JP2003101086A - Thermoelectric element and manufacturing method therefor - Google Patents

Thermoelectric element and manufacturing method therefor

Info

Publication number
JP2003101086A
JP2003101086A JP2001292962A JP2001292962A JP2003101086A JP 2003101086 A JP2003101086 A JP 2003101086A JP 2001292962 A JP2001292962 A JP 2001292962A JP 2001292962 A JP2001292962 A JP 2001292962A JP 2003101086 A JP2003101086 A JP 2003101086A
Authority
JP
Japan
Prior art keywords
type
shaped
rod
wiring
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001292962A
Other languages
Japanese (ja)
Other versions
JP2003101086A5 (en
JP4824229B2 (en
Inventor
Shigeru Watanabe
渡辺  滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2001292962A priority Critical patent/JP4824229B2/en
Publication of JP2003101086A publication Critical patent/JP2003101086A/en
Publication of JP2003101086A5 publication Critical patent/JP2003101086A5/ja
Application granted granted Critical
Publication of JP4824229B2 publication Critical patent/JP4824229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Electromechanical Clocks (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric element which keeps proper thermal contact with a heat source and an object to be cooled and can easily make electrical connections with external circuits, without impeding the thermal contact as a small-sized thermoelectric element which is usable for temperature difference power generation and local cooling of portable information equipment. SOLUTION: Rod elements 11 and 12 composed of an n-type thermoelectric conductor and a p-type thermoelectric conductor are arranged and fixed regularly, with an insulating layer 30 in between and end surfaces of the rod type elements 11 and 12 are exposed respectively to form two wiring surfaces 40a and 40b. The n-type rod element 11 and p-type rod element 12 are connected in series alternately on the respective wiring surfaces, by using a conductor 20 for wiring. At both end parts of the rod elements which are connected in series, a rod element 13 for connection is provided which is shorter than the rod elements 11 and 12 and has one end, forming a step with the wiring surfaces.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は温度差発電や冷却
に用いる熱電素子の構造と製造方法に関するものであ
り、特に熱電素子を外部回路へ接続するための接続用電
極の構造と作製方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure and a manufacturing method of a thermoelectric element used for temperature difference power generation and cooling, and particularly to a structure and a manufacturing method of a connecting electrode for connecting the thermoelectric element to an external circuit. Is.

【0002】[0002]

【従来の技術】熱電対はその両端に温度差を与えること
により電極間に電圧を発生し、反対に電極から電流を流
すと温度差を生じる性質を持ち、この熱・電気変換特性
を利用しようして作られているのが熱電素子である。
2. Description of the Related Art Thermocouples have the property of generating a voltage between electrodes by applying a temperature difference across their ends and causing a temperature difference when an electric current is passed from the electrodes. Then the thermoelectric element is made.

【0003】たとえば熱電素子は熱を電気エネルギーに
変換できる方法として発電素子に応用され、あるいは電
気エネルギーで対象物を冷やしたりする冷却素子に応用
される。
For example, a thermoelectric element is applied to a power generating element as a method of converting heat into electric energy, or is applied to a cooling element for cooling an object with electric energy.

【0004】ところで熱電素子は構造やその動作が簡単
なため、他の熱/電気変換システムに比べて小型化に有
利なところから、発電素子としては腕時計などの携帯用
電子機器内部での発電に応用され、さらに冷却素子とし
ては半導体集積回路(IC)などの局所的な冷却などへ
の応用が広がっている。
Since the thermoelectric element has a simple structure and its operation, it is advantageous in downsizing as compared with other heat / electric conversion systems. Therefore, the thermoelectric element is used for power generation in a portable electronic device such as a wrist watch. Further, as a cooling element, the application to local cooling of a semiconductor integrated circuit (IC) or the like is spreading.

【0005】熱電素子として発電又は冷却に使われてい
る半導体材料の中でもっとも一般的なのはビスマス(B
i)とテルル(Te)を主成分にしたいわゆるBiTe
合金である。この材料は室温近辺で現在もっとも性能が
良いため各所で多用されているが、大きな欠点として機
械的強度が弱く非常にもろい材料であることがあげられ
る。
Bismuth (B) is the most common semiconductor material used for power generation or cooling as a thermoelectric element.
i) and so-called BiTe containing tellurium (Te) as a main component
It is an alloy. This material is widely used in various places because it has the best performance around room temperature at present, but one of the major drawbacks is that it has weak mechanical strength and is very brittle.

【0006】そのため小さな熱電素子を作製するために
いくつかの検討がなされているが、たとえば特開昭63
−20880号公報に一つの作製方法が記載されてい
る。この公報に記載の製造方法は、薄い板状に加工した
p型熱電材料とn型熱電材料を断熱材を挟みながら、交
互に積層し、積層面に垂直な方向に一定間隔で溝を形成
し、p型棒状素子及びn型棒状素子を形成する方法であ
る。
Therefore, some studies have been made to manufacture a small thermoelectric element.
One manufacturing method is described in Japanese Patent Publication No.-20880. In the manufacturing method described in this publication, a p-type thermoelectric material and an n-type thermoelectric material processed into a thin plate are alternately laminated while sandwiching a heat insulating material, and grooves are formed at regular intervals in a direction perpendicular to the laminated surface. , P-type rod-shaped elements and n-type rod-shaped elements.

【0007】p型棒状素子とn型棒状素子は、それぞれ
の両端面で電極材料により直列に接続される。電極材料
を形成する方法としては、蒸着等の真空技術を用いて金
属膜を形成し、その金属膜をフォトリソグラフィーの手
法を用いてパターン化することで実現する。
The p-type rod-shaped element and the n-type rod-shaped element are connected in series by the electrode material at both end faces. As a method for forming the electrode material, a metal film is formed by using a vacuum technique such as vapor deposition, and the metal film is patterned by using a photolithography technique.

【0008】[0008]

【発明が解決しようとする課題】ところで熱電素子は、
発電に用いる場合でも冷却素子として用いる場合におい
ても、外部の回路と接続しなくては当然ながらその機能
を発揮することはできない。そして同時に、熱電対の温
接点と冷接点の外部熱源や冷却対象物への熱的に良好な
接触も備えなければならない。
By the way, the thermoelectric element is
Whether used for power generation or used as a cooling element, it is naturally impossible to exert its function without being connected to an external circuit. At the same time, it is necessary to provide good thermal contact between the hot and cold junctions of the thermocouple and the external heat source and the object to be cooled.

【0009】確かに前記の公報の構造をとれば、脆い熱
電半導体を用いても小さな熱電素子構造を実現すること
は出来る。しかし、前記の公報に開示されているのは、
熱電半導体を配線するところまでであり、外部への接続
及び熱接触に関する具体的な手段は示されていない。た
とえばこの熱電素子の温接点あるいは冷接点をなしてい
る電極部分を冷却対象物に接触させると、電極自体は隠
れてしまい外部への電気的な接触ができなくなるという
問題が生じてしまう。
Certainly, if the structure of the above publication is adopted, a small thermoelectric element structure can be realized even if a brittle thermoelectric semiconductor is used. However, what is disclosed in the above publication is
Up to the point of wiring the thermoelectric semiconductor, no specific means for external connection and thermal contact is shown. For example, when the electrode portion forming the hot junction or cold junction of the thermoelectric element is brought into contact with the object to be cooled, the electrode itself is hidden and there is a problem that electrical contact with the outside is impossible.

【0010】このように従来例においては断熱材が充填
され、端面を金属膜で配線している小型の熱電素子の外
部接続においては有効な手法は開示されていない。
As described above, in the conventional example, an effective method is not disclosed for external connection of a small thermoelectric element filled with a heat insulating material and having an end face wired with a metal film.

【0011】そこで、簡単に考えられる外部への接触の
方法としては、リード線を半田を用いて電極へ接続する
方法、あるいはワイヤーボンディングにより金線などを
直接電極に接続する方法などが考えられる。しかし、ど
ちらの方法にせよ配線面から直接リード線を引き出すと
すれば、外部への良好な熱的な接触が難しくなる。
Therefore, as a method of easily contacting the outside, a method of connecting a lead wire to an electrode by using solder, a method of directly connecting a gold wire or the like to the electrode by wire bonding, and the like can be considered. However, whichever method is used, if the lead wire is directly pulled out from the wiring surface, good thermal contact with the outside becomes difficult.

【0012】そこで本発明の目的は、上記の問題点を解
決して、外部への良好な熱接触をとりつつ、安定した電
気的接続を有する熱電素子とその製造方法を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a thermoelectric element having stable electrical connection while making good thermal contact with the outside, and a method for manufacturing the same.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の熱電素子の構造および製造方法において
は、下記に記載する手段を採用する。
In order to achieve the above object, the following means are adopted in the structure and manufacturing method of the thermoelectric element of the present invention.

【0014】本発明の熱電素子の構造は、n型熱電半導
体からなる複数のn型棒状素子とp型熱電半導体からな
る複数のp型棒状素子とを絶縁層を介して配置して固定
し、前記各n型棒状素子と前記各p型棒状素子の両端面
をそれぞれ露出させた配線面を有する熱電素子ブロック
と、前記熱電素子ブロックの前記配線面に設けられ、前
記n型棒状素子とp型棒状素子を接続する配線用導電体
とを有する熱電素子であって、前記熱電素子ブロックの
外周部の前記n型棒状素子又は前記p型棒状素子の少な
くとも一部を他のn型棒状素子又はp型棒状素子より短
い接続用棒状素子としたことを特徴とする。
According to the structure of the thermoelectric element of the present invention, a plurality of n-type rod-shaped elements made of an n-type thermoelectric semiconductor and a plurality of p-type rod-shaped elements made of a p-type thermoelectric semiconductor are arranged and fixed via an insulating layer, A thermoelectric element block having wiring surfaces exposing both end surfaces of each of the n-type rod-shaped elements and each of the p-type rod-shaped elements, and the n-type rod-shaped element and the p-type provided on the wiring surface of the thermoelectric element block. A thermoelectric element having a wiring conductor for connecting a rod-shaped element, wherein at least a part of the n-type rod-shaped element or the p-type rod-shaped element on the outer peripheral portion of the thermoelectric element block is replaced with another n-type rod-shaped element or p. The rod-shaped element for connection is shorter than the rod-shaped element.

【0015】さらに前記接続用棒状素子は、一方の端面
が配線用導電体に接続し、他方の端面が金属膜で被覆し
て外部接続を行う引出端とすることを特徴とする。また
は前記接続用棒状素子は、前記熱電素子ブロックの一つ
の側面のみに位置することを特徴とする。または前記接
続用棒状素子は、前記熱電素子ブロックの二つの側面に
位置するとことを特徴とする。
Further, the connecting rod-like element is characterized in that one end face is connected to the wiring conductor and the other end face is covered with a metal film to serve as a lead-out end for external connection. Alternatively, the connecting rod-shaped element is located on only one side surface of the thermoelectric element block. Alternatively, the connecting rod-shaped element is located on two side surfaces of the thermoelectric element block.

【0016】または前記接続用棒状素子は、複数の棒状
素子が並列してなることを特徴とする。または前記複数
のn型棒状素子が、一方の側面から他方の側面に連続す
る板状のn型板状素子であり、前記複数のp型棒状素子
が一方の側面から他方の側面に連続する板状のp型板状
素子であることを特徴とする。
Alternatively, the connecting rod-shaped element is characterized in that a plurality of rod-shaped elements are arranged in parallel. Alternatively, the plurality of n-type rod-shaped elements are plate-shaped n-type plate-shaped elements continuous from one side surface to the other side surface, and the plurality of p-type rod-shaped elements are continuous from one side surface to the other side surface. It is a p-type plate-shaped element.

【0017】さらに本発明の熱電素子の構造は、n型熱
電半導体からなる複数のn型棒状素子とp型熱電半導体
からなる複数のp型棒状素子とを絶縁層を介して配置し
て固定し、前記各n型棒状素子と各p型棒状素子の両端
面をそれぞれ露出させた配線面を有する熱電素子ブロッ
クと、前記熱電素子ブロックの前記各配線面に設け、前
記n型棒状素子とp型棒状素子を接続する配線用導電体
とを有する熱電素子であって、前記熱電素子ブロックの
外周部の前記n型棒状素子又は前記p型棒状素子の少な
くとも一部を除去して前記配線用導電体を露出させ、外
部接続用配線用導電体としたことを特徴とする。
Further, in the structure of the thermoelectric element of the present invention, a plurality of n-type rod-shaped elements made of an n-type thermoelectric semiconductor and a plurality of p-type rod-shaped elements made of a p-type thermoelectric semiconductor are arranged and fixed via an insulating layer. A thermoelectric element block having wiring surfaces exposing both end surfaces of each of the n-type rod-shaped elements and each of the p-type rod-shaped elements, and the n-type rod-shaped element and the p-type provided on each of the wiring surfaces of the thermoelectric element block. A wiring conductor for connecting a rod-shaped element, wherein the wiring conductor is formed by removing at least a part of the n-type rod-shaped element or the p-type rod-shaped element on the outer peripheral portion of the thermoelectric element block. Is exposed to be a conductor for wiring for external connection.

【0018】本発明の熱電素子の製造方法は、n型熱電
半導体からなる複数のn型棒状素子とp型熱電半導体か
らなる複数のp型棒状素子とを絶縁層を介して固定して
熱電素子ブロックを形成する工程と、前記熱電素子ブロ
ックの上下面を除去して配線面を形成する工程と、前記
配線面に配線用導電体を形成して前記n型棒状素子とp
型棒状素子を接続する工程と、前記熱電素子ブロックの
外周の前記n型棒状素子又はp型棒状素子の少なくとも
一部を前記配線面より低く加工して接続用棒状素子を形
成する工程を有することを特徴とする。
According to the method of manufacturing a thermoelectric element of the present invention, a plurality of n-type rod-shaped elements made of an n-type thermoelectric semiconductor and a plurality of p-type rod-shaped elements made of a p-type thermoelectric semiconductor are fixed via an insulating layer. A step of forming a block, a step of removing the upper and lower surfaces of the thermoelectric element block to form a wiring surface, and a wiring conductor formed on the wiring surface to form the n-type rod-shaped element and p
And a step of connecting at least a part of the n-type rod-shaped element or the p-type rod-shaped element on the outer periphery of the thermoelectric element block lower than the wiring surface to form a connection rod-shaped element. Is characterized by.

