JP2003107055A - Method for monitoring amount of hydrogen storage - Google Patents

Method for monitoring amount of hydrogen storage

Info

Publication number
JP2003107055A
JP2003107055A JP2001301687A JP2001301687A JP2003107055A JP 2003107055 A JP2003107055 A JP 2003107055A JP 2001301687 A JP2001301687 A JP 2001301687A JP 2001301687 A JP2001301687 A JP 2001301687A JP 2003107055 A JP2003107055 A JP 2003107055A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
amount
storage amount
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001301687A
Other languages
Japanese (ja)
Inventor
Yuichi Ishikawa
雄一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2001301687A priority Critical patent/JP2003107055A/en
Publication of JP2003107055A publication Critical patent/JP2003107055A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a monitoring method of the amount of hydrogen storage for accurately determining or estimating the amount of hydrogen storage even in a plateau region of hydrogen pressure with respect to the hydrogen storage amount, a hydrogen storage alloy used for the method, and a compound for storing hydrogen. SOLUTION: Magnetic characteristics greatly change at a region where hydrogen pressure reaches a plateau with respect to the amount of hydrogen storage, and the amount of hydrogen in a hydrogen storage material is determined or estimated from the magnetic characteristics. Although coercive force, susceptibility, level of magnetization, and the like are listed as the magnetic characteristics, the most preferable characteristic in the relationship with the amount of hydrogen-storage is the level in magnetization and the susceptibility. For example, for the amount of hydrogen storage in the hydrogenstoring material where the hydrogen pressure reaches a plateau, the amount of hydrogen storage can be determined or estimated from the magnetic characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池自動車等
の水素貯蔵における水素吸蔵量を定量又は推定する、水
素吸蔵量のモニター方法、及びこれに用いられる水素吸
蔵合金並びに水素吸蔵用化合物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for monitoring a hydrogen storage amount for quantifying or estimating a hydrogen storage amount in hydrogen storage of a fuel cell vehicle, a hydrogen storage alloy used for the method, and a hydrogen storage compound. Is.

【0002】[0002]

【従来の技術】水素を燃料とする燃料電池を用いた燃料
電池自動車や自家発電が、昨今、環境に優しい次世代の
エネルギーシステムとして着目されている。水素を燃料
とする場合に、水素を貯蔵する方法には3種類の方法が
知られている。1つは、水素を取り出すことが出来る有
機原料として貯蔵する方法、1つは、水素をガスとして
ガスボンベに貯蔵する方法、いま1つは、水素を金属等
と反応させ水素吸蔵合金、若しくは化合物として貯蔵す
る水素吸蔵材料を用いる方法である。
2. Description of the Related Art Recently, a fuel cell vehicle using a fuel cell using hydrogen as a fuel and an in-house power generation have attracted attention as an environmentally friendly next-generation energy system. When hydrogen is used as a fuel, there are three known methods for storing hydrogen. One is a method of storing hydrogen as an organic raw material that can be taken out, one is a method of storing hydrogen as a gas in a gas cylinder, and another is a method of reacting hydrogen with a metal or the like as a hydrogen storage alloy or a compound. This is a method using a hydrogen storage material to be stored.

【0003】このうち、前2者の方法、すなわち、水素
を取り出すことが出来る有機原料として貯蔵する方法
や、水素をガスとしてガスボンベに貯蔵する方法は、重
量当たりまたは体積当たりの水素量が比較的多くなるの
でメリットが大きいが、場合によっては引火事故が発生
する危険性を有している。このため、化合物として貯蔵
する水素吸蔵材料を用いる方法、すなわち、水素を金属
化合物のかたちで安定化させる方法やカーボン等の表面
に吸着させる方法も検討されている。
Of these, the former two methods, that is, the method of storing hydrogen as an organic raw material capable of taking out hydrogen and the method of storing hydrogen as a gas in a gas cylinder, have a relatively large amount of hydrogen per weight or volume. Although there are many advantages, there is a risk of causing a fire accident in some cases. Therefore, a method of using a hydrogen storage material stored as a compound, that is, a method of stabilizing hydrogen in the form of a metal compound or a method of adsorbing hydrogen on the surface of carbon or the like has been investigated.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記水
素吸蔵材料を用いる方法では、水素圧のみを水素吸蔵量
の尺度として用いており、燃料とする水素がどの程度残
量があるかを正確に判断することが困難であるという問
題点がある。この理由としては水素吸蔵材料が、ある程
度の水素を吸蔵してくると、水素圧が一定でも吸蔵して
いる水素量が一対一対応ではなくなり、水素圧だけを測
定していても水素吸蔵材料中の水素量を正確に定量又は
推定することが困難となるためである。
However, in the method using the above hydrogen storage material, only the hydrogen pressure is used as a measure of the hydrogen storage amount, and it is possible to accurately determine how much hydrogen is used as fuel. There is a problem that it is difficult to do. The reason for this is that when the hydrogen storage material stores a certain amount of hydrogen, even if the hydrogen pressure is constant, the stored hydrogen amount does not correspond one-to-one, and even if only the hydrogen pressure is measured, This is because it becomes difficult to accurately quantify or estimate the amount of hydrogen.

【0005】また、プラトー領域にある水素圧は水素吸
蔵過程と放出過程とでは一般的に異なるヒステリシスを
持つことが知られており、これも水素圧のみによる正確
な吸蔵量の定量又は推定を難しくしている。
Further, it is known that the hydrogen pressure in the plateau region generally has different hysteresis in the hydrogen storage process and the hydrogen release process, and this is also difficult to accurately quantify or estimate the storage amount only by the hydrogen pressure. is doing.

【0006】従って、例えば、水素を原料とした燃料電
池自動車がどの程度燃料を積んでいるかをモニターする
手段としては、実際に水素を流した量から推定する以外
に方法がないのが現状である。例えば、水素吸蔵合金で
は水素を吸蔵する量により水素圧(水素圧力)を高めて
いくが、上述したように、ある水素量を超えると一定水
素圧でも吸蔵量が増加し、更に吸蔵量が増加した段階で
再び水素圧が上昇し始めるという現象が確認されてい
る。従って、水素圧のみで燃料電池自動車の水素吸蔵量
を推定することは難しい現状がある。
Therefore, for example, as a means for monitoring how much fuel a fuel cell vehicle using hydrogen as a raw material is loaded, there is currently no method other than estimating from the actual flow rate of hydrogen. . For example, in a hydrogen storage alloy, the hydrogen pressure (hydrogen pressure) is increased by the amount of hydrogen stored, but as mentioned above, the storage amount increases even at a constant hydrogen pressure when the amount of hydrogen exceeds a certain level, and the storage amount further increases. It has been confirmed that the hydrogen pressure starts to rise again at the stage of the operation. Therefore, it is currently difficult to estimate the hydrogen storage amount of a fuel cell vehicle only by the hydrogen pressure.

【0007】上記のように、水素吸蔵材料を用いた水素
貯蔵において、水素圧が吸蔵する水素量に対してプラト
ーとなる領域においても水素吸蔵量を正確に定量又は推
定できる、水素吸蔵量のモニター方法が求められてい
る。
As described above, in the hydrogen storage using the hydrogen storage material, the hydrogen storage amount can be accurately quantified or estimated even in the region where the hydrogen pressure has a plateau with respect to the stored hydrogen amount. A method is needed.

【0008】本発明は、以上のような問題点に鑑みなさ
れたもので、その目的は、水素圧が、吸蔵する水素量に
対してプラトーとなる領域においても、正確に水素吸蔵
量を定量又は推定することができる水素吸蔵量モニター
方法、及び該方法に用いる水素吸蔵合金、並びに水素吸
蔵用化合物を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to accurately determine the hydrogen storage amount even in a region where the hydrogen pressure has a plateau with respect to the stored hydrogen amount. It is intended to provide a method of monitoring a hydrogen storage amount that can be estimated, a hydrogen storage alloy used in the method, and a hydrogen storage compound.

