JP2003115486A - Hydrophobic porous silica material and its manufacturing method - Google Patents

Hydrophobic porous silica material and its manufacturing method

Info

Publication number
JP2003115486A
JP2003115486A JP2001388144A JP2001388144A JP2003115486A JP 2003115486 A JP2003115486 A JP 2003115486A JP 2001388144 A JP2001388144 A JP 2001388144A JP 2001388144 A JP2001388144 A JP 2001388144A JP 2003115486 A JP2003115486 A JP 2003115486A
Authority
JP
Japan
Prior art keywords
porous silica
silica material
hydrophobic
precursor solution
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001388144A
Other languages
Japanese (ja)
Other versions
JP2003115486A5 (en
JP3954842B2 (en
Inventor
Kazuhiro Yamada
和弘 山田
Koichi Tamagawa
孝一 玉川
Nobuaki Seki
関  伸彰
Nobutoshi Fujii
藤井  宣年
Hirohiko Murakami
村上  裕彦
Takahiro Nakayama
高博 中山
Hiroyuki Yamakawa
洋幸 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2001388144A priority Critical patent/JP3954842B2/en
Publication of JP2003115486A publication Critical patent/JP2003115486A/en
Publication of JP2003115486A5 publication Critical patent/JP2003115486A5/en
Application granted granted Critical
Publication of JP3954842B2 publication Critical patent/JP3954842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a porous silica material superior in hydrophobic property on the whole in a simple hydrophobic process, and a porous silica material which surely forms a desired porous structure. SOLUTION: A hydrophobic organic compound (e.g. hexamethyl disiloxane (HMDSO)) having silicon atoms is added as an polymerization inhibitor to a porous silica material precursor (e.g. tetraethoxy silane (TEOS)) and its solution is prepared, and, if stored for a long time, it is heated to form a porous silica material having a desired porous structure. In this forming process, the silica material has a hydrophobic property on the whole to hold a low relative dielectric constant or a high electric insulation property stable for a long time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば半導体回路
素子の絶縁材料など、疎水性を要求される薄膜の材料と
して用いられる多孔質シリカ材料及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous silica material used as a material for a thin film which is required to be hydrophobic, such as an insulating material for semiconductor circuit elements, and a method for producing the same.

【0002】[0002]

【従来の技術】基板上に形成される薄膜の材料として多
孔質シリカ材料が広く用いられている。とりわけ、近年
のLSI分野においては、層間絶縁材料のさらなる低誘
電率化のため、低密度化、即ち、多孔質化された膜構造
を有する低比誘電率酸化物膜(例えばSiO2膜)の材
料として多孔質シリカ材料が提案されている。このよう
な多孔質シリカ材料の代表的な成膜方法として、ゾル-
ゲル法に代表される液相を経由するものが挙げられる。
この成膜方法の優位点は、薄膜材料の高均質性が比較的
容易に達成できる点や、スパッタリングやCVDなどの
気相反応に比べて生産工程が簡素化できて生産効率の向
上が可能であるなどの点である。
2. Description of the Related Art Porous silica materials are widely used as materials for thin films formed on substrates. In particular, in the recent LSI field, in order to further lower the dielectric constant of the interlayer insulating material, a low relative dielectric constant oxide film (for example, SiO 2 film) having a low density, that is, a porous film structure is used. A porous silica material has been proposed as a material. As a typical film forming method for such a porous silica material, sol-
Examples include those that go through a liquid phase represented by a gel method.
The advantage of this film forming method is that high homogeneity of the thin film material can be achieved relatively easily, and that the production process can be simplified and production efficiency can be improved compared to gas phase reactions such as sputtering and CVD. There is such a point.

【0003】ところが、このようにして得られた多孔質
シリカ材料は、上記のように半導体回路素子の絶縁膜用
途に用いる場合、加熱処理を経ていても材料が本来的に
有する吸湿性のため、大気中で放置するだけで周囲の水
分を容易に包含するうえ、水分に対する良好な相溶性ゆ
え、材料の再生処理を行っても包含された水分を完全に
除去することは困難であり、この結果、絶縁膜の電気絶
縁性に悪影響を与えることがある。このため、多孔質シ
リカ材料による絶縁膜形成に際しては、該絶縁膜の疎水
化処理が必要とされている。
However, when the porous silica material thus obtained is used for an insulating film of a semiconductor circuit element as described above, it has an inherent hygroscopicity even if it is subjected to heat treatment, It is difficult to completely remove the contained water even if the material is regenerated due to its good compatibility with water, as well as the inclusion of ambient water easily by leaving it in the air. , The electric insulation of the insulating film may be adversely affected. Therefore, when forming an insulating film using a porous silica material, it is necessary to make the insulating film hydrophobic.

【0004】このような疎水化処理の方法として、従来
は、多孔質シリカ材料を用いて薄膜層を成膜した後、ヘ
キサメチルジシラザンやヘキサメチルジシランなど疎水
基を有する化合物気体を処理室に導入し、400℃程度
の高温で焼成することで成膜表面近傍に存在する化合物
が有するシラノール基などの親水基を、上記の化合物気
体が有する疎水基に置換させ、成膜表面近傍の親水性化
合物を疎水性に変質させて薄膜の疎水化処理を行ってい
る。しかしながら、このような疎水化処理法では、成膜
後に疎水化処理工程を行うため製造工程が複雑になるう
え、疎水化処理工程自身に気相反応を含むため処理装置
が大型化したり複雑化したりするなどの不具合が生じ
る。
Conventionally, as a method for such a hydrophobizing treatment, after forming a thin film layer using a porous silica material, a compound gas having a hydrophobic group such as hexamethyldisilazane or hexamethyldisilane is introduced into a treatment chamber. By introducing and baking at a high temperature of about 400 ° C., hydrophilic groups such as silanol groups present in the compound present in the vicinity of the film-forming surface are replaced by hydrophobic groups present in the above compound gas, and hydrophilicity in the vicinity of the film-forming surface is maintained. The thin film is subjected to hydrophobic treatment by converting the compound to hydrophobic. However, in such a hydrophobizing method, the manufacturing process is complicated because the hydrophobizing step is performed after film formation, and the processing apparatus becomes large or complicated because the hydrophobizing step itself includes a gas phase reaction. There is a problem such as doing.

【0005】さらに、上記従来の疎水化処理法では、成
膜中の化合物において親水基と疎水基との置換反応が行
われるのは、固相-気相反応の界面、即ち、膜表面であ
り、疎水化処理の効果が確保できる領域がせいぜい膜の
表面近傍に留まることになるので、絶縁材料全体で電気
絶縁性を向上させたり維持させたりすることは難しい。
Further, in the above-described conventional hydrophobizing method, the substitution reaction between the hydrophilic group and the hydrophobic group in the compound during film formation is performed at the solid-gas phase reaction interface, that is, the film surface. However, since the region where the effect of the hydrophobizing treatment can be secured remains at most in the vicinity of the surface of the film, it is difficult to improve or maintain the electric insulating property of the entire insulating material.

【0006】また、このように疎水化処理の効果が期待
できるのが膜の表面近傍に過ぎないとなると、経時変化
で膜の表面が摩耗するなどの劣化を受けると、表面近傍
に偏りながらも確保されていた疎水性も、膜表面の劣化
とともに低下し、ついには喪失してしまうことになる。
したがって、上記従来の方法は、膜の疎水性の確保やこ
れに伴う電気絶縁性の確保に最適であるとは言い難い。
Further, if the effect of the hydrophobic treatment can be expected only in the vicinity of the surface of the film as described above, when the surface of the film is deteriorated due to wear over time, it is biased to the vicinity of the surface. The ensured hydrophobicity also decreases with the deterioration of the film surface, and is eventually lost.
Therefore, it is difficult to say that the above-mentioned conventional method is optimal for securing the hydrophobicity of the film and the electrical insulating property associated therewith.

【0007】一方、ゾル-ゲル法に代表される液相によ
る成膜方法では、多孔質シリカ材料の主成分たる二酸化
ケイ素(SiO2)は、 nSi(OC254+4nH2O→nSi(OH)4+4nC25OH…(1) に表される前駆体(テトラエトキシシラン)の酸性若し
くはアルカリ性条件下における加水分解反応と、 nSi(OH)4→nSiO2+2nH2O …(2) で表される生成物(二酸化ケイ素)の重合反応とを、界
面活性剤の存在下で行うことにより得られる。このよう
に、多孔質シリカ材料の主成分たる二酸化ケイ素は、当
初の前駆体溶液の粒子溶液(ゾル)の状態から、焼結な
どの加熱処理を経て固体物(ゲル)として得られる。
On the other hand, in the liquid phase film forming method represented by the sol-gel method, silicon dioxide (SiO 2 ) which is the main component of the porous silica material is nSi (OC 2 H 5 ) 4 + 4nH 2 O → nSi. (OH) 4 + 4nC 2 H 5 OH (1) Hydrolysis reaction of the precursor (tetraethoxysilane) represented by (1) under acidic or alkaline conditions, and nSi (OH) 4 → nSiO 2 + 2nH 2 O (2) ) The polymerization reaction of the product (silicon dioxide) represented by the formula (1) is carried out in the presence of a surfactant. Thus, silicon dioxide, which is the main component of the porous silica material, is obtained as a solid (gel) from the initial state of the particle solution (sol) of the precursor solution through heat treatment such as sintering.