【0019】または前記配線面に配線用導電体を形成す
る工程と、前記接続用棒状素子を形成する工程との順番
を逆にすることを特徴とする。または前記接続用棒状素
子を形成した工程後に、接続用棒状素子の配線用導電体
が接続していない端面に金属膜を被覆する工程を行うこ
とを特徴とする。または前記配線面に配線用導電体を形
成した工程後に、接続用棒状素子の配線用導電体が接続
していない端面に金属膜を被覆する工程を行うことを特
徴とする。または前記複数のn型棒状素子が連続する板
状のn型板状素子であり、前記複数のp型棒状素子が連
続する板状のp型板状素子であることを特徴とする。
Alternatively, the order of the step of forming the wiring conductor on the wiring surface and the step of forming the connecting rod-shaped element is reversed. Alternatively, after the step of forming the connecting rod-shaped element, a step of coating a metal film on an end surface of the connecting rod-shaped element where the wiring conductor is not connected is performed. Alternatively, after the step of forming the wiring conductor on the wiring surface, a step of coating a metal film on an end surface of the connecting rod-shaped element to which the wiring conductor is not connected is performed. Alternatively, it is a plate-shaped n-type plate-shaped element in which the plurality of n-type rod-shaped elements are continuous, and a plate-shaped p-type plate-shaped element in which the plurality of p-type rod-shaped elements are continuous.

【0020】さらに本発明の熱電素子の製造方法は、n
型熱電半導体からなる複数のn型棒状素子とp型熱電半
導体からなる複数のp型棒状素子とを絶縁層を介して固
定して熱電素子ブロックを形成する工程と、前記熱電素
子ブロックの上面と下面を除去して配線面を形成する工
程と、前記配線面に配線用導電体を形成して前記n型棒
状素子とp型棒状素子を接続する工程と、前記熱電素子
ブロックの外周部のn型棒状素子又はp型棒状素子の少
なくとも一部を除去し、前記配線用導電体を露出させる
工程とを有することを特徴とする。
Further, the method for producing a thermoelectric element of the present invention is
Forming a thermoelectric element block by fixing a plurality of n-type rod-shaped elements made of p-type thermoelectric semiconductors and a plurality of p-type rod-shaped elements made of p-type thermoelectric semiconductors via an insulating layer; and an upper surface of the thermoelectric element block. A step of removing the lower surface to form a wiring surface; a step of forming a wiring conductor on the wiring surface to connect the n-type rod-shaped element and the p-type rod-shaped element; and n on the outer peripheral portion of the thermoelectric element block. And a step of removing at least a part of the mold rod-shaped element or the p-type rod-shaped element to expose the wiring conductor.

【0021】〔作用〕本発明の熱電素子は複数配列した
棒状素子より低い接続用棒状素子を設け、その接続用棒
状素子の端面である引出端で外部と電気的接続を行う。
このことで、引出端と配線面との間に段差があることか
ら、配線面での外部との熱的接触を保ちつつ、接続用棒
状素子により外部回路との電気的接続を良好に行うこと
が可能となる。
[Operation] The thermoelectric element of the present invention is provided with a connecting rod-shaped element that is lower than a plurality of arranged rod-shaped elements, and is electrically connected to the outside at the lead-out end which is the end face of the connecting rod-shaped element.
Because of this, since there is a step between the lead-out end and the wiring surface, it is necessary to maintain good thermal contact with the outside on the wiring surface and to make good electrical connection with the external circuit using the connecting rod element. Is possible.

【0022】[0022]

【発明の実施の形態】以下、図面を用いて本発明の熱電
素子の構造および製造方法おける最適な実施形態を説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION An optimum embodiment of the structure and manufacturing method of a thermoelectric element of the present invention will be described below with reference to the drawings.

【0023】〔構造の第1の例:図1および図2〕まず
はじめに、本発明の熱電素子の構造の第1例を説明す
る。図1に示すように本発明の熱電素子の構造は、主に
熱電素子ブロック10と、熱電素子ブロック10の表面
に配した配線用導電体20から成る。
[First Example of Structure: FIGS. 1 and 2] First, a first example of the structure of the thermoelectric element of the present invention will be described. As shown in FIG. 1, the structure of the thermoelectric element of the present invention mainly comprises a thermoelectric element block 10 and a wiring conductor 20 arranged on the surface of the thermoelectric element block 10.

【0024】熱電素子ブロック10は、n型熱電半導体
を加工して柱状にしたn型棒状素子11と、p型熱電半
導体を加工して柱状にしたp型棒状素子12とを規則的
に配置してなる。その配列は、n型棒状素子11だけが
偶数個並ぶ列と、p型棒状素子12だけが偶数個並ぶ列
とが交互に繰り返される構造となっている。それぞれ偶
数個の棒状素子を並べるのは、後で説明する接続用棒状
素子が一つの側面50aに形成できるからである。
In the thermoelectric element block 10, an n-type rod-shaped element 11 formed by processing an n-type thermoelectric semiconductor into a columnar shape and a p-type rod-shaped element 12 formed by processing a p-type thermoelectric semiconductor into a columnar shape are regularly arranged. It becomes. The arrangement has a structure in which an even number of rows of only n-type rod-shaped elements 11 and an even number of rows of p-type rod-shaped elements 12 are alternately repeated. The reason why the even-numbered rod-shaped elements are arranged is that the connecting rod-shaped elements described later can be formed on one side face 50a.

【0025】n型棒状素子11とp型棒状素子12、あ
るいはn型棒状素子11同士、あるいはp型棒状素子1
2同士を絶縁し、n型棒状素子11とp型棒状素子12
を固定するために、絶縁性樹脂からなる絶縁層30を設
ける。
The n-type rod-shaped element 11 and the p-type rod-shaped element 12, the n-type rod-shaped elements 11 each other, or the p-type rod-shaped element 1
N-type rod-shaped element 11 and p-type rod-shaped element 12 are insulated from each other.
An insulating layer 30 made of an insulating resin is provided for fixing the insulating layer 30.

【0026】図1では片面しか見えていないが、熱電素
子ブロック10には対向した2つの配線面40a、40
bがあり、配線面40a、40bにはそれぞれ配線用導
電体20を配している。配線用導電体20は隣り合った
n型棒状素子11とp型棒状素子12とを柱の端面にお
いて接続しており、2つの配線面40a、40bではn
型棒状素子11とp型棒状素子12の柱一本ずつずれた
配置をとっており、これによって多数のn型棒状素子1
1とp型棒状素子12とが交互に直列化する構造となっ
ている。ただし、図1に示すように、配線用導電体20
が折り返される部分では、n型棒状素子11同士あるい
はp型棒状素子12同士が並ぶため、2本を並列化させ
るようにL字の配線用導電体20を配置するようにな
る。
Although only one surface is visible in FIG. 1, two wiring surfaces 40a, 40 facing the thermoelectric element block 10 are provided.
b, and the wiring conductors 20 are arranged on the wiring surfaces 40a and 40b, respectively. The wiring conductor 20 connects the n-type rod-shaped element 11 and the p-type rod-shaped element 12 which are adjacent to each other at the end face of the column, and the two wiring faces 40a and 40b are n-shaped.
The mold rod-shaped element 11 and the p-type rod-shaped element 12 are arranged so as to be offset from each other by one column.
1 and the p-type rod-shaped element 12 are alternately serialized. However, as shown in FIG.
Since the n-type rod-shaped elements 11 or the p-type rod-shaped elements 12 are lined up at the portion where is folded back, the L-shaped wiring conductor 20 is arranged so as to make the two parallel.

【0027】直列化したn型棒状素子11とp型棒状素
子12との初めと終わりには、n型棒状素子11とp型
棒状素子12より低い接続用棒状素子13を設ける。先
に述べたように、本構造ではn型棒状素子11とp型棒
状素子12を偶数個並べ、図1に示すような折り返しの
配線形態をとることにより、接続用棒状素子13は熱電
素子ブロック10の配線面40a、40bから見た外周
の棒状素子であり、一つの側面50aの両端に位置する
ようになる。ここで、本実施形態において、側面50a
とは、熱電素子ブロック10の配線面40a、40bか
ら見た多角形平面の各辺に位置する配線面40a、40
b以外の面である。これは、後述する側面50bについ
ても同じである。
At the beginning and the end of the serially connected n-type rod-shaped element 11 and p-type rod-shaped element 12, connecting rod-shaped elements 13 lower than the n-type rod-shaped element 11 and the p-type rod-shaped element 12 are provided. As described above, in the present structure, the connecting rod-shaped element 13 is formed in the thermoelectric element block by arranging an even number of the n-type rod-shaped elements 11 and the p-type rod-shaped elements 12 and arranging the folded wiring as shown in FIG. It is a rod-shaped element on the outer periphery when viewed from the wiring surfaces 40a and 40b of 10 and is positioned at both ends of one side surface 50a. Here, in the present embodiment, the side surface 50a
Is the wiring surfaces 40a, 40 located on each side of the polygonal plane viewed from the wiring surfaces 40a, 40b of the thermoelectric element block 10.
It is a surface other than b. This also applies to the side surface 50b described later.

【0028】接続用棒状素子13は直列化された初めと
終わりの棒状素子であるため、接続用棒状素子13の一
端面には接続用導電体20が接続しているが、他端面に
は接続用導電体20が接続していない。そしてその接続
用導電体20が接続していない側は、配線面40aまた
は配線面40bとのあいだに段差ができるように、接続
用棒状素子13はn型棒状素子11やp型棒状素子12
に比べて低くしている。
Since the connecting rod-shaped element 13 is a serially connected starting and ending rod-shaped element, the connecting conductor 20 is connected to one end surface of the connecting rod-shaped element 13, but is connected to the other end surface. The conductor 20 is not connected. The connecting rod-shaped element 13 is formed of the n-type rod-shaped element 11 and the p-type rod-shaped element 12 so that a step is formed between the connecting conductor 20 and the wiring surface 40a or the wiring surface 40b.
It is lower than.

【0029】接続用棒状素子13は熱電素子ブロック1
0と外部回路との接続をするために用いられる。つまり
配線面40a、40bとのあいだで段差が出来ている側
の端面は引出端14となり、リード線等を接続する。そ
のため、半田付けやワイヤーボンディングを確実に行う
ために、引出端14にはニッケル、銅、金などの金属膜
を単層又は複数層施した方がよい。
The connecting rod-shaped element 13 is a thermoelectric element block 1.
It is used to connect 0 to an external circuit. That is, the end face on the side where a step is formed between the wiring surfaces 40a and 40b becomes the lead-out end 14 and connects a lead wire or the like. Therefore, in order to reliably perform soldering and wire bonding, it is preferable that the lead-out end 14 be provided with a single layer or a plurality of layers of a metal film of nickel, copper, gold or the like.

【0030】さらに本発明の熱電素子を実際に利用する
場合の実装形態を表す側面図を図2に示す。たとえば熱
電素子を発電素子として利用する場合、低温部材61と
配線面40aを接触させ、高温部材62と配線面40b
とを接触させ熱電素子の上下に温度差を与える。この温
度差で熱電素子には電圧が発生するが、その電圧を外部
に取り出すための端子が引出端14である。
Further, FIG. 2 shows a side view showing a mounting form when the thermoelectric element of the present invention is actually used. For example, when a thermoelectric element is used as a power generation element, the low temperature member 61 and the wiring surface 40a are brought into contact with each other, and the high temperature member 62 and the wiring surface 40b are contacted.
And are brought into contact with each other to give a temperature difference above and below the thermoelectric element. A voltage is generated in the thermoelectric element due to this temperature difference, and the lead-out end 14 is a terminal for extracting the voltage to the outside.

【0031】図示はしていないが低温部材61と高温部
材62を配線面40a、40bに接触させる場合、低温
部材61と高温部材62の表面が電気的に絶縁していれ
ば、アルミナなどの粒子を含む熱伝導性エポキシ樹脂や
熱伝導性シリコーン樹脂などを界面に設け固定する。ま
た、金属などで出来ている低温部材61や高温部材62
と配線面40a、40bとを接触させるには、あらかじ
め配線面40a、40bを絶縁性の樹脂で被覆しておか
なければならない。この場合、前述の熱伝導性エポキシ
樹脂やシリコーン樹脂が絶縁性を有することから絶縁被
膜を兼ねることも可能である。
Although not shown, when the low temperature member 61 and the high temperature member 62 are brought into contact with the wiring surfaces 40a and 40b, if the surfaces of the low temperature member 61 and the high temperature member 62 are electrically insulated, particles of alumina or the like are used. A heat conductive epoxy resin or a heat conductive silicone resin containing is provided at the interface and fixed. In addition, the low temperature member 61 and the high temperature member 62 made of metal or the like.
In order to bring the wiring surfaces 40a and 40b into contact with each other, the wiring surfaces 40a and 40b must be coated with an insulating resin in advance. In this case, since the above-mentioned thermally conductive epoxy resin or silicone resin has an insulating property, it can also serve as an insulating coating.

【0032】引出端14には図2のように銅線などのリ
ード線80が接続され、外部回路とつながれる。引出端
14には金などが形成されているため、鉛錫合金などの
ハンダ材70を用いてリード線80を接続することがで
きる。
A lead wire 80 such as a copper wire is connected to the lead-out end 14 as shown in FIG. 2 and is connected to an external circuit. Since gold or the like is formed on the lead-out end 14, the lead wire 80 can be connected using a solder material 70 such as a lead-tin alloy.