【0009】[0009]

【課題を解決しようとする手段】本発明者等は、水素量
に対して水素圧がプラトーとなる領域においては、磁気
的特性の変化率が比較的大きく、且つ磁気的特性の変化
が水素量に対して一対一対応となることを用いて、磁気
的特性を利用して水素吸蔵材料の水素吸蔵量を正確に定
量又は推定できることを見出し、本発明を完成するに至
った。
The inventors of the present invention have found that in the region where the hydrogen pressure has a plateau with respect to the amount of hydrogen, the rate of change in the magnetic properties is relatively large and the change in the magnetic properties is due to the amount of hydrogen. However, the present invention has been completed by finding that one-to-one correspondence can be used to accurately quantify or estimate the hydrogen storage amount of the hydrogen storage material by utilizing magnetic characteristics.

【0010】請求項1の水素吸蔵量モニター方法は、上
記の課題を解決するために、第一の水素吸蔵材料が有す
る磁気的特性を利用して、第一の水素吸蔵材料における
水素吸蔵量を定量又は推定することを特徴としている。
In order to solve the above-mentioned problems, the method for monitoring hydrogen storage amount according to claim 1 utilizes the magnetic characteristics of the first hydrogen storage material to determine the hydrogen storage amount in the first hydrogen storage material. It is characterized by quantification or estimation.

【0011】上記の構成によれば、上記第一の水素吸蔵
材料が有する磁気的特性を利用して、該水素吸蔵材料の
水素吸蔵量を定量又は推定することで、水素圧を水素吸
蔵量の尺度として用いる必要がないので、水素吸蔵量に
対する平衡水素分圧が一定となるプラトー領域において
も正確に水素吸蔵量をモニターすることができる。
According to the above structure, the hydrogen pressure of the hydrogen storage amount is determined by estimating or estimating the hydrogen storage amount of the hydrogen storage material by utilizing the magnetic characteristics of the first hydrogen storage material. Since it is not necessary to use it as a scale, the hydrogen storage amount can be accurately monitored even in the plateau region where the equilibrium hydrogen partial pressure with respect to the hydrogen storage amount is constant.

【0012】請求項2の水素吸蔵量モニター方法は、上
記の課題を解決するために、前記定量又は推定を、水素
吸蔵量に対する平衡水素分圧が一定となるプラトー領域
にて行い、該プラトー領域以外では、水素圧力を利用し
て水素吸蔵量を定量又は推定することを特徴としてい
る。
In order to solve the above-mentioned problems, the method for monitoring hydrogen storage amount according to a second aspect of the present invention performs the quantitative determination or estimation in a plateau region where the equilibrium hydrogen partial pressure with respect to the hydrogen storage amount is constant, and the plateau region is set. Other than that, it is characterized in that the hydrogen storage amount is quantified or estimated using the hydrogen pressure.

【0013】上記の構成によれば、上記プラトー領域以
外では、水素圧力を利用した定量又は推定を行うので、
磁気的特性と水素圧力という2つのパラメーターを組み
合わせることで第一の水素吸蔵材料として用いられる材
質に関わり無くより正確に水素吸蔵量を定量又は推定す
ることが可能である。
According to the above configuration, since hydrogen pressure is used for quantification or estimation outside the plateau region,
By combining two parameters of magnetic characteristics and hydrogen pressure, it is possible to more accurately quantify or estimate the hydrogen storage amount regardless of the material used as the first hydrogen storage material.

【0014】請求項3の水素吸蔵量モニター方法は、上
記の課題を解決するために、第一の水素吸蔵材料とは異
なる組成を有する第二の水素吸蔵材料の磁気的特性を利
用して、第一の水素吸蔵材料における水素吸蔵量を定量
又は推定することを特徴としている。
In order to solve the above-mentioned problems, the method for monitoring hydrogen storage amount according to claim 3 utilizes the magnetic characteristics of the second hydrogen storage material having a composition different from that of the first hydrogen storage material, It is characterized in that the hydrogen storage amount in the first hydrogen storage material is quantified or estimated.

【0015】上記の構成によれば、第一の水素吸蔵材料
とは異なる組成を有する第二の水素吸蔵材料を用いるこ
とで、モニター対象となる第一の水素吸蔵材料の磁気的
特性に関わり無く、より正確に第一の水素吸蔵材料の水
素吸蔵量をモニターすることができる。
According to the above construction, by using the second hydrogen storage material having a composition different from that of the first hydrogen storage material, regardless of the magnetic characteristics of the first hydrogen storage material to be monitored. Therefore, the hydrogen storage amount of the first hydrogen storage material can be monitored more accurately.

【0016】請求項4の水素吸蔵合金は、上記の課題を
解決するために、請求項1ないし3のいずれか1項に記
載の水素吸蔵量モニター方法において水素吸蔵材料とし
て用いられ、Fe,Co,Cr,Ni,Mn及びランタノイド系元素の
いずれか1種類以上を含むことを特徴としている。
The hydrogen storage alloy according to claim 4 is used as a hydrogen storage material in the method for monitoring a hydrogen storage amount according to any one of claims 1 to 3 in order to solve the above-mentioned problems, and Fe, Co , Cr, Ni, Mn and lanthanoid series elements are included.

【0017】請求項5の水素吸蔵用化合物は、上記の課
題を解決するために、請求項1ないし3のいずれか1項
に記載の水素吸蔵量モニター方法に用いられ、カーボン
系材料を含むことを特徴としている。
In order to solve the above problems, the compound for hydrogen storage of claim 5 is used in the method for monitoring hydrogen storage amount according to any one of claims 1 to 3, and contains a carbon-based material. Is characterized by.

【0018】上記の構成によれば、上記元素を含む水素
吸蔵合金、上記カーボン系材料を含む上記水素吸蔵用化
合物を用いることで、より正確に水素吸蔵量をモニター
することが可能である。
According to the above construction, the hydrogen storage amount can be more accurately monitored by using the hydrogen storage alloy containing the above element and the hydrogen storage compound containing the carbon material.

【0019】[0019]

【発明の実施の形態】〔実施の形態1〕本発明の一実施
の形態について説明すれば以下のとおりである。
BEST MODE FOR CARRYING OUT THE INVENTION [Embodiment 1] The following will describe one embodiment of the present invention.

【0020】本実施の形態の水素吸蔵量モニター方法
は、第一の水素吸蔵材料が有する磁気的特性を利用し
て、第一の水素吸蔵材料における水素吸蔵量を定量又は
推定する方法である。
The hydrogen storage amount monitoring method of the present embodiment is a method of quantifying or estimating the hydrogen storage amount in the first hydrogen storage material by utilizing the magnetic characteristics of the first hydrogen storage material.

【0021】水素吸蔵材料の磁気的特性としては、具体
的には、例えば、保磁力、磁化率、磁化の大きさ等が挙
げられる。これらのうち、水素吸蔵量との関係で、最も
正確な測定が行える特性は、磁化の大きさや磁化率であ
る。これらの特性は、インダクタンスコイルやホール効
果、磁気抵抗効果からの評価がし易いからである。一般
的な、その他の評価装置としてはVSM(vibrating samp
le magnetometer)も材料の磁気特性を測定するには有
力な装置である。一方、保磁力は粉の組成で決定される
結晶磁気異方性エネルギー、粉の形状、サイズや印加磁
場の大きさによっても変化するという側面がある。従っ
て、上記例示の磁気的特性においては、磁化率や磁化の
大きさで水素吸蔵量との相関を取ることがより望まし
い。
Specific examples of the magnetic characteristics of the hydrogen storage material include coercive force, magnetic susceptibility and magnitude of magnetization. Among these, the characteristics that can be most accurately measured in relation to the hydrogen storage amount are the magnitude of magnetization and the magnetic susceptibility. This is because these characteristics can be easily evaluated from the inductance coil, Hall effect, and magnetoresistive effect. As a general and other evaluation device, VSM (vibrating samp
le magnetometer) is also a powerful device for measuring the magnetic properties of materials. On the other hand, the coercive force has the aspect that it changes depending on the crystal magnetic anisotropy energy determined by the composition of the powder, the shape and size of the powder, and the magnitude of the applied magnetic field. Therefore, in the above-exemplified magnetic characteristics, it is more desirable to correlate the magnetic susceptibility and the magnitude of the magnetization with the hydrogen storage amount.

【0022】本発明において、水素吸蔵量を定量又は推
定する場合としては、例えば、上記磁気的特性と水素吸
蔵量との間に何らかの数値的な関係式が明らかとなる場
合には定量を行い、関係式は明らかではないが、何らか
の近似式で表せたり、その他、特有の傾向が明らかとな
る場合は、推定を行う等が考えられる。また、モニター
する領域に応じた関係式、近似式を明確化し、適宜磁気
的特性の種類や、定量方法・推定方法を使い分ける等し
て、より正確な水素吸蔵量のモニター方法を構築するこ
とも可能である。
In the present invention, when the hydrogen storage amount is quantified or estimated, for example, when some numerical relational expression between the magnetic characteristics and the hydrogen storage amount becomes clear, the quantification is performed, Although the relational expression is not clear, if it can be expressed by some kind of approximate expression, or if other specific tendency becomes clear, it is conceivable to make an estimation. It is also possible to establish a more accurate hydrogen storage amount monitoring method by clarifying the relational expressions and approximate expressions according to the area to be monitored and appropriately using the types of magnetic characteristics and the quantitative and estimation methods. It is possible.

【0023】水素吸蔵材料として水素吸蔵合金を用いる
場合、該水素吸蔵合金がより優れた磁気的特性を示すた
めの材料組成としては、3d電子の遷移金属であるFe,C
o,Ni,Mn,Crまたは4f電子のLa,Sm,Nd等のランタノイド
系元素を含むものが特に好ましい。商業的には、Fe,Ni
が安価であるため低コスト化が可能である。これらの元
素を含んだ金属合金は、合金の組成や結晶構造によって
磁気的特性が弱いもの、又は磁化させ難い場合もある。
しかしながら、上記材料組成を用いれば、ほとんどの場
合において常磁性や強磁性を示すため、磁化率や磁化の
大きさから水素吸蔵量を定量又は推定することが可能で
あり、好ましい。
When a hydrogen storage alloy is used as the hydrogen storage material, the material composition for the hydrogen storage alloy to exhibit more excellent magnetic properties is 3d electron transition metal Fe, C.
Those containing lanthanoid elements such as o, Ni, Mn, Cr or 4f electron La, Sm, Nd are particularly preferable. Commercially, Fe, Ni
Since it is cheap, it is possible to reduce the cost. Metal alloys containing these elements may have weak magnetic properties or may be difficult to magnetize depending on the composition and crystal structure of the alloy.
However, when the above-mentioned material composition is used, it exhibits paramagnetism or ferromagnetism in most cases, so that the hydrogen storage amount can be quantified or estimated from the magnetic susceptibility and the magnitude of the magnetization, which is preferable.

【0024】本発明の水素吸蔵量モニター方法におい
て、第一の水素吸蔵材料として特に好適に用いられる水
素吸蔵合金としては、具体的には、例えばLaNi5,LaC
o5,Y2Ni 7,Mg2Ni,SmCo5,GdCo5,Y2Co7,YCo3,TiF
e,Nd2Fe14B,YFe3,Y6Fe23,Y6Mn2 3,ZrMn2の合金に対
して、LaNi5H6,LaCo5H4.2,Y2Ni7H,Mg2NiH3.8,SmCo5
H3,GdCo5H2.8,Y2Co7H6,YCo3H4,TiFeH,Nd2Fe14B
H5,YFe3H3.7,Y6Fe23H16,Y6Mn 23H30,ZrMn2H3等が挙
げられるが、これらに限定されるものではない。
In the method for monitoring hydrogen storage amount according to the present invention
Water that is particularly preferably used as the first hydrogen storage material
Specific examples of the element storage alloy include LaNiFive, LaC
oFive, Y2Ni 7, Mg2Ni, SmCoFive, GdCoFive, Y2Co7, YCo3, TiF
e, Nd2Fe14B, YFe3, Y6Fetwenty three, Y6Mn2 3, ZrMn2Vs alloy
Then LaNiFiveH6, LaCoFiveH4.2, Y2Ni7H, Mg2NiH3.8, SmCoFive
H3, GdCoFiveH2.8, Y2Co7H6, YCo3HFour, TiFeH, Nd2Fe14B
HFive, YFe3H3.7, Y6Fetwenty threeH16, Y6Mn twenty threeH30, ZrMn2H3Etc.
However, the present invention is not limited to these.

【0025】本発明では、水素吸蔵材料によってはプラ
トー領域に無関係に水素吸蔵量だけで、一義的に磁化率
が定まるような、例えばTiFe,Mg2Ni,LaNi5等のような
常磁性材料もあり、プラトー領域だけの水素吸蔵量を定
量又は推定することに限定されるものではない。しかし
ながら、用いる水素吸蔵材料の材質に関わり無く、水素
吸蔵量をより正確に定量又は推定するためには、本発明
の磁気的特性、水素圧と水素吸蔵特性のふたつの特性パ
ラメーターを組み合わせて水素吸蔵量を定量又は推定す
ることは望ましい。
In the present invention, depending on the hydrogen storage material, paramagnetic materials such as TiFe, Mg 2 Ni, LaNi 5, etc. whose magnetic susceptibility is uniquely determined only by the hydrogen storage amount irrespective of the plateau region are also used. However, the present invention is not limited to quantitatively or estimating the hydrogen storage amount only in the plateau region. However, regardless of the material of the hydrogen storage material used, in order to more accurately quantify or estimate the hydrogen storage amount, the combination of the two characteristic parameters of the magnetic characteristic, hydrogen pressure and hydrogen storage characteristic of the present invention is used. It is desirable to quantify or estimate the amount.

【0026】本発明の水素吸蔵量モニター方法に特に好
適に用いられる水素吸蔵材料としては、上記水素吸蔵合
金のほか、カーボン系材料を含む水素吸蔵用化合物を用
いることができる。このようなカーボン系材料として
は、具体的には、例えば、グラファイトやカーボンナノ
チューブ等が特に好適である。これらのカーボン系材料
は、自由電子による反磁性を示し、反磁性が吸着される
元素や量によって変化を受けるので、上記と同様に磁気
的な特性が変化する。本発明の水素吸蔵用化合物は、水
素吸蔵合金とは水素を吸蔵するメカニズムは異なるが、
カーボン系材料のこのような性質を用いて水素吸蔵量の
定量又は推定を行うことができる。
As the hydrogen storage material particularly preferably used in the method for monitoring the amount of hydrogen storage of the present invention, in addition to the above hydrogen storage alloy, a hydrogen storage compound containing a carbon material can be used. As such a carbon-based material, specifically, for example, graphite or carbon nanotube is particularly suitable. These carbon-based materials exhibit diamagnetism due to free electrons, and the diamagnetism changes depending on the adsorbed element and amount, so that the magnetic characteristics also change as described above. The hydrogen storage compound of the present invention has a different mechanism for storing hydrogen from a hydrogen storage alloy,
By using such a property of the carbon-based material, it is possible to quantify or estimate the hydrogen storage amount.

【0027】〔実施の形態2〕実施の形態1では、第一
の水素吸蔵材料が有する磁気的特性を利用して、第一の
水素吸蔵材料における水素吸蔵量を定量又は推定した。
これに対し、本実施の形態の水素吸蔵量モニター方法で
は、上記第一の水素吸蔵材料とは異なる組成を有する第
二の水素吸蔵材料を第一の水素吸蔵材料に隣接等して設
けることにより、第二の水素吸蔵材料が有する磁気的特
性を利用して第一の水素吸蔵材料における水素吸蔵量を
定量または推定する。
[Second Embodiment] In the first embodiment, the amount of hydrogen stored in the first hydrogen storage material is quantified or estimated by utilizing the magnetic characteristics of the first hydrogen storage material.
On the other hand, in the hydrogen storage amount monitoring method of the present embodiment, a second hydrogen storage material having a composition different from that of the first hydrogen storage material is provided adjacent to the first hydrogen storage material, for example. Using the magnetic properties of the second hydrogen storage material, the amount of hydrogen storage in the first hydrogen storage material is quantified or estimated.

【0028】これにより、第一の水素吸蔵材料が有する
磁気的特性と比し、水素吸蔵量モニターとして、より適
した組成を有する第二の水素吸蔵材料を用いることがで
きるので、モニターすべき第一の水素吸蔵材料の組成に
関わり無く、より正確な水素吸蔵量の定量または推定を
行うことが可能となる。
As a result, the second hydrogen storage material having a more suitable composition can be used as the hydrogen storage amount monitor in comparison with the magnetic characteristics of the first hydrogen storage material. It becomes possible to more accurately quantify or estimate the hydrogen storage amount regardless of the composition of one hydrogen storage material.

【0029】第二の水素吸蔵材料の磁気的特性として
は、第一の水素吸蔵材料と同様にして選択することがで
き、例えば、保磁力、磁化率、磁化の大きさ等が挙げら
れる。また、第一の水素吸蔵材料の場合と同様に、上記
例示の特性のうち、水素吸蔵量との関係で、最も測定し
やすい特性は磁化の大きさや磁化率である。
The magnetic characteristics of the second hydrogen storage material can be selected in the same manner as the first hydrogen storage material, and examples thereof include coercive force, magnetic susceptibility, and magnitude of magnetization. Further, as in the case of the first hydrogen storage material, among the above-described characteristics, the characteristics that are most easily measured in relation to the hydrogen storage amount are the magnitude of magnetization and the magnetic susceptibility.

【0030】第二の水素吸蔵材料の材質は、これを用い
て水素吸蔵量をモニターする対象となる、第一の水素吸
蔵材料を構成する材質と異なる組成であればよい。第二
の水素吸蔵材料としては、上記実施の形態1で例示した
第一の水素吸蔵材料に用いられる水素吸蔵合金及び水素
吸蔵用化合物が用いられる。
The material of the second hydrogen storage material may have a composition different from the material forming the first hydrogen storage material, which is a target for monitoring the hydrogen storage amount using the second hydrogen storage material. As the second hydrogen storage material, the hydrogen storage alloy and the hydrogen storage compound used in the first hydrogen storage material exemplified in the first embodiment are used.

【0031】第二の水素吸蔵材料の設置方法は、特に限
定はないが、例えば、モニターすべき第一の水素吸蔵材
料表面の少なくとも一部に、付設、突設、嵌合、貼設等
して設けることができる。また、第二の水素吸蔵材料の
全部を第一の水素吸蔵材料表面に隣接して設ける場合の
ほか、必要に応じ、例えば、第二の水素吸蔵材料の一部
分を第一の水素吸蔵材料に接続し、他の部分を計器系統
付近に設ける構成を用いてもよい。さらには、第一の水
素吸蔵材料と連続したガス雰囲気下であれば、第一の水
素吸蔵材料から所定距離をおいた位置に第二の水素吸蔵
材料を設ける構成としてもよい。
The method for installing the second hydrogen storage material is not particularly limited, but, for example, attached, projected, fitted, attached, etc. on at least a part of the surface of the first hydrogen storage material to be monitored. Can be provided. In addition to the case where all of the second hydrogen storage material is provided adjacent to the surface of the first hydrogen storage material, if necessary, for example, a part of the second hydrogen storage material is connected to the first hydrogen storage material. However, you may use the structure which provides another part in the instrument system vicinity. Further, the second hydrogen storage material may be provided at a position apart from the first hydrogen storage material by a predetermined distance as long as the gas atmosphere is continuous with the first hydrogen storage material.

【0032】[0032]

【実施例】以下において、本発明の具体的な実施例につ
いて、実験結果を示して説明するが、本発明は、以下の
実施例に限定されるものではない。
EXAMPLES Hereinafter, specific examples of the present invention will be described by showing experimental results, but the present invention is not limited to the following examples.

【0033】〔実施例1〕Y及びFeの金属を1:3の組成比
になるようにアルミナルツボに入れ、アルゴン雰囲気中
で1800℃まで高周波加熱炉で加熱し溶融させた。次にこ
の溶融金属を急冷しインゴットを形成させた。このイン
ゴットをプレス破砕して、数センチ程度の大きさにした
後、ジョークラッシャーにて数ミリ程度の大きさにし
た。更にこの粉をハンマーミルで粉砕し、数百ミクロン
の粉にした。この粉を雰囲気制御用の容器に入れ、20℃
において水素雰囲気に置換して水素圧を変え、YFe3の水
素吸蔵量を変化させたものを作製した。このようにして
水素吸蔵量を変化させた各粉について、VSM(vibrating
sample magnetometer)により磁気的特性を評価し
た。YFe3H1.5〜 YFe3H2.5の水素吸蔵量に対して、以下
の表1のように保磁力が変化した。
Example 1 Metals of Y and Fe were placed in an alumina crucible so that the composition ratio was 1: 3, and heated to 1800 ° C. in an argon atmosphere in a high frequency heating furnace to be melted. Next, this molten metal was rapidly cooled to form an ingot. This ingot was crushed by press to have a size of about several centimeters and then with a jaw crusher to have a size of about several millimeters. Further, this powder was crushed with a hammer mill into powder of several hundreds of microns. Put this powder in a container for controlling the atmosphere and
In, a hydrogen atmosphere was substituted and the hydrogen pressure was changed to change the hydrogen storage amount of YFe 3 . For each powder whose hydrogen storage capacity was changed in this way, VSM (vibrating
The magnetic characteristics were evaluated by a sample magnetometer). The coercive force changed as shown in Table 1 below with respect to the hydrogen storage amount of YFe 3 H 1.5 to YFe 3 H 2.5 .

【0034】[0034]

【表1】 [Table 1]

【0035】表1より明らかなように、プラトー領域の
水素吸蔵に対して、水素の含有量が、YFe3Hxのx=1.5
の時の保磁力を1.00に規格化したとき、水素吸蔵量が増
えるに従って、保磁力が下がることがわかる。この結
果、保磁力を尺度に水素吸蔵合金の水素吸蔵量が定量又
は推定できることが確認できた。
As is clear from Table 1, the hydrogen content is x = 1.5 in YFe3Hx with respect to hydrogen absorption in the plateau region.
It can be seen that when the coercive force at is normalized to 1.00, the coercive force decreases as the hydrogen storage amount increases. As a result, it was confirmed that the hydrogen storage amount of the hydrogen storage alloy can be quantified or estimated using the coercive force as a scale.

【0036】〔実施例2〕YとCoの金属を1:3の組成比に
なるようにアルミナルツボに入れ、アルゴン雰囲気中で
1800℃まで高周波加熱炉で加熱し溶融させた。次にこの
溶融金属を急冷し、インゴットを形成させた。このイン
ゴットをプレス破砕して、数センチ程度の大きさにした
後、ジョークラッシャーにて数ミリ程度の大きさにし
た。更にこの粉をパルベライザーで粉砕し、百ミクロン
程度の粉にした。この粉を雰囲気制御用の容器に入れ、
60℃において水素雰囲気に置換して水素圧を変え、YCo3
の水素吸蔵量を変化させたものを作製した。このように
して水素吸蔵量を変化させた各粉について、VSMにより
磁気的特性を評価した。YCo3H2〜 YCo3H4の水素吸蔵量
に対して、以下の表のように磁化の大きさが変化した。
Example 2 Metals of Y and Co were placed in an alumina crucible so that the composition ratio was 1: 3, and the mixture was placed in an argon atmosphere.
It was heated to 1800 ° C in a high-frequency heating furnace and melted. Next, this molten metal was rapidly cooled to form an ingot. This ingot was crushed by press to have a size of about several centimeters and then with a jaw crusher to have a size of about several millimeters. Further, this powder was pulverized with a pulverizer into powder of about 100 microns. Put this powder in a container for atmosphere control,
Was replaced with a hydrogen atmosphere at 60 ° C. changed hydrogen pressure, YCO 3
The hydrogen storage capacity was changed. The magnetic characteristics of each powder whose hydrogen storage capacity was changed were evaluated by VSM. The magnitude of magnetization changed as shown in the table below with respect to the hydrogen storage amount of YCo 3 H 2 to YCo 3 H 4 .

【0037】[0037]

【表2】 [Table 2]

【0038】表2より明らかなように、プラトー領域の
水素吸蔵に対して、水素の含有量が、YCo3Hxのx=2.0
の時の磁化の大きさを1.00に規格化したとき、水素量が
増えるに従って、磁化の大きさが下がることがわかる。
この結果、磁化の大きさを尺度として用い、水素吸蔵合
金の水素吸蔵量が定量又は推定できることが確認でき
た。
As is clear from Table 2, the hydrogen content is x = 2.0 of YCo 3 Hx with respect to hydrogen absorption in the plateau region.
It can be seen that when the magnitude of magnetization at is normalized to 1.00, the magnitude of magnetization decreases as the amount of hydrogen increases.
As a result, it was confirmed that the amount of hydrogen storage of the hydrogen storage alloy can be quantified or estimated by using the magnitude of magnetization as a scale.

【0039】〔実施例3〕Y,CoとNiの金属を1:2.5:0.
5の組成比になるようにアルミナルツボに入れ、アルゴ
ン雰囲気中で1800℃まで高周波加熱炉で加熱し溶融させ
た。次にこの溶融金属を急冷しインゴットを形成させ
た。このインゴットをプレス破砕して、数センチ程度の
大きさにした後、ジョークラッシャーにて数ミリ程度の
大きさにした。更にこの粉をパルベライザーで粉砕し、
百ミクロン程度の粉にした。この粉に雰囲気制御用の容
器に入れ、60℃において水素雰囲気に置換して水素圧を
変えて、YCo2.5Ni0.5の水素吸蔵量を変えたものを作製
した。このようにして水素吸蔵量を変化させた各粉につ
いて、VSMにより磁気的特性を評価した。YCo2.5Ni0.5H2
〜 YCo2.5Ni0.5H4の水素吸蔵量に対して、以下の表3の
ように磁化の大きさが変化した。
[Embodiment 3] Metals of Y, Co and Ni are 1: 2.5: 0.
It was placed in an alumina crucible so that the composition ratio was 5, and heated in a high-frequency heating furnace to 1800 ° C. in an argon atmosphere and melted. Next, this molten metal was rapidly cooled to form an ingot. This ingot was crushed by press to have a size of about several centimeters and then with a jaw crusher to have a size of about several millimeters. Further pulverize this powder with a pulsarizer,
It was made into powder of about 100 microns. This powder was placed in a container for controlling the atmosphere, the atmosphere was replaced with a hydrogen atmosphere at 60 ° C., the hydrogen pressure was changed, and the hydrogen storage amount of YCo 2.5 Ni 0.5 was changed. The magnetic characteristics of each powder whose hydrogen storage capacity was changed were evaluated by VSM. YCo 2. 5 Ni 0.5 H 2
The magnitude of magnetization changed as shown in Table 3 below with respect to the hydrogen storage amount of YCo 2.5 Ni 0.5 H 4 .

【0040】[0040]

【表3】 [Table 3]

【0041】表3より明らかなように、プラトー領域の
水素吸蔵に対して、水素の含有量が、YCo2.5Ni0.5Hxの
x=2.0の時の磁化の大きさを1.00に規格化したとき、
水素吸蔵量が増えるに従って、磁化の大きさが下がるこ
とがわかった。この結果、磁化の大きさを尺度に水素吸
蔵合金の水素吸蔵量が定量又は推定できることが確認で
きた。
As is apparent from Table 3, with respect to hydrogen absorption plateau region, the content of hydrogen was normalized to 1.00 YCo 2.5 Ni 0. 5 the magnitude of the magnetization when the Hx of x = 2.0 When
It was found that the magnitude of magnetization decreases as the hydrogen storage amount increases. As a result, it was confirmed that the hydrogen storage amount of the hydrogen storage alloy can be quantified or estimated using the magnitude of magnetization as a scale.

【0042】〔実施例4〕TiとFeの金属を1:1の組成比
になるようにアルミナルツボに入れ、アルゴン雰囲気中
で1700℃まで高周波加熱炉で加熱し溶融させた。次にこ
の溶融金属を急冷しインゴットを形成させた。このイン
ゴットをプレス破砕して、数センチ程度の大きさにした
後、ジョークラッシャーにて数ミリ程度の大きさにし
た。更にこの粉をハンマーミルで粉砕し、百ミクロン程
度の粉にした。この粉を雰囲気制御用の容器に入れ、20
℃において水素雰囲気に置換して水素圧を変え、TiFeの
水素吸蔵量を変化させたものを作製した。このようにし
て水素吸蔵量を変化させた各粉について、VSMにより磁
気的特性を評価した。TiFe〜 TiFeH1.9の水素吸蔵量に
対して、以下の表4のように磁化率が変化した。
Example 4 Metals of Ti and Fe were placed in an alumina crucible in a composition ratio of 1: 1 and heated to 1700 ° C. in an argon atmosphere in a high frequency heating furnace to be melted. Next, this molten metal was rapidly cooled to form an ingot. This ingot was crushed by press to have a size of about several centimeters and then with a jaw crusher to have a size of about several millimeters. Further, this powder was crushed with a hammer mill into powder of about 100 microns. Put this powder in a container for atmosphere control,
By changing the hydrogen pressure by substituting the atmosphere with hydrogen at ℃, the hydrogen storage amount of TiFe was changed. The magnetic characteristics of each powder whose hydrogen storage capacity was changed were evaluated by VSM. The magnetic susceptibility changed as shown in Table 4 below with respect to the hydrogen storage amount of TiFe to TiFeH 1.9 .

【0043】[0043]

【表4】 [Table 4]

【0044】この組成の系ではプラトー領域がTiFeHxの
x=0.1〜0.5の領域にあるが、この系では全体の水素吸
蔵に対して、磁化率が水素の含有量で決定され、TiFeHx
のx=0の時の磁化率を1.00に規格化したとき、水素吸
蔵量が増えるに従って、磁化率が大きくなることがわか
った。この結果、本実施例の場合には、プラトー領域に
関わらず磁化率の大きさを尺度として、水素吸蔵合金の
水素吸蔵量を定量又は推定できることが確認できた。
In the system of this composition, the plateau region is in the region of x = 0.1 to 0.5 of TiFeHx, but in this system, the magnetic susceptibility is determined by the hydrogen content with respect to the total hydrogen absorption.
It was found that when the magnetic susceptibility when x = 0 was normalized to 1.00, the magnetic susceptibility increased as the hydrogen storage amount increased. As a result, in the case of this example, it was confirmed that the hydrogen storage amount of the hydrogen storage alloy can be quantified or estimated using the magnitude of the magnetic susceptibility as a scale regardless of the plateau region.

【0045】〔実施例5〕Ti、FeとMnの金属を1:0.8:
0.2の組成比になるようにアルミナルツボに入れ、アル
ゴン雰囲気中で1700℃まで高周波加熱炉で加熱し溶融さ
せた。次にこの溶融金属を急冷しインゴットを形成させ
た。このインゴットをプレス破砕して、数センチ程度の
大きさにした後、ジョークラッシャーにて数ミリ程度の
大きさにした。更にこの粉をハンマーミルで粉砕し、百
ミクロン程度の粉にした。この粉に雰囲気制御用の容器
に入れ、20℃において水素雰囲気に置換して水素圧を変
え、TiFe0.8Mn0.2の水素吸蔵量を変化させたものを作製
した。このようにして水素吸蔵量を変化させた各粉につ
いて、VSMにより磁気的特性を評価した。TiFe0.8Mn0. 2
〜 TiFe0.8Mn0.2H1.9の水素吸蔵量に対して、以下の表5
のように磁化率が変化した。
Example 5 Metals of Ti, Fe and Mn are 1: 0.8:
It was placed in an alumina crucible so that the composition ratio was 0.2, and heated in an argon atmosphere to 1700 ° C. in a high-frequency heating furnace to melt. Next, this molten metal was rapidly cooled to form an ingot. This ingot was crushed by press to have a size of about several centimeters and then with a jaw crusher to have a size of about several millimeters. Further, this powder was crushed with a hammer mill into powder of about 100 microns. This powder was put in a container for controlling the atmosphere, replaced with a hydrogen atmosphere at 20 ° C., the hydrogen pressure was changed, and the hydrogen storage amount of TiFe 0.8 Mn 0.2 was changed. The magnetic characteristics of each powder whose hydrogen storage capacity was changed were evaluated by VSM. TiFe 0.8 Mn 0. 2
〜 TiFe 0.8 Mn 0.2 H 1.9 for hydrogen storage capacity, the following Table 5
The magnetic susceptibility changed.

【0046】[0046]

【表5】 [Table 5]

【0047】表5より明らかなように、本実施例では、
プラトー領域がTiFe0.8Mn0.2Hxのx=0.1〜0.5の領域に
あるが、この系では全体の水素吸蔵に対して、磁化率が
水素の含有量で決定され、TiFe0.8Mn0.2Hxのx=0の時
の磁化率を1に規格化したとき、水素吸蔵量が増えるに
従って、磁化率が大きくなることがわかる。この結果、
本実施例の場合にはプラトー領域に関わらず磁化率の大
きさを尺度として、水素吸蔵合金の水素吸蔵量が定量又
は推定できることが確認できた。
As is clear from Table 5, in this embodiment,
The plateau region is in the region of TiFe 0.8 Mn 0.2 Hx x = 0.1 to 0.5, but in this system, the magnetic susceptibility is determined by the hydrogen content for the entire hydrogen storage, and TiFe 0.8 Mn 0.2 Hx x = It can be seen that when the magnetic susceptibility at 0 is normalized to 1, the magnetic susceptibility increases as the hydrogen storage amount increases. As a result,
In the case of this example, it was confirmed that the hydrogen storage amount of the hydrogen storage alloy can be quantified or estimated using the magnitude of the magnetic susceptibility as a scale regardless of the plateau region.

【0048】〔実施例6〕カーボンナノチューブ粉を雰
囲気制御用の容器に入れ、20℃において水素雰囲気に置
換して水素圧を変えて、水素吸蔵量(wt%)を変化させ
たものを作製した。このようにして水素吸蔵量を変化さ
せた各粉について、VSMにより磁気的特性を評価した。
この結果、カーボンナノチューブの磁化率の変化(%)
の大きさは、水素を吸蔵しないときの大きさを1と規格
化した場合には以下の表6のようになった。
[Example 6] Carbon nanotube powder was placed in a container for controlling the atmosphere, the atmosphere was replaced with a hydrogen atmosphere and the hydrogen pressure was changed to change the hydrogen storage amount (wt%). . The magnetic characteristics of each powder whose hydrogen storage capacity was changed were evaluated by VSM.
As a result, the change in magnetic susceptibility of carbon nanotubes (%)
The size of is as shown in Table 6 below when the size when hydrogen is not occluded is standardized as 1.

【0049】[0049]

【表6】 [Table 6]

【0050】このことから、カーボンナノチューブのよ
うな反磁性材料にも同様に、磁化率で水素吸蔵量を推定
できることがわかった。
From this, it was found that the hydrogen storage amount can be estimated by the magnetic susceptibility similarly to the diamagnetic material such as carbon nanotube.

【0051】〔実施例7〕TiとFeの金属を1:1の組成比
になるようにアルミナルツボに入れ、アルゴン雰囲気中
で1700℃まで高周波加熱炉で加熱し溶融させた。次にこ
の溶融金属を急冷しインゴットを形成させた。このイン
ゴットをプレス破砕して、数センチ程度の大きさにした
後、ジョークラッシャーにて数ミリ程度の大きさにし
た。更にこの粉をハンマーミルで粉砕し、百ミクロン程
度の粉にした。この粉を雰囲気制御用の容器に入れ、20
℃において水素雰囲気に置換して水素圧を変えて、TiFe
の水素吸蔵量を変えたものを作製した。この粉をペレッ
トに成形し、1300℃で1時間、燒結した。このペレット
を用いて適度に水素圧を変えて、水素の吸蔵量を変化さ
せたものを作製した。このペレットをVSMにより磁気的
特性を評価した。TiFeHxの磁化率yは水素吸蔵量(推定
水素量)xに従い、y=―0.36x2+1.26x+1の近似式で表現
できる。この式を用いて磁化率から水素吸蔵量を推定
し、実際の水素量と比較した結果を以下の表7に示し
た。
Example 7 Metals of Ti and Fe were placed in an alumina crucible in a composition ratio of 1: 1 and heated to 1700 ° C. in an argon atmosphere in a high frequency heating furnace to be melted. Next, this molten metal was rapidly cooled to form an ingot. This ingot was crushed by press to have a size of about several centimeters and then with a jaw crusher to have a size of about several millimeters. Further, this powder was crushed with a hammer mill into powder of about 100 microns. Put this powder in a container for atmosphere control,
Replace the atmosphere with a hydrogen atmosphere at ℃ and change the hydrogen pressure.
The hydrogen storage capacity was changed. This powder was formed into pellets and sintered at 1300 ° C. for 1 hour. By using this pellet, the hydrogen pressure was appropriately changed, and the hydrogen storage amount was changed to prepare one. The magnetic characteristics of this pellet were evaluated by VSM. Susceptibility y of TiFeHx in accordance hydrogen storage capacity (estimated amount of hydrogen) x, can be expressed by approximation formula of y = -0.36x 2 + 1.26x + 1 . The hydrogen storage amount was estimated from the magnetic susceptibility using this formula, and the results of comparison with the actual hydrogen amount are shown in Table 7 below.

【0052】[0052]

【表7】 [Table 7]

【0053】表7の結果から、磁化率から水素吸蔵量が
推定できることがわかった。
From the results shown in Table 7, it was found that the hydrogen storage amount can be estimated from the magnetic susceptibility.

【0054】〔実施例8〕TiとFeの金属を1:1の組成比
になるようにアルミナルツボに入れ、アルゴン雰囲気中
で1700℃まで高周波加熱炉で加熱し溶融させた。次にこ
の溶融金属を急冷しインゴットを形成させた。このイン
ゴットをプレス破砕して、数センチ程度の大きさにした
後、ジョークラッシャーにて数ミリ程度の大きさにし
た。更にこの粉をハンマーミルで粉砕し、百ミクロン程
度の粉にした。この粉を雰囲気制御用の容器に入れ、20
℃において水素雰囲気に置換して水素圧を変えて、TiFe
の水素吸蔵量を変えたものを作製した。この合金粉末
を、プレス圧1t/cm2で直径10mm長さ20mmのペレットに成
形し、1250℃で焼結させた。このペレットの端部に6000
ガウスの直径10mmの希土類磁石を貼りつけ、もう一方の
端部にホール効果を用いた磁束計をセッティングした。
このとき、水素圧に対して吸蔵する水素量がプラトーに
なる領域において、水素吸蔵量に従い、ホール効果を用
いた磁束計の表示値が吸蔵量に対してほぼ直線的に減少
することが確認できた。上記と同様にして調製したTiと
Feとの組成比1:1からなる合金粉末を用いた水素吸蔵
用タンクに、上記ペレット、磁束計、及び希土類磁石か
らなるセンサーを、水素吸蔵用タンク内と連続したガス
雰囲気下となるように取り付け、水素吸蔵用タンク内の
合金粉末の水素吸蔵量を同様にモニターした。その結
果、上記センサーから出力される特性により、水素吸蔵
用タンクの水素吸蔵量を定量又は推定できることが確認
された。
Example 8 Metals of Ti and Fe were placed in an alumina crucible in a composition ratio of 1: 1 and heated in an argon atmosphere to 1700 ° C. in a high frequency heating furnace to be melted. Next, this molten metal was rapidly cooled to form an ingot. This ingot was crushed by press to have a size of about several centimeters and then with a jaw crusher to have a size of about several millimeters. Further, this powder was crushed with a hammer mill into powder of about 100 microns. Put this powder in a container for atmosphere control,
Replace the atmosphere with a hydrogen atmosphere at ℃ and change the hydrogen pressure.
The hydrogen storage capacity was changed. This alloy powder was formed into pellets having a diameter of 10 mm and a length of 20 mm at a pressing pressure of 1 t / cm 2 , and sintered at 1250 ° C. 6000 at the end of this pellet
A Gaussian rare-earth magnet with a diameter of 10 mm was attached, and a magnetometer using the Hall effect was set at the other end.
At this time, it can be confirmed that in the region where the amount of hydrogen stored with respect to the hydrogen pressure becomes a plateau, the displayed value of the magnetometer using the Hall effect decreases almost linearly according to the hydrogen storage amount. It was Ti prepared in the same manner as above
In a hydrogen storage tank using an alloy powder having a composition ratio of 1: 1 with Fe, the pellet, the magnetometer, and the sensor composed of a rare earth magnet are arranged so that the hydrogen storage tank is under a continuous gas atmosphere. The hydrogen storage amount of the alloy powder in the hydrogen storage tank that was attached was similarly monitored. As a result, it was confirmed that the hydrogen storage amount in the hydrogen storage tank can be quantified or estimated by the characteristics output from the sensor.

【0055】〔実施例9〕YとCoの金属を1:3の組成比
になるようにアルミナルツボに入れ、アルゴン雰囲気中
で1800℃まで高周波加熱炉で加熱し溶融させた。次にこ
の溶融金属を急冷し、インゴットを形成させた。このイ
ンゴットをプレス破砕して、数センチ程度の大きさにし
た後、ジョークラッシャーにて数ミリ程度の大きさにし
た。更にこの粉をパルベライザーで粉砕し、百ミクロン
程度の粉にした。この粉を雰囲気制御用の容器に入れ、
60℃において水素雰囲気に置換して水素圧を変え、YCo3
の水素吸蔵量を変化させたものを作製した。このように
して作成された粉を充填した水素吸蔵用タンクを用意し
た。次に、実施例8と同様の操作をして、TiとFeとの組
成比1:1からなる合金粉末を用いて調製したペレッ
ト、磁束計、及び希土類磁石からなるセンサーを調製し
た。該センサーを上記水素吸蔵用タンク内と連続したガ
ス雰囲気下となるように取り付け、水素吸蔵用タンク内
の合金粉末の水素吸蔵量を同様にモニターした。その結
果、上記センサーから出力される特性により、水素吸蔵
用タンクの水素吸蔵量を定量又は推定できることが確認
された。
Example 9 Metals of Y and Co were put into an alumina crucible so that the composition ratio was 1: 3, and heated in a high-frequency heating furnace to 1800 ° C. in an argon atmosphere and melted. Next, this molten metal was rapidly cooled to form an ingot. This ingot was crushed by press to have a size of about several centimeters and then with a jaw crusher to have a size of about several millimeters. Further, this powder was pulverized with a pulverizer into powder of about 100 microns. Put this powder in a container for atmosphere control,
Was replaced with a hydrogen atmosphere at 60 ° C. changed hydrogen pressure, YCO 3
The hydrogen storage capacity was changed. A hydrogen storage tank filled with the powder thus prepared was prepared. Next, the same operation as in Example 8 was carried out to prepare a sensor composed of a pellet, a magnetometer, and a rare earth magnet prepared by using an alloy powder having a composition ratio of Ti and Fe of 1: 1. The sensor was attached so as to be in a continuous gas atmosphere with the hydrogen storage tank, and the hydrogen storage amount of the alloy powder in the hydrogen storage tank was similarly monitored. As a result, it was confirmed that the hydrogen storage amount in the hydrogen storage tank can be quantified or estimated by the characteristics output from the sensor.

【0056】[0056]

【発明の効果】本発明の水素吸蔵量モニター方法を用い
れば、水素吸蔵材料の磁気的特性を利用することによ
り、水素圧が吸蔵する水素量に対してプラトーとなる領
域、つまり吸蔵する水素量に対して水素圧がほとんど一
定となる領域においても、正確に水素吸蔵量を定量又は
推定できるという効果を奏する。
According to the hydrogen storage amount monitoring method of the present invention, by utilizing the magnetic characteristics of the hydrogen storage material, the region where the hydrogen pressure has a plateau with respect to the stored hydrogen amount, that is, the stored hydrogen amount. On the other hand, even in a region where the hydrogen pressure is almost constant, the hydrogen storage amount can be accurately quantified or estimated.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/00 302 C22C 38/00 302V F17C 11/00 F17C 11/00 C G01N 33/00 G01N 33/00 D H01M 8/04 H01M 8/04 J Z ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 38/00 302 C22C 38/00 302V F17C 11/00 F17C 11/00 C G01N 33/00 G01N 33/00 D H01M 8/04 H01M 8/04 J Z

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第一の水素吸蔵材料が有する磁気的特性
を利用して、第一の水素吸蔵材料における水素吸蔵量を
定量又は推定することを特徴とする水素吸蔵量モニター
方法。
1. A method for monitoring the amount of stored hydrogen, wherein the amount of stored hydrogen in the first hydrogen storage material is quantified or estimated using the magnetic characteristics of the first hydrogen storage material.
【請求項2】 前記定量又は推定を、水素吸蔵量に対す
る平衡水素分圧が一定となるプラトー領域にて行い、該
プラトー領域以外では、水素圧力を利用して水素吸蔵量
を定量又は推定することを特徴とする請求項1記載の水
素吸蔵量モニター方法。
2. The quantification or estimation is performed in a plateau region where the equilibrium hydrogen partial pressure with respect to the hydrogen storage amount is constant, and the hydrogen storage amount is quantified or estimated using hydrogen pressure outside the plateau region. The method for monitoring hydrogen storage amount according to claim 1, characterized in that.
【請求項3】 第一の水素吸蔵材料とは異なる組成を有
する第二の水素吸蔵材料の磁気的特性を利用して、第一
の水素吸蔵材料における水素吸蔵量を定量又は推定する
ことを特徴とする水素吸蔵量モニター方法。
3. The amount of hydrogen storage in the first hydrogen storage material is quantified or estimated by utilizing the magnetic characteristics of the second hydrogen storage material having a composition different from that of the first hydrogen storage material. A method for monitoring the amount of stored hydrogen.
【請求項4】 請求項1ないし3のいずれか1項に記載
の水素吸蔵量モニター方法において水素吸蔵材料として
用いられ、Fe,Co,Cr,Ni,Mn及びランタノイド系元素のい
ずれか1種類以上を含むことを特徴とする水素吸蔵合
金。
4. The hydrogen storage amount monitoring method according to any one of claims 1 to 3, which is used as a hydrogen storage material, and contains at least one of Fe, Co, Cr, Ni, Mn and lanthanoid elements. A hydrogen storage alloy comprising:
【請求項5】 請求項1ないし3のいずれか1項に記載
の水素吸蔵量モニター方法において水素吸蔵材料として
用いられ、カーボン系材料を含むことを特徴とする水素
吸蔵用化合物。
5. A hydrogen storage compound which is used as a hydrogen storage material in the hydrogen storage amount monitoring method according to claim 1 and contains a carbon-based material.
JP2001301687A 2001-09-28 2001-09-28 Method for monitoring amount of hydrogen storage Withdrawn JP2003107055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001301687A JP2003107055A (en) 2001-09-28 2001-09-28 Method for monitoring amount of hydrogen storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001301687A JP2003107055A (en) 2001-09-28 2001-09-28 Method for monitoring amount of hydrogen storage

Publications (1)

Publication Number Publication Date
JP2003107055A true JP2003107055A (en) 2003-04-09

Family

ID=19122057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001301687A Withdrawn JP2003107055A (en) 2001-09-28 2001-09-28 Method for monitoring amount of hydrogen storage

Country Status (1)

Country Link
JP (1) JP2003107055A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226114A (en) * 2004-02-12 2005-08-25 Nasu Denki Tekko Co Ltd Method of producing hydrogen storage alloy powder, and hydrogen storage alloy powder obtained by the production method
JP2005226115A (en) * 2004-02-12 2005-08-25 Nasu Denki Tekko Co Ltd Hydrogen storage alloy powder
WO2015016090A1 (en) * 2013-08-01 2015-02-05 国立大学法人北海道大学 Non-electric hydrogen collecting device
KR20160019493A (en) * 2013-06-14 2016-02-19 유니버시티 오브 싸우스 웨일즈 커머셜 서비시스 리미티드 Synthesis and hydrogen storage properties of manganese hydrides
US10465852B2 (en) 2014-06-13 2019-11-05 USW Commercial Services Ltd. Synthesis and hydrogen storage properties of novel metal hydrides
US10974961B2 (en) 2011-12-15 2021-04-13 USW Commercial Services, Ltd. Metal hydrides and their use in hydrogen storage applications

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226114A (en) * 2004-02-12 2005-08-25 Nasu Denki Tekko Co Ltd Method of producing hydrogen storage alloy powder, and hydrogen storage alloy powder obtained by the production method
JP2005226115A (en) * 2004-02-12 2005-08-25 Nasu Denki Tekko Co Ltd Hydrogen storage alloy powder
US11851327B2 (en) 2011-12-15 2023-12-26 USW Commercial Services Ltd. Metal hydrides and their use in hydrogen storage applications
US10974961B2 (en) 2011-12-15 2021-04-13 USW Commercial Services, Ltd. Metal hydrides and their use in hydrogen storage applications
US10622655B2 (en) 2013-06-14 2020-04-14 Usw Commercial Services Ltd Synthesis and hydrogen storage properties of novel manganese hydrides
JP2016532638A (en) * 2013-06-14 2016-10-20 ユニヴァーシティー オブ サウス ウェールズ コマーシャル サービシズ リミテッド Synthesis and hydrogen storage properties of manganese hydrides
KR20160019493A (en) * 2013-06-14 2016-02-19 유니버시티 오브 싸우스 웨일즈 커머셜 서비시스 리미티드 Synthesis and hydrogen storage properties of manganese hydrides
KR102307546B1 (en) * 2013-06-14 2021-09-30 유에스더블유 커머셜 서비시스 리미티드 Synthesis and hydrogen storage properties of manganese hydrides
JP2022088542A (en) * 2013-06-14 2022-06-14 ユーエスダブリュー コマーシャル サービシズ リミテッド Synthesis and hydrogen storage properties of manganese hydrides
JP7424662B2 (en) 2013-06-14 2024-01-30 ユーエスダブリュー コマーシャル サービシズ リミテッド Synthesis and hydrogen storage properties of manganese hydride
WO2015016090A1 (en) * 2013-08-01 2015-02-05 国立大学法人北海道大学 Non-electric hydrogen collecting device
US10465852B2 (en) 2014-06-13 2019-11-05 USW Commercial Services Ltd. Synthesis and hydrogen storage properties of novel metal hydrides
US11421826B2 (en) 2014-06-13 2022-08-23 USW Commercial Services, Ltd. Synthesis and hydrogen storage properties of novel metal hydrides

Similar Documents

Publication Publication Date Title
RU2629124C9 (en) Sintered magnet and methods of its obtaining
Yavari et al. Improvement in H-sorption kinetics of MgH2 powders by using Fe nanoparticles generated by reactive FeF3 addition
Yue et al. Chemical stability and microstructure of Nd-Fe-B magnet prepared by spark plasma sintering
Young et al. Comparisons of metallic clusters imbedded in the surface oxide of AB2, AB5, and A2B7 alloys
CN107622854B (en) R-T-B based rare earth element permanent magnet
CN107170543B (en) The preparation method of Sm-Co based alloy block shaped magnets
Zhang et al. Estimating the in-operando stabilities of AlFe2B2-Based compounds for magnetic refrigeration
Luo et al. Effect of low melting point powder doping on the properties and microstructure of sintered NdFeB magnets
JP2003107055A (en) Method for monitoring amount of hydrogen storage
Wang et al. Effects of grain boundary ternary alloy doping on corrosion resistance of (Ce, Pr, Nd)-Fe-B permanent magnets
Wang et al. Microstructure, thermal properties, and corrosion behaviors of FeSiBAlNi alloy fabricated by mechanical alloying and spark plasma sintering
Ma et al. The Co-doped Tb0. 36Dy0. 64Fe2 magnetostrictive alloys with a wide operating temperature range
Li et al. Effects of Mg nanopowders intergranular addition on the magnetic properties and corrosion resistance of sintered Nd-Fe-B
Mural et al. The effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets
Zhihua et al. Effect of niobium on thermal stability and impact toughness of Nd-Fe-B magnets with ultra-high intrinsic coercivity
Tai et al. Magnetic properties of LaNi5-based compounds
Leich et al. Recycling of NdFeB magnets by electrodischarge sintering—microstructure, magnetic, and mechanical properties
Isnard et al. High field magnetization measurements of SmFe11Ti and SmFe11TiH1− δ
Frase et al. Soft magnetic properties of nanocrystalline Ni3Fe and Fe75Al12. 5Ge12. 5
Wang et al. Magnetic properties, microstructure and corrosion behavior of Nd10Y1Fe85− xNb3. 5Ti0. 5Bx (x= 14–22) and Nd10Y1Fe69Nb3. 5M0. 5B16 (M= Ti, Zr, Cr, Mo) bulk nanocrystalline magnets
Gabay et al. Hot-pressed and die-upset Pr-Co magnets produced from mechanically activated alloys
Chen et al. Behavior of some heavy and light rare earth-cobalt magnets at high temperature
CN109952621A (en) Rare earth-transition metal system strong magnetic alloy
Marquina et al. Magnetic and magnetoelastic behavior of mechanically alloyed FeRh compound
Buschow Magnetic properties of the ternary hydrides of Nd6Mn23 and Sm6Mn23

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080912

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20081015

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100602