【0008】ところで、例えばMobil社製MCM-
41のように超高分子鋳型により形成される周期的メソ
構造体を有する多孔質シリカ材料、即ち、周期的メソポ
ーラスシリカ材料を、ゾル−ゲル法を用いて製造する場
合、上記反応式(1)及び(2)の反応に用いた界面活
性剤の液晶相を鋳型としてメソ構造体を形成することと
なる。
By the way, for example, MCM-made by Mobil
In the case of producing a porous silica material having a periodic mesostructure formed by a suprapolymer template such as 41, that is, a periodic mesoporous silica material by using the sol-gel method, the above reaction formula (1) And, the mesostructure is formed by using the liquid crystal phase of the surfactant used in the reaction of (2) as a template.

【0009】ところが、このメソ構造体の形態は、上記
の反応式(1)及び(2)に示される各反応の進行状態
に依存する。即ち、反応式(1)の加水分解反応の進行
が低調な場合は、多孔質シリカ材料の主骨格となるSi
2の供給量が不足するためメソ構造を形成できなくな
ることがある。また、逆に、その進行が過剰な場合に
は、加水分解反応とこれに続く反応式(2)の重合反応
により生成されるシリカオリゴマーの分子量が巨大で複
雑になり、界面活性剤液晶相を鋳型として形成されるメ
ソ構造体が不規則なものとなり易い。このように反応の
進行状態の差異が生じるのは、上記の加水分解反応が完
全に終結する前の種々の状態で、上記の重合反応が開始
されることなどのためである。このため、ゾル−ゲル法
を用いた周期的メソポーラスシリカ材料の製造は大量生
産に不向きで工業的製法として不利である。
However, the morphology of this mesostructure depends on the progress state of each reaction shown in the above reaction formulas (1) and (2). That is, when the progress of the hydrolysis reaction of the reaction formula (1) is slow, Si which is the main skeleton of the porous silica material
The supply amount of O 2 may be insufficient, so that the mesostructure may not be formed. On the contrary, when the progress is excessive, the molecular weight of the silica oligomer produced by the hydrolysis reaction and the subsequent polymerization reaction of the reaction formula (2) becomes huge and complicated, and the surfactant liquid crystal phase The mesostructure formed as a template tends to be irregular. The difference in the progress state of the reaction is caused because the polymerization reaction is started in various states before the hydrolysis reaction is completely terminated. Therefore, the production of the periodic mesoporous silica material using the sol-gel method is unsuitable for mass production and is disadvantageous as an industrial production method.

【0010】そこで、反応式(1)及び(2)の反応を
制御するため、従来は、前駆体溶液のpHや溶媒を変更
し、周期的メソポーラスシリカ材料を生成するための所
望の前駆体溶液状態を持続させている。しかしながら、
このものの所望状態の持続時間は数時間程度であり、工
業生産上大きな問題となる。
Therefore, in order to control the reactions of the reaction formulas (1) and (2), conventionally, a desired precursor solution for producing a periodic mesoporous silica material is prepared by changing the pH and the solvent of the precursor solution. The state is maintained. However,
The desired state of this product lasts for several hours, which poses a serious problem in industrial production.

【0011】また、前駆体溶液の所望状態をより長期化
させるため、上記の前駆体溶液の加水分解反応を所定段
階まで進行させた後に、これを低温状態で保存して加水
分解反応の進行を抑制することが行われる。しかし、こ
のものは反応溶液を低温保存するための取り扱いや温度
管理のための工程増加を伴ううえ、反応時と保存時に溶
液の温度を上下させることを繰り返すため、反応溶液の
性能管理がさらに難しくなるという問題がある。
In order to extend the desired state of the precursor solution for a longer period of time, the hydrolysis reaction of the precursor solution is allowed to proceed to a predetermined stage and then stored at a low temperature to allow the hydrolysis reaction to proceed. Suppression is done. However, this method involves additional steps for handling the reaction solution at low temperature and controlling the temperature, and since the temperature of the solution is repeatedly raised and lowered during the reaction and storage, it is more difficult to control the performance of the reaction solution. There is a problem of becoming.

【0012】[0012]

【発明が解決しようとする課題】本発明は、上記問題点
に鑑み、簡易な疎水化処理工程により、材料全体で疎水
性に優れ、また、所望の多孔質構造を確実に形成し得る
多孔質シリカ材料及びその製造方法を提供することを課
題としている。
In view of the above-mentioned problems, the present invention provides a porous material capable of reliably forming a desired porous structure with excellent hydrophobicity as a whole material by a simple hydrophobizing treatment step. An object is to provide a silica material and a method for producing the same.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するた
め、本発明では、シリコン原子を有する疎水性有機化合
物を分散させた状態で含有して疎水性多孔質シリカ材料
を構成する。これによれば、得られる多孔質シリカ材料
は、疎水性有機化合物が内部で均一に含有された状態で
構成され、疎水性を有するので、その後の製造工程で疎
水化処理が不要である。
In order to solve the above problems, the present invention comprises a hydrophobic porous silica material containing a hydrophobic organic compound having a silicon atom in a dispersed state. According to this, the obtained porous silica material is formed in a state in which the hydrophobic organic compound is uniformly contained therein and has hydrophobicity, so that the hydrophobic treatment is unnecessary in the subsequent manufacturing process.

【0014】また、前記シリコン原子を有する疎水性有
機化合物を、多孔質シリカ材料の前駆体溶液に溶解ある
いは混合させることにより該前駆体溶液中に均一に分散
させると、該前駆体溶液から該多孔質シリカ材料が形成
される際に、該シリカ材料中に均一に分散して含有され
た疎水性有機化合物により疎水性を備えた多孔質シリカ
材料が形成されるので、このような多孔質シリカ材料
は、上記と同様に、その後の製造工程での疎水化処理を
要することなく、電気絶縁性を全体的に確保し得る。
Further, when the hydrophobic organic compound having a silicon atom is dissolved or mixed in a precursor solution of a porous silica material so as to be uniformly dispersed in the precursor solution, the porous solution is removed from the precursor solution. When a porous silica material is formed, a hydrophobic organic compound uniformly dispersed and contained in the silica material forms a porous silica material having hydrophobicity. In the same manner as described above, the electric insulation property can be entirely ensured without requiring a hydrophobic treatment in the subsequent manufacturing process.

【0015】さらに、これらのシリコン原子を有する疎
水性有機化合物は、疎水基として炭素数6以下のアルキ
ル基を1個以上有するシラン化合物、シラザン化合物ま
たはシロキサン化合物のいずれかから成ることが望まし
い。このような化合物は、疎水基たるアルキル基に起因
して疎水性を有するので、これらをシリカ材料全体に一
様に含有して得られる多孔質シリカ材料は、改めて疎水
化処理を行うことを必要とせず、電気絶縁性に優れてい
る。
Further, the hydrophobic organic compound having a silicon atom is preferably composed of any one of a silane compound, a silazane compound and a siloxane compound having at least one alkyl group having a carbon number of 6 or less as a hydrophobic group. Since such a compound has hydrophobicity due to the alkyl group which is a hydrophobic group, the porous silica material obtained by uniformly containing them in the entire silica material needs to be subjected to a hydrophobic treatment again. It has excellent electrical insulation.

【0016】また、シリコン原子を有する疎水性有機化
合物として、疎水基たる炭素数5以下のアルキル基を1
個以上有する非重合性のシラン化合物またはシロキサン
化合物のいずれかから成る重合禁止剤を用いることもで
きる。これにより、上記反応式(1)及び(2)に示す
多孔質シリカ材料の前駆体溶液の加水分解反応及びシリ
カオリゴマーの重合反応が過剰に進行することを抑制で
き、このため、周期的メソポーラスシリカ材料を生成す
るための所望の前駆体溶液状態を長期に亘って保持させ
ることができる。したがって、これを含有して得られる
多孔質シリカ材料は、所望の多孔質構造を確実に形成で
きる。
As the hydrophobic organic compound having a silicon atom, an alkyl group having 5 or less carbon atoms, which is a hydrophobic group, is used.
It is also possible to use a polymerization inhibitor composed of one or more non-polymerizable silane compounds or siloxane compounds. This makes it possible to prevent the hydrolysis reaction of the precursor solution of the porous silica material and the polymerization reaction of the silica oligomer shown in the above reaction formulas (1) and (2) from proceeding excessively, and therefore, the periodic mesoporous silica. The desired precursor solution state for producing the material can be maintained for a long period of time. Therefore, the porous silica material obtained by containing it can surely form a desired porous structure.

【0017】そして、上記の重合禁止剤の最適例とし
て、ヘキサメチルジシロキサンを挙げることができる。
Hexamethyldisiloxane can be mentioned as an optimum example of the above-mentioned polymerization inhibitor.