【0033】このように本発明の熱電素子はn型棒状素
子11やp型棒状素子12より低く形成されている接続
用棒状素子13が配線面40a、40bとの間で段差を
作っている。このため、本発明の熱電素子では、接続用
棒状素子13でハンダ材70を介して配線用のリード線
80どを接続することができ、外部と良好な電気的接続
と、配線面40a、40bと外部の低温部材61や高温
部材62との熱的に良好な接触とを、同時に達成するこ
とが出来る。さらに本発明の熱電素子を冷却素子として
用いる場合は、配線面40a、40bと熱的に接触する
のは、冷却対象物となる低温部材61と放熱用部材とな
る高温部材62である。
As described above, in the thermoelectric element of the present invention, the connecting rod-shaped element 13 formed lower than the n-type rod-shaped element 11 and the p-type rod-shaped element 12 forms a step between the wiring surfaces 40a and 40b. Therefore, in the thermoelectric element of the present invention, it is possible to connect the lead wire 80 for wiring through the solder material 70 with the connecting rod-shaped element 13, and to achieve good electrical connection with the outside and the wiring surfaces 40a, 40b. It is possible to simultaneously achieve good thermal contact with the external low temperature member 61 and the high temperature member 62. Further, when the thermoelectric element of the present invention is used as a cooling element, it is the low temperature member 61, which is the object to be cooled, and the high temperature member 62, which is the member for heat dissipation, that are in thermal contact with the wiring surfaces 40a, 40b.

【0034】〔構造の第2の例:図3および図4〕図3
には第2例における熱電素子の構造を示す。第2例にお
ける熱電素子の構造は、基本的に熱電素子ブロック10
と配線用導電体20からなることは第1例の構造と同じ
である。また、熱電素子ブロック10に含まれるn型棒
状素子11とp型棒状素子12と絶縁層30の配列も同
じである。
[Second Example of Structure: FIGS. 3 and 4] FIG.
Shows the structure of the thermoelectric element in the second example. The structure of the thermoelectric element in the second example is basically the thermoelectric element block 10
And the wiring conductor 20 are the same as the structure of the first example. The arrangement of the n-type rod-shaped element 11, the p-type rod-shaped element 12, and the insulating layer 30 included in the thermoelectric element block 10 is also the same.

【0035】ここで、本第2例の構造においては熱電素
子ブロック10の外周にあり、一つの側面50aに含ま
れる1列すべてのn型棒状素子11が低くなり、配線面
40aとの間で段差を形成している。この複数の低いn
型棒状素子11は並列して接続用棒状素子13を構成し
ている。配線用導電体20の電気的接続がわかりにくい
ため、図4にもう一方の配線面40bの構成を示す。図
4のように直列化したn型棒状素子11とp型棒状素子
12の初めと終わりにある配線用導電体20はL字型を
しており、低くなっている複数の接続用棒状素子13の
片面を並列につないでいる。そして複数の接続用棒状素
子13の配線面40aと段差を形成している引出端14
にはニッケル、銅、金などの金属膜をそれぞれの棒状素
子ごとに、図3に示すように設ける。
Here, in the structure of the second example, all the n-type rod-shaped elements 11 in one row, which are on the outer periphery of the thermoelectric element block 10 and are included in one side surface 50a, are lowered, and the n-type rod-shaped element 11 is formed between the wiring surface 40a. A step is formed. This multiple low n
The mold rod elements 11 are arranged in parallel to form a connecting rod element 13. Since the electrical connection of the wiring conductor 20 is difficult to understand, FIG. 4 shows the configuration of the other wiring surface 40b. The wiring conductors 20 at the beginning and the end of the n-type rod-shaped element 11 and the p-type rod-shaped element 12 which are serialized as shown in FIG. 4 are L-shaped, and the plurality of lower connecting rod-shaped elements 13 are connected. One side of is connected in parallel. The lead-out end 14 forming a step with the wiring surfaces 40a of the plurality of connecting rod-shaped elements 13 is formed.
A metal film of nickel, copper, gold or the like is provided for each rod-shaped element as shown in FIG.

【0036】以上の構成から図3および図4に示す熱電
素子も第1例と同様に引出端14が配線面40aより低
くなっていることから、外部の熱源や冷却物と配線面4
0aとの間で良好な熱接触をとりつつ、リード線などに
よる電気的な接続も行える構成となっている。また複数
の接続用棒状素子13を有していることから、広い面積
の引出端14を有し、外部への接続が容易になる。さら
に、外部接続は複数の接続用棒状素子13のどれを取っ
ても良いことから、リード線接続の自由度が増す。また
引出端14がすべて一方の配線面40aと同じ面側にあ
ることから、実装がしやすくなる。また、後に製造方法
で説明するが、1列を同時に加工して柱を短くすること
から、製造が容易になる。
With the above construction, the thermoelectric element shown in FIGS. 3 and 4 has the lead-out end 14 lower than the wiring surface 40a as in the first example.
It is configured such that it can be electrically connected by a lead wire or the like while making good thermal contact with 0a. Further, since it has a plurality of connecting rod-shaped elements 13, it has a lead-out end 14 having a large area, and connection to the outside becomes easy. Furthermore, since the external connection may take any of the plurality of connecting rod-shaped elements 13, the degree of freedom in connecting the lead wires is increased. Further, since all the lead-out ends 14 are on the same surface side as the one wiring surface 40a, the mounting becomes easy. Further, as will be described later in the manufacturing method, since one column is processed at the same time to shorten the column, manufacturing becomes easy.

【0037】〔構造の第3の例:図5〕図5には異なっ
た構造の熱電素子を示す。基本的には熱電素子ブロック
10と配線用導電体20からなることは第1例の構造と
同じである。また、熱電素子ブロック10に含まれるn
型棒状素子11とp型棒状素子12と絶縁層30の配列
も同じである。
[Third Example of Structure: FIG. 5] FIG. 5 shows thermoelectric elements having different structures. Basically, the thermoelectric element block 10 and the wiring conductor 20 are the same as the structure of the first example. In addition, n included in the thermoelectric element block 10
The arrangement of the mold rod-shaped element 11, the p-type rod-shaped element 12, and the insulating layer 30 is also the same.

【0038】また本第3例の構造においては1列のn型
棒状素子11すべてが低くなっているのは第2例の構造
と同じである。この第3例の構造は、第2例の構造とは
配線用導電体20の一部の形状が異なっている。本第3
例の構造ではn型棒状素子11とp型棒状素子12を直
列化する配線用導電体20の最終端の一方が、p型棒状
素子12と接続用棒状素子13とにまたがって形成して
ある。
Further, in the structure of the third example, all the n-type rod-shaped elements 11 in one row are low, as in the structure of the second example. The structure of the third example is different from the structure of the second example in the shape of a part of the wiring conductor 20. Book Third
In the structure of the example, one of the final ends of the wiring conductors 20 for serializing the n-type rod-shaped element 11 and the p-type rod-shaped element 12 is formed across the p-type rod-shaped element 12 and the connecting rod-shaped element 13. .

【0039】また本第3例の構造においても複数の低い
接続用棒状素子13は配線用導電体20を用いて電気的
に接続して並列化している。この時並列化は図5では見
えないが、他方の配線面40bにて行う。また、接続用
棒状素子13の引出端14にはニッケル、銅、金などの
金属膜をそれぞれの棒状素子ごとに設ける。
Also in the structure of the third example, the plurality of low connecting rod-shaped elements 13 are electrically connected to each other in parallel by using the wiring conductor 20. At this time, parallelization is performed on the other wiring surface 40b, which is not visible in FIG. Further, a metal film of nickel, copper, gold or the like is provided on the lead-out end 14 of the connecting rod-shaped element 13 for each rod-shaped element.

【0040】以上から本第3例の熱電素子も前記第1
例、第2例の熱電素子と同様に、外部の熱源や冷却部材
と配線面40a、40bとの間で良好な熱接触をとりつ
つ、リード線などによる電気的な接続も行える構成とな
っている。また、第2例と同じく広い面積の引出端14
を有し、外部への接続が容易になる。さらに低い段差部
に形成する配線用導電体20が接続するp型棒状素子
が、第2の例では使われていなかったのに対し、本構造
なら無駄にせずに利用することが可能である。
From the above, the thermoelectric element of the third example is also the first
Similar to the thermoelectric element of the second example, the external heat source or cooling member and the wiring surfaces 40a and 40b can be electrically connected to each other while making good thermal contact. There is. In addition, as in the second example, the drawing end 14 having a large area is used.
With this, connection to the outside becomes easy. Although the p-type rod-shaped element connected to the wiring conductor 20 formed in the lower step portion was not used in the second example, this structure can be used without wasting it.

【0041】〔構造の第4の例:図6および図7〕図6
にはさらに別の熱電素子の構造を示す。この第4例にお
ける熱電素子の構造は、基本的には熱電素子ブロック1
0と配線用導電体20からなることは第1例の構造と同
じである。また、熱電素子ブロック10に含まれるn型
棒状素子11とp型棒状素子12と絶縁層30の配列も
同じである。
[Fourth Example of Structure: FIGS. 6 and 7] FIG.
Shows the structure of still another thermoelectric element. The structure of the thermoelectric element in the fourth example is basically the thermoelectric element block 1
0 and the wiring conductor 20 are the same as the structure of the first example. The arrangement of the n-type rod-shaped element 11, the p-type rod-shaped element 12, and the insulating layer 30 included in the thermoelectric element block 10 is also the same.

【0042】この第4例では熱電素子ブロック10の一
つの側面50aにある1列のn型棒状素子11の端、図
6では右端の1本を除いて低くして、配線面40aとの
間で段差を形成し、接続用棒状素子13となっている。
配線の構成がわかりやすいように図7には他方の配線面
40bから見た構成を示している。このように基本的は
第2の例の構造と同じであるが、1列のn型棒状素子1
1の1本を接続用棒状素子13ではなく、本来の熱電対
として機能するよう利用している。またこの構成でも接
続用棒状素子13は最終端の配線用導電体20によって
電気的に接続して並列化されている。また接続用棒状素
子13の引出端14にはニッケル、銅、金などの金属膜
をそれぞれの棒状素子ごとに設ける。
In this fourth example, one end of one row of n-type rod-shaped elements 11 on one side surface 50a of the thermoelectric element block 10, that is, the one at the right end in FIG. To form a step, which is the connecting rod element 13.
For easy understanding of the wiring configuration, FIG. 7 shows the configuration viewed from the other wiring surface 40b. Thus, the structure is basically the same as that of the second example, but one row of n-type rod-shaped elements 1
One of them is used not as the connecting rod-shaped element 13 but as the original thermocouple. Also in this configuration, the connecting rod-shaped elements 13 are electrically connected by the wiring conductor 20 at the final end and are connected in parallel. Further, a metal film of nickel, copper, gold or the like is provided on the lead-out end 14 of the connecting rod-shaped element 13 for each rod-shaped element.

【0043】以上の構成から本第4例の熱電素子もこれ
まで説明した第1例から第3例の熱電素子と同様に、外
部の熱源や冷却物と配線面40a、40bとの間で良好
な熱接触をとりつつ、リード線などによる電気的な接続
も行える構成となっている。また、広い面積の引出端1
4を有し、外部への接続が容易になる。さらに一つの側
面50aにある1本のn型棒状素子11も熱電対として
利用できることから、第2例さらに第3例より多くの棒
状素子が熱電対として利用できるため、外形形状は第2
例や第3例と同じであるが熱電素子としての出力は大き
くなる。
With the above structure, the thermoelectric element of the fourth example is also good between the external heat source and the cooling object and the wiring surfaces 40a and 40b, like the thermoelectric elements of the first to third examples described above. The structure is such that it can be electrically connected by a lead wire and the like while making good thermal contact. In addition, the drawer end 1 with a large area
4 is provided, which facilitates connection to the outside. Furthermore, since one n-type rod-shaped element 11 on one side face 50a can also be used as a thermocouple, more rod-shaped elements than the second example and the third example can be used as thermocouples, and therefore the outer shape is the second one.
This is the same as the example and the third example, but the output as a thermoelectric element becomes large.

【0044】〔構造の第5の例:図8〕図8に示すよう
に本第5例の構造も、主に熱電素子ブロック10と熱電
素子ブロック10の表面に配した配線用導電体20から
成る。
[Fifth Example of Structure: FIG. 8] As shown in FIG. 8, the structure of the fifth example is mainly composed of the thermoelectric element block 10 and the wiring conductors 20 arranged on the surface of the thermoelectric element block 10. Become.

【0045】熱電素子ブロック10は、n型熱電半導体
を加工して柱状にしたn型棒状素子11と、p型熱電半
導体を加工して柱状にしたp型棒状素子12を規則的に
配置している。その棒状素子の配列は、n型棒状素子1
1だけが奇数個並ぶ列とp型棒状素子12だけが奇数個
並ぶ列が交互に繰り返される構造となっている。
In the thermoelectric element block 10, an n-type rod-shaped element 11 formed by processing an n-type thermoelectric semiconductor into a columnar shape and a p-type rod-shaped element 12 formed by processing a p-type thermoelectric semiconductor into a columnar shape are regularly arranged. There is. The arrangement of the rod-shaped elements is the n-type rod-shaped element 1
A structure in which an odd number of 1's and an odd number of p-type rod-shaped elements 12 are alternately repeated.

