JP2003105477A - Cemented carbide, and cutting tool using the same - Google Patents

Cemented carbide, and cutting tool using the same

Info

Publication number
JP2003105477A
JP2003105477A JP2001293032A JP2001293032A JP2003105477A JP 2003105477 A JP2003105477 A JP 2003105477A JP 2001293032 A JP2001293032 A JP 2001293032A JP 2001293032 A JP2001293032 A JP 2001293032A JP 2003105477 A JP2003105477 A JP 2003105477A
Authority
JP
Japan
Prior art keywords
cemented carbide
peak
carbide
cutting tool
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001293032A
Other languages
Japanese (ja)
Inventor
Daisuke Shibata
大輔 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001293032A priority Critical patent/JP2003105477A/en
Priority to US10/256,275 priority patent/US6797369B2/en
Priority to DE10244955.4A priority patent/DE10244955C5/en
Publication of JP2003105477A publication Critical patent/JP2003105477A/en
Priority to US10/916,671 priority patent/US7018726B2/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a cemented carbide, having high hardness and high toughness and a cutting tool using the cemented carbide which has excellent wear resistance, plastic deformation resistance and chipping resistance against the highly efficient cutting of a hardly machinable material such as a stainless steel. SOLUTION: The cemented carbide comprises a tungsten carbide phase, a solid solution phase consisting of at least two kinds of carbide, nitride and carbonitride of metals selected from the groups 4a, 5a and 6a in the periodic table containing at least Zr and Nb, and a binder phase containing at least one kind of ferrous metal, and the X-ray diffraction peak has a first peak with a peak top at 2θ=40.00-41.99 deg., and a second peak with a peak top at 2θ=38.00-39.99 deg..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は超硬合金およびそれ
を用いた切削工具に関し、特に高靭性を有し、かつ耐摩
耗性にすぐれた炭化タングステン基超硬合金およびそれ
を用いた切削工具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cemented carbide and a cutting tool using the same, and more particularly to a tungsten carbide based cemented carbide having high toughness and excellent wear resistance and a cutting tool using the same. .

【0002】[0002]

【従来の技術】従来から金属の切削加工に広く用いられ
ている超硬合金は、炭化タングステンを主体とする硬質
相と、コバルト等の鉄族金属の結合相からなるWC−C
o系合金、もしくは上記WC−Co系に周期律表第4
a、5a、6a族金属の炭化物、窒化物、炭窒化物等の
固溶体相を分散せしめた系が知られている。これらの超
硬合金は、切削工具として、主に鋳鉄や炭素鋼等の切削
に利用されているが、最近ではステンレス鋼の切削への
利用も進められている。ステンレス鋼は耐食性、耐酸化
性、耐熱性に優れるといった特性を有するため、幅広い
分野で使用され、加工量も年々増加している。これらの
難削材を含む金属の切削加工は高能率化が求められ、高
速・高送りに対応する材種が早急に必要となった。
2. Description of the Related Art Cemented carbide, which has been widely used for metal cutting, has been a WC-C composed of a hard phase mainly composed of tungsten carbide and a bonded phase of an iron group metal such as cobalt.
O-based alloy or WC-Co system above
A system in which a solid solution phase of a carbide, nitride, carbonitride or the like of a, 5a or 6a group metal is dispersed is known. These cemented carbides are mainly used as cutting tools for cutting cast iron, carbon steel, etc., but recently, they are also being used for cutting stainless steel. Since stainless steel has characteristics such as excellent corrosion resistance, oxidation resistance, and heat resistance, it is used in a wide range of fields and the amount of processing is increasing year by year. The cutting of metals including these difficult-to-cut materials is required to be highly efficient, and there is an urgent need for materials that support high speed and high feed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ステン
レス鋼は切削工具との反応性が高いために難削材として
知られており、加工硬化が発生したり、熱伝導率が高い
ために切削温度が高くなる。また、従来の切削工具でス
テンレス鋼を切削した場合、切削工具の摩耗が大きくて
工具寿命が短くなるために切削速度が上げられず、加工
硬化した切削面から受ける衝撃によって損傷しやすいた
めに切削送りが上げられないという問題があった。
However, stainless steel is known as a difficult-to-cut material because of its high reactivity with cutting tools, and the work temperature is high because of work hardening and high thermal conductivity. Get higher Also, when cutting stainless steel with a conventional cutting tool, the cutting speed is not increased because the cutting tool wears a lot and the tool life is shortened, and it is easily damaged by the impact received from the work hardened cutting surface. There was a problem that the feed could not be raised.

【0004】したがって、本発明は従来の技術では達成
できなかった高硬度と強靭性を有する超硬合金を提供す
ることを目的とし、かつこれを用いてステンレス鋼等の
難削材の高能率切削に対しても優れた耐摩耗性、耐塑性
変形性および耐欠損性を有する切削工具を提供すること
を目的とする。
Therefore, an object of the present invention is to provide a cemented carbide having high hardness and toughness which cannot be achieved by the conventional techniques, and by using this, high efficiency cutting of difficult-to-cut materials such as stainless steel. It is also an object of the present invention to provide a cutting tool having excellent wear resistance, plastic deformation resistance, and fracture resistance.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記課題に
対して検討した結果、炭化タングステン相と鉄族金属系
の結合相とを含有する超硬合金において、少なくともZ
rおよびNbを含有する周期律表第4a、5a、6a族
金属の群から選ばれる2種以上の炭化物、窒化物および
/または炭窒化物からなる固溶体相を析出するとととも
に、前記超硬合金のX線回折にて2θ=40.00〜4
1.99°にピークを持つ相と、2θ=38.00〜3
9.99°にピークを持つ第2の相を具備することによ
って、超硬合金母材の強度および高温強度を高めること
ができ、かつこれを切削工具として用いることによっ
て、ステンレス鋼等の難削材の切削に対しても優れた耐
摩耗性、耐塑性変形性および耐欠損性を有し、かつ高能
率切削が可能な切削工具が得られることを知見した。
DISCLOSURE OF THE INVENTION As a result of studying the above-mentioned problems, the present inventor has found that at least Z in a cemented carbide containing a tungsten carbide phase and an iron group metal-based binder phase.
While depositing a solid solution phase composed of two or more kinds of carbides, nitrides and / or carbonitrides selected from the group of metals of groups 4a, 5a and 6a of the periodic table containing r and Nb, 2θ = 40.00 to 4 by X-ray diffraction
Phase having a peak at 1.99 ° and 2θ = 38.00-3
By providing the second phase having a peak at 9.99 °, the strength and high temperature strength of the cemented carbide base material can be increased, and by using this as a cutting tool, difficult-to-cut materials such as stainless steel can be obtained. It has been found that a cutting tool having excellent wear resistance, plastic deformation resistance, and fracture resistance even when cutting a material and capable of high efficiency cutting can be obtained.

【0006】すなわち、請求項1の超硬合金は、炭化タ
ングステン相と、少なくともZrおよびNbを含有する
周期律表第4a、5a、6a族金属の群から選ばれる
(少なくとも)2種以上の炭化物、窒化物および/また
は炭窒化物からなる固溶体相と、少なくとも1種の鉄属
金属を含有する結合相とからなり、かつX線回折ピーク
で2θ=40.00〜41.99°にピークトップを持
つ第1のピークと、2θ=38.00〜39.99°に
ピークトップを持つ第2のピークとを具備することを特
徴とするものである。
That is, the cemented carbide according to claim 1 is a tungsten carbide phase and (at least) two or more kinds of carbides selected from the group of metals of groups 4a, 5a and 6a of the periodic table containing at least Zr and Nb. , A nitride and / or carbonitride solid solution phase and a binder phase containing at least one iron group metal, and has a peak top at 2θ = 40.00 to 41.99 ° in X-ray diffraction peak. And a second peak having a peak top at 2θ = 38.0 to 39.99 °.

【0007】ここで、前記第1のピークの強度p1と第
2のピークの強度p2との比(p2/p1)が0.1〜
2であることが望ましい。
Here, the ratio (p2 / p1) between the intensity p1 of the first peak and the intensity p2 of the second peak is 0.1 to 0.1.
A value of 2 is desirable.

【0008】また、前記ZrとNbとの含有量の比(Z
r/Zr+Nb)は0.5〜0.7であることがより望
ましい超硬合金母材が得られる。
The ratio of the contents of Zr and Nb (Z
It is possible to obtain a cemented carbide base material in which r / Zr + Nb) is more preferably 0.5 to 0.7.

【0009】また、前記超硬合金の表面の領域において
前記p2>0で、かつp1が0であると、さらに靭性が
高められ、すぐれた耐欠損性が得られる。
When p2> 0 and p1 is 0 in the surface region of the cemented carbide, the toughness is further enhanced and excellent fracture resistance is obtained.

【0010】また、前記周期律表第4a、5a、6a族
金属のうちのTaの含有量が、全量中、TaC換算で1
重量%以下であっても優れた工具特性を有する超硬合金
となる。
The content of Ta in the metals of Groups 4a, 5a and 6a of the Periodic Table is 1 in TaC conversion in the total amount.
It becomes a cemented carbide having excellent tool characteristics even if the content is less than or equal to wt%.

【0011】さらに、前記炭化タングステン相を60〜
95体積%の比率で含有すること、また前記結合相を1
〜20体積%の比率で含有することが望ましい。
Further, 60 to 60% of the tungsten carbide phase is added.
95% by volume, and the binder phase is 1
It is desirable to contain it in a ratio of up to 20% by volume.

【0012】また、請求項7の切削工具は、上記のよう
な超硬合金からなり、特にこのような超硬合金の表面
に、周期律表第4a、5a、6a族金属の炭化物、窒化
物、炭窒化物、TiAlN、TiZrN、TiCrN、
ダイヤモンドおよびAl23の群から選ばれる少なくと
も1種の被覆層を単層または複数層形成してなることが
望ましい。
A cutting tool according to claim 7 is made of the above cemented carbide, and in particular, on the surface of such cemented carbide, carbides and nitrides of metals of Groups 4a, 5a and 6a of the periodic table are formed. , Carbonitride, TiAlN, TiZrN, TiCrN,
It is desirable that at least one type of coating layer selected from the group consisting of diamond and Al 2 O 3 is formed as a single layer or a plurality of layers.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態を説明す
る。請求項1に係る超硬合金は、炭化タングステン相
と、少なくともZrおよびNbを含有する周期律表第4
a、5a、6a族金属の群から選ばれる2種以上の炭化
物、窒化物および/または炭窒化物からなる固溶体相
と、少なくとも1種の鉄属金属を含有する結合相とから
なる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. A cemented carbide according to claim 1 contains a tungsten carbide phase and at least Zr and Nb in the periodic table.
It comprises a solid solution phase composed of two or more kinds of carbides, nitrides and / or carbonitrides selected from the group of a, 5a and 6a metals, and a binder phase containing at least one iron group metal.

【0014】本発明では、合金中にZrおよびNbを含
有する固溶体相を析出させることによって、Ti炭化物
などの他の炭化物がWCと固溶することを少なくし、特
に高温における強度と硬度の両立を可能にしたものであ
る。
In the present invention, by precipitating a solid solution phase containing Zr and Nb in the alloy, it is possible to reduce other carbides such as Ti carbide from forming a solid solution with WC, and particularly to achieve both strength and hardness at high temperature. Is made possible.

【0015】また、請求項1に係る超硬合金は、X線回
折ピークで2θ=40.00〜41.99°にピークト
ップを持つ第1のピークと、2θ=38.00〜39.
99°にピークトップを持つ第2のピークとを有する。
The cemented carbide according to claim 1 has a first peak having an X-ray diffraction peak having a peak top at 2θ = 40.00 to 41.99 ° and 2θ = 38.00 to 39.
A second peak having a peak top at 99 °.

【0016】請求項1に係る超硬合金と従来の超硬合金
のX線回折結果を図1と図2に示す。図2は図1の要部
拡大図である。ここで、本発明の合金No.1と2は実
施例における試料No.1と2に一致する。図1に示すよ
うに、Cu管球のKα1線を用いて、40kV、40m
Aで回折角度2θ=30〜80°で測定を行うと、従来
の超硬合金は炭化タングステン相のピークと、少なくと
も1種の鉄属金属を主成分として含有する結合相のピー
クと、周期律表第4a、5a、6a族金属の群から選ば
れる少なくとも1種の炭化物、窒化物および炭窒化物か
らなる固溶体相のピークを有する。しかしながら、この
発明によれば、図2に拡大して示すように、これに加え
て少なくともZrおよびNbを含有する固溶体相のピー
クが出現しており、すなわちX線回折ピークで2θ=4
0.00〜41.99°にピークトップを持つ周期律表
第4a、5a、6a族金属の群から選ばれる少なくとも
1種の炭化物、窒化物および炭窒化物からなる固溶体相
に起因する第1のピークと、2θ=38.00〜39.
99°にピークトップを持つ少なくともZrおよびNb
を含有する固溶体相に起因する第2のピークとを有す
る。この二つのピークを有することがこの発明の大きな
特徴であり、これによって超硬合金母材の強度および高
温における硬度を高めることができ、かつこれを切削工
具として用いることによって、ステンレス鋼等の難削材
の切削に対しても優れた耐摩耗性、耐塑性変形性および
耐欠損性を有し、高能率切削を可能とする切削工具が得
られる。
The X-ray diffraction results of the cemented carbide according to claim 1 and the conventional cemented carbide are shown in FIGS. 1 and 2. FIG. 2 is an enlarged view of a main part of FIG. Here, the alloy No. of the present invention. Sample Nos. 1 and 2 in the examples are Matches 1 and 2. As shown in FIG. 1, using a Kα1 ray of a Cu tube, 40 kV, 40 m
When the measurement is performed at a diffraction angle of 2θ = 30 to 80 ° in A, the conventional cemented carbide has a peak of a tungsten carbide phase, a peak of a bonding phase containing at least one iron group metal as a main component, and a periodic law. It has a peak of a solid solution phase composed of at least one kind of carbide, nitride and carbonitride selected from the group 4a, 5a and 6a metals in Tables. However, according to the present invention, as shown in an enlarged view in FIG. 2, in addition to this, a peak of a solid solution phase containing at least Zr and Nb appears, that is, 2θ = 4 in the X-ray diffraction peak.
1st due to a solid solution phase consisting of at least one kind of carbide, nitride and carbonitride selected from the group of metals of groups 4a, 5a and 6a of the periodic table having a peak top at 0.00 to 41.99 ° Peak and 2θ = 38.00 to 39.
At least Zr and Nb with peak top at 99 °
And a second peak due to the solid solution phase containing. Having these two peaks is a major feature of the present invention, which makes it possible to increase the strength of the cemented carbide base material and the hardness at high temperatures, and by using this as a cutting tool, it is possible to improve the durability of stainless steel and the like. A cutting tool that has excellent wear resistance, plastic deformation resistance, and fracture resistance even when cutting a work material and enables high-efficiency cutting can be obtained.

【0017】この際、上記測定条件以外の要因による誤
差を除くために、各々の測定データ中のWC(100)
面が示すピークをJCPDSに示される2θ=35.6
2°に補正して使用する必要がある。
At this time, in order to eliminate errors due to factors other than the above measurement conditions, WC (100) in each measurement data is removed.
The peak indicated by the plane is 2θ = 35.6 shown in JCPDS.
It must be corrected to 2 ° before use.

【0018】ZrおよびNbを含有する固溶体相が析出
しない場合、すなわちピーク強度比が0.1未満の場合
は、超硬合金の高温強度と熱伝導率が低下する。ため、
これを用いてステンレス鋼等の難削材の切削を行うと、
切削温度が著しく上昇することから、超硬合金の硬度が
低下し、工具の耐摩耗性と耐塑性変形性が低下する。ま
た、ZrおよびNbを含有する固溶体相が過剰に析出し
た場合、すなわちピークの強度比が2を超えると合金硬
度が不足する。したがって、本発明では、第1のピーク
の強度p1と第2のピークの強度p2との比(p2/p
1)が0.1〜2であることが望ましい。
When the solid solution phase containing Zr and Nb does not precipitate, that is, when the peak strength ratio is less than 0.1, the high temperature strength and the thermal conductivity of the cemented carbide decrease. For,
When using this to cut difficult-to-cut materials such as stainless steel,
Since the cutting temperature rises remarkably, the hardness of the cemented carbide is lowered, and the wear resistance and plastic deformation resistance of the tool are lowered. Further, when the solid solution phase containing Zr and Nb is excessively precipitated, that is, when the peak strength ratio exceeds 2, the alloy hardness becomes insufficient. Therefore, in the present invention, the ratio of the intensity p1 of the first peak and the intensity p2 of the second peak (p2 / p
It is desirable that 1) is 0.1 to 2.

【0019】固溶体相としては、ZrおよびNb固溶体
以外に、周期律表第4a、5a、6a族金属のうち、Z
rまたはNb以外の金属(Ti、V、Cr、Mo、T
a、W)群から選ばれる1種、特にTiを主体とする炭
化物、窒化物および炭窒化物からなる他の固溶体相が1
種以上存在することが、超硬合金の高温特性、特に高温
における耐酸化性を維持する点で望ましい。
As the solid solution phase, in addition to Zr and Nb solid solutions, among the metals of Groups 4a, 5a and 6a of the periodic table, Z
Metals other than r or Nb (Ti, V, Cr, Mo, T
a) selected from the group a, W), and particularly one solid solution phase composed of carbide, nitride and carbonitride mainly containing Ti.
The presence of at least one species is desirable from the viewpoint of maintaining the high temperature characteristics of the cemented carbide, particularly the oxidation resistance at high temperatures.

【0020】より優れた特性を有するZrおよびNbの
固溶体相を得るために、ZrとNbとの含有量の比(Z
r/Zr+Nb)が0.5〜0.7であることが望まし
い。ZrとNbとの含有量の比(Zr/Zr+Nb)が
0.5よりも小さいとZrおよびNbの固溶体相が形成
されずに、Ti炭化物などの他の炭化物が固溶体を形成
し、超硬合金の高温強度および耐塑性変形性が低下す
る。また、ZrとNbとの含有量の比(Zr/Zr+N
b)が0.7を超えるとZrおよびNbの固溶体が過剰
析出および粒成長し、合金強度および硬度が低下する。
In order to obtain a solid solution phase of Zr and Nb having more excellent characteristics, the ratio of the contents of Zr and Nb (Z
It is desirable that r / Zr + Nb) is 0.5 to 0.7. If the ratio of the contents of Zr and Nb (Zr / Zr + Nb) is smaller than 0.5, the solid solution phase of Zr and Nb is not formed, and other carbides such as Ti carbide form a solid solution, thus forming a cemented carbide. The high temperature strength and the plastic deformation resistance of are decreased. Further, the ratio of the contents of Zr and Nb (Zr / Zr + N
If b) exceeds 0.7, the solid solution of Zr and Nb will be excessively precipitated and the grains will grow, and the alloy strength and hardness will decrease.

【0021】超硬合金母材の表面から母材内部に向かっ
て、p2>0で、かつp1が0となる表面領域があるこ
とにより、さらに切削加工時の靭性が高められてすぐれ
た耐欠損性が得られる。これは表面領域において少なく
ともZrおよびNbを含有する固溶体相が存在している
ことを示しており、この固溶体相は高温における母材強
度を改善し、Ti炭化物などの他の固溶体相が消失して
いることにより、相対的に結合相量が富化されているた
めに強靭化されるものである。またこの表面領域の厚さ
については超硬合金の表面から100μm程度である。
この範囲が好適であるのはp2>0で、かつp1が0と
なる表面領域が100μmを超えると耐摩耗性が低下し
て工具摩耗量の増加が著しくなることがあるためであ
る。
Since there is a surface region where p2> 0 and p1 is 0 from the surface of the cemented carbide base material to the inside of the base material, the toughness during cutting is further enhanced and the chip resistance is excellent. Sex is obtained. This indicates that a solid solution phase containing at least Zr and Nb is present in the surface region, and this solid solution phase improves the strength of the base material at high temperature, and other solid solution phases such as Ti carbide disappear. As a result, the amount of the binder phase is relatively enriched, so that it is toughened. The thickness of this surface region is about 100 μm from the surface of the cemented carbide.
This range is preferable because if p2> 0 and the surface area where p1 is 0 exceeds 100 μm, the wear resistance may decrease and the tool wear amount may increase remarkably.

【0022】ここで、ZrおよびNbを含有する固溶体
相は、ZrおよびNbを主成分とし、特にZrおよびN
bの総量がZrおよびNbを含有する固溶体相中の総金
属量に対して、70重量%以上の炭化物、窒化物および
炭窒化物からなり、さらに、耐欠損性、耐熱衝撃性、被
削材との耐溶着性、耐摩耗性をバランスよく維持して工
具としての切削性能を高めるために、ZrおよびNbを
含有する固溶体相中のZr/(Zr+Nb)で表される
モル比も0.5〜0.7であることが望ましい。
Here, the solid solution phase containing Zr and Nb contains Zr and Nb as main components, and particularly Zr and Nb.
The total amount of b is 70% by weight or more of carbide, nitride and carbonitride with respect to the total amount of metal in the solid solution phase containing Zr and Nb, and further has fracture resistance, thermal shock resistance and work material. In order to maintain a good balance between welding resistance and wear resistance with and to improve cutting performance as a tool, the molar ratio represented by Zr / (Zr + Nb) in the solid solution phase containing Zr and Nb is also 0.5. It is desirable that it is 0.7.

【0023】また、ZrおよびNbを含有する固溶体相
中には、結合相とのなじみをよくして強度および高温硬
度を高めるために、周期律表第4a、5a、6a族金属
のうち、ZrまたはNb以外の金属(Ti、V、Cr、
Mo、Ta、W)の群から選ばれる1種以上、特にWお
よび/またはTiが総量で30体積%以下の比率で含有
されていてもよい。なお、本発明における固溶体相中の
各金属成分の含有比率は、エネルギー分散型X線分析
(EDS)によって求めることができる。
Further, in the solid solution phase containing Zr and Nb, in order to improve compatibility with the binder phase and enhance strength and high temperature hardness, Zr among metals of Groups 4a, 5a and 6a of the periodic table is used. Or metals other than Nb (Ti, V, Cr,
One or more selected from the group of Mo, Ta, and W), especially W and / or Ti, may be contained in a total amount of 30% by volume or less. The content ratio of each metal component in the solid solution phase in the present invention can be determined by energy dispersive X-ray analysis (EDS).

【0024】さらに、高温における合金強度および硬度
を両立させるという点で、ZrおよびNbを含有する固
溶体相の含有量は、超硬合金全量に対して1〜10体積
%の割合で含有されることが望ましい。
Further, from the viewpoint of making the alloy strength and hardness compatible with each other at a high temperature, the content of the solid solution phase containing Zr and Nb should be 1 to 10% by volume with respect to the total amount of the cemented carbide. Is desirable.

【0025】なお、ZrおよびNbを含有する固溶体相
以外の他の固溶体相の総含有量は、高温における耐酸化
性と超硬合金の強度および硬度を両立させるという点
で、超硬合金全量中1〜10体積%であることが望まし
い。
The total content of the solid solution phases other than the solid solution phase containing Zr and Nb is such that the oxidation resistance at high temperature and the strength and hardness of the cemented carbide are compatible with each other. It is preferably 1 to 10% by volume.

【0026】さらに、本発明によれば、超硬合金全量中
の前記周期律表第4a、5a、6a族金属のうちのTa
の含有量が、全量中、TaC換算で0.8重量%以下、
特に0.5重量%以下、さらには不可避不純物以外を実
質上含有しない場合においても、優れた耐摩耗性、耐塑
性変形性および耐欠損性を維持することができる。すな
わち、他の原料に比較して非常に高価なTa原料を用い
ることなく、ビッカース硬度(Hv)が1400以上、
破壊靭性(K1c)12MPa/m1/2以上、3点曲げ強
度2500MPa以上、800℃における高温硬度が6
00以上の優れた熱的および機械的特性を有する超硬合
金となる。
Furthermore, according to the present invention, Ta of the metals of Groups 4a, 5a and 6a of the Periodic Table in the total amount of cemented carbide is used.
Content of 0.8% by weight or less in terms of TaC in the total amount,
Particularly, even when the content is 0.5% by weight or less, and even when substantially no unavoidable impurities are contained, excellent wear resistance, plastic deformation resistance, and fracture resistance can be maintained. That is, the Vickers hardness (Hv) is 1400 or more without using a Ta raw material which is very expensive as compared with other raw materials,
Fracture toughness (K 1c ) 12 MPa / m 1/2 or more, 3-point bending strength 2500 MPa or more, high temperature hardness at 800 ° C. is 6
It becomes a cemented carbide having excellent thermal and mechanical properties of 00 or more.

【0027】また、本発明によれば、高硬度、高強度、
高靭性で、かつ高温における特性を維持するために、超
硬合金全量中の炭化タングステン相の含有比率がWC換
算で60〜95体積%、特に80〜90体積%の比率で
含有することが望ましい。
Further, according to the present invention, high hardness, high strength,
In order to maintain high toughness and characteristics at high temperatures, it is desirable that the content of the tungsten carbide phase in the total amount of cemented carbide is 60 to 95% by volume, particularly 80 to 90% by volume in terms of WC. .

【0028】他方、超硬合金中には、合金強度および耐
欠損性の保持の点で、炭化タングステン相の間に存在す
る結合相としては、Co,Ni,Fe等の鉄族金属を主
成分として、特に80重量%以上の割合で含有するが、
結合相の含有比率が超硬合金全体に対して1〜20体積
%、特に10〜15体積%であることが望ましい。
On the other hand, in the cemented carbide, as a binder phase existing between the tungsten carbide phases, an iron group metal such as Co, Ni or Fe is a main component in order to maintain alloy strength and fracture resistance. In particular, the content of 80% by weight or more,
It is desirable that the content ratio of the binder phase is 1 to 20% by volume, especially 10 to 15% by volume based on the whole cemented carbide.

【0029】また、上述したような超硬合金は、高硬
度、高強度、高熱伝導率の優れた機械的特性および熱的
特性を有することから、金型、耐摩耗部材、高温構造材
料等に適用可能であり、中でも切削工具、さらにはステ
ンレス鋼等の難削材用の切削工具として好適に使用でき
る。
Further, the above-mentioned cemented carbide has excellent mechanical properties and thermal properties such as high hardness, high strength and high thermal conductivity, so that it is suitable for molds, wear resistant members, high temperature structural materials and the like. It is applicable and can be suitably used as a cutting tool, and more particularly as a cutting tool for difficult-to-cut materials such as stainless steel.

【0030】また、本発明の切削工具は上記のような超
硬合金からなるが、この超硬合金の表面に、周期律表第
4a、5a、6a族金属の炭化物、窒化物、炭窒化物、
TiAlN、TiZrN、TiCrN、ダイヤモンドお
よびAl23の群から選ばれる少なくとも1種の被覆層
を単層または複数層を形成するのが望ましい。
Further, the cutting tool of the present invention is made of the above cemented carbide, and the carbide, nitride, carbonitride of metals of Groups 4a, 5a and 6a of the Periodic Table are formed on the surface of the cemented carbide. ,
It is desirable to form a single layer or multiple layers of at least one coating layer selected from the group of TiAlN, TiZrN, TiCrN, diamond and Al 2 O 3 .

【0031】上述した超硬合金を製造するには、例えば
平均粒径0.5〜10μmの炭化タングステン粉末を8
0〜90重量%、平均粒径0.5〜10μmのZrおよ
びNbの炭化物、窒化物および炭窒化物粉末またはその
固溶体の粉末を総量で0.1〜10重量%、Zrおよび
Nb以外の周期律表4a、5a、6a族金属(Ti、
V、Cr、Mo、Ta、W)の炭化物、窒化物および炭
窒化物粉末もしくはこれらの固溶体粉末を総量で0.1
〜10重量%、平均粒径0.5〜10μmの鉄族金属を
5〜15重量%、さらには所望により、金属タングステ
ン(W)粉末、あるいはカーボンブラック(C)を混合
する。
In order to produce the above-mentioned cemented carbide, for example, a tungsten carbide powder having an average particle size of 0.5 to 10 μm is used.
0 to 90% by weight of Zr and Nb carbides, nitrides and carbonitrides having an average particle size of 0.5 to 10 μm or a powder of a solid solution thereof in a total amount of 0.1 to 10% by weight, and a cycle other than Zr and Nb. Table 4a, 5a, 6a group metals (Ti,
V, Cr, Mo, Ta, W) carbide, nitride and carbonitride powders or their solid solution powders in a total amount of 0.1
10 to 15% by weight, 5 to 15% by weight of an iron group metal having an average particle size of 0.5 to 10 μm, and further, metal tungsten (W) powder or carbon black (C) is mixed if desired.

【0032】次に、上記混合粉末をプレス成形、鋳込成
形、押出成形、冷間静水圧プレス成形等の公知の成形方
法で所定形状に成形した後、0.1〜15Paの真空中
で、1〜20℃/分で昇温し、1350〜1500℃で
0.2〜5時間、特に0.5〜2時間焼成することによ
って上述した超硬合金を得ることができる。
Next, the above-mentioned mixed powder is molded into a predetermined shape by a known molding method such as press molding, cast molding, extrusion molding, cold isostatic pressing, and the like, and then in a vacuum of 0.1 to 15 Pa. The above-mentioned cemented carbide can be obtained by increasing the temperature at 1 to 20 ° C./min and firing at 1350 to 1500 ° C. for 0.2 to 5 hours, particularly 0.5 to 2 hours.

【0033】また、上述した本発明の超硬合金は、高硬
度、高強度、高靭性の優れた機械的特性および熱的特性
を有することから、金型、耐摩耗部材、高温構造材料等
に適用可能であり、中でも切削工具、さらにはステンレ
ス鋼等の難削材用の切削工具および高速高送りといった
高能率切削に対して好適に使用可能である。
Further, the above-described cemented carbide of the present invention has excellent mechanical properties and thermal properties such as high hardness, high strength, and high toughness, and therefore is suitable for use in molds, wear resistant members, high temperature structural materials and the like. It is applicable, and particularly suitable for cutting tools, cutting tools for difficult-to-cut materials such as stainless steel, and high efficiency cutting such as high speed and high feed.

【0034】また、本発明の切削工具は、上述した超硬
合金の表面に、周期律表第4a、5a、6a族金属の炭
化物、窒化物、炭窒化物、TiAlN、TiZrN、T
iCrN、ダイヤモンドおよびAl23の群から選ばれ
る少なくとも1種の被覆層を単層または複数層形成した
ものであってもよい。
Further, the cutting tool of the present invention is characterized in that, on the surface of the above-mentioned cemented carbide, carbides, nitrides, carbonitrides, TiAlN, TiZrN, T of the metals of Groups 4a, 5a and 6a of the Periodic Table.
A single layer or a plurality of layers may be formed of at least one type of coating layer selected from the group consisting of iCrN, diamond and Al 2 O 3 .

【0035】なお、超硬合金に前記被覆層を形成するに
は、所望により、超硬合金の表面を研磨、洗浄した後、
従来公知のPVD法やCVD法等の薄膜形成法を用いれ
ばよい。また、被覆層の厚みは0.1〜20μmである
ことが望ましい。
In order to form the coating layer on the cemented carbide, if desired, the surface of the cemented carbide may be polished and washed, and then,
A conventionally known thin film forming method such as PVD method or CVD method may be used. Further, the thickness of the coating layer is preferably 0.1 to 20 μm.

【0036】[0036]

【実施例】表1に示す平均粒径の炭化タングステン(W
C)粉末、平均粒径1.2μmの金属コバルト(Co)
粉末および平均粒径2.0μmの表1に示す化合物粉末
を表1に示す比率で添加して混合し、プレス成形により
切削工具形状(SDK42)に成形した後、焼成温度よ
り500℃以上低い温度から10℃/分の速度で昇温し
て、1500℃で1時間焼成して超硬合金を作製した。
EXAMPLE Tungsten carbide (W having the average particle size shown in Table 1)
C) Powder, metallic cobalt (Co) having an average particle size of 1.2 μm
The powder and the compound powder shown in Table 1 having an average particle diameter of 2.0 μm are added and mixed in the ratio shown in Table 1, and after being molded into a cutting tool shape (SDK42) by press molding, a temperature lower than the firing temperature by 500 ° C. or more. To 10 ° C./minute and heated at 1500 ° C. for 1 hour to produce a cemented carbide.

【0037】得られた超硬合金の任意断面3箇所につい
て、理学電機社製X線回折解析装置(RINT110
0)により、Cu管球のKα1線を用いて、40kV、
40mA、計数時間0.5secで回折角度2θ=30
〜80°で測定した。さらに全てのデータの相互誤差を
除くため、各々の測定データ中のWC(100)面が示
すピークをJCPDSに示される2θ=35.62°に
補正した。この結果から、2θ=40.00〜41.9
9°にピークトップを持つ第1のピーク強度p1と、2
θ=38.00〜39.99°にピークトップを持つ第
2のピーク強度p2を測定した。
An X-ray diffraction analyzer (RINT110, manufactured by Rigaku Denki Co., Ltd.) was used for three arbitrary cross sections of the obtained cemented carbide.
0), using a Kα1 ray of a Cu tube, 40 kV,
Diffraction angle 2θ = 30 at 40 mA, counting time 0.5 sec
Measured at ~ 80 °. Furthermore, in order to eliminate the mutual error of all data, the peak indicated by the WC (100) plane in each measurement data was corrected to 2θ = 35.62 ° shown in JCPDS. From this result, 2θ = 40.00 to 41.9
First peak intensity p1 with peak top at 9 ° and 2
A second peak intensity p2 having a peak top at θ = 38.0 to 39.99 ° was measured.

【0038】また、同様にして超硬合金の焼き肌から前
記X線回折装置を用いて表面領域のX線回折解析を行
い、前記p2>0で、かつp1が0である表面領域の有
無を測定した。その結果を表1に示す。
Similarly, an X-ray diffraction analysis of the surface region is performed from the burned surface of the cemented carbide using the X-ray diffraction apparatus, and the presence or absence of the surface region where p2> 0 and p1 is 0 is determined. It was measured. The results are shown in Table 1.

【0039】[0039]

【表1】 [Table 1]

【0040】また、得られた各超硬合金の表面に、PV
D法により膜厚2μmのTiN膜を成膜して切削工具を
作製した。
On the surface of each of the obtained cemented carbides, PV
A cutting tool was produced by forming a TiN film having a film thickness of 2 μm by the D method.

【0041】そして、この切削工具を用いて下記の条件
により摩耗試験としてステンレス鋼の旋削加工を15分
間行い、切削工具のフランク摩耗量および境界損傷量を
測定した。なお、切削試験中にフランク摩耗量が0.2
mmあるいは境界損傷量が0.5mmに達した場合には
その切削時間を測定した。さらに、靭性試験として溝付
合金鋼のミリング加工を行い、欠損を生じた時の送りを
測定した。その結果を表2に示す。 ●摩耗試験 被削材 :ステンレス鋼(SUS304) 工具形状:CNMG432 切削速度:120m/分 送り速度:0.3mm/rev 切り込み:2mm その他 :水溶性切削液使用 ●靭性試験 被削材 :溝付合金鋼(SCM440H) 工具形状:SDK42 切削速度:80m/分 送り速度:可変 0.2〜0.8mm/刃 切り込み:2mm その他 :乾式切削
Then, using this cutting tool, a turning test of stainless steel was performed for 15 minutes as a wear test under the following conditions, and the flank wear amount and boundary damage amount of the cutting tool were measured. The flank wear amount was 0.2 during the cutting test.
mm or the amount of boundary damage reached 0.5 mm, the cutting time was measured. Further, as a toughness test, a grooved alloy steel was milled, and the feed at the time of occurrence of a defect was measured. The results are shown in Table 2. ● Abrasion test Work material: Stainless steel (SUS304) Tool shape: CNMG432 Cutting speed: 120m / min Feed speed: 0.3mm / rev Depth of cut: 2mm Others: Using water-soluble cutting fluid ● Toughness test Work material: Grooved alloy Steel (SCM440H) Tool shape: SDK42 Cutting speed: 80 m / min Feed speed: Variable 0.2 to 0.8 mm / Blade cut: 2 mm Others: Dry cutting

【0042】[0042]

【表2】 [Table 2]

【0043】表1、2の結果より、第2のピークが出現
していない試料No.8、10は、耐欠損性に問題があ
り、境界損傷および耐摩耗性についても悪いものであっ
た。また、第1のピークが出現していない試料No.9
については耐摩耗性に問題があった。さらに第1のピー
クおよびおよび第2のピークともに出現していないいわ
ゆるK種超硬合金に近い試料No.11では耐欠損性に
劣り境界損傷についてわずか6分で使用不能となり特に
ステンレス等の加工では使用には全く耐えないものであ
った。
From the results shown in Tables 1 and 2, sample No. 2 in which the second peak did not appear. Nos. 8 and 10 had a problem in fracture resistance, and had poor boundary damage and wear resistance. In addition, sample No. 1 in which the first peak did not appear. 9
There was a problem in wear resistance. Furthermore, the sample No. close to the so-called K-type cemented carbide in which neither the first peak nor the second peak appears. No. 11 was inferior in fracture resistance and could not be used for boundary damage in only 6 minutes, and it could not be used at all particularly in the processing of stainless steel or the like.

【0044】これに対して、本発明に従い、第1のピー
クおよび第2のピークを併せ持つ試料No.1〜7につ
いてはいずれもフランク摩耗量0.2mm以下、境界損
傷にも問題がなく優れた耐摩耗性を示し、靭性試験にお
いて欠損を生じる送りも実用上十分な0.5mm/刃
以上と優れた耐欠損性を有するものであった。これらの
うち第1のピークの強度p1と第2のピークの強度p2
との比(p2/p1)が0.1〜2である試料について
は耐摩耗性と耐欠損性のバランスが良く、さらに超硬合
金の表面において前記p2>0で、かつp1が0である
領域を有する試料においては特に耐欠損性に優れること
がわかる。また、試料No.1、3、5にあるようにこ
れまで超硬合金の高温特性を向上させるとして用いられ
てきたTaCをほとんど添加しない場合でも、耐摩耗性
と耐欠損性のバランスが取れた優れた超硬合金母材を得
ることができた。
On the other hand, according to the present invention, sample No. 1 having both the first peak and the second peak was used. For Nos. 1 to 7, flank wear amount of 0.2 mm or less, no problem of boundary damage, excellent wear resistance, and 0.5 mm / blade, which is practically sufficient for feed causing a defect in the toughness test.
It was excellent in fracture resistance as described above. Of these, the intensity p1 of the first peak and the intensity p2 of the second peak
The sample having a ratio (p2 / p1) of 0.1 to 2 has a good balance of wear resistance and fracture resistance, and further, p2> 0 and p1 is 0 on the surface of the cemented carbide. It can be seen that the sample having a region is particularly excellent in fracture resistance. In addition, the sample No. As shown in Nos. 1, 3, and 5, excellent cemented carbide with well-balanced wear resistance and fracture resistance, even when TaC, which has been used to improve the high temperature characteristics of cemented carbide, is hardly added. I was able to obtain the base material.

【0045】[0045]

【発明の効果】以上詳述したとおり、請求項1に係る超
硬合金によれば、固溶体相として、少なくともZrおよ
びNbを含有する周期律表第4a、5a、6a族金属の
群から選ばれる2種以上の炭化物、窒化物および炭窒化
物からなる固溶体相と、少なくとも1種の鉄属金属を含
有する結合相とからなり、かつX線回折ピークで2θ=
40.00〜41.99°にピークトップを持つ第1の
ピークと、2θ=38.00〜39.99°にピークト
ップを持つ第2のピークとを具備することによって、超
硬合金母材の強度および高温強度を高めることができ
る。
As described in detail above, according to the cemented carbide according to the first aspect, the solid solution phase is selected from the group of metals of Groups 4a, 5a and 6a of the periodic table containing at least Zr and Nb. It is composed of a solid solution phase composed of two or more kinds of carbides, nitrides and carbonitrides and a binder phase containing at least one kind of iron group metal, and has an X-ray diffraction peak of 2θ =
By including a first peak having a peak top at 40.00 to 41.99 ° and a second peak having a peak top at 2θ = 38.00 to 39.99 °, a cemented carbide base material Strength and high temperature strength can be increased.

【0046】また、請求項8に係る切削工具によれば、
ステンレス鋼等の難削材の切削に対しても優れた耐摩耗
性、耐塑性変形性および耐欠損性を有し、かつ高能率切
削が可能な切削工具が得ることができる。
According to the cutting tool of claim 8,
It is possible to obtain a cutting tool which has excellent wear resistance, plastic deformation resistance, and fracture resistance even when cutting difficult-to-cut materials such as stainless steel, and which is capable of highly efficient cutting.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超硬合金と従来の超硬合金のX線回折
解析結果を示す図である。
FIG. 1 is a diagram showing an X-ray diffraction analysis result of a cemented carbide of the present invention and a conventional cemented carbide.

【図2】図1の要部を拡大して示す図である。FIG. 2 is an enlarged view showing a main part of FIG.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 炭化タングステン相と、少なくともZr
およびNbを含有する周期律表第4a、5a、6a族金
属の群から選ばれる2種以上の炭化物、窒化物および/
または炭窒化物からなる固溶体相と、少なくとも1種の
鉄属金属を含有する結合相とからなり、かつX線回折ピ
ークで2θ=40.00〜41.99°にピークトップ
を持つ第1のピークと、2θ=38.00〜39.99
°にピークトップを持つ第2のピークとを具備すること
を特徴とする超硬合金。
1. A tungsten carbide phase and at least Zr
And two or more kinds of carbides, nitrides and / or Nb selected from the group of metals of groups 4a, 5a and 6a of the periodic table containing Nb
Alternatively, a first solid phase composed of a carbonitride and a binder phase containing at least one iron group metal and having a peak top at 2θ = 40.00 to 41.99 ° in an X-ray diffraction peak. Peak and 2θ = 38.0-39.99
Cemented carbide having a second peak having a peak top at °.
【請求項2】 前記第1のピークの強度p1と第2のピ
ークの強度p2との比(p2/p1)が0.1〜2であ
ることを特徴とする請求項1記載の超硬合金。
2. The cemented carbide according to claim 1, wherein a ratio (p2 / p1) between the intensity p1 of the first peak and the intensity p2 of the second peak is 0.1 to 2. .
【請求項3】 前記ZrとNbとの含有量の比(Zr/
Zr+Nb)が0.5〜0.7であることを特徴とする
請求項1または2記載の超硬合金。
3. A ratio of the contents of Zr and Nb (Zr /
Zr + Nb) is 0.5-0.7, The cemented carbide of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】 前記周期律表第4a、5a、6a族金属
のうちのTaの含有量が、全量中、TaC換算で1重量
%以下であることを特徴とする請求項1乃至3のいずれ
かに記載の超硬合金。
4. The content of Ta in the metals of Groups 4a, 5a and 6a of the Periodic Table is 1% by weight or less in terms of TaC in the total amount, any one of claims 1 to 3. A cemented carbide as described in Crab.
【請求項5】 前記炭化タングステン相を60〜95体
積%の比率で含有することを特徴とする請求項1乃至4
のいずれかに記載の超硬合金。
5. The tungsten carbide phase is contained in a proportion of 60 to 95% by volume, according to any one of claims 1 to 4.
The cemented carbide according to any one of 1.
【請求項6】 前記結合相を1〜20体積%の比率で含
有することを特徴とする請求項1乃至5のいずれかに記
載の超硬合金。
6. The cemented carbide according to claim 1, wherein the binder phase is contained in a ratio of 1 to 20% by volume.
【請求項7】 前記超硬合金の表面において前記p2>
0で、かつp1が0であることを特徴とする請求項1乃
至6のいずれかに記載の超硬合金。
7. The p2> on the surface of the cemented carbide.
The cemented carbide according to any one of claims 1 to 6, wherein 0 and p1 are 0.
【請求項8】 請求項1乃至7のいずれかに記載の超硬
合金からなる切削工具。
8. A cutting tool made of the cemented carbide according to any one of claims 1 to 7.
【請求項9】 表面に、周期律表第4a、5a、6a族
金属の炭化物、窒化物、炭窒化物、TiAlN、TiZ
rN、TiCrN、ダイヤモンドおよびAl23の群か
ら選ばれる少なくとも1種の被覆層を単層または複数層
形成してなることを特徴とする請求項8に記載の切削工
具。
9. A carbide, nitride, carbonitride, TiAlN, TiZ of a metal of Groups 4a, 5a and 6a of the Periodic Table on the surface.
The cutting tool according to claim 8, wherein at least one coating layer selected from the group consisting of rN, TiCrN, diamond and Al 2 O 3 is formed in a single layer or a plurality of layers.
JP2001293032A 2001-09-26 2001-09-26 Cemented carbide, and cutting tool using the same Pending JP2003105477A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001293032A JP2003105477A (en) 2001-09-26 2001-09-26 Cemented carbide, and cutting tool using the same
US10/256,275 US6797369B2 (en) 2001-09-26 2002-09-26 Cemented carbide and cutting tool
DE10244955.4A DE10244955C5 (en) 2001-09-26 2002-09-26 Cemented carbide, use of a cemented carbide and method for making a cemented carbide
US10/916,671 US7018726B2 (en) 2001-09-26 2004-08-12 Cemented carbide and cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001293032A JP2003105477A (en) 2001-09-26 2001-09-26 Cemented carbide, and cutting tool using the same

Publications (1)

Publication Number Publication Date
JP2003105477A true JP2003105477A (en) 2003-04-09

Family

ID=19114898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001293032A Pending JP2003105477A (en) 2001-09-26 2001-09-26 Cemented carbide, and cutting tool using the same

Country Status (1)

Country Link
JP (1) JP2003105477A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513256A (en) * 2003-12-03 2007-05-24 ケンナメタル インコーポレイテッド Cemented carbide body containing zirconium and niobium and method for producing the same
WO2023166900A1 (en) * 2022-03-03 2023-09-07 京セラ株式会社 Cemented carbide, and coated tool and cutting tool using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513256A (en) * 2003-12-03 2007-05-24 ケンナメタル インコーポレイテッド Cemented carbide body containing zirconium and niobium and method for producing the same
JP2011202278A (en) * 2003-12-03 2011-10-13 Kennametal Inc Cemented carbide body containing zirconium and niobium and method of making the same
JP4796969B2 (en) * 2003-12-03 2011-10-19 ケンナメタル インコーポレイテッド Cemented carbide body containing zirconium and niobium and method for producing the same
WO2023166900A1 (en) * 2022-03-03 2023-09-07 京セラ株式会社 Cemented carbide, and coated tool and cutting tool using same

Similar Documents

Publication Publication Date Title
JP2002356734A (en) Hard metal alloy, and cutting tool using it
JP2008069420A (en) Cemented carbide and coated cemented carbide, and manufacturing methods therefor
JP2003105477A (en) Cemented carbide, and cutting tool using the same
JP4069749B2 (en) Cutting tool for roughing
JP2017179474A (en) Hard metal used for tool for processing nonmetallic material
TW201343964A (en) Composite cutter
JPH05171335A (en) Differential layer surface refined sintered alloy and its manufacture
JP2001179507A (en) Cutting tool
JP4005787B2 (en) Surface coated cemented carbide
JP2801484B2 (en) Cemented carbide for cutting tools
JP2835255B2 (en) Cemented carbide
JP2003094207A (en) Cutting tool
JP2001181775A (en) Cermet sintered body
JP4126451B2 (en) Cemented carbide
WO2023188871A1 (en) Sintered body and cutting tool
WO2023188875A1 (en) Sintered body and cutting tool
JP2982359B2 (en) Cemented carbide with excellent wear and fracture resistance
JP3103707B2 (en) Cermet for cutting tools
JPH1018024A (en) Coated hard member
JP2004249380A (en) Surface-coated ti group cermet cutting tool and its manufacturing method
JP3525359B2 (en) Surface coated cemented carbide cutting tool
JP3368367B2 (en) Tungsten carbide based cemented carbide and cutting tools
JP4072048B2 (en) Surface coating tool
JPH07136826A (en) Cutting device for milling
JP2006213977A (en) Chromium-containing cermet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A131 Notification of reasons for refusal

Effective date: 20080527

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20081021

Free format text: JAPANESE INTERMEDIATE CODE: A02