【0018】さらに、このようにして得られる疎水性多
孔質シリカ材料は、長期間にわたり疎水性を安定的に保
つので優れた電気絶縁性を維持でき、基板上に形成され
る薄膜材料や、半導体回路素子の絶縁材料に用いるのに
好適である。
Furthermore, the hydrophobic porous silica material thus obtained can maintain excellent electrical insulation because it maintains stable hydrophobicity for a long period of time, and can be used as a thin film material or a semiconductor formed on a substrate. It is suitable for use as an insulating material for circuit elements.

【0019】また、上記のような疎水性多孔質シリカ材
料の製造方法として、シリコン原子を有する疎水性有機
化合物を添加した前記多孔質シリカ材料の前駆体溶液を
加熱処理すれば、多孔質シリカ材料の形成時に該シリカ
材料が疎水性を有することができ、材料全体に優れた電
気絶縁性を確保できる。
As a method for producing the above hydrophobic porous silica material, the precursor solution of the porous silica material to which the hydrophobic organic compound having a silicon atom is added is heat-treated to obtain a porous silica material. The silica material can have hydrophobicity during the formation of, and excellent electrical insulation can be ensured for the entire material.

【0020】また、この場合、多孔質シリカ材料の前駆
体溶液に添加するシリコン原子を有する疎水性有機化合
物として、上記の重合禁止剤を用いて、前駆体溶液中に
て進行中の前駆体の加水分解反応と重合反応とを停止で
きるものとすれば、これらの反応が過剰に進行すること
を抑制でき、このため、所望の前駆体溶液状態を長期に
亘って保持させることができる。したがって、多孔質構
造のシリカ材料を確実に形成できる。
Further, in this case, the above-mentioned polymerization inhibitor is used as the hydrophobic organic compound having a silicon atom to be added to the precursor solution of the porous silica material, and the precursor in progress in the precursor solution is used. If the hydrolysis reaction and the polymerization reaction can be stopped, it is possible to suppress the excessive progress of these reactions, and thus it is possible to maintain a desired precursor solution state for a long period of time. Therefore, the silica material having a porous structure can be reliably formed.

【0021】そして、この場合、用いた重合禁止剤の添
加量により、多孔質シリカ材料の前駆体溶液の粘度また
は多孔質シリカ材料オリゴマーの重合度を制御するもの
とすれば、さらに反応式(1)及び(2)の反応を高い
精度で制御でき、前駆体溶液の安定性を調整することが
可能となる。
Further, in this case, if the viscosity of the precursor solution of the porous silica material or the degree of polymerization of the porous silica material oligomer is controlled by the addition amount of the used polymerization inhibitor, the reaction formula (1 The reactions (1) and (2) can be controlled with high accuracy, and the stability of the precursor solution can be adjusted.

【0022】なお、上述中、分散及び含有した状態と
は、該疎水性有機化合物が、シリカ材料中に、単に混合
相溶された状態でも良いし、該疎水性有機物の一部がシ
リカ材料と反応して結合した状態でも良い。
In the above description, the state of being dispersed and contained may be a state in which the hydrophobic organic compound is simply mixed and compatibilized in the silica material, or a part of the hydrophobic organic compound is mixed with the silica material. It may be in a state of reacting and binding.

【0023】[0023]

【発明の実施の形態】本発明の疎水性多孔質シリカ材料
の製造方法の第1の態様は、上記したように、アルキル
基のような疎水基を有するシリコン含有有機化合物を、
多孔質シリカ材料の前駆体たるシリコンアルコキシド溶
液に添加し、この前駆体溶液を酸加水分解またはアルカ
リ加水分解して得られる溶液を加熱処理して、前駆体溶
液中の溶媒や水、酸またはアルカリ触媒などを蒸発させ
ながら、また、反応系にその他の有機物などが含まれて
いる場合にはその物質を取り除くことにより、多孔質材
料の形成時に同時に疎水性を備えた多孔質シリカ材料を
作成するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The first aspect of the method for producing a hydrophobic porous silica material of the present invention is, as described above, a silicon-containing organic compound having a hydrophobic group such as an alkyl group,
It is added to the silicon alkoxide solution that is the precursor of the porous silica material, and the solution obtained by subjecting this precursor solution to acid hydrolysis or alkali hydrolysis is subjected to heat treatment, and the solvent, water, acid or alkali in the precursor solution is added. A porous silica material having hydrophobicity is formed at the same time as the formation of the porous material by evaporating the catalyst and the like, and when other organic substances are included in the reaction system, the substance is removed. It is a thing.

【0024】また、上記の加熱処理前に、多孔質シリカ
材料の前駆体溶液を基板上にスピンコート等により塗布
して材料の形成を行うと、得られる多孔質シリカ材料は
基板上の薄膜として成膜される。
Before the above heat treatment, the precursor solution of the porous silica material is applied to the substrate by spin coating or the like to form the material, and the obtained porous silica material is formed as a thin film on the substrate. It is formed into a film.

【0025】多孔質シリカ材料の前駆体としてはテトラ
エトキシシラン(以下TEOSとも言う。)のようなシ
リコンアルコキシドが用いられる。また、疎水基を有す
るシリコン含有有機物としては、ヘキサメチルジシラ
ン、ジメチルジエトキシシラン、メチルトリメトキシシ
ラン、メチルトリエトキシシラン、トリエトキシシラ
ン、ジメチルジメトキシシランのようなメチル基を有す
るシラン化合物や、ヘキサメチルジシラザンのようなメ
チル基を有するジシラザン化合物、または、ヘキサメチ
ルジシロキサンのようなメチル基を有するシロキサン化
合物が望ましい。加水分解の触媒としては、酸によるも
のでもアルカリによるものであってもよく、酸加水分解
による場合、硝酸や塩酸などの無機酸、ギ酸などの有機
酸を用いることができ、また、アルカリ加水分解による
場合はアンモニア等を用いることができる。その他界面
活性剤としてヘキサデシルトリメチルアンモニウム塩化
物などのアンモニア塩化物を用いることが好ましく、こ
のアンモニア塩化物が蒸発するにつれて、得られるシリ
カ材料内に多数の空隙部分が生じ、上記のように基板上
に成膜される場合には、かくして多孔質化された薄膜構
造が形成される。
A silicon alkoxide such as tetraethoxysilane (hereinafter also referred to as TEOS) is used as a precursor of the porous silica material. As the silicon-containing organic substance having a hydrophobic group, a silane compound having a methyl group such as hexamethyldisilane, dimethyldiethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, triethoxysilane, and dimethyldimethoxysilane, and hexa A disilazane compound having a methyl group such as methyldisilazane or a siloxane compound having a methyl group such as hexamethyldisiloxane is desirable. The catalyst for hydrolysis may be either an acid or an alkali. In the case of acid hydrolysis, an inorganic acid such as nitric acid or hydrochloric acid or an organic acid such as formic acid can be used. In this case, ammonia or the like can be used. In addition, it is preferable to use an ammonia chloride such as hexadecyltrimethylammonium chloride as a surfactant, and as this ammonia chloride evaporates, a large number of voids are generated in the obtained silica material, and as described above, it becomes When a film is formed on the substrate, a porous thin film structure is thus formed.

【0026】上記前駆体溶液に用いる物質の使用量は、
前駆体たる有機シラン1モルに対して、疎水基を有する
シリコン含有有機化合物として0.01〜0.3モルを
添加したものが望ましい。このシリコン原子を有する疎
水性有機化合物の添加量を適宜選択することにより、所
望の疎水性を有するように調整された多孔質シリカ材料
を選択的に作成することが可能である。
The amount of the substance used in the precursor solution is
It is desirable to add 0.01 to 0.3 mol of the silicon-containing organic compound having a hydrophobic group to 1 mol of the organosilane as a precursor. By appropriately selecting the addition amount of the hydrophobic organic compound having a silicon atom, it is possible to selectively prepare a porous silica material adjusted to have a desired hydrophobicity.

【0027】上記したように、疎水性多孔質シリカ材料
の前駆体溶液を半導体基板上に通常のスピンコート法な
どの塗布方法により塗布した後は、ついで公知の赤外線
加熱炉などを用いて加熱処理し、水−アルコール系溶
媒、酸またはアンモニアその他の物質などを蒸発させ、
多孔質シリカ膜を形成する。この場合の加熱処理条件
は、前記溶媒及び酸またはアンモニアなどを蒸発させる
ことができ多孔質膜を得ることができる条件であれば、
特に制限はない。
As described above, after the precursor solution of the hydrophobic porous silica material is applied on the semiconductor substrate by the usual spin coating method or the like, it is then heat treated using a known infrared heating furnace or the like. Water-alcohol solvent, acid or ammonia and other substances are evaporated,
Form a porous silica film. In this case, the heat treatment condition is such that the solvent and the acid or ammonia can be evaporated to obtain a porous film.
There is no particular limitation.

【0028】なお、比誘電率の低い多孔質膜を得るため
には、好ましくは、空気中で50〜350℃程度の温度
で処理して主として溶媒を蒸発させ、次いで、例えば1
00〜10-5Pa程度の真空中、界面活性剤その他の有
機物質などを蒸発させることのできる温度(例えば、2
50〜500℃)で、得られる多孔質膜の構造が破壊さ
れない時間の間熱処理すればよい。もちろん、酸化等が
問題になる場合は、全て不活性ガス中や、真空中にて処
理する必要がある。
In order to obtain a porous film having a low relative dielectric constant, it is preferable to treat the film in air at a temperature of about 50 to 350 ° C. to evaporate mainly the solvent, and then to e.g.
In a vacuum of about 00 to 10 -5 Pa, at a temperature at which a surfactant and other organic substances can be evaporated (for example, 2
The heat treatment may be performed at 50 to 500 ° C. for a time that does not destroy the structure of the obtained porous film. Of course, when oxidation or the like becomes a problem, it is necessary to process all in an inert gas or in vacuum.

【0029】このようにして得られた多孔質シリカ膜
は、撥水膜と言えるほどの疎水性を有し、水中に含浸さ
せても膜質が変化せず疎水性を保つことができる。例え
ば、水銀プローブ法などの公知の方法によりこの多孔質
膜の比誘電率を測定すると、水中に含浸した後も比誘電
率の変化は見られず、水分子が吸着されない疎水性膜と
して形成されていることが分る。そして、このような疎
水性膜により所望の電気的特性、例えば低比誘電率値を
有する多孔質シリカ膜を形成すれば、その後の半導体プ
ロセス中の各種ウェット処理において、比誘電率の上昇
がほとんどない、安定した電気的特性を持つ層間絶縁膜
を得ることができる。
The porous silica film thus obtained has a hydrophobic property that can be said to be a water-repellent film, and even when impregnated in water, the film quality does not change and the hydrophobic property can be maintained. For example, when the relative permittivity of this porous film is measured by a known method such as the mercury probe method, no change in the relative permittivity is observed even after impregnation in water, and a hydrophobic film in which water molecules are not adsorbed is formed. I know that When a porous silica film having a desired electrical characteristic, for example, a low relative dielectric constant value is formed by such a hydrophobic film, the relative dielectric constant is hardly increased in various wet treatments during the subsequent semiconductor process. It is possible to obtain an interlayer insulating film having stable electrical characteristics.

【0030】なお、本実施の形態においては、本発明の
好適例として、半導体回路素子の絶縁膜材料を挙げてい
るが、本発明の適用はこの用途に制限されるものではな
く、例えば、水溶液中での表面加工が必要な防水膜電気
材料、触媒材料、フィルター材料などの用途にも適用で
きる。
In the present embodiment, the insulating film material of the semiconductor circuit element is given as a preferred example of the present invention, but the application of the present invention is not limited to this application, and for example, an aqueous solution. It can also be applied to applications such as waterproof membrane electrical materials, catalyst materials, and filter materials that require surface treatment inside.

【0031】また、本発明では、多孔質シリカ材料の前
駆体として好ましくはTEOSなどの有機シランを用い
ている。このものでは、界面活性剤の種類や添加量を調
整して、例えば空隙率60%以上の低比誘電率の層間絶
縁膜を作製することが可能であり、空隙率が高くなるに
従って、例えば80%程度に達すると、絶縁膜を構成す
る材料の物性の比誘電率に対する寄与は少なくなり、空
気が支配的になるため、非常に比誘電率の小さい層間絶
縁膜が得られるのである。また、有機シランの替りに加
水分解可能なアルコキシドを用いても、有機シランの場
合と同様に多孔質膜を作製することができる。このよう
なアルコキシドとしては、例えば、Ti(OC37)4
Zr(OC49)4などの周期表4A族に属するチタン、
ジルコニウムなどのアルコキシドが用いられ得る。
In the present invention, organosilane such as TEOS is preferably used as the precursor of the porous silica material. With this, it is possible to prepare an interlayer insulating film having a low relative dielectric constant of, for example, a porosity of 60% or more by adjusting the kind and the amount of addition of the surfactant, and as the porosity increases, for example, 80 %, The contribution of the physical properties of the material forming the insulating film to the relative dielectric constant decreases, and air becomes dominant, so that an interlayer insulating film having a very small relative dielectric constant can be obtained. Further, even if a hydrolyzable alkoxide is used instead of the organic silane, a porous film can be produced as in the case of the organic silane. Examples of such alkoxides include Ti (OC 3 H 7 ) 4 ,
Titanium belonging to Group 4A of the periodic table, such as Zr (OC 4 H 9 ) 4 ;
Alkoxides such as zirconium may be used.

【0032】本発明の疎水性多孔質シリカ材料の製造方
法の第2の態様は、上記したように、アルキル基のよう
な疎水基を有する非重合性のシリコン含有有機化合物
を、多孔質シリカ材料の前駆体たるシリコンアルコキシ
ド溶液に重合禁止剤として添加し、この前駆体溶液を酸
加水分解またはアルカリ加水分解して得られる溶液を加
熱処理して、前駆体溶液中の溶媒や水、酸またはアルカ
リ触媒などを蒸発させながら、また、反応系にその他の
有機物などが含まれている場合にはその物質を取り除く
ことにより、多孔質材料の形成時に同時に疎水性を備え
た多孔質シリカ材料を作成するものである。
The second embodiment of the method for producing a hydrophobic porous silica material of the present invention is, as described above, a non-polymerizable silicon-containing organic compound having a hydrophobic group such as an alkyl group, and a porous silica material. Is added as a polymerization inhibitor to the precursor silicon alkoxide solution, and the solution obtained by subjecting this precursor solution to acid hydrolysis or alkali hydrolysis is subjected to heat treatment, and the solvent, water, acid or alkali in the precursor solution is added. A porous silica material having hydrophobicity is formed at the same time as the formation of the porous material by evaporating the catalyst and the like, and when other organic substances are included in the reaction system, the substance is removed. It is a thing.

【0033】そして、上記の重合禁止剤以外は使用物質
や用途は前述した第1の態様と同様である。このとき、
前駆体溶液に用いる物質の使用量は、前駆体たる有機シ
ラン中のシリコン原子1モルに対して、非重合性のシリ
コン含有有機化合物として0.01〜0.3モル添加し
たものが望ましい。添加量がこの数値範囲より過小にな
ると、長期間経過時に前駆体溶液中で反応式(2)の重
合反応を完了してこれがゲル化してしまい、逆にこの数
値範囲より過大になると、前駆体溶液の加水分解反応が
不十分となり、得られる周期的メソポーラスシリカ材料
を所望構造で形成できなくなる。
The substances used and the uses other than the above-mentioned polymerization inhibitor are the same as those in the first embodiment. At this time,
The amount of the substance used in the precursor solution is preferably 0.01 to 0.3 mol of the non-polymerizable silicon-containing organic compound added to 1 mol of the silicon atom in the precursor organosilane. If the added amount is less than this numerical range, the polymerization reaction of the reaction formula (2) will be completed in the precursor solution after a long period of time and gelation will occur. The hydrolysis reaction of the solution becomes insufficient, and the obtained periodic mesoporous silica material cannot be formed with a desired structure.

【0034】さらに、この重合禁止剤の添加量を適宜選
択することにより、所望粘度の多孔質シリカ材料の前駆
体溶液または所望重合度の多孔質シリカ材料オリゴマー
を選択的に作成することが可能であり、長期保存などの
ため高い安定度を維持するように調整した前駆体溶液を
得ることができる。
Further, by appropriately selecting the addition amount of the polymerization inhibitor, it is possible to selectively prepare a precursor solution of a porous silica material having a desired viscosity or a porous silica material oligomer having a desired degree of polymerization. Therefore, it is possible to obtain a precursor solution adjusted so as to maintain high stability for long-term storage or the like.

【0035】そして、このようにして得られた前駆体溶
液は、重合禁止剤の添加による調整を行った後、室温で
60日以上保存しても溶液粘度が変化せずゲル化も起こ
さない。
The precursor solution thus obtained does not change in solution viscosity and does not gel even if it is stored at room temperature for 60 days or more after being adjusted by adding a polymerization inhibitor.

【0036】そして、重合禁止剤の添加による調整直後
はもちろんのこと、調整後室温で60日以上保存したも
のを、第1の態様同様に、半導体基板上に通常のスピン
コート法などの塗布方法により塗布することにより、周
期的構造を有するメソポーラスシリカ材料を基板上に形
成することができる。また、次いで、公知の赤外線加熱
炉などを用いて加熱処理し、水−アルコール系溶媒、酸
またはアンモニアその他界面活性剤などを蒸発させ、周
期的メソポーラスシリカ膜を形成することができる。
Then, not only immediately after the adjustment by adding the polymerization inhibitor, but also after the adjustment and stored at room temperature for 60 days or more, a coating method such as a usual spin coating method is applied to the semiconductor substrate in the same manner as in the first embodiment. By coating with, the mesoporous silica material having a periodic structure can be formed on the substrate. Further, next, heat treatment is performed using a known infrared heating furnace or the like to evaporate water-alcohol solvent, acid or ammonia and other surfactants, etc. to form a periodic mesoporous silica film.