【0046】n型棒状素子11とp型棒状素子12、あ
るいはn型棒状素子11同士、あるいはp型棒状素子1
2同士を絶縁し、n型棒状素子11とp型棒状素子12
を固定するために、絶縁性樹脂からなる絶縁層30を有
する。
The n-type rod-shaped element 11 and the p-type rod-shaped element 12, the n-type rod-shaped elements 11 each other, or the p-type rod-shaped element 1
N-type rod-shaped element 11 and p-type rod-shaped element 12 are insulated from each other.
An insulating layer 30 made of an insulating resin is provided for fixing.

【0047】本第5例の構造でも配線用導電体20は隣
り合ったn型棒状素子11とp型棒状素子12とを柱状
の棒状素子の端部において接続しており、2つの配線面
40a、40bでは柱一本ずつずれた配置をとってお
り、これによって多数のn型棒状素子11とp型棒状素
子12とが交互に直列化する構造となっている。またL
字の配線用導電体20を用いて配線を折り返し、奇数の
n型棒状素子11とp型棒状素子12をもちいること
で、直列化した棒状素子の初めと終わりは熱電素子ブロ
ック10の対角位置に現れ、接続用棒状素子13も対角
位置、すなわち対向した二つの側面50aと側面50b
にそれぞれ存在する。
Also in the structure of the fifth example, the wiring conductor 20 connects the adjacent n-type rod-shaped element 11 and p-type rod-shaped element 12 at the end of the columnar rod-shaped element, and the two wiring surfaces 40a. , 40b are arranged so as to be offset from each other by one column, whereby a large number of n-type rod-shaped elements 11 and p-type rod-shaped elements 12 are alternately serialized in series. Also L
The wiring is folded back using the letter-shaped wiring conductors 20 and the odd-numbered n-type rod-shaped elements 11 and p-type rod-shaped elements 12 are used, so that the beginning and the end of the serialized rod-shaped elements are diagonal to the thermoelectric element block 10. The connecting rod-shaped element 13 also appears at a diagonal position, that is, the two side surfaces 50a and 50b facing each other.
Exist in each.

【0048】接続用棒状素子13は、図8には見えてい
ない側の配線面40bにおいて最終端の配線用導電体2
0と接続しており、図8で見えている配線面40aとの
間では段差を形成するように柱の高さが低くなってい
る。接続用棒状素子13の段差が出来ている側の引出端
14には、金属膜を施している。
The connecting rod-shaped element 13 has a wiring conductor 40 at the final end on the wiring surface 40b on the side not visible in FIG.
0, and the height of the pillar is low so as to form a step with the wiring surface 40a seen in FIG. A metal film is applied to the lead-out end 14 of the connecting rod-shaped element 13 on the side where the step is formed.

【0049】以上本第5例の構造では第1〜第4例の構
造と同じように、外部の熱源や冷却部材と配線面40
a、40bとの間で良好な熱接触をとりつつ、リード線
などによる電気的な接続も行える構成となっている。ま
た、第1例の構造と同様に接続用棒状素子13は熱電素
子ブロック10にある棒状素子のなかの2本のみである
ため、素子面積に占める熱電対の面積比率が高く、素子
の出力効率が高くなる。またさらに、本構造でも2つの
引出端14はどちらも一方の配線面40aと同じ面側に
あることから、外部接続を容易に行うことが出来、さら
に熱電素子ブロック10の実装もしやすい。
As described above, in the structure of the fifth example, as in the structures of the first to fourth examples, the external heat source and the cooling member and the wiring surface 40 are provided.
While making good thermal contact with a and 40b, it is also possible to electrically connect with a lead wire or the like. Further, as in the structure of the first example, since the connecting rod-shaped element 13 is only two rod-shaped elements in the thermoelectric element block 10, the area ratio of the thermocouple to the element area is high, and the output efficiency of the element is high. Becomes higher. Furthermore, in this structure as well, both of the two lead-out ends 14 are on the same surface side as the one wiring surface 40a, so that external connection can be made easily and the thermoelectric element block 10 can be easily mounted.

【0050】〔構造の第6の例:図9および図10〕図
9には異なる熱電素子の構造を示す。基本的に熱電素子
ブロック10と配線用導電体20からなることは第5例
の構造と同じである。また、熱電素子ブロック10に含
まれるn型棒状素子11とp型棒状素子12と絶縁層3
0の配列も同じである。
[Sixth Example of Structure: FIGS. 9 and 10] FIG. 9 shows a structure of a different thermoelectric element. Basically, the thermoelectric element block 10 and the wiring conductor 20 are the same as in the structure of the fifth example. Further, the n-type rod-shaped element 11, the p-type rod-shaped element 12, and the insulating layer 3 included in the thermoelectric element block 10 are included.
The arrangement of 0 is also the same.

【0051】本第6例の構造では電気的に直列化したn
型棒状素子11とp型棒状素子12の初めと終わりに位
置する接続用棒状素子13は、熱電素子ブロック10の
一方の側面50aに位置する複数のn型棒状素子11と
他方の側面50bに位置する複数のp型棒状素子12か
ら成り立っている。そして、両側面50a、50bにお
いて、一列すべてのn型棒状素子11またはp型棒状素
子12が配線面40aと段差を作るように低い構成と
し、接続用棒状素子13となっている。接続用棒状素子
13の段差が出来ている側の引出端14には金属膜を施
している。
In the structure of the sixth example, n electrically connected in series is used.
The connecting rod-shaped elements 13 located at the beginning and the end of the mold rod-shaped element 11 and the p-type rod-shaped element 12 are located on the plurality of n-type rod-shaped elements 11 located on one side surface 50a of the thermoelectric element block 10 and on the other side surface 50b. It is composed of a plurality of p-type rod-shaped elements 12. The n-type rod-shaped elements 11 or the p-type rod-shaped elements 12 in all of the rows on both side surfaces 50a and 50b are formed to have a low structure so as to form a step with the wiring surface 40a, and the connecting rod-shaped elements 13 are formed. A metal film is applied to the lead-out end 14 of the connecting rod-shaped element 13 on the side where the step is formed.

【0052】構成がわかりやすいようにもう一つの配線
面40bから見た構造を図10に示す。図10のように
直列化した複数のn型棒状素子11とp型棒状素子12
の初めと終わりに接続する配線用導電体20はL字型構
造をしており、複数のn型棒状素子11又はp型棒状素
子12を電気的に並列に接続している。これによって、
段差を形成している配線用導電体20の引出端14は複
数個の柱で成り立っている。
FIG. 10 shows a structure viewed from the other wiring surface 40b so that the structure can be easily understood. A plurality of n-type rod-shaped elements 11 and p-type rod-shaped elements 12 serialized as shown in FIG.
The wiring conductors 20 connected at the beginning and the end have an L-shaped structure, and electrically connect a plurality of n-type rod-shaped elements 11 or p-type rod-shaped elements 12 in parallel. by this,
The lead-out end 14 of the wiring conductor 20 forming the step is formed of a plurality of pillars.

【0053】以上から本第6例の構造でも上記の第1〜
第5例の構造と同様に、外部の熱源や冷却部材と配線面
40a、40bとの間で良好な熱接触をとりつつ、リー
ド線などによる電気的な接続も行える構成となってい
る。また、広い面積の引出端14を有し、外部への接続
が容易になる。また、対向した側面50aと側面50b
とに引出端14が分離していることから、この熱電素子
ブロック10を複数個直列接続するときに、熱電素子ブ
ロック10と熱電素子ブロック10との接続が容易とな
る。
As described above, even in the structure of the sixth example,
Similar to the structure of the fifth example, the external heat source or the cooling member and the wiring surfaces 40a and 40b are in good thermal contact with each other, and are electrically connected by the lead wire or the like. In addition, since the lead-out end 14 has a large area, connection to the outside becomes easy. In addition, the side surface 50a and the side surface 50b facing each other
Since the lead-out ends 14 are separated from each other, when the thermoelectric element blocks 10 are connected in series, the thermoelectric element blocks 10 can be easily connected to each other.

【0054】〔構造の第7の例:図11および図12〕
図11にはさらに異なる熱電素子の構造を示す。本構造
は第4例の構造と基本的には同じ構成であり、熱電素子
ブロック10と配線用導電体20からなる。また、熱電
素子ブロック10に含まれるn型棒状素子11とp型棒
状素子12と絶縁層30の配列も同じである。
[Seventh Example of Structure: FIGS. 11 and 12]
FIG. 11 shows a structure of still another thermoelectric element. This structure has basically the same structure as the structure of the fourth example, and includes the thermoelectric element block 10 and the wiring conductor 20. The arrangement of the n-type rod-shaped element 11, the p-type rod-shaped element 12, and the insulating layer 30 included in the thermoelectric element block 10 is also the same.

【0055】ここでは熱電素子ブロック10の一つの側
面50aに含まれる1列のn型棒状素子11の端、図1
1では右端の1本のみが残っており、他の柱はなくなっ
ている。これは第4例の構造の低くなっている接続用棒
状素子13をすべて除去することによって成り立ってお
り、配線用導電体20が露出した構成となっている。本
第7例の構造ではこの露出した配線用導電体20が外部
への取り出し電極も兼ねており、外部接続用配線用導電
体20a、20bとなっている。そして外部接続用配線
用導電体20a、20bが配線面40bと接続する面側
の露出面にリード線等を接続することになる。
Here, the end of one row of the n-type rod-shaped elements 11 included in one side surface 50a of the thermoelectric element block 10, as shown in FIG.
In No. 1, only the rightmost one remains, and the other pillars are gone. This is achieved by removing all the lower connecting rod-shaped elements 13 of the structure of the fourth example, and the wiring conductor 20 is exposed. In the structure of the seventh example, the exposed wiring conductor 20 also serves as an extraction electrode to the outside, and serves as external connection wiring conductors 20a and 20b. Then, a lead wire or the like is connected to the exposed surface on the surface side where the external connection wiring conductors 20a and 20b are connected to the wiring surface 40b.

【0056】本第7例の熱電素子の実装形態を表す側面
図を図12に示す。たとえば熱電素子を発電素子として
利用する場合、低温部材61と配線面40aとを接触さ
せ、さらに高温部材62と配線面40bとを接触させ
て、熱電素子の上下に温度差を与える。この温度差で熱
電素子には電圧が発生するが、その電圧を外部に取り出
すための端子が露出している配線用導電体20である。
FIG. 12 is a side view showing a mounting form of the thermoelectric element of the seventh example. For example, when a thermoelectric element is used as a power generating element, the low temperature member 61 and the wiring surface 40a are brought into contact with each other, and the high temperature member 62 and the wiring surface 40b are brought into contact with each other to give a temperature difference between the upper and lower sides of the thermoelectric element. A voltage is generated in the thermoelectric element due to this temperature difference, but the wiring conductor 20 has exposed terminals for extracting the voltage to the outside.

【0057】図示はしていないが低温部材61と高温部
材62を配線面40a、40bに接触させる場合、低温
部材61と高温部材62の表面が電気的に絶縁していれ
ば、アルミナなどの粒子を含む熱伝導性エポキシ樹脂や
熱伝導性シリコーン樹脂などを両界面に設け固定する。
また、金属などで出来ている低温部材61や高温部材6
2と配線面40a、40bとを接触させるには、あらか
じめ配線面40a、40bを絶縁性の樹脂で被覆してお
かなければならない。この場合、前述の熱伝導性エポキ
シ樹脂やシリコーン樹脂が絶縁性を有することから絶縁
被膜を兼ねることも可能である。
Although not shown, when the low temperature member 61 and the high temperature member 62 are brought into contact with the wiring surfaces 40a and 40b, if the surfaces of the low temperature member 61 and the high temperature member 62 are electrically insulated, particles of alumina or the like are used. A heat conductive epoxy resin or a heat conductive silicone resin containing is provided on both interfaces and fixed.
Further, the low temperature member 61 and the high temperature member 6 made of metal or the like.
In order to bring the wiring surface 40a and the wiring surface 40b into contact with each other, the wiring surfaces 40a and 40b must be coated with an insulating resin in advance. In this case, since the above-mentioned thermally conductive epoxy resin or silicone resin has an insulating property, it can also serve as an insulating coating.

【0058】露出した配線用導電体20には、図12の
ように銅線などのリード線80が接続され、外部回路と
つながれる。露出した配線用導電体20は金属材料の被
膜であるから、鉛錫合金などのハンダ材70を用いてリ
ード線80を接続する。
A lead wire 80 such as a copper wire is connected to the exposed wiring conductor 20 as shown in FIG. 12, and is connected to an external circuit. Since the exposed wiring conductor 20 is a coating of a metal material, the lead wire 80 is connected using a solder material 70 such as a lead-tin alloy.

【0059】以上のように、本第7例の熱電素子構造で
も外部の熱源や冷却部材と配線面40a、40bとの間
で良好な熱接触をとりつつ、リード線などによる電気的
な接続も行える構成となっている。また、リード線80
による接続箇所に接続用棒状素子が無い構造であること
から、接続用棒状素子を伝わって流れる配線面40a、
40b間での熱のもれが小さくなることから、温度差が
大きくとれ特性的に有利である。
As described above, also in the thermoelectric element structure of the seventh example, good thermal contact is made between the external heat source and the cooling member and the wiring surfaces 40a and 40b, and the electrical connection by the lead wires is also made. It can be done. Also, the lead wire 80
Since there is no connecting rod-shaped element at the connection point by, the wiring surface 40a flowing through the connecting rod-shaped element,
Since the heat leakage between 40b is small, a large temperature difference can be obtained, which is advantageous in characteristics.

【0060】〔構造の第8の例:図13〕図13には異
なる熱電素子の構造を示す。本構造は第5の構造と基本
的には同じ構成であり、熱電素子ブロック10と配線用
導電体20からなる。また、熱電素子ブロック10に含
まれるn型棒状素子11とp型棒状素子12と絶縁層3
0の配列も同じであり、奇数個並んだn型棒状素子11
列とp型棒状素子12列をもちいている。奇数個の配列
は、先の第5例でも述べたように、外部接続用の電極を
対角位置にとり、構成する棒状素子をすべて熱電対とし
て利用して、面積あたりの効率を高めるためである。
[Eighth Example of Structure: FIG. 13] FIG. 13 shows a structure of a different thermoelectric element. This structure has basically the same configuration as the fifth structure, and includes the thermoelectric element block 10 and the wiring conductor 20. Further, the n-type rod-shaped element 11, the p-type rod-shaped element 12, and the insulating layer 3 included in the thermoelectric element block 10 are included.
The arrangement of 0s is also the same, and odd-numbered n-type rod-shaped elements 11 are arranged.
Rows and 12 rows of p-type rod-shaped elements are used. As described in the fifth example, the odd-numbered array is to increase the efficiency per area by setting the electrodes for external connection in diagonal positions and using all the rod-shaped elements that are configured as thermocouples. .

【0061】また本構造においても上記の第7の構造と
同様に、両端部の配線用導電体20は露出して外部接続
用配線用導電体20a、20bを構成している。これも
第5例の構造の接続用棒状素子13をすべて除去するこ
とから成り立っている。
Also in this structure, as in the seventh structure, the wiring conductors 20 at both ends are exposed to form the external connection wiring conductors 20a and 20b. This also consists of removing all the connecting rod-shaped elements 13 of the structure of the fifth example.

【0062】以上のように本第8例の熱電素子構造でも
外部の熱源や冷却部材と配線面40a、40bとの間で
良好な熱接触をとりつつ、リード線などによる電気的な
接続も行える構成となっている。また、リード線等によ
る外部との接続箇所に接続用棒状素子が無い構造である
ことから、接続用棒状素子を伝わって流れる配線面40
a、40b間での熱のもれが小さくなることから、温度
差が大きくとれ特性的に有利である。
As described above, also in the thermoelectric element structure of the eighth example, good thermal contact can be made between the external heat source and the cooling member and the wiring surfaces 40a and 40b, and the electrical connection by the lead wire or the like can be performed. It is composed. In addition, since the connecting rod-shaped element is not provided at the connection point with the outside by the lead wire or the like, the wiring surface 40 flowing through the connecting rod-shaped element flows.
Since the heat leakage between a and 40b is small, a large temperature difference can be obtained, which is advantageous in characteristics.

【0063】上記のように配線用導電体20の棒状素子
と接続した面側が露出して、外部接続用配線用導電体2
0a、20bを構成している構造は、2つの例により示
したが、接続用棒状素子13を除去するという基本的な
考え方を用いれば、第1例、第2例、第3例、第6例の
構造と同じ構成でも適用可能である。
As described above, the surface side of the wiring conductor 20 connected to the rod-shaped element is exposed, and the wiring conductor 2 for external connection is exposed.
The structures forming 0a and 20b are shown by two examples, but if the basic idea of removing the connecting rod element 13 is used, the first example, the second example, the third example, and the sixth example will be described. The same configuration as the example structure is also applicable.

【0064】また、上記第1例から第8例のすべての構
造例において、n型棒状素子11とp型棒状素子12の
配列を便宜上固定した図面に従って説明したが、両者を
入れ替えて構成してもその機能には全く変わりがない。
Further, in all the structural examples of the first to eighth examples, the arrangement of the n-type rod-shaped element 11 and the p-type rod-shaped element 12 has been described with reference to the drawing which is fixed for convenience. However, there is no change in its function.

【0065】〔構造の第9の例:図14〕図14にはさ
らに異なる実施の形態の熱電素子の構造を示す。主に熱
電素子ブロック10と、熱電素子ブロック10の表面に
配した配線用導電体20とから成る。
[Ninth Example of Structure: FIG. 14] FIG. 14 shows a structure of a thermoelectric element of a further different embodiment. The thermoelectric element block 10 is mainly composed of a wiring conductor 20 disposed on the surface of the thermoelectric element block 10.

【0066】熱電素子ブロック10は、n型熱電半導体
を加工して板状にしたn型板状素子110と、p型熱電
半導体を加工して板状にしたp型板状素子120を交互
に直線的に配置して構成する。n型板状素子110とp
型板状素子120との間には両者を絶縁固定するため
に、絶縁性樹脂からなる絶縁層30が介在している。
In the thermoelectric element block 10, an n-type plate-shaped element 110 formed by processing an n-type thermoelectric semiconductor into a plate shape and a p-type plate-shaped element 120 formed by processing a p-type thermoelectric semiconductor into a plate shape are alternately arranged. It is arranged linearly. n-type plate element 110 and p
An insulating layer 30 made of an insulating resin is interposed between the template element 120 and the template element 120 to insulate and fix them.

【0067】図14では一方の端面しか見えていない
が、熱電素子ブロック10には対向した2つの配線面4
0a、40bがあり、配線面40a、40bには配線用
導電体20を配している。配線用導電体20は隣り合っ
たn型板状素子110とp型板状素子120とを端面に
おいて接続しており、2つの配線面40a、40bでは
板一枚ずつずれた配置をとっており、これによって多数
のn型板状素子110とp型板状素子120とが交互に
直列化する構造となっている。
Although only one end face is visible in FIG. 14, two wiring faces 4 facing each other are provided on the thermoelectric element block 10.
0a and 40b, and the wiring conductors 20 are arranged on the wiring surfaces 40a and 40b. The wiring conductor 20 connects the n-type plate-shaped element 110 and the p-type plate-shaped element 120 which are adjacent to each other at the end face, and the two wiring surfaces 40a and 40b are arranged so as to be shifted by one plate. As a result, a large number of n-type plate-shaped elements 110 and p-type plate-shaped elements 120 are alternately arranged in series.

【0068】直列化したn型板状素子110とp型板状
素子120との両端には、接続用板状素子130を設け
る。本構造では接続用板状素子130は直線的に並んだ
n型板状素子110とp型板状素子120の両端に存在
する。接続用板状素子130は直列化された板状素子の
初めと終わりに位置するため、一方の配線面40bでの
み配線用導電体20と接続し、他方の配線面40aでは
接続されていない。そして配線用導電体20が接してい
ない側は配線面40aとのあいだで段差ができるように
n型板状素子110及びp型板状素子120に比べて低
く構成し、接続用板状素子130としている。
Connection plate-shaped elements 130 are provided at both ends of the serially connected n-type plate-shaped element 110 and p-type plate-shaped element 120. In this structure, the connecting plate-like elements 130 are present at both ends of the n-type plate-like element 110 and the p-type plate-like element 120 which are linearly arranged. Since the connecting plate-like elements 130 are located at the beginning and end of the serialized plate-like elements, they are connected to the wiring conductor 20 only on one wiring surface 40b and are not connected on the other wiring surface 40a. The side not contacting the wiring conductor 20 is formed lower than the n-type plate-shaped element 110 and the p-type plate-shaped element 120 so that a step can be formed between the wiring surface 40a and the wiring-shaped surface 40a. I am trying.

【0069】接続用板状素子130は、熱電素子ブロッ
ク10と外部回路との接続をするために用いられる。図
14には示していないが、配線面40aとのあいだで段
差が出来ている側の引出端14に銅線などのリード線
を、ハンダを用いて接合あるいは金線を用いたワイヤー
ボンディングを行う。半田付けやワイヤーボンディング
を確実に行うためには、引出端14には金や銅などの金
属膜を施した方がよい。
The connecting plate element 130 is used to connect the thermoelectric element block 10 to an external circuit. Although not shown in FIG. 14, a lead wire such as a copper wire is bonded to the lead-out end 14 on the side where a step is formed between the wiring surface 40a and the wire end 40a by using solder or wire bonding using a gold wire. . In order to reliably perform soldering or wire bonding, it is preferable to apply a metal film such as gold or copper to the extraction end 14.

【0070】以上から本第9例の熱電素子も前記の熱電
素子と同様に、外部の熱源や冷却部材と配線面40a、
40bとの間で良好な熱接触をとりつつ、リード線など
による電気的な接続も行える構成となっている。また、
広い面積の引出端14を有し、外部への接続が容易にな
る。さらに柱の構成が直線的で単純であり、配線用導電
体20の構成も簡単になることから、後に製造方法で説
明するが、製造面から作りやすい構成になっている。
From the above, the thermoelectric element of the ninth example is similar to the above-mentioned thermoelectric element in that the external heat source, the cooling member and the wiring surface 40a,
The structure is such that good electrical contact can be made with 40b and electrical connection can be made with lead wires or the like. Also,
It has a large area of the lead-out end 14, which facilitates connection to the outside. Further, since the structure of the pillar is linear and simple, and the structure of the wiring conductor 20 is also simple, the structure is easy to manufacture from the manufacturing side, which will be described later in the manufacturing method.

【0071】〔製造方法の第1の例:図15〜図19〕
はじめに、図15に示すように、n型熱電半導体とp型
熱電半導体とに縦溝1を形成し、縦隔壁2を残してn型
櫛歯素子3とp型櫛歯素子4を作製する。このとき、n
型櫛歯素子3とp型櫛歯素子4とで、縦溝1のピッチを
同一にし、かつ一方のブロックの縦溝1幅が他方のブロ
ックの縦隔壁2幅よりも大きくなるようにする。本例で
はn型熱電半導体としてBiSeTe合金の焼結体、p
型熱電半導体としてBiSbTe合金の焼結体を用い
た。
[First Example of Manufacturing Method: FIGS. 15 to 19]
First, as shown in FIG. 15, a vertical groove 1 is formed in an n-type thermoelectric semiconductor and a p-type thermoelectric semiconductor, and an n-type comb tooth element 3 and a p-type comb tooth element 4 are produced while leaving a vertical partition wall 2. At this time, n
The pitches of the vertical grooves 1 of the pattern comb-tooth element 3 and the p-type comb-tooth element 4 are the same, and the width of the vertical groove 1 of one block is larger than the width of the vertical partition wall 2 of the other block. In this example, as an n-type thermoelectric semiconductor, a sintered body of BiSeTe alloy, p
A BiSbTe alloy sintered body was used as the thermoelectric semiconductor.

【0072】この縦溝1の幅寸法への制限は、後述の工
程でn型櫛歯素子3とp型櫛歯素子4を溝同士で嵌め合
わせるために設定してある。この縦溝1幅と縦隔壁2幅
の差が後工程で絶縁樹脂層の幅を決定するため、確実に
絶縁をとることと、嵌め合わせの工程での作業性を考慮
すると、縦溝1幅と縦隔2幅の寸法差は10μm以上あ
ることが好ましい。
The width of the vertical groove 1 is limited so that the n-type comb-tooth element 3 and the p-type comb-tooth element 4 are fitted to each other in the process described later. Since the difference between the width of the vertical groove 1 and the width of the vertical partition wall 2 determines the width of the insulating resin layer in a later step, in consideration of reliable insulation and workability in the fitting step, the width of the vertical groove 1 It is preferable that the dimensional difference between the two mediastinum widths is 10 μm or more.

【0073】なお、縦溝1の加工はワイヤーソーによる
研磨加工あるいはダイシングソーによる研削加工により
行う。
The vertical groove 1 is processed by polishing with a wire saw or grinding with a dicing saw.

【0074】つづいてn型櫛歯素子3とp型櫛歯素子4
を、互いに縦溝1に相手の縦隔壁2を挿入し合って組み
合わせて一体化する。このn型櫛歯素子3とp型櫛歯素
子4を組み合わせた状態を図16に示す。組み合わせた
2つの櫛歯素子3,4は、嵌合部に絶縁層30を設けて
固着することで一体化する。流動性の高い絶縁性接着剤
中に組み合わせた櫛歯素子を部分的に浸漬し、毛管現象
により接着剤を縦溝1と縦隔壁2との隙間に充填すれば
絶縁を保ちつつ絶縁層30で固着が行える。ここで絶縁
層30に用いる接着剤としては低粘度のエポキシ系の接
着剤を用いることとする。
Subsequently, the n-type comb tooth element 3 and the p-type comb tooth element 4
The respective vertical partition walls 2 are inserted into the vertical grooves 1 and are combined and integrated with each other. FIG. 16 shows a state in which the n-type comb tooth element 3 and the p-type comb tooth element 4 are combined. The two comb-tooth elements 3 and 4 that have been combined are integrated by providing an insulating layer 30 at the fitting portion and fixing them. If the comb-tooth element combined in an insulating adhesive having high fluidity is partially dipped and the adhesive is filled in the gap between the vertical groove 1 and the vertical partition 2 by a capillary phenomenon, the insulating layer 30 maintains insulation. Can be fixed. Here, as the adhesive used for the insulating layer 30, a low-viscosity epoxy adhesive is used.

【0075】このように組み合わせた櫛歯素子は、次に
図17に示すように、再度の溝加工を行い、一体化櫛歯
素子5にする。横溝6は、この後組み合わせる必要がな
く、残った横隔壁7を素子として利用することになるた
め、出来るだけ狭い方が望ましい。すなわちワイヤーソ
ーによる研磨加工により横溝6を形成する。なお、本工
程での横溝6は縦溝1に交差した方向に形成するもの
で、一般的には図17に示したとおり縦溝1と直交させ
るのが最適である。
The comb-tooth elements thus combined are then re-grooved to form the integrated comb-tooth element 5, as shown in FIG. Since it is not necessary to combine the lateral grooves 6 after this, and the remaining lateral partition walls 7 are used as elements, it is desirable that the lateral grooves 6 be as narrow as possible. That is, the lateral groove 6 is formed by polishing with a wire saw. The horizontal groove 6 in this step is formed in a direction intersecting with the vertical groove 1, and it is generally optimal to make it orthogonal to the vertical groove 1 as shown in FIG.

【0076】横溝6は図17のようにn型櫛歯素子3の
面から形成しても、これとは逆にp型櫛歯素子4側の面
から形成してもよい。このとき、切り込む側のn型櫛歯
素子3又はp型櫛歯素子4の溝が形成されていない基台
部分は、除去した後に溝加工を行った方が良い。基台部
を除去するのは、初めに加工した縦溝1が観察できるこ
とから、横溝6との直交性がとりやすいためである。ま
た、基台部がない方が、加工深さが小さくなるため深さ
方向での柱曲がりが低減できる効果もある。
The lateral groove 6 may be formed on the surface of the n-type comb-tooth element 3 as shown in FIG. 17, or conversely may be formed on the surface of the p-type comb-tooth element 4 side. At this time, it is preferable that the base portion of the n-type comb-tooth element 3 or the p-type comb-tooth element 4 on the cut side where the groove is not formed is removed and then grooved. The base is removed because the vertical groove 1 machined first can be observed, and therefore the orthogonality with the horizontal groove 6 can be easily obtained. In addition, since there is no base portion, the working depth becomes smaller, so that there is also an effect that column bending in the depth direction can be reduced.

【0077】続いて、横溝6にエポキシ系の絶縁性樹脂
を充填し硬化して絶縁層30を形成する。この時の樹脂
も櫛歯素子を組合せ固着したときと同じものを用いるの
が望ましい。
Subsequently, the lateral groove 6 is filled with an epoxy-based insulating resin and cured to form an insulating layer 30. It is desirable to use the same resin as that used when the comb-tooth elements are combined and fixed.

【0078】絶縁層30で固めた一体化櫛歯素子5はそ
の上面51と下面52を研削で除去し、n型櫛歯素子3
とp型櫛歯素子4の縦溝1と縦隔壁2との嵌合部を残す
ように仕上げ、図18に示す熱電素子ブロック10を形
成する。この状態の熱電素子ブロック10は、n型熱電
半導体とp型熱電半導体が柱状に規則的に並んでおり、
n型熱電半導体のそれぞれの柱がn型棒状素子11であ
り、p型熱電半導体のそれぞれの柱がp型棒状素子12
となっている。
The upper surface 51 and the lower surface 52 of the integrated comb-tooth element 5 solidified with the insulating layer 30 are removed by grinding, and the n-type comb-tooth element 3 is formed.
Then, the thermoelectric element block 10 shown in FIG. 18 is formed by finishing so as to leave the fitting portion between the vertical groove 1 of the p-type comb tooth element 4 and the vertical partition wall 2. In the thermoelectric element block 10 in this state, the n-type thermoelectric semiconductor and the p-type thermoelectric semiconductor are regularly arranged in a columnar shape,
Each pillar of the n-type thermoelectric semiconductor is an n-type rod-shaped element 11, and each pillar of the p-type thermoelectric semiconductor is a p-type rod-shaped element 12.
Has become.

【0079】図18に示す熱電素子ブロック10の上下
2つの配線面40a、40bにおいてn型棒状素子11
とp型棒状素子12との配線を行う。ニッケルからなる
金属板に開口部を設け、開口部と配線面40a、40b
におけるn型棒状素子11とp型棒状素子12とが重な
るように位置合わせを行い、金属板と熱電素子ブロック
10とを密着して固定する。
The n-type rod-shaped element 11 is formed on the upper and lower wiring surfaces 40a and 40b of the thermoelectric element block 10 shown in FIG.
And the p-type rod-shaped element 12 are wired. An opening is provided in the metal plate made of nickel, and the opening and the wiring surfaces 40a and 40b are provided.
The n-type rod-shaped element 11 and the p-type rod-shaped element 12 are aligned so as to overlap each other, and the metal plate and the thermoelectric element block 10 are fixed in close contact with each other.

【0080】金属板を固定した熱電素子ブロック10を
真空蒸着装置内に設置し、ニッケルあるいはパラジウム
を100nmの膜厚で蒸着する。この方法は一般にマス
ク蒸着法と呼ばれるものであり、図1〜図13に示した
配線用導電体20のパターンが形成できる。2面の配線
面40a、40bにこの蒸着は行うが、マスク蒸着法で
形成する配線用導電体20は、2つの配線面40a、4
0bで柱一本ずつずれたパターンになっており、複数の
n型棒状素子11とp型棒状素子12とを電気的に直列
化するように配置する。また2つの面の蒸着工程は1面
ずつ2回に分けて行っても、両面同時に行ってもかまわ
ない。
The thermoelectric element block 10 to which a metal plate is fixed is placed in a vacuum vapor deposition apparatus, and nickel or palladium is vapor deposited to a film thickness of 100 nm. This method is generally called a mask vapor deposition method, and the pattern of the wiring conductor 20 shown in FIGS. 1 to 13 can be formed. Although this vapor deposition is performed on the two wiring surfaces 40a and 40b, the wiring conductor 20 formed by the mask vapor deposition method is used for the two wiring surfaces 40a and 40b.
In the pattern 0b, the columns are shifted one by one, and a plurality of n-type rod-shaped elements 11 and p-type rod-shaped elements 12 are arranged so as to be electrically connected in series. In addition, the vapor deposition process for the two surfaces may be performed twice for each surface or both surfaces may be performed simultaneously.

【0081】蒸着工程につづいて直列化したn型棒状素
子11とp型棒状素子12の始めと終わりにあたる棒状
素子を配線面40aより低くなるよう加工し、接続用棒
状素子13を形成する。たとえば、図1、図6、図8に
示すように、配線用導電体20が接続していない側の配
線面40aと段差を形成するように、側面部のn型棒状
素子11又はp型棒状素子12を所定量削る。この加工
には、エンドミルなどを利用した切削加工が好ましい。
この場合、エンドミルではすべての方向に直角の加工が
出来ないため、たとえば図19に示すように、エンドミ
ルの径によって多少、円弧15を描くように出来上が
る。図19は図1の熱電素子を一つの側面から見た図で
ある。
Following the vapor deposition process, the rod-shaped elements corresponding to the beginning and end of the n-type rod-shaped element 11 and the p-type rod-shaped element 12 which are serialized are processed so as to be lower than the wiring surface 40a to form the connecting rod-shaped element 13. For example, as shown in FIG. 1, FIG. 6, and FIG. 8, the n-type rod-shaped element 11 or the p-type rod-shaped side portion is formed so as to form a step with the wiring surface 40a on the side to which the wiring conductor 20 is not connected. The element 12 is ground by a predetermined amount. Cutting using an end mill or the like is preferable for this processing.
In this case, since the end mill cannot perform machining at right angles in all directions, for example, as shown in FIG. 19, a circular arc 15 can be drawn to some extent depending on the diameter of the end mill. FIG. 19 is a view of the thermoelectric element of FIG. 1 viewed from one side.

【0082】また、別の配線形状をとる場合は、たとえ
ば図3、図5、図9に示すようにn型棒状素子11ある
いはp型棒状素子12の1列すべてを低く加工し、接続
用棒状素子13を形成する。この加工には上記のエンド
ミル加工も利用できるが、ダイシングソーを用いた研削
加工の方が容易である。
When another wiring shape is used, for example, as shown in FIGS. 3, 5, and 9, all one row of the n-type rod-shaped element 11 or the p-type rod-shaped element 12 is processed to be low, and the connecting rod-shaped element is formed. The element 13 is formed. Although the above-mentioned end mill processing can be used for this processing, grinding processing using a dicing saw is easier.

【0083】また、別の加工方法としてエッチングによ
る加工も可能である。接続用棒状素子13となる柱の配
線用導電体20が接続していない端面のみを残して、熱
電素子ブロック10には保護膜を形成する。保護膜には
アセトン等の溶剤で除去できるフォトレジストなどの樹
脂が望ましい。樹脂を接続用棒状素子13領域のみが開
口するようにコーティングした後、熱電素子ブロック1
0を塩酸+硝酸水溶液に浸漬することで、n型棒状素子
11又はp型棒状素子12をエッチングし低く加工し、
接続用棒状素子13を得ることが出来る。
As another processing method, processing by etching is also possible. A protective film is formed on the thermoelectric element block 10, leaving only the end face to which the conductor 20 for wiring of the pillar to be the connecting rod-shaped element 13 is not connected. A resin such as a photoresist that can be removed with a solvent such as acetone is desirable for the protective film. After coating the resin so that only the region of the connecting rod-shaped element 13 is opened, the thermoelectric element block 1
By immersing 0 in a hydrochloric acid + nitric acid aqueous solution, the n-type rod-shaped element 11 or the p-type rod-shaped element 12 is etched and processed to be low,
The connecting rod element 13 can be obtained.

【0084】ただし、図5に示した構造を達成するため
には、ここで述べた接続用棒状素子13の加工工程は、
先に述べた一体化櫛歯素子5の上面51と下面52を研
削で除去し熱電素子ブロック10を形成する工程の次に
行い、蒸着工程は接続用棒状素子13の加工工程に続い
て行なわなければならない。また、その他図1、図3、
図6、図8、図9に示した構成の場合でも同様に順番を
入れ替えてもかまわない。
However, in order to achieve the structure shown in FIG. 5, the processing step of the connecting rod-shaped element 13 described here is performed as follows.
The above-described step of forming the thermoelectric element block 10 by removing the upper surface 51 and the lower surface 52 of the integrated comb tooth element 5 by grinding is performed, and the vapor deposition step must be performed subsequent to the processing step of the connecting rod-shaped element 13. I have to. In addition, FIG. 1, FIG.
Even in the case of the configurations shown in FIGS. 6, 8 and 9, the order may be similarly changed.

【0085】接続用棒状素子13の加工工程につづい
て、熱電素子ブロック10を無電解ニッケルメッキ液に
浸漬し、ニッケルの被膜を形成する。ニッケル被膜は蒸
着によって形成したニッケル膜又はパラジウム膜を反応
の核として成長することから、蒸着膜の上にまず形成さ
れる。また、蒸着膜はn型棒状素子11とp型棒状素子
12にも形成されているため、棒状素子の露出している
端面にもニッケル被膜は形成される。このとき同時に低
く加工された接続用棒状素子13の加工面にもニッケル
被膜は形成され、つまり端部に金属膜が形成されること
になる。ニッケルメッキの厚さは数μm〜数10μmで
ある。
Following the step of processing the connecting rod-shaped element 13, the thermoelectric element block 10 is dipped in an electroless nickel plating solution to form a nickel coating. The nickel coating grows using a nickel film or a palladium film formed by vapor deposition as the nucleus of the reaction, and is therefore first formed on the vapor deposited film. Further, since the vapor deposition film is also formed on the n-type rod-shaped element 11 and the p-type rod-shaped element 12, the nickel coating is also formed on the exposed end surface of the rod-shaped element. At this time, at the same time, the nickel film is also formed on the processed surface of the connecting rod-shaped element 13 which has been processed low, that is, the metal film is formed on the end portion. The nickel plating has a thickness of several μm to several tens of μm.

【0086】さらにニッケルメッキにつづいて、金メッ
キ処理をやはり無電解メッキ処理にて行い、ニッケル被
膜の上に金の被膜をさらに形成する。金メッキは置換メ
ッキのためあまり厚くはつけられないため、せいぜい膜
厚は50nmほどである。
Further, after nickel plating, gold plating is also performed by electroless plating to further form a gold coating on the nickel coating. Since gold plating is displacement plating and cannot be applied very thickly, the film thickness is at most about 50 nm.

【0087】これらメッキ工程を行うのは、蒸着膜の抵
抗を下げると共に、耐酸化性及び耐食性を増すために施
される。同時に、接続用棒状素子13の端面から外部へ
半田付けやワイヤーボンディング接続が出来るように金
属膜を形成するためでもある。
These plating steps are performed in order to reduce the resistance of the deposited film and to increase the oxidation resistance and corrosion resistance. At the same time, this is also for forming a metal film so that soldering or wire bonding connection can be made from the end face of the connecting rod-shaped element 13 to the outside.

【0088】ここで、ニッケルメッキでは比抵抗がやや
大きいため、さらに配線抵抗を下げたい場合は、無電解
ニッケルメッキにつづいて銅メッキを行う。この時ニッ
ケルメッキは数μm程度でそれほど厚く形成する必要は
ない。銅メッキは無電解メッキが難しいことから、電解
メッキを利用する。電解メッキは両端の接続用棒状素子
13に外部電極を接続させて電流を印加して行う。銅メ
ッキも必要に応じて数μmから数10μmの厚さで形成
する。そして銅メッキにつづいて、やはり電解メッキ法
を用いて金を0.1μmほどの厚さで形成し、耐食性等
を確保する。
Since the nickel plating has a slightly large specific resistance, if it is desired to further reduce the wiring resistance, electroless nickel plating is followed by copper plating. At this time, the nickel plating is about several μm and it is not necessary to form it so thick. Electroless plating is used for copper plating because electroless plating is difficult. Electrolytic plating is performed by connecting an external electrode to the connecting rod elements 13 at both ends and applying a current. Copper plating is also formed with a thickness of several μm to several tens of μm as required. Then, following the copper plating, gold is formed to a thickness of about 0.1 μm also by electrolytic plating to ensure corrosion resistance and the like.

【0089】さらに図11、図13に示すように、配線
用導電体20が露出するように接続用棒状素子13のす
べてを加工除去する方法もある。これによって配線用導
電体20の配線面側の一部が露出し、外部接続用配線用
導電体20a、20bとなり、これを外部接続用の電極
として利用することが出来る。この場合、蒸着膜のみで
は薄く加工が難しいため、上記したメッキ工程を蒸着工
程に続いて行い、接続用棒状素子13を加工する前に配
線用導電体20を厚膜化しておくことが好ましい。そし
て、配線用導電体20を露出させるように、接続用棒状
素子13を加工除去するためには、メッキ厚さは少なく
とも20μm以上形成することが望ましい。
Further, as shown in FIGS. 11 and 13, there is also a method of processing and removing all of the connecting rod-shaped elements 13 so that the wiring conductor 20 is exposed. As a result, a part of the wiring conductor 20 on the wiring surface side is exposed and becomes the wiring conductors 20a and 20b for external connection, which can be used as electrodes for external connection. In this case, since it is difficult to work thinly only with the deposited film, it is preferable to perform the above-described plating process after the deposition process to thicken the wiring conductor 20 before processing the connecting rod-shaped element 13. Then, in order to process and remove the connecting rod-shaped element 13 so as to expose the wiring conductor 20, it is desirable that the plating thickness is at least 20 μm or more.

【0090】以上の工程によって本発明の熱電素子は完
成するが、最後のメッキ工程は場合によっては無くても
良い。その場合、先の蒸着工程において十分抵抗を下げ
られるよう、ニッケル蒸着につづいて銅を蒸着してお
く。また、メッキ膜が無い場合は、接続用棒状素子13
の端面処理が行われないため、外部接続には低融点ハン
ダをもちいたり、金板やニッケル板を接続用棒状素子の
引出端14に局所的に加熱しながら圧力をかけて拡散接
合する圧着法を用いたりした方がよい。
Although the thermoelectric element of the present invention is completed by the above steps, the final plating step may be omitted in some cases. In that case, copper is vapor-deposited after the nickel vapor deposition so that the resistance can be sufficiently lowered in the previous vapor deposition step. If there is no plating film, the connecting rod-shaped element 13
Since the end surface treatment is not performed, a low melting point solder is used for external connection, or a gold plate or a nickel plate is locally bonded to the lead-out end 14 of the connecting rod-like element while applying pressure to perform diffusion bonding. It is better to use.

【0091】〔製造方法の第2の例:図15、図16お
よび図20〕基本的には第1例の製造方法と同じであ
り、まずは図15に示す様にn型櫛歯素子3とp型櫛歯
素子4を用意し、図16に示す様に両者を組合せ、エポ
キシ樹脂を用いて固着する。第1例の製造方法ではこの
後さらに溝加工を行ったが、本第2例の方法では溝加工
はせずに上下面の縦溝1が形成されていない基台部の研
削除去を行い、熱電素子ブロック10を形成する。その
構造を図20に示す。
[Second Example of Manufacturing Method: FIGS. 15, 16 and 20] Basically the same as the manufacturing method of the first example. First, as shown in FIG. A p-type comb tooth element 4 is prepared, both are combined as shown in FIG. 16, and they are fixed by using an epoxy resin. In the manufacturing method of the first example, after that, further groove processing was performed, but in the method of the second example, the base portion where the vertical grooves 1 on the upper and lower surfaces were not formed was removed without grinding. The thermoelectric element block 10 is formed. The structure is shown in FIG.

【0092】図20のように熱電素子ブロック10はn
型熱電半導体からなるn型板状素子110とp型熱電半
導体からなるp型板状素子120が絶縁層30を介して
直線的に交互に並んだ非常に簡単な構造を有する。
As shown in FIG. 20, the thermoelectric element block 10 has n
It has a very simple structure in which n-type plate-like elements 110 made of p-type thermoelectric semiconductors and p-type plate-like elements 120 made of p-type thermoelectric semiconductors are arranged linearly and alternately with insulating layers 30 interposed therebetween.

【0093】この後の工程も第1例の製造方法と同じで
あり、熱電素子ブロック10の配線面40にマスク蒸着
法を用いてニッケルあるいはパラジウム膜をパターン状
に蒸着し、図14のような配線用導電体20を形成す
る。そののち、直列化したn型板状素子110とp型板
状素子120の側面にある板状素子を、ダイシングソー
を用いて切削加工し、配線面40aとの間で段差を形成
して接続用板状素子130とする。この製造方法にても
加工は、ダイシングソー以外にエンドミルをもちいた
り、エッチングを用いたりすることも可能である。
The subsequent steps are also the same as in the manufacturing method of the first example, and a nickel or palladium film is pattern-deposited on the wiring surface 40 of the thermoelectric element block 10 using a mask vapor deposition method, as shown in FIG. The wiring conductor 20 is formed. After that, the plate-shaped elements on the side surfaces of the serialized n-type plate-shaped element 110 and p-type plate-shaped element 120 are cut with a dicing saw to form a step between the wiring surface 40a and the connection. The plate-shaped element 130 is used. Also in this manufacturing method, it is possible to use an end mill in addition to the dicing saw, or use etching for processing.

【0094】そして、熱電素子ブロック10に、無電解
メッキ液中にてニッケルメッキと金メッキを施し、配線
用導電体20を厚膜化するとともに、接続用板状素子1
30の加工面を金属処理をする。またメッキには電解メ
ッキ法を用いても良い。
Then, the thermoelectric element block 10 is subjected to nickel plating and gold plating in an electroless plating solution to thicken the wiring conductor 20 and to form the connecting plate-like element 1
The processed surface of 30 is metallized. Electroplating may be used for plating.

【0095】以上2つの製造方法を説明したが、どちら
の方法においても1個の素子を作るように図に示した。
しかしながら本製造方法では、大きな櫛歯状素子を用い
ることで、一度に多数の熱電素子ブロックを一括して製
造することも可能である。
Although two manufacturing methods have been described above, it is shown in the figure that one element is manufactured by either method.
However, in this manufacturing method, it is also possible to manufacture a large number of thermoelectric element blocks at once by using a large comb-shaped element.

【0096】つまり、目的とする熱電素子の数倍の大き
さのn型櫛歯状素子3とp型櫛歯状素子4を組合せて作
ることにより、熱電素子の数倍大きい熱電素子ブロック
10を形成できる。配線工程を通した後、熱電素子ブロ
ック10を分割することで、同時に多数個の熱電素子ブ
ロックの製造が可能である。この場合、接続用棒状素子
13あるいは接続用板状素子130を形成する段差加工
も、分割前に施した方が一括して段差加工が出来るた
め、素子一つずつに対する位置あわせなどが必要なくな
り効果的である。
That is, by combining the n-type comb-tooth-shaped element 3 and the p-type comb-tooth-shaped element 4 which are several times larger than the target thermoelectric element, the thermoelectric element block 10 which is several times larger than the thermoelectric element is produced. Can be formed. By dividing the thermoelectric element block 10 after passing through the wiring process, it is possible to manufacture a large number of thermoelectric element blocks at the same time. In this case, the step processing for forming the connecting rod-shaped element 13 or the connecting plate-shaped element 130 can be carried out collectively before the division, so that it is not necessary to align each element one by one. Target.

【0097】以上の様な方法を用いることで、熱電半導
体と絶縁層を有する熱電素子に配線面より低い位置に外
部回路への引出端14を製造することが出来る。これに
より外部の熱源や冷却部材と配線面40a、40bとの
間で良好な熱接触をとりつつ、リード線などによる電気
的な接続も行える熱電素子を製造することが可能であ
る。また、メッキ工程を利用することで、加工した引出
端14にも金属材料の被覆処理が行え、外部配線の信頼
性を高めることが出来る。
By using the method as described above, the lead-out end 14 to the external circuit can be manufactured at a position lower than the wiring surface in the thermoelectric element having the thermoelectric semiconductor and the insulating layer. As a result, it is possible to manufacture a thermoelectric element that can make an electrical connection by a lead wire or the like while making good thermal contact between the external heat source or the cooling member and the wiring surfaces 40a and 40b. Further, by using the plating process, the processed lead-out end 14 can be coated with a metal material, and the reliability of the external wiring can be improved.

【0098】[0098]

【発明の効果】以上の説明で明らかなように、本発明の
熱電素子は配線用導電体パターンの形成される配線面よ
り低い接続用棒状素子を形成し、配線面と段差を形成し
た端面に引出端を有している。これにより熱電素子を発
電で使うとき低温部材や高温部材に接触させる場合、あ
るいは冷却素子として使うとき冷却対象部材に接触させ
る場合、熱電対の端部である配線面を対象部材に密着さ
せつつ、密着を妨げずに引出端から外部回路へ接続する
ことが出来る。この時引き出しにはリード線を半田付
け、あるいはワイヤーボンディングなどにより行うこと
が出来る。
As is clear from the above description, the thermoelectric element of the present invention has a connecting rod-shaped element that is lower than the wiring surface on which the wiring conductor pattern is formed, and is formed on the end surface where a step is formed with the wiring surface. It has a drawer end. As a result, when the thermoelectric element is brought into contact with a low-temperature member or a high-temperature member when it is used for power generation, or when it is brought into contact with a member to be cooled when it is used as a cooling element, while the wiring surface, which is the end of the thermocouple, is closely attached to the object member It is possible to connect to the external circuit from the pull-out end without disturbing the close contact. At this time, the lead wire can be drawn out by soldering or wire bonding.

【0099】また、接続用棒状素子を複数の柱で構成す
ることにより、引出端の面積を増大させ、さらに外部接
続を容易にすることが出来る。これは、小型の素子では
非常に有利である。
Further, by constructing the connecting rod-shaped element with a plurality of pillars, the area of the lead-out end can be increased and the external connection can be facilitated. This is a great advantage for small devices.

【0100】以上のように本発明では、熱電材料を絶縁
物で固着し直接配線膜を施した小型の熱電素子で、従来
では両立の難しかった外部回路への引き出しという電気
的接続と熱源や冷却部材への良好な熱的接触を同時に可
能にするものである。本発明で得られる小型の熱電素子
は携帯用電子機器内部での温度差発電又は半導体素子の
局所冷却などへ利用できる。
As described above, according to the present invention, a small thermoelectric element in which a thermoelectric material is fixed by an insulating material and directly provided with a wiring film is used. It also allows good thermal contact to the component at the same time. The small thermoelectric element obtained by the present invention can be used for temperature difference power generation inside a portable electronic device or local cooling of a semiconductor element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態における熱電素子の構造を
示す斜視図である。
FIG. 1 is a perspective view showing a structure of a thermoelectric element according to an embodiment of the present invention.

【図2】本発明の実施の形態における熱電素子の構造を
示す側面図である。
FIG. 2 is a side view showing the structure of the thermoelectric element according to the embodiment of the present invention.

【図3】本発明の実施の形態における熱電素子の構造を
示す斜視図である。
FIG. 3 is a perspective view showing a structure of a thermoelectric element in the embodiment of the present invention.

【図4】本発明の実施の形態における熱電素子の構造を
示す斜視図である。
FIG. 4 is a perspective view showing the structure of the thermoelectric element according to the embodiment of the present invention.

【図5】本発明の実施の形態における熱電素子の構造を
示す斜視図である
FIG. 5 is a perspective view showing a structure of a thermoelectric element according to an embodiment of the present invention.

【図6】本発明の実施の形態における熱電素子の構造を
示す斜視図である
FIG. 6 is a perspective view showing a structure of a thermoelectric element according to an embodiment of the present invention.

【図7】本発明の実施の形態における熱電素子の構造を
示す斜視図である
FIG. 7 is a perspective view showing a structure of a thermoelectric element according to an embodiment of the present invention.

【図8】本発明の実施の形態における熱電素子の構造を
示す斜視図である
FIG. 8 is a perspective view showing a structure of a thermoelectric element according to an embodiment of the present invention.

【図9】本発明の実施の形態における熱電素子の構造を
示す斜視図である
FIG. 9 is a perspective view showing a structure of a thermoelectric element according to an embodiment of the present invention.

【図10】本発明の実施の形態における熱電素子の構造
を示す斜視図である
FIG. 10 is a perspective view showing a structure of a thermoelectric element according to an embodiment of the present invention.

【図11】本発明の実施の形態における熱電素子の構造
を示す斜視図である
FIG. 11 is a perspective view showing a structure of a thermoelectric element according to an embodiment of the present invention.

【図12】本発明の実施の形態における熱電素子の構造
を示す側面図である。
FIG. 12 is a side view showing the structure of the thermoelectric element according to the embodiment of the present invention.

【図13】本発明の実施の形態における熱電素子の構造
を示す斜視図である
FIG. 13 is a perspective view showing a structure of a thermoelectric element according to an embodiment of the present invention.

【図14】本発明の実施の形態における熱電素子の構造
を示す斜視図である
FIG. 14 is a perspective view showing a structure of a thermoelectric element according to an embodiment of the present invention.

【図15】本発明の実施の形態における熱電素子の製造
方法を示す斜視図である。
FIG. 15 is a perspective view showing a method for manufacturing a thermoelectric element according to the embodiment of the present invention.

【図16】本発明の実施の形態における熱電素子の製造
方法を示す斜視図である。
FIG. 16 is a perspective view showing a method for manufacturing a thermoelectric element according to the embodiment of the present invention.

【図17】本発明の実施の形態における熱電素子の製造
方法を示す斜視図である。
FIG. 17 is a perspective view showing a method for manufacturing a thermoelectric element according to the embodiment of the present invention.

【図18】本発明の実施の形態における熱電素子の製造
方法を示す斜視図である。
FIG. 18 is a perspective view showing a method for manufacturing a thermoelectric element according to an embodiment of the present invention.

【図19】本発明の実施の形態における熱電素子の製造
方法を示す側面図である。
FIG. 19 is a side view showing the method of manufacturing the thermoelectric element according to the embodiment of the present invention.

【図20】本発明の実施の形態における熱電素子の製造
方法を示す斜視図である。
FIG. 20 is a perspective view showing a method for manufacturing a thermoelectric element according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:縦溝 2:縦隔壁 3:n型
櫛歯素子 4:p型櫛歯素子 5:一体化櫛歯素子
6:横溝 7:横隔壁 10:熱電素子ブロック 11:n型棒状素子 12:p型棒状素子 13:接続用棒状素子 14:引出端 20:配線用導電体 30:絶縁層 40a:配線面 40b:配線面
50a:側面 50b:側面 51:上面 5
2:下面 61:低温部材(冷却対象物) 62:高温
部材(放熱部材) 70:ハンダ材 80:リード線
110:n型板状素子 120:p型板状素子 130:接続用板状
素子
1: Vertical groove 2: Vertical partition wall 3: N-type comb-tooth element 4: P-type comb-tooth element 5: Integrated comb-tooth element
6: Horizontal groove 7: Horizontal partition wall 10: Thermoelectric element block 11: n-type rod-shaped element 12: p-type rod-shaped element 13: connection rod-shaped element 14: extraction end 20: wiring conductor 30: insulating layer 40a: wiring surface 40b: Wiring surface
50a: side surface 50b: side surface 51: upper surface 5
2: Lower surface 61: Low temperature member (object to be cooled) 62: High temperature member (heat dissipation member) 70: Solder material 80: Lead wire
110: n-type plate-shaped element 120: p-type plate-shaped element 130: connection plate-shaped element

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 n型熱電半導体からなる複数のn型棒状
素子とp型熱電半導体からなる複数のp型棒状素子とを
絶縁層を介して配置して固定し、前記各n型棒状素子と
前記各p型棒状素子の両端面をそれぞれ露出させた配線
面を有する熱電素子ブロックと、前記熱電素子ブロック
の前記配線面に設けられ、前記n型棒状素子とp型棒状
素子を接続する配線用導電体とを有する熱電素子であっ
て、 前記熱電素子ブロックの外周部の前記n型棒状素子又は
前記p型棒状素子の少なくとも一部を他のn型棒状素子
又はp型棒状素子より短い接続用棒状素子としたことを
特徴とする熱電素子。
1. A plurality of n-type rod-shaped elements made of an n-type thermoelectric semiconductor and a plurality of p-type rod-shaped elements made of a p-type thermoelectric semiconductor are arranged and fixed via an insulating layer, and are fixed to each of the n-type rod-shaped elements. A thermoelectric element block having a wiring surface exposing both end surfaces of each p-type rod-shaped element, and wiring for connecting the n-type rod-shaped element and the p-type rod-shaped element provided on the wiring surface of the thermoelectric element block A thermoelectric element having a conductor, wherein at least a part of the n-type rod-shaped element or the p-type rod-shaped element on the outer peripheral portion of the thermoelectric element block is for connection shorter than other n-type rod-shaped elements or p-type rod-shaped elements. A thermoelectric element characterized by being a rod-shaped element.
【請求項2】 前記接続用棒状素子は、 一方の端面が配線用導電体に接続され、 他方の端面が金属膜で被覆されて外部接続を行う引出端
となることを特徴とする請求項1に記載の熱電素子。
2. The connecting rod-shaped element has one end face connected to a wiring conductor and the other end face covered with a metal film to form a lead-out end for external connection. The thermoelectric element according to.
【請求項3】 前記接続用棒状素子は、 前記熱電素子ブロックの一つの側面のみに位置すること
を特徴とする請求項1、又は2に記載の熱電素子。
3. The thermoelectric element according to claim 1, wherein the connecting rod-shaped element is located only on one side surface of the thermoelectric element block.
【請求項4】 前記接続用棒状素子は、 前記熱電素子ブロックの二つの側面に位置することを特
徴とする請求項1、又は2に記載の熱電素子。
4. The thermoelectric element according to claim 1, wherein the connecting rod-shaped element is located on two side surfaces of the thermoelectric element block.
【請求項5】 前記接続用棒状素子は、 複数の棒状素子が並列してなることを特徴とする請求項
1〜4のいずれか1項に記載の熱電素子。
5. The thermoelectric element according to claim 1, wherein the connecting rod-shaped element comprises a plurality of rod-shaped elements arranged in parallel.
【請求項6】 前記複数のn型棒状素子が、一方の側面
から他方の側面に連続する板状のn型板状素子であり、 前記複数のp型棒状素子が、一方の側面から他方の側面
に連続する板状のp型板状素子であることを特徴とす
る、請求項1、2、又は4に記載の熱電素子。
6. The plurality of n-type rod-shaped elements are plate-shaped n-type plate-shaped elements continuous from one side surface to the other side surface, and the plurality of p-type rod-shaped elements are connected from one side surface to the other side surface. The thermoelectric element according to claim 1, wherein the thermoelectric element is a p-type plate-shaped element having a plate shape continuous to the side surface.
【請求項7】 n型熱電半導体からなる複数のn型棒状
素子とp型熱電半導体からなる複数のp型棒状素子とを
絶縁層を介して配置して固定し、前記各n型棒状素子と
前記各p型棒状素子の両端面をそれぞれ露出させた配線
面を有する熱電素子ブロックと、前記熱電素子ブロック
の前記配線面に設け、前記n型棒状素子とp型棒状素子
を接続する配線用導電体とを有する熱電素子であって、 前記熱電素子ブロックの外周部の前記n型棒状素子又は
前記p型棒状素子の少なくとも一部を除去して前記配線
用導電体を露出させ、外部接続用配線用導電体としたこ
とを特徴とする熱電素子。
7. A plurality of n-type rod-shaped elements made of an n-type thermoelectric semiconductor and a plurality of p-type rod-shaped elements made of a p-type thermoelectric semiconductor are arranged and fixed via an insulating layer to fix each of the n-type rod-shaped elements. A thermoelectric element block having wiring surfaces in which both end surfaces of each p-type rod-shaped element are exposed, and a wiring conductor provided on the wiring surface of the thermoelectric element block to connect the n-type rod-shaped element and the p-type rod-shaped element A thermoelectric element having a body, wherein at least a part of the n-type rod-shaped element or the p-type rod-shaped element on the outer peripheral portion of the thermoelectric element block is removed to expose the wiring conductor, and an external connection wiring A thermoelectric element characterized by being used as a conductor.
【請求項8】 n型熱電半導体からなる複数のn型棒状
素子とp型熱電半導体からなる複数のp型棒状素子とを
絶縁層を介して固定して熱電素子ブロックを形成する工
程と、 前記熱電素子ブロックの上下面を除去して配線面を形成
する工程と、 前記配線面に配線用導電体を形成して前記n型棒状素子
と前記p型棒状素子を接続する工程と、 前記熱電素子ブロックの外周の前記n型棒状素子又は前
記p型棒状素子の少なくとも一部を前記配線面より低く
加工して接続用棒状素子を形成する工程とを有すること
を特徴とする熱電素子の製造方法。
8. A step of fixing a plurality of n-type rod-shaped elements made of an n-type thermoelectric semiconductor and a plurality of p-type rod-shaped elements made of a p-type thermoelectric semiconductor via an insulating layer to form a thermoelectric element block, Removing the upper and lower surfaces of the thermoelectric element block to form a wiring surface; forming a wiring conductor on the wiring surface to connect the n-type rod-shaped element and the p-type rod-shaped element; And a step of forming at least a part of the n-type rod-shaped element or the p-type rod-shaped element on the outer periphery of the block to be lower than the wiring surface to form a connecting rod-shaped element.
【請求項9】 前記配線面に配線用導電体を形成する工
程と、前記接続用棒状素子を形成する工程との順番を逆
にして、前記接続用棒状素子を形成した工程後に、前記
配線面に配線用導電体を形成する工程を行うことを特徴
とする請求項8に記載の熱電素子の製造方法。
9. The wiring surface after the step of forming the connecting rod-shaped element by reversing the order of the step of forming the wiring conductor on the wiring surface and the step of forming the connecting rod-shaped element. The method for manufacturing a thermoelectric element according to claim 8, wherein the step of forming a conductor for wiring is performed.
【請求項10】 前記接続用棒状素子を形成した工程後
に、前記接続用棒状素子の前記配線用導電体が接続して
いない端面に金属膜を被覆する工程を行うことを特徴と
する請求項8に記載の熱電素子の製造方法。
10. The step of forming a metal film on the end surface of the connecting rod-shaped element, which is not connected to the wiring conductor, after the step of forming the connecting rod-shaped element. The method for manufacturing a thermoelectric element according to 1.
【請求項11】 前記配線面に前記配線用導電体を形成
した工程後に、前記接続用棒状素子の前記配線用導電体
が接続していない端面に金属膜を被覆する工程を行うこ
とを特徴とする請求項9に記載の熱電素子の製造方法。
11. A step of coating a metal film on an end surface of the connecting rod-shaped element which is not connected to the wiring conductor is performed after the step of forming the wiring conductor on the wiring surface. The method for manufacturing a thermoelectric element according to claim 9.
【請求項12】 前記複数のn型棒状素子が、一方の側
面から他方の側面に連続する板状のn型板状素子であ
り、 前記複数のp型棒状素子が、一方の側面から他方の側面
に連続する板状のp型板状素子であることを特徴とする
請求項8、9、10、又は11に記載の熱電素子の製造
方法。
12. The plurality of n-type rod-shaped elements are plate-shaped n-type plate-shaped elements continuous from one side surface to the other side surface, and the plurality of p-type rod-shaped elements are connected from one side surface to the other side surface. The method for manufacturing a thermoelectric element according to claim 8, 9, 10 or 11, wherein the thermoelectric element is a p-type plate element having a plate shape continuous to the side surface.
【請求項13】 n型熱電半導体からなる複数のn型棒
状素子とp型熱電半導体からなる複数のp型棒状素子と
を絶縁層を介して固定して熱電素子ブロックを形成する
工程と、 前記熱電素子ブロックの上面と下面を除去して配線面を
形成する工程と、 前記配線面に配線用導電体を形成して前記n型棒状素子
と前記p型棒状素子を接続する工程と、 前記熱電素子ブロックの外周部の前記n型棒状素子又は
前記p型棒状素子の少なくとも一部を除去し、前記配線
用導電体を露出させる工程とを有することを特徴とする
熱電素子の製造方法。
13. A step of forming a thermoelectric element block by fixing a plurality of n-type rod-shaped elements made of an n-type thermoelectric semiconductor and a plurality of p-type rod-shaped elements made of a p-type thermoelectric semiconductor via an insulating layer, Removing an upper surface and a lower surface of the thermoelectric element block to form a wiring surface; forming a wiring conductor on the wiring surface to connect the n-type rod-shaped element and the p-type rod-shaped element; A step of removing at least a part of the n-type rod-shaped element or the p-type rod-shaped element on the outer peripheral portion of the element block to expose the wiring conductor.
JP2001292962A 2001-09-26 2001-09-26 Thermoelectric element and manufacturing method thereof Expired - Fee Related JP4824229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001292962A JP4824229B2 (en) 2001-09-26 2001-09-26 Thermoelectric element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001292962A JP4824229B2 (en) 2001-09-26 2001-09-26 Thermoelectric element and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2003101086A true JP2003101086A (en) 2003-04-04
JP2003101086A5 JP2003101086A5 (en) 2008-07-10
JP4824229B2 JP4824229B2 (en) 2011-11-30

Family

ID=19114835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001292962A Expired - Fee Related JP4824229B2 (en) 2001-09-26 2001-09-26 Thermoelectric element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4824229B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079839A (en) * 2013-10-16 2015-04-23 ヤマハ株式会社 Thermoelectric module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999007024A1 (en) * 1997-08-01 1999-02-11 Citizen Watch Co., Ltd. Thermoelectric element and method for manufacturing the same
JP2001119076A (en) * 1999-08-10 2001-04-27 Matsushita Electric Works Ltd Thermoelectric conversion module and manufacturing method therefor
JP2001196650A (en) * 2000-01-13 2001-07-19 Komatsu Ltd Thermoelectric converting module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999007024A1 (en) * 1997-08-01 1999-02-11 Citizen Watch Co., Ltd. Thermoelectric element and method for manufacturing the same
JP2001119076A (en) * 1999-08-10 2001-04-27 Matsushita Electric Works Ltd Thermoelectric conversion module and manufacturing method therefor
JP2001196650A (en) * 2000-01-13 2001-07-19 Komatsu Ltd Thermoelectric converting module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079839A (en) * 2013-10-16 2015-04-23 ヤマハ株式会社 Thermoelectric module

Also Published As

Publication number Publication date
JP4824229B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
KR100300919B1 (en) Manufacturing method of thermoelectric element
US6310383B1 (en) Thermoelectric element and method for manufacturing the same
JP3294859B2 (en) Electronic component having a resilient contact element in a region remote from the corresponding terminal
JPS58182853A (en) Method of sealing capsule of semiconductor element and element obtained by same method
US9257627B2 (en) Method and structure for thermoelectric unicouple assembly
US20050211288A1 (en) Thermoelectric device
JPH10270762A (en) Thermoelectric conversion element
RU2606250C2 (en) Thermoelectric element
JPH0818109A (en) Thermoionic element and manufacture thereof
JP2000022224A (en) Manufacture of thermoelectric element and manufacture thereof
JP4824229B2 (en) Thermoelectric element and manufacturing method thereof
JP2003273410A (en) Thermoelement and method of manufacturing the same
CN1167141C (en) Micro temperature difference battery made of one-dimensional nanometer linear array structure thermo-electric material
JP4362303B2 (en) Thermoelectric element and manufacturing method thereof
JPH0496258A (en) Manufacture of semiconductor device insulating substrate and metal pattern plate therefor
JPH0897472A (en) Thermoelectric transducer and its manufacture
JP4136453B2 (en) Thermoelectric element and manufacturing method thereof
JP4011692B2 (en) Thermoelectric element
JP4276047B2 (en) Thermoelectric element
JP4005937B2 (en) Thermoelectric module package
JPH11298051A (en) Manufacture of thermoelectric element
JP2001358373A (en) Thermoelectric generation device and its manufacturing method
JP4177790B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP2001185770A (en) Thermoelectric power generating element and its manufacturing method
JPH118416A (en) Manufacture of thermoelectric generation element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080521

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110908

R150 Certificate of patent or registration of utility model

Ref document number: 4824229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees