ンジスタ)とダイオードとの直列回路を逆並列接続し
た、図1に示すものを用いる。
The difference from the conventional example shown in FIG. 7 is that bidirectional switches 7 and 8 capable of high-speed switching are used instead of the AC switches 2 and 6 in which thyristors are connected in anti-parallel, and a high frequency is used instead of the commercial transformer TR1. The point is that the transformer TR2 is used. As the bidirectional switch, for example, the one shown in FIG. 1 in which a series circuit of an IGBT (insulated gate bipolar transistor) and a diode is connected in antiparallel is used.

【0018】図4は図1の動作説明図で、交流電源Vi
nが低くなった場合の補償動作を示す。
FIG. 4 is a diagram for explaining the operation of FIG.
The compensation operation when n becomes low is shown.

【0019】例えば、入力電源電圧Vinが正の期間
で、トランス2次電圧VN2が正の期間T1には、双方
向スイッチ7をオンし双方向スイッチ8をオフすること
で、電源電圧Vin→トランスVN2電圧→コンデンサ
3の径路で正の電流を流し、コンデンサ3の電圧を上昇
させる。次に、トランス2次電圧が負の期間T2には双
方向スイッチ7,8をオフすることで、コンデンサ3の
電荷を負荷4に放電する。このとき、トランスには逆電
圧が発生し、トランスの励磁エネルギーをリセットす
る。
For example, during the period when the input power supply voltage Vin is positive and the transformer secondary voltage VN2 is positive T1, the bidirectional switch 7 is turned on and the bidirectional switch 8 is turned off, so that the power supply voltage Vin → the transformer. VN2 voltage → Positive current is passed through the path of the capacitor 3 to raise the voltage of the capacitor 3. Next, during the period T2 when the secondary voltage of the transformer is negative, the bidirectional switches 7 and 8 are turned off to discharge the electric charge of the capacitor 3 to the load 4. At this time, a reverse voltage is generated in the transformer and resets the excitation energy of the transformer.

【0020】トランスが正の電圧の期間では、双方向ス
イッチ7のオン期間を調整することで、出力電圧Vou
tの正の電圧を調整することができる。
During the period when the transformer has a positive voltage, the output voltage Vou is adjusted by adjusting the ON period of the bidirectional switch 7.
The positive voltage of t can be adjusted.

【0021】入力電圧が負の期間では、トランスの負の
期間T3,T4に双方向スイッチ7をオンすることで、
入力電源電圧が正の期間の場合と同様に、出力電圧Vo
utの負の電圧を調整することができる。
When the input voltage is negative, by turning on the bidirectional switch 7 during the negative periods T3 and T4 of the transformer,
As in the case of the positive period of the input power supply voltage, the output voltage Vo
The negative voltage on ut can be adjusted.

【0022】交流電源Vinが高くなったときは、双方
向スイッチ7のオン期間をさらに短くすることで、出力
電圧を調整することができる。
When the AC power source Vin becomes high, the output voltage can be adjusted by further shortening the ON period of the bidirectional switch 7.

【0023】また、入力電源が停電した場合は、双方向
スイッチ7をオフし、双方向スイッチ8をオン,オフす
ることで出力電圧を調整することができる。
Further, when the input power source fails, the output voltage can be adjusted by turning off the bidirectional switch 7 and turning on and off the bidirectional switch 8.

【0024】出力電圧が正の期間には、トランス2次電
圧が正の期間に双方向スイッチ8をオンすることで、ま
た、出力電圧が負の期間には、トランス2次電圧が負の
期間に双方向スイッチ8をオンすることで出力電圧を調
整することができる。
During the period when the output voltage is positive, the bidirectional switch 8 is turned on during the period when the transformer secondary voltage is positive, and when the output voltage is negative, the transformer secondary voltage is negative. The output voltage can be adjusted by turning on the bidirectional switch 8.

【0025】図2にこの発明の第2の実施の形態を示
す。
FIG. 2 shows a second embodiment of the present invention.

【0026】図1との相違は、トランスTR2の2次巻
線を2つに分割してN21巻線とN22巻線とを設け、
双方向スイッチ9,10の直列回路を追加し、双方向ス
イッチ9と10の接続点に巻線N21と巻線N22を接
続した点にある。その他は、図1と同様である。
The difference from FIG. 1 is that the secondary winding of the transformer TR2 is divided into two and an N21 winding and an N22 winding are provided,
A series circuit of the bidirectional switches 9 and 10 is added, and the winding N21 and the winding N22 are connected to the connection point of the bidirectional switches 9 and 10. Others are the same as in FIG.

【0027】図5は図2の動作説明図で、交流電源Vi
nが低くなった場合の補償動作を示す。
FIG. 5 is a diagram for explaining the operation of FIG.
The compensation operation when n becomes low is shown.

【0028】例えば、入力電源電圧Vinが正の期間
で、トランス2次電圧VN21が正の期間T1には、双
方向スイッチ7をオンし双方向スイッチ8〜10をオフ
することで、電源電圧Vin→トランスVN21電圧→
コンデンサ3の径路で正の電流を流し、コンデンサ3の
電圧を上昇させる。次に、トランス2次電圧VN22が
が正の期間T2(トランス2次電圧VN21は負)に
は、双方向スイッチ9をオンし双方向スイッチ7,9,
10をオフすることで、電源電圧Vin→トランスVN
22電圧→コンデンサ3の径路で正の電流を流し、コン
デンサ3の電圧を上昇させる。このとき、トランスには
逆電圧が発生し、トランスの励磁エネルギーをリセット
する。
For example, during the period in which the input power supply voltage Vin is positive and the transformer secondary voltage VN21 is in the positive period T1, by turning on the bidirectional switch 7 and turning off the bidirectional switches 8 to 10, the power supply voltage Vin → Transformer VN21 voltage →
A positive current is passed through the path of the capacitor 3 to raise the voltage of the capacitor 3. Next, during the period T2 in which the transformer secondary voltage VN22 is positive (the transformer secondary voltage VN21 is negative), the bidirectional switch 9 is turned on and the bidirectional switches 7, 9,
By turning off 10, power supply voltage Vin → transformer VN
22 voltage → a positive current is passed through the path of the capacitor 3 to increase the voltage of the capacitor 3. At this time, a reverse voltage is generated in the transformer and resets the excitation energy of the transformer.

【0029】トランスが正の電圧の期間では、双方向ス
イッチ7と9のオン期間を調整することで、出力電圧V
outの正の電圧を調整することができる。
During the period when the transformer has a positive voltage, the output voltage V is adjusted by adjusting the ON period of the bidirectional switches 7 and 9.
The positive voltage on out can be adjusted.

【0030】入力電圧が負の期間では、トランスの2次
電圧VN21が負の期間T3に双方向スイッチ7をオン
することで、また、トランスの2次電圧VN22が負の
期間T4に双方向スイッチ9をオンすることで、入力電
源電圧が正の期間の場合と同様に、出力電圧Voutの
負の電圧を調整することができる。
In the period when the input voltage is negative, the bidirectional switch 7 is turned on in the period T3 in which the secondary voltage VN21 of the transformer is negative, and in the period T4 in which the secondary voltage VN22 of the transformer is negative. By turning on 9, the negative voltage of the output voltage Vout can be adjusted as in the case where the input power supply voltage is in the positive period.

【0031】交流電源Vinが高くなったときは、双方
向スイッチ7と9のオン期間をさらに短くするか、トラ
ンスの電圧極性が逆のときに双方向スイッチ7と9をオ
ンすることで、出力電圧を調整することができる。
When the AC power source Vin becomes high, the on period of the bidirectional switches 7 and 9 is further shortened, or the bidirectional switches 7 and 9 are turned on when the voltage polarities of the transformers are opposite to each other. The voltage can be adjusted.

【0032】さらに、入力電源が停電した場合は、双方
向スイッチ7と9をオフし、双方向スイッチ8と10を
オンすることで出力電圧を調整することができる。
Further, when the input power source fails, the output voltage can be adjusted by turning off the bidirectional switches 7 and 9 and turning on the bidirectional switches 8 and 10.

【0033】出力電圧が正の期間には、トランス2次電
圧VN21が正の期間に双方向スイッチ8をオンし、ト
ランス2次電圧VN22が正の期間に双方向スイッチ1
0をオンすることで、また、出力電圧が負の期間には、
トランス2次電圧VN21が負の期間に双方向スイッチ
8をオンし、トランス2次電圧VN22が負の期間に双
方向スイッチ10をオンすることで出力電圧を調整する
ことができる。
When the output voltage is positive, the bidirectional switch 8 is turned on while the transformer secondary voltage VN21 is positive, and the bidirectional switch 1 is turned on when the transformer secondary voltage VN22 is positive.
By turning 0 on, and during the period when the output voltage is negative,
The output voltage can be adjusted by turning on the bidirectional switch 8 while the transformer secondary voltage VN21 is negative and turning on the bidirectional switch 10 while the transformer secondary voltage VN22 is negative.

【0034】図3にこの発明を3相電源に適用した場合
の例を示す。
FIG. 3 shows an example in which the present invention is applied to a three-phase power source.

【0035】図示のように、3相電源vu,vv,vw
中性点Oとの間には双方向スイッチ12〜17の直列回
路が、トランスTR3には2次巻線が3つに分割され、
各2次巻線の一端には各スイッチの接続点が、他端には
負荷R2〜R4が、中性点Oと2次巻線の各負荷側との
間にはコンデンサC1〜C3がそれぞれ接続されてい
る。
As shown in the figure, a series circuit of bidirectional switches 12 to 17 is provided between the three-phase power supplies v u , v v , v w and the neutral point O, and a transformer TR3 has a secondary winding of three. Divided into two,
The connection point of each switch is provided at one end of each secondary winding, loads R2 to R4 are provided at the other end, and capacitors C1 to C3 are provided between the neutral point O and each load side of the secondary winding. It is connected.

【0036】この場合も、中性点と各相電圧vu,vv
wの各々は図1と同じ構成になるためその動作も同
様、つまり、入力電圧Vinの変動に対しては双方向ス
イッチ12,14,16のオン,オフで出力電圧を一定
に保ち、停電時には双方向スイッチ13,15,17の
オン,オフで出力電圧を一定に保つ動作をする。また、
双方向スイッチを12個、トランスの2次巻線を6個用
いることで、図2を3相回路に展開することも可能であ
る。さらに、バッテリ電圧を交流電圧に変換する変換回
路として、図6(a)に示す一石コンバータや、同
(b)に示すハーフブリッジコンバータを用いることも
可能である。
Also in this case, the neutral point and each phase voltage v u , v v ,
Since each of v w has the same configuration as in FIG. 1, its operation is also the same. Occasionally, the bidirectional switches 13, 15, 17 are turned on and off to keep the output voltage constant. Also,
It is also possible to develop FIG. 2 into a three-phase circuit by using twelve bidirectional switches and six secondary windings of a transformer. Furthermore, as the conversion circuit for converting the battery voltage into the AC voltage, it is also possible to use the Ichiseki converter shown in FIG. 6A or the half bridge converter shown in FIG. 6B.

【0037】[0037]

【発明の効果】この発明によれば、トランスの2次巻線
の高周波電圧を第2変換器により、商用電圧と同じ極性
または負の極性に変換するようにしたので、第1変換器
としては高周波トランスを使用でき、小さな断面積で巻
線数の少ないトランスが使用可能となり、小型,軽量化
を図ることができる。
According to the present invention, the high frequency voltage of the secondary winding of the transformer is converted into the same polarity as the commercial voltage or the negative polarity by the second converter. A high-frequency transformer can be used, and a transformer with a small cross-sectional area and a small number of windings can be used, which enables reduction in size and weight.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施の形態を示す回路図であ
る。
FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【図2】この発明の第2の実施の形態を示す回路図であ
る。
FIG. 2 is a circuit diagram showing a second embodiment of the present invention.

【図3】この発明の第3の実施の形態を示す回路図であ
る。
FIG. 3 is a circuit diagram showing a third embodiment of the present invention.

【図4】図1の動作説明図である。FIG. 4 is an operation explanatory diagram of FIG. 1.

【図5】図2の動作説明図である。5 is an operation explanatory diagram of FIG. 2;

【図6】この発明で使用可能なコンバータの例を示す回
路図である。
FIG. 6 is a circuit diagram showing an example of a converter that can be used in the present invention.

【図7】従来例を示す回路図である。FIG. 7 is a circuit diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1…入力電源、2,6…交流(AC)スイッチ、3,C
1〜C5…コンデンサ、4,R2〜R4…負荷、5…イ
ンバータ、7〜17…双方向スイッチ、TR1…商用ト
ランス、TR2,TR3…高周波トランス、B1…バッ
テリ、Q1〜Q4…金属酸化膜型電界効果トランジスタ
(MOSFET)。
1 ... Input power supply, 2, 6 ... Alternating current (AC) switch, 3, C
1-C5 ... Capacitor, 4, R2-R4 ... Load, 5 ... Inverter, 7-17 ... Bidirectional switch, TR1 ... Commercial transformer, TR2, TR3 ... High frequency transformer, B1 ... Battery, Q1-Q4 ... Metal oxide film type Field effect transistor (MOSFET).

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 入力電源の停電時に蓄電池から変換回路
を介して負荷に電力を供給する無停電電源装置におい
て、 高周波の交流電圧を発生する第1の変換回路と変圧器の
1次巻線とを前記蓄電池に、変圧器の2次巻線を前記負
荷と入力電源との間に、さらに、変圧器の2次巻線電圧
を商用周波数の交流に変換する第2の変換回路を入力電
源と変圧器の2次巻線との間にそれぞれ接続したことを
特徴とする無停電電源装置。
1. An uninterruptible power supply that supplies power from a storage battery to a load via a conversion circuit when the input power fails, and a first conversion circuit that generates a high-frequency AC voltage and a primary winding of a transformer. To the storage battery, a secondary winding of the transformer between the load and the input power supply, and a second conversion circuit for converting the secondary winding voltage of the transformer to an alternating current of a commercial frequency as the input power supply. An uninterruptible power supply device characterized in that it is respectively connected to the secondary winding of a transformer.
【請求項2】 前記第1の変換回路として蓄電池,変圧
器の1次巻線および半導体スイッチからなる一石コンバ
ータ回路を用いることを特徴とする請求項1に記載の無
停電電源装置。
2. The uninterruptible power supply device according to claim 1, wherein an Ichiseki converter circuit including a storage battery, a primary winding of a transformer, and a semiconductor switch is used as the first conversion circuit.
【請求項3】 前記第1の変換回路として半導体スイッ
チの直列回路とコンデンサの直列回路とを蓄電池と並列
に接続し、変圧器の1次巻線の一端を半導体スイッチの
直列接続点に、変圧器の1次巻線の他端をコンデンサの
直列接続点にそれぞれ接続したハーフブリッジコンバー
タ回路を用いることを特徴とする請求項1に記載の無停
電電源装置。
3. A series circuit of a semiconductor switch and a series circuit of a capacitor are connected in parallel with a storage battery as the first conversion circuit, and one end of a primary winding of a transformer is connected to a series connection point of the semiconductor switch. 2. The uninterruptible power supply device according to claim 1, wherein a half-bridge converter circuit is used in which the other end of the primary winding of the capacitor is connected to a series connection point of capacitors.
【請求項4】 前記第1の変換回路として半導体スイッ
チの直列回路の2つを蓄電池と並列に接続し、2つの直
列回路の半導体スイッチの各直列接続点間に変圧器の1
次巻線を接続したフルブリッジコンバータ回路を用いる
ことを特徴とする請求項1に記載の無停電電源装置。
4. As the first conversion circuit, two series circuits of semiconductor switches are connected in parallel with a storage battery, and a transformer 1 is provided between the series connection points of the semiconductor switches of the two series circuits.
The uninterruptible power supply device according to claim 1, wherein a full bridge converter circuit in which a secondary winding is connected is used.
【請求項5】 前記第2の変換回路として双方向スイッ
チの直列回路を入力電源と並列に接続し、双方向スイッ
チの直列接続点に変圧器の2次巻線の一端を、変圧器の
2次巻線の他端を負荷にそれぞれ接続したものを用いる
ことを特徴とする請求項1ないし4のいずれかに記載の
無停電電源装置。
5. A series circuit of bidirectional switches is connected in parallel with an input power source as the second conversion circuit, and one end of a secondary winding of the transformer is connected to a series connection point of the bidirectional switches, and The uninterruptible power supply according to any one of claims 1 to 4, wherein the other end of the next winding is connected to a load.
【請求項6】 前記第2の変換回路として双方向スイッ
チの直列回路を2つ入力電源と並列に接続するとともに
変圧器の2次巻線を2つに分割し、変圧器の各2次巻線
の一端を双方向スイッチの各直列接続点に、変圧器の各
2次巻線の他端を短絡して負荷にそれぞれ接続したもの
を用いることを特徴とする請求項1ないし4のいずれか
に記載の無停電電源装置。
6. The secondary conversion circuit, wherein two series circuits of bidirectional switches are connected in parallel with an input power source as the second conversion circuit, and the secondary winding of the transformer is divided into two, respectively. 5. One in which one end of the wire is connected to each series connection point of the bidirectional switch, and the other end of each secondary winding of the transformer is short-circuited and connected to the load, respectively. Uninterruptible power supply described in.
【請求項7】 前記入力電源を3相交流電源とし、双方
向スイッチの直列回路を3つ入力電源と並列に接続する
とともに変圧器の2次巻線を3つに分割し、変圧器の各
2次巻線の一端を双方向スイッチの各直列接続点に、変
圧器の各2次巻線の他端を3相負荷にそれぞれ接続する
ことを特徴とする請求項1ないし4のいずれかに記載の
無停電電源装置。
7. The input power source is a three-phase alternating current power source, a series circuit of bidirectional switches is connected in parallel with three input power sources, and the secondary winding of the transformer is divided into three parts, and each of the transformers is divided into three parts. 5. One of the secondary windings is connected to each series connection point of the bidirectional switch, and the other end of each secondary winding of the transformer is connected to a three-phase load, respectively. Uninterruptible power supply described.
【請求項8】 前記入力電源を3相交流電源とし、双方
向スイッチの直列回路を6つ入力電源と並列に接続する
とともに変圧器の2次巻線を6つに分割し、変圧器の各
2次巻線の一端を双方向スイッチの各直列接続点に、変
圧器の各2次巻線の他端を2つずつ短絡して3相負荷に
それぞれ接続することを特徴とする請求項1ないし4の
いずれかに記載の無停電電源装置。
8. The input power source is a three-phase alternating current power source, a series circuit of bidirectional switches is connected in parallel with six input power sources, and a secondary winding of the transformer is divided into six parts. 2. One end of the secondary winding is short-circuited to each series connection point of the bidirectional switch, and the other end of each secondary winding of the transformer is short-circuited two by two to be connected to a three-phase load, respectively. 5. The uninterruptible power supply device according to any one of 4 to 4.
JP2001309420A 2001-10-05 2001-10-05 Uninterruptible power supply unit Pending JP2003116233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001309420A JP2003116233A (en) 2001-10-05 2001-10-05 Uninterruptible power supply unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001309420A JP2003116233A (en) 2001-10-05 2001-10-05 Uninterruptible power supply unit

Publications (1)

Publication Number Publication Date
JP2003116233A true JP2003116233A (en) 2003-04-18

Family

ID=19128575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001309420A Pending JP2003116233A (en) 2001-10-05 2001-10-05 Uninterruptible power supply unit

Country Status (1)

Country Link
JP (1) JP2003116233A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010633A (en) * 2005-07-04 2007-01-18 Minebea Co Ltd High precision angle detector
US7362601B2 (en) 2005-02-28 2008-04-22 Tdk Corporation Power supply device
JP2009201283A (en) * 2008-02-22 2009-09-03 Meidensha Corp Power supply compensator
CN103346612A (en) * 2013-06-25 2013-10-09 王良根 336 VDC direct current uninterruptible power system and power supply method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7362601B2 (en) 2005-02-28 2008-04-22 Tdk Corporation Power supply device
JP2007010633A (en) * 2005-07-04 2007-01-18 Minebea Co Ltd High precision angle detector
JP4644055B2 (en) * 2005-07-04 2011-03-02 ミネベア株式会社 High precision angle detector
JP2009201283A (en) * 2008-02-22 2009-09-03 Meidensha Corp Power supply compensator
CN103346612A (en) * 2013-06-25 2013-10-09 王良根 336 VDC direct current uninterruptible power system and power supply method

Similar Documents

Publication Publication Date Title
US5694307A (en) Integrated AC/DC and DC/DC converter
US7372709B2 (en) Power conditioning system for energy sources
JP3530359B2 (en) Three-phase power factor improving converter
JP2579077B2 (en) Inverter welding power supply
JP3674283B2 (en) Insulated power converter
JP3584686B2 (en) Voltage source power conversion circuit
JP2003116233A (en) Uninterruptible power supply unit
JP6314734B2 (en) Power converter
JPS63268470A (en) Power convertor
JPH0161023B2 (en)
JPH0637375A (en) High frequency power source for laser oscillator
JP2001314086A (en) Ac-dc converter
JP2618931B2 (en) Power converter
JPH03277180A (en) Voltage type inverter
JP2005229666A (en) Uninterruptible power source apparatus
JPH0759360A (en) Uninterruptive power unit
JPH05161357A (en) Power unit
JP2551403Y2 (en) Power supply
JP2004147475A (en) Rectifier
JP2566579B2 (en) Power converter
JPH06292369A (en) Uninterruptible power supply device
JPH04271275A (en) Snubber circuit for rectifier
JP2000333463A (en) Switching power supply
JP2002078358A (en) Power supply for vehicle
JPH02155401A (en) Auxiliary power supply device for electric vehicle

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051124