【0037】[0037]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0038】[実施例1]TEOSとして1モルとH2
として11モルとヘキサデシルトリメチルアンモニウム
塩化物(以下、C16TACとも言う。)として0.2
5モルとヘキサメチルジシロキサン(以下HMDSOと
も言う。)を酸性(pH1〜3、硝酸)の塗布溶媒中に
混合して成る混合溶液を20℃で反応させて、均一な多
孔質シリカ材料の前駆体溶液を得た。ここで、該溶液中
のTEOS1モルに対する上記HMDSOの添加量を
0、5、10、15及び20モル%の5種類に調整した
ものを用意し、それぞれ塗布液とした。
Example 1 1 mol of TEOS and H 2 O
11 mol and hexadecyltrimethylammonium chloride (hereinafter, also referred to as C16TAC) 0.2
A precursor of a uniform porous silica material is obtained by reacting a mixed solution of 5 mol and hexamethyldisiloxane (hereinafter also referred to as HMDSO) in an acidic (pH 1-3, nitric acid) coating solvent at 20 ° C. A body solution was obtained. Here, prepared were prepared by adjusting the addition amount of the above HMDSO to 5 kinds of 0, 5, 10, 15 and 20 mol% with respect to 1 mol of TEOS in the solution, each of which was used as a coating liquid.

【0039】半導体基板上に、各塗布液をいずれも15
00rpmでスピンコートした後、公知の赤外線加熱炉
を用いて、該基板を、初めに大気雰囲気下70℃で処理
し、次に、2Pa条件下400℃で焼成処理した。これ
らの処理に要する条件、即ち、温度条件、昇温時間及び
保持時間は、特に制限されるものではなく、これにより
得られる多孔質シリカ膜の膜質性能を損なわない条件範
囲であれば良く、本実施例における焼成処理の条件は、
昇温時間を15分、保持時間を15分とした。
Each of the coating liquids was applied on the semiconductor substrate by 15 times.
After spin coating at 00 rpm, the substrate was first treated at 70 ° C. in an air atmosphere using a known infrared heating furnace, and then baked at 400 ° C. under 2 Pa. The conditions required for these treatments, that is, the temperature conditions, the temperature raising time and the holding time are not particularly limited as long as they are in a condition range that does not impair the film quality performance of the porous silica film obtained by the treatment. The conditions for the firing treatment in the examples are:
The temperature rising time was 15 minutes and the holding time was 15 minutes.

【0040】このようにして得られた、各多孔質シリカ
膜について、温度20℃及び湿度60%の条件下で吸湿
試験を行い、電気的特性の代表的パラメータとして比誘
電率の時間変化を測定した。なお、比誘電率の測定は1
MHz設定時の水銀プローブ法によるものとした。得ら
れた測定結果を図1に示す。
Each porous silica film thus obtained was subjected to a moisture absorption test under the conditions of a temperature of 20 ° C. and a humidity of 60%, and a change in relative permittivity with time was measured as a representative parameter of electrical characteristics. did. The measurement of relative permittivity is 1
The mercury probe method was used when the MHz was set. The obtained measurement result is shown in FIG.

【0041】図1から明らかなように、HMDSOの添
加量が増大するにしたがって比誘電率が経時変化は減少
し、シリカ膜の吸湿に起因する比誘電率の上昇が抑制さ
れることが分る。したがって、得られたシリカ膜は疎水
性を有すると言える。さらに、図1より、HMDSOの
添加量を適宜選択すると、シリカ膜の疎水性を選択的に
調整できることが分る。
As is clear from FIG. 1, the change in relative permittivity with time decreases as the amount of HMDSO added increases, and the increase in relative permittivity due to moisture absorption of the silica film is suppressed. . Therefore, it can be said that the obtained silica film has hydrophobicity. Further, it can be seen from FIG. 1 that the hydrophobicity of the silica film can be selectively adjusted by appropriately selecting the addition amount of HMDSO.

【0042】上記[実施例1]に示すもののうち、多孔質
シリカ材料の前駆体溶液中のHMDSOの添加量を0、
15及び20モル%(対TEOS1モル)の3種類に調
整したものを、それぞれ塗布液として用いて基板上に多
孔質シリカ膜を形成し、さらに該シリカ膜を純水中に浸
漬させて、いわゆる水漬けの状態を30分間維持し、そ
の後、これらの比誘電率を測定した。このとき得られた
測定結果を下記[表1]に示す。
Among those shown in the above [Example 1], the addition amount of HMDSO in the precursor solution of the porous silica material was 0,
Three types of 15 and 20 mol% (based on TEOS 1 mol) were used as coating liquids to form a porous silica film on the substrate, and the silica film was dipped in pure water to form a so-called so-called The state of being soaked in water was maintained for 30 minutes, after which the relative permittivity thereof was measured. The measurement results obtained at this time are shown in [Table 1] below.

【0043】[0043]

【表1】 [Table 1]

【0044】[表1]に示されるように、HMDSOを、
それぞれ15モル%及び20モル%(対TEOS1モ
ル)添加した場合の比誘電率はほとんど変化しておら
ず、HMDSOの添加により、得られた多孔質シリカ膜
が安定した疎水性を有することが分る。
As shown in [Table 1], HMDSO is
It was found that the relative dielectric constants when adding 15 mol% and 20 mol% (relative to 1 mol of TEOS) hardly changed, and the addition of HMDSO showed that the obtained porous silica film had stable hydrophobicity. It

【0045】[実施例2]HMDSOの替りに、ヘキサメ
チルジシラザンを用いた以外は[実施例1]と同様にして
塗布液を作成した。ここで、用いたヘキサメチルジシラ
ザンの添加量は、多孔質シリカ材料の前駆体溶液中のT
EOS1モルに対して、0及び10モル%の2種類に調
整したものを用意してそれぞれ多孔質シリカ膜を形成し
た。
[Example 2] A coating solution was prepared in the same manner as in [Example 1] except that hexamethyldisilazane was used instead of HMDSO. Here, the addition amount of hexamethyldisilazane used is T in the precursor solution of the porous silica material.
Two kinds of EOS (1 mol) were prepared and 0 and 10 mol% were prepared, and porous silica films were respectively formed.

【0046】得られた該シリカ膜について、[実施例1]
と同様に、温度20℃及び湿度60%の条件下で吸湿試
験を行い、比誘電率の時間変化を測定し、測定結果を図
2に示す。
Regarding the obtained silica film, [Example 1]
Similarly to the above, a moisture absorption test was performed under the conditions of a temperature of 20 ° C. and a humidity of 60%, and a change in relative permittivity with time was measured. The measurement results are shown in FIG.

【0047】図2から明らかなように、ヘキサメチルジ
シラザンが添加された多孔質シリカ膜では、該シリカ膜
の吸湿に起因する比誘電率の上昇が抑制されることが分
る。したがって、得られた多孔質シリカ膜は疎水性を有
すると言える。
As is clear from FIG. 2, in the porous silica film to which hexamethyldisilazane is added, the increase in the relative dielectric constant due to the moisture absorption of the silica film is suppressed. Therefore, it can be said that the obtained porous silica membrane has hydrophobicity.

【0048】[実施例3]多孔質シリカ材料の前駆体溶液
中のTEOS1モルに対する上記HMDSOの添加量を
0、10及び15モル%の3種類に調整したものを用意
し、それぞれ塗布液として基板上にスピンコートし、
[実施例1]と同様に焼成処理して得られる各試料を、オ
ージェ電子分光測定法により、Si:O=1:2の比と
なるように感度調整し、各試料中の炭素(C)、酸素
(O)、窒素(N)及びシリコン(Si)の各元素の原
子含有量を測定し、測定結果を図3乃至図5に示した。
各図において、縦軸は含有元素の原子の組成比を、横軸
は成膜の深さ方向変位に比例するスパッタ時間を示す。
[Example 3] Three kinds of HMDSO with respect to 1 mol of TEOS in a precursor solution of a porous silica material were adjusted to 0, 10 and 15 mol%, and prepared as coating liquids for substrates. Spin coat on top,
The sensitivity of each sample obtained by performing the firing treatment in the same manner as in [Example 1] was adjusted by Auger electron spectroscopy so that the ratio of Si: O was 1: 2, and carbon (C) in each sample was adjusted. The atomic content of each element of oxygen, oxygen (O), nitrogen (N) and silicon (Si) was measured, and the measurement results are shown in FIGS. 3 to 5.
In each figure, the vertical axis represents the composition ratio of the atoms of the contained element, and the horizontal axis represents the sputtering time proportional to the displacement in the depth direction of film formation.

【0049】上記前駆体溶液中のHMDSOが0、10
及び15モル%(対TEOS1モル)の各添加量である
場合において、焼成処理して得られる試料中の炭素原子
の含有量比、即ち、 C/(C+O+N+Si) (上記式において各元素記号はそれぞれ対応する原子の
原子数を示す。)は、それぞれ、0、12及び20at
m%にて含有されていることが分る。ここで、アンモニ
ア塩化物に由来する窒素(N)原子はほとんど含有され
ていない。これは、加水分解時に必要なpH調整剤たる
硝酸や、界面活性剤として作用するアンモニア塩化物
が、加熱処理によりほぼ完全に蒸発したことを示す。多
孔質シリカ膜の膜構造の空隙は、このようなアンモニア
塩化物が占有していた痕跡部分から生じるものである。
HMDSO in the precursor solution is 0, 10
And 15 mol% (relative to TEOS 1 mol), the carbon atom content ratio in the sample obtained by the calcination treatment, that is, C / (C + O + N + Si) (each element symbol in the above formula is Represents the number of corresponding atoms) is 0, 12 and 20 at, respectively.
It can be seen that the content is m%. Here, the nitrogen (N) atom derived from ammonia chloride is scarcely contained. This indicates that nitric acid, which is a pH adjuster necessary for hydrolysis, and ammonia chloride, which acts as a surfactant, were almost completely evaporated by the heat treatment. The voids in the membrane structure of the porous silica membrane are generated from the traces occupied by such ammonia chloride.

【0050】また、図3において、HMDSOが添加さ
れていない条件で成膜された多孔質シリカ膜中に、炭素
(C)原子がほとんど含有されていない。このことによ
り、シリカ材料の前駆体たるTEOSは、ゾル-ゲル法
における加水分解反応及び重縮合反応の過程でほぼ完全
に消費され、エトキシ基部分に含まれる炭素(C)原子
はエタノールとして生成され、その後の加熱処理の過程
でほぼ完全に蒸発したことを示す。
Further, in FIG. 3, almost no carbon (C) atoms are contained in the porous silica film formed under the condition that HMDSO is not added. As a result, TEOS, which is a precursor of the silica material, is almost completely consumed in the course of the hydrolysis reaction and polycondensation reaction in the sol-gel method, and the carbon (C) atom contained in the ethoxy group moiety is generated as ethanol. , Which indicates that evaporation was almost complete during the subsequent heat treatment.

【0051】また、HMDSOの真空中あるいは不活性
ガス中における耐熱性から推測して、[実施例1]のプロ
セスでは熱分解が起きることは考えられない。
Further, inferring from the heat resistance of HMDSO in vacuum or in an inert gas, it is unlikely that thermal decomposition will occur in the process of [Example 1].

【0052】これらのことにより、図4または図5に含
有元素として示される炭素(C)原子は、添加物たるH
MDSOが有するメチル基形状のまま保持されているも
のと推定され、さらに、図4または図5の炭素(C)原
子の組成比特性から、多孔質シリカ膜の深さ方向の全長
にわたってHMDSOが均一に分散された状態で含有さ
れていることが分る。
As a result, the carbon (C) atom shown as the contained element in FIG. 4 or FIG.
It is presumed that the MDSO has the same methyl group shape, and further, from the composition ratio characteristic of the carbon (C) atom in FIG. 4 or FIG. 5, HMDSO is uniform over the entire length in the depth direction of the porous silica film. It can be seen that it is contained in the state of being dispersed in.

【0053】[実施例4]TEOSとして1モルとH2
Oとして11モルとC16TACとして0.25モルと
HMDSOを酸性(pH1〜3、硝酸)の塗布溶媒中に
混合し、さらに、塗布特性を改善するために、これに酢
酸ブチルを20重量%混合して成る混合溶液を20℃で
反応させて、均一な多孔質シリカ材料の前駆体溶液を得
た。ここで、該溶液中のTEOS1モルに対するHMD
SOの添加量を、0及び15モル%の2種類に調整した
ものを用意した。
Example 4 1 mol of TEOS and H 2
11 mol of O, 0.25 mol of C16TAC, and HMDSO were mixed in an acidic (pH 1-3, nitric acid) coating solvent, and 20% by weight of butyl acetate was further mixed to improve coating characteristics. The resulting mixed solution was reacted at 20 ° C. to obtain a uniform precursor solution of porous silica material. Here, HMD for 1 mol of TEOS in the solution
There were prepared two types of SO with the amounts added being 0 and 15 mol%.

【0054】このように調整した前駆体溶液の粘度の経
時変化を図6に示す。図6に示すように、HMDSOを
添加しない(HMDSO 0%)場合、室温にて保存時
に調整後の時間が経過するにつれ、加水分解及び重合反
応が進行して溶液の粘度が増大し、30日程度経過後に
ゲル化してしまう。
FIG. 6 shows the change with time in the viscosity of the precursor solution thus prepared. As shown in FIG. 6, when HMDSO was not added (HMDSO 0%), hydrolysis and polymerization reactions proceeded and the viscosity of the solution increased as the time after adjustment during storage at room temperature increased for 30 days. It gels after a certain amount of time.

【0055】これに対し、HMDSOを15モル%添加
した場合、溶液の粘度は74日経過後も一定を保ち、室
温で進行中の加水分解反応が抑制されていることが分
る。即ち、溶液が長期に亘って安定を保ち、ゲル化が生
じていない。
In contrast, when 15 mol% of HMDSO was added, the viscosity of the solution remained constant after 74 days, and it can be seen that the hydrolysis reaction in progress at room temperature is suppressed. That is, the solution remains stable for a long period of time and gelation does not occur.

【0056】また、これらの溶液を塗布液として用い
て、半導体基板上に、1500rpmでスピンコートし
た後、公知の赤外線加熱炉を用いて、該基板を、初めに
大気雰囲気下70℃で処理し、次に、2Pa条件下40
0℃で焼成処理した。これらの処理に要する条件、即
ち、温度条件、昇温時間及び保持時間は、特に制限され
るものではなく、これにより得られる多孔質シリカ膜の
膜質性能を損なわない条件範囲であれば良く、本実施例
における焼成処理の条件は、昇温時間を15分、保持時
間を15分とした。
Also, after spin coating a semiconductor substrate at 1500 rpm using these solutions as a coating liquid, the substrate is first treated at 70 ° C. in an air atmosphere using a known infrared heating furnace. , Then 40 under 2 Pa
It was calcined at 0 ° C. The conditions required for these treatments, that is, the temperature conditions, the temperature raising time and the holding time are not particularly limited as long as they are in a condition range that does not impair the film quality performance of the porous silica film obtained by the treatment. The conditions for the firing treatment in the examples were a temperature rising time of 15 minutes and a holding time of 15 minutes.

【0057】各塗布液により得られた周期的メソポーラ
スシリカ膜について、X線回折試験を行ったところ、図
7(a)〜(c)に示す測定結果が得られた。
An X-ray diffraction test was carried out on the periodic mesoporous silica film obtained from each coating solution, and the measurement results shown in FIGS. 7 (a) to 7 (c) were obtained.

【0058】また、各図のX線回折のピークパターンに
よって得られる(100)面の反射面間隔dを下記[表
2]に示す。
Further, [Table 2] below shows the distance d between the reflecting surfaces of the (100) plane obtained from the X-ray diffraction peak patterns in each figure.

【0059】[0059]

【表2】 [Table 2]

【0060】図7(a)に示されるように、HMDSO
を添加して調整後7日経過したものはもとより、図7
(b)に示されるように、HMDSOを添加した前駆体
溶液は、調整後、室温保存状態で74日経過したものに
おいても、周期的メソ構造を有することが分る。これに
対し、図7(c)に示すように、HMDSOを添加しな
い(HMDSO 0%)場合、調整後7日経過したもの
は周期的メソ構造を維持しているものの、[表2]に示
すように、調整後74日経過したものはスピンコートに
よる成膜ができないことが分る。図7(b)と図7
(c)とを比較すると、HMDSOを15%添加したも
のは、調整後74日を経過しても、HMDSOを添加し
ない場合の7日経過後程度の状態は維持しているものと
推定される。
As shown in FIG. 7A, HMDSO
7 days after adjustment by adding
As shown in (b), it is found that the HMDSO-added precursor solution has a periodic mesostructure even after 74 days of storage at room temperature after preparation. On the other hand, as shown in FIG. 7C, when HMDSO is not added (HMDSO 0%), 7 days after the adjustment, the periodic mesostructure is maintained, but it is shown in [Table 2]. Thus, it can be seen that the film formed by spin coating cannot be formed after 74 days from the adjustment. FIG. 7B and FIG.
Comparing with (c), it is presumed that the one to which 15% of HMDSO was added maintains the state of about 7 days after the adjustment without adding HMDSO, even 74 days after the adjustment.

【0061】さらに、HMDSOを15モル%添加して
調整した前駆体溶液の室温保存状態の経過日数と、この
前駆体溶液を塗布液として用いて形成したシリカ膜の比
誘電率との関係を示すグラフを図8に示す。74日間経
過した前駆体溶液を用いた場合でも、周期構造を備え、
2.0以下の比誘電率を有する良好な絶縁膜の形成が可
能である事が分る。
Furthermore, the relationship between the elapsed days of the precursor solution prepared by adding 15 mol% of HMDSO stored at room temperature and the relative dielectric constant of the silica film formed by using this precursor solution as a coating solution is shown. The graph is shown in FIG. Even when using a precursor solution that has been stored for 74 days, it has a periodic structure,
It can be seen that a good insulating film having a relative dielectric constant of 2.0 or less can be formed.

【0062】[0062]

【発明の効果】以上の説明から明らかなように、本発明
により、シリコン含有の疎水性有機化合物を多孔質シリ
カ材料の前駆体溶液に添加することにより、材料全体に
均一に優れた疎水性を示す多孔質シリカ材料を簡便に得
ることができる。さらに、この多孔質シリカ材料の疎水
性を選択的に調整することも可能である。
As is apparent from the above description, according to the present invention, by adding a silicon-containing hydrophobic organic compound to a precursor solution of a porous silica material, excellent hydrophobicity can be uniformly obtained over the entire material. The porous silica material shown can be easily obtained. Furthermore, it is also possible to selectively adjust the hydrophobicity of this porous silica material.

【0063】また、本発明により、非重合性のシリコン
含有の疎水性有機化合物を、重合禁止剤として多孔質シ
リカ材料の前駆体溶液に添加することにより、前駆体溶
液中の加水分解反応と重合反応とが過剰に進行すること
を抑制でき、このため、周期的メソポーラスシリカ材料
を生成するための所望の前駆体溶液状態を長期に亘って
保持させることが可能となり、これを用いて確実に多孔
質シリカ材料を製造することができる。さらに、この多
孔質シリカ材料前駆体溶液の粘度や多孔質シリカ材料オ
リゴマーの重合度を選択的に調整することにより、多孔
質シリカ材料前駆体溶液の安定度を制御することも可能
である。
Further, according to the present invention, a non-polymerizable silicon-containing hydrophobic organic compound is added as a polymerization inhibitor to a precursor solution of a porous silica material, whereby the hydrolysis reaction and the polymerization in the precursor solution are performed. It is possible to suppress excessive progress of the reaction and, therefore, it becomes possible to maintain a desired precursor solution state for producing the periodic mesoporous silica material for a long period of time, and using this, it is possible to ensure the porosity. Quality silica materials can be produced. Further, it is possible to control the stability of the porous silica material precursor solution by selectively adjusting the viscosity of the porous silica material precursor solution and the polymerization degree of the porous silica material oligomer.

【0064】また、本発明は、疎水性有機化合物を重合
禁止剤としても用いるため、前駆体溶液を効率よく有効
に利用できる。
Further, in the present invention, since the hydrophobic organic compound is also used as the polymerization inhibitor, the precursor solution can be efficiently and effectively utilized.

【0065】そして、このようにして形成される疎水性
多孔質シリカ材料は、経時変化の少ない電気特性を持
ち、高い電気絶縁性を保持できるので半導体素子回路の
絶縁材料用途に最適である。
The hydrophobic porous silica material formed in this manner has electrical characteristics with little change over time and can maintain high electrical insulation, and is therefore most suitable for use as an insulating material for semiconductor device circuits.

【図面の簡単な説明】[Brief description of drawings]

【図1】前駆体溶液に含有されるHMDSOの各添加量
における多孔質シリカ膜の比誘電率の時間変化を示すグ
ラフ
FIG. 1 is a graph showing changes with time in relative permittivity of a porous silica film at various addition amounts of HMDSO contained in a precursor solution.

【図2】前駆体溶液に含有されるヘキサメチルジシラザ
ンの各添加量における多孔質シリカ膜の比誘電率の時間
変化を示すグラフ
FIG. 2 is a graph showing changes with time in relative permittivity of a porous silica film at various addition amounts of hexamethyldisilazane contained in a precursor solution.

【図3】前駆体溶液中にHMDSOが添加されない場合
の多孔質シリカ膜中の含有原子組成比を示すオージェ電
子分光スペクトル
FIG. 3 is an Auger electron spectroscopy spectrum showing a composition ratio of contained atoms in a porous silica film when HMDSO is not added to a precursor solution.

【図4】図3における測定試料の条件としてHMDSO
の添加量を10モル%(対TEOS1モル)とした場合
のオージェ電子分光スペクトル
FIG. 4 shows HMDSO as a condition of the measurement sample in FIG.
Auger electron spectroscopic spectrum when the addition amount of 10 mol% (vs. TEOS 1 mol)

【図5】図3における測定試料の条件としてHMDSO
の添加量を15モル%(対TEOS1モル)とした場合
のオージェ電子分光スペクトル
FIG. 5 shows HMDSO as the condition of the measurement sample in FIG.
Auger electron spectroscopic spectrum when the addition amount of 15 mol% (vs. TEOS 1 mol)

【図6】前駆体溶液に含有されるHMDSOの各添加量
における、前駆体溶液の粘度の時間変化を示すグラフ
FIG. 6 is a graph showing the time change of the viscosity of the precursor solution for each addition amount of HMDSO contained in the precursor solution.

【図7】(a)〜(c)前駆体溶液に含有されるHMD
SOの各添加量における多孔質シリカ膜のX線回折スペ
クトル
FIG. 7 (a) to (c) HMD contained in a precursor solution.
X-ray diffraction spectrum of the porous silica film at each added amount of SO

【図8】前駆体溶液中のHMDSOの添加量が15モル
%(対TEOS1モル)とした場合の、前駆体溶液の室
温保存状態の経過日数と、この前駆体溶液を塗布液とし
て用いて形成したシリカ膜の比誘電率とを示すグラフ
FIG. 8 shows the number of days that the precursor solution has been stored at room temperature and the amount of HMDSO added to the precursor solution was 15 mol% (vs. TEOS 1 mol), and the precursor solution was used as a coating solution. Graph showing the relative dielectric constant of the formed silica film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 関 伸彰 静岡県裾野市須山1220−1 株式会社アル バック半導体技術研究所内 (72)発明者 藤井 宣年 静岡県裾野市須山1220−1 株式会社アル バック半導体技術研究所内 (72)発明者 村上 裕彦 茨城県つくば市東光台5−9−7 株式会 社アルバック筑波超材料研究所内 (72)発明者 中山 高博 茨城県つくば市東光台5−9−7 株式会 社アルバック筑波超材料研究所内 (72)発明者 山川 洋幸 茨城県つくば市東光台5−9−7 株式会 社アルバック筑波超材料研究所内 Fターム(参考) 4G072 AA26 AA28 BB09 BB15 CC02 GG02 GG03 HH18 HH28 UU01 5F033 RR04 RR29 SS22 XX18 5F058 BA10 BC02 BC04 BF46    ─────────────────────────────────────────────────── ─── Continued front page    (72) Nobuaki Seki, inventor             1220-1 Suyama, Susono City, Shizuoka Al             Back Semiconductor Technology Laboratory (72) Inventor Nobuyoshi Fujii             1220-1 Suyama, Susono City, Shizuoka Al             Back Semiconductor Technology Laboratory (72) Inventor Hirohiko Murakami             Tokodai 5-9-7 Stock Association, Tsukuba City, Ibaraki Prefecture             ULVAC Tsukuba Institute for Supermaterials (72) Inventor Takahiro Nakayama             Tokodai 5-9-7 Stock Association, Tsukuba City, Ibaraki Prefecture             ULVAC Tsukuba Institute for Supermaterials (72) Inventor Hiroyuki Yamakawa             Tokodai 5-9-7 Stock Association, Tsukuba City, Ibaraki Prefecture             ULVAC Tsukuba Institute for Supermaterials F term (reference) 4G072 AA26 AA28 BB09 BB15 CC02                       GG02 GG03 HH18 HH28 UU01                 5F033 RR04 RR29 SS22 XX18                 5F058 BA10 BC02 BC04 BF46

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】シリコン原子を有する疎水性有機化合物を
分散させた状態で含有して構成されることを特徴とする
疎水性多孔質シリカ材料。
1. A hydrophobic porous silica material comprising a hydrophobic organic compound having a silicon atom in a dispersed state.
【請求項2】前記シリコン原子を有する疎水性有機化合
物は、多孔質シリカ材料の前駆体溶液に溶解させること
により、該多孔質シリカ材料中に分散した状態で含有さ
れることを特徴とする請求項1に記載の疎水性多孔質シ
リカ材料。
2. The hydrophobic organic compound having a silicon atom is contained in the porous silica material in a dispersed state by being dissolved in a precursor solution of the porous silica material. Item 2. The hydrophobic porous silica material according to Item 1.
【請求項3】前記シリコン原子を有する疎水性有機化合
物は、疎水基として炭素数6以下のアルキル基を1個以
上有するシラン化合物、シラザン化合物またはシロキサ
ン化合物のいずれかから成ることを特徴とする請求項1
または2に記載の疎水性多孔質シリカ材料。
3. The hydrophobic organic compound having a silicon atom comprises any one of a silane compound, a silazane compound and a siloxane compound having at least one alkyl group having a carbon number of 6 or less as a hydrophobic group. Item 1
Alternatively, the hydrophobic porous silica material according to item 2.
【請求項4】前記シリコン原子を有する疎水性有機化合
物は、疎水基として炭素数5以下のアルキル基を1個以
上有する非重合性のシラン化合物またはシロキサン化合
物のいずれかから成る重合禁止剤であることを特徴とす
る請求項1または2に記載の疎水性多孔質シリカ材料。
4. The hydrophobic organic compound having a silicon atom is a polymerization inhibitor composed of either a non-polymerizable silane compound or a siloxane compound having at least one alkyl group having 5 or less carbon atoms as a hydrophobic group. The hydrophobic porous silica material according to claim 1 or 2, characterized in that.
【請求項5】前記重合禁止剤として、ヘキサメチルジシ
ロキサンを用いることを特徴とする請求項4に記載の疎
水性多孔質シリカ材料。
5. The hydrophobic porous silica material according to claim 4, wherein hexamethyldisiloxane is used as the polymerization inhibitor.
【請求項6】基板上に形成する薄膜材料として用いられ
ることを特徴とする請求項1乃至5のいずれか1項に記
載の疎水性多孔質シリカ材料。
6. The hydrophobic porous silica material according to any one of claims 1 to 5, which is used as a thin film material formed on a substrate.
【請求項7】半導体回路素子の絶縁材料として用いられ
ることを特徴とする請求項1乃至5のいずれか1項に記
載の疎水性多孔質シリカ材料。
7. The hydrophobic porous silica material according to any one of claims 1 to 5, which is used as an insulating material for a semiconductor circuit element.
【請求項8】前記シリコン原子を有する疎水性有機化合
物を添加した前記多孔質シリカ材料の前駆体溶液を加熱
処理することにより、多孔質シリカ材料の形成時に該多
孔質シリカ材料が疎水性を有するようにしたことを特徴
とする疎水性多孔質シリカ材料の製造方法。
8. The porous silica material has a hydrophobic property when the porous silica material is formed by heat-treating the precursor solution of the porous silica material to which the hydrophobic organic compound having a silicon atom is added. A method for producing a hydrophobic porous silica material characterized by the above.
【請求項9】前記シリコン原子を有する疎水性有機化合
物として前記重合禁止剤を用いて、前記前駆体溶液中に
て進行中の前記前駆体の加水分解反応と重合反応とを停
止させることを特徴とする請求項8に記載の疎水性多孔
質シリカ材料の製造方法。
9. The polymerization inhibitor is used as the hydrophobic organic compound having a silicon atom to stop the hydrolysis reaction and polymerization reaction of the precursor in progress in the precursor solution. The method for producing the hydrophobic porous silica material according to claim 8.
【請求項10】前記重合禁止剤の添加量により、多孔質
シリカ材料の前駆体溶液の粘度または多孔質シリカ材料
オリゴマーの重合度を制御することを特徴とする請求項
9に記載の疎水性多孔質シリカ材料の製造方法。
10. The hydrophobic porosity according to claim 9, wherein the viscosity of the precursor solution of the porous silica material or the degree of polymerization of the porous silica material oligomer is controlled by the addition amount of the polymerization inhibitor. Of producing high quality silica material.
JP2001388144A 2001-08-02 2001-12-20 Method for producing hydrophobic porous material Expired - Fee Related JP3954842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001388144A JP3954842B2 (en) 2001-08-02 2001-12-20 Method for producing hydrophobic porous material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001234739 2001-08-02
JP2001-234739 2001-08-02
JP2001388144A JP3954842B2 (en) 2001-08-02 2001-12-20 Method for producing hydrophobic porous material

Publications (3)

Publication Number Publication Date
JP2003115486A true JP2003115486A (en) 2003-04-18
JP2003115486A5 JP2003115486A5 (en) 2005-05-12
JP3954842B2 JP3954842B2 (en) 2007-08-08

Family

ID=26619828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001388144A Expired - Fee Related JP3954842B2 (en) 2001-08-02 2001-12-20 Method for producing hydrophobic porous material

Country Status (1)

Country Link
JP (1) JP3954842B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191437A (en) * 2003-12-26 2005-07-14 Ricoh Co Ltd Semiconductor device, manufacturing method therefor, and display device
JP2007134420A (en) * 2005-11-09 2007-05-31 Ulvac Japan Ltd Embedding method inside structure by hydrophobic porous silica material
DE112008002142T5 (en) 2007-08-10 2010-07-15 ULVAC, Inc., Chigasaki-shi Porous silica precursor composition and method for preparing the precursor composition, porous silica film, and methods for producing the porous silica film, semiconductor element, image display apparatus, and liquid crystal display
JP2016124715A (en) * 2014-12-26 2016-07-11 三菱マテリアル株式会社 Silica sol fluid dispersion and silica porous film-forming composition as well as silica porous film
JP2016530199A (en) * 2013-08-02 2016-09-29 アイトゲネッシェ マテリアルプリューフングス ウント フォルシュングスアンシュタルト エーエムペーアー Method for the production of airgel material
JP2019205966A (en) * 2018-05-29 2019-12-05 イーセップ株式会社 Method for separation of carbon dioxide (co2) membrane
WO2022137985A1 (en) 2020-12-24 2022-06-30 富士フイルム株式会社 Flexible tube for endoscope, endoscope-type medical instrument, and methods for manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191437A (en) * 2003-12-26 2005-07-14 Ricoh Co Ltd Semiconductor device, manufacturing method therefor, and display device
JP2007134420A (en) * 2005-11-09 2007-05-31 Ulvac Japan Ltd Embedding method inside structure by hydrophobic porous silica material
DE112008002142T5 (en) 2007-08-10 2010-07-15 ULVAC, Inc., Chigasaki-shi Porous silica precursor composition and method for preparing the precursor composition, porous silica film, and methods for producing the porous silica film, semiconductor element, image display apparatus, and liquid crystal display
US8471140B2 (en) 2007-08-10 2013-06-25 Ulvac, Inc. Porous silica precursor composition and method for preparing the precursor composition, porous silica film and method for preparing the porous silica film, semiconductor element, apparatus for displaying an image, as well as liquid crystal display
JP2016530199A (en) * 2013-08-02 2016-09-29 アイトゲネッシェ マテリアルプリューフングス ウント フォルシュングスアンシュタルト エーエムペーアー Method for the production of airgel material
JP2016124715A (en) * 2014-12-26 2016-07-11 三菱マテリアル株式会社 Silica sol fluid dispersion and silica porous film-forming composition as well as silica porous film
JP2019205966A (en) * 2018-05-29 2019-12-05 イーセップ株式会社 Method for separation of carbon dioxide (co2) membrane
WO2022137985A1 (en) 2020-12-24 2022-06-30 富士フイルム株式会社 Flexible tube for endoscope, endoscope-type medical instrument, and methods for manufacturing same

Also Published As

Publication number Publication date
JP3954842B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
CA2289782C (en) Alkoxysilane/organic polymer composition for use in producing an insulating thin film and use thereof
US6318124B1 (en) Nanoporous silica treated with siloxane polymers for ULSI applications
JP4947836B2 (en) Polyfunctional Si-based oligomers and polymers, or nanoporous silica films for surface modification containing oligomers or polymers, processes for processing the same, and integrated circuits containing the same
KR0176259B1 (en) Amine catalysts for the low temperature conversion of silicaprecursors to silica
JPH04227980A (en) Method for converting silica precursor into silica at low temperature
KR20010074860A (en) Silane-based nanoporous silica thin films
US6746714B2 (en) Porous silica coating with low dielectric constant, semiconductor device and coating composition
KR20110021951A (en) Method of making porous materials and porous materials prepared thereof
JP5551885B2 (en) Method for forming low dielectric constant silica-based coating and low dielectric constant silica-based coating obtained from the method
JP2002501674A (en) Method for producing nanoporous dielectric film at high pH
EP1855313A1 (en) Process for producing modified porous silica film, modified porous silica film obtained by the process, and semiconductor device employing the modified porous silica film
JP2004307694A (en) Composition for forming porous film, method for producing porous film, porous film, interlayer dielectric film and semiconductor device
JP3954842B2 (en) Method for producing hydrophobic porous material
WO2004003938A2 (en) Low dielectric constant films derived by sol-gel processing of a hyperbranched polycarbosilane
JP4251927B2 (en) Method for producing porous silica membrane
JP2009170923A (en) Lamellar-structure thin film with ultra-low dielectric constant and high hardness, and its manufacturing method
JPH1070121A (en) Method of low volatile solvent group for forming thin film of nano-porous aerogels on semiconductor substrate
JP2007134420A (en) Embedding method inside structure by hydrophobic porous silica material
JP2000077399A (en) Silica based porous film and production thereof
KR20050064430A (en) Insulating film coating composition having improved mechanical property
JP2001287910A (en) Method for producing porous silicon oxide coating film
JP2004210579A (en) Method of producing porous silica film, porous silica film obtained by the method, and semiconductor device made of the same
JP4798823B2 (en) Porous silicon oxide coating
KR100818106B1 (en) Pore-forming template derivative and method of manufacturing dielectrics by using the same
JPWO2005007748A1 (en) Phosphorus-containing silazane composition, phosphorus-containing siliceous film, phosphorus-containing siliceous filler, method for producing phosphorus-containing siliceous film, and semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070427

R150 Certificate of patent or registration of utility model

Ref document number: 3954842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees