JP2003100714A - Substrate mounting stage incorporating a part of ultrasonic probe and device for sealing through-hole for ultrasonic probe - Google Patents

Substrate mounting stage incorporating a part of ultrasonic probe and device for sealing through-hole for ultrasonic probe

Info

Publication number
JP2003100714A
JP2003100714A JP2001285985A JP2001285985A JP2003100714A JP 2003100714 A JP2003100714 A JP 2003100714A JP 2001285985 A JP2001285985 A JP 2001285985A JP 2001285985 A JP2001285985 A JP 2001285985A JP 2003100714 A JP2003100714 A JP 2003100714A
Authority
JP
Japan
Prior art keywords
ultrasonic
mounting table
ultrasonic probe
substrate mounting
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001285985A
Other languages
Japanese (ja)
Other versions
JP3541359B2 (en
Inventor
Mitsuo Yasaka
三夫 八坂
Masayoshi Takeshita
正吉 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Tokyo Cathode Laboratory Co Ltd
Original Assignee
Tokyo Cathode Laboratory Co Ltd
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Cathode Laboratory Co Ltd, Japan Science and Technology Corp filed Critical Tokyo Cathode Laboratory Co Ltd
Priority to JP2001285985A priority Critical patent/JP3541359B2/en
Publication of JP2003100714A publication Critical patent/JP2003100714A/en
Application granted granted Critical
Publication of JP3541359B2 publication Critical patent/JP3541359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To identify a position where an abnormal discharge is generated by efficiently conducting an ultrasonic sound to ultrasonic detectors when the abnormal discharge is generated on a wafer, and to seal in vacuum a through-hole for propagating ultrasonic sound in the wall of a processing chamber for an ultrasonic probe so that the through-hole is isolated in sound propagation. SOLUTION: Three or more ultrasonic probes made of an insulator such as quartz or the like having close acoustic impedance to structures arranged in the periphery of a wafer, e.g. a focus ring or a susceptor, are acoustically connected to the structures in the outer periphery of the substrate mounting part. An ultrasonic sound generated on the wafer surface by an abnormal discharge is conducted to exterior ultrasonic sound detectors, and by seeking a difference between the arrival time of the ultrasonic sound detected by each ultrasonic sound detector, the position of the abnormal discharge generated on the wafer surface can be identified. Each ultrasonic probe is interconnected to an ultrasonic sound detector arranged outside the process chamber, and the through-hole in which each ultrasonic probe penetrates in the process chamber is sealed in vacuum by pressurizing a sealing member for acoustic isolation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】プラズマ処理装置において発
生する異常放電を検出する装置、特に異常放電発生時に
伴って発生する超音波を検出して、半導体ウェハー上の
異常放電を超音波プローブにより検出する装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention An apparatus for detecting abnormal discharge generated in a plasma processing apparatus, particularly an apparatus for detecting an ultrasonic wave generated when an abnormal discharge occurs and detecting an abnormal discharge on a semiconductor wafer by an ultrasonic probe. Regarding

【0002】[0002]

【従来の技術】直流電源、高周波電源等の高圧電源によ
り電極間にプラズマを発生させるブラズマ処理装置で、
プラズマにより成膜、侵食等の処理がなされる工程で、
プラズマの異常放電が発生することにより、デバイス不
良、装置の損傷等を引き起こしている。本発明者らは、
異常放電発生時に発生する超音波を検出して、異常放電
発生を感知するプラズマ異常放電監視装置では、異常放
電の発生位置を評定するための超音波検出部をプロセス
チェンバーの外壁面や上、下面部の適当な数箇所に取り
付け、異常放電エネルギー及び発生位置を特定する装置
及び方法を発明した(特願2000−89840号)し
ている。
2. Description of the Related Art A plasma processing apparatus for generating plasma between electrodes by a high voltage power source such as a DC power source or a high frequency power source,
In the process of processing such as film formation and erosion by plasma,
The abnormal plasma discharge causes device failure, damage to the apparatus, and the like. We have
In a plasma abnormal discharge monitoring device that detects the occurrence of abnormal discharge by detecting the ultrasonic waves generated when the abnormal discharge occurs, the ultrasonic detection unit for evaluating the position of the abnormal discharge is equipped with an ultrasonic detection unit on the outer wall surface, upper surface, or lower surface of the process chamber. A device and a method have been invented (Japanese Patent Application No. 2000-89840), which are attached to an appropriate number of parts of a part and specify an abnormal discharge energy and a generation position.

【0003】図8は、異常放電監視装置の異常放電検出
センサーを複数個付設したプラズマ処理装置を断面で概
略図示している。異常放電時に発生する超音波波形を検
出する異常放電検出センサーの出力波形は、図示されて
いないコンピュータに出力される。コンピュータは計測
出力波形を処理して、異常放電の大きさ及び異常放電源
位置を特定する。
FIG. 8 is a schematic cross-sectional view of a plasma processing apparatus provided with a plurality of abnormal discharge detection sensors of an abnormal discharge monitor. The output waveform of the abnormal discharge detection sensor that detects the ultrasonic waveform generated during abnormal discharge is output to a computer (not shown). The computer processes the measured output waveform to identify the magnitude of the abnormal discharge and the abnormal discharge source position.

【0004】図中、1はウェハー(半導体基板)、2は
静電チャック、3は誘電体膜、4は静電チャック2の電
極、5は基板載置台で、6はサセプタ、7はサセプタ支
持台を、14は超音波検出部、30は処理室、31は処
理室壁、32は上部電極、33は直流電圧阻止用コンデ
ンサ、34は高周波電圧源、35は上部電極32を接地
する接地配線、36は静電チャックの電極4に直流電圧
を供給する可変直流電圧源、37はプラズマ処理ガスを
供給するガス導入管、38は処理室内ガスを排出するガ
ス排出管を表す。静電チャック2、基板載置台5はそれ
ぞれ、円板状又は方形状形状である。
In the figure, 1 is a wafer (semiconductor substrate), 2 is an electrostatic chuck, 3 is a dielectric film, 4 is an electrode of the electrostatic chuck 2, 5 is a substrate mounting table, 6 is a susceptor, and 7 is a susceptor support. A base, 14 is an ultrasonic detection unit, 30 is a processing chamber, 31 is a processing chamber wall, 32 is an upper electrode, 33 is a DC voltage blocking capacitor, 34 is a high-frequency voltage source, and 35 is ground wiring for grounding the upper electrode 32. , 36 is a variable DC voltage source for supplying a DC voltage to the electrode 4 of the electrostatic chuck, 37 is a gas introduction tube for supplying a plasma processing gas, and 38 is a gas exhaust tube for exhausting gas in the processing chamber. The electrostatic chuck 2 and the substrate mounting table 5 each have a disk shape or a rectangular shape.

【0005】サセプタ6は高周波電圧源29が接続さ
れ、下部電極としても作用する。静電チャック2には、
誘電体膜内に銅箔などの電極4が配置され、この電極は
リード線により可変直流電圧源36に接続される。した
がって、この電極4に直流電圧を印加することによっ
て、上記静電チャック2の上に載置したウェハー1をク
ーロン力により保持する。図8の例では、ウェハーを載
置する基板載置台5はプロセスチェンバー下部の中央一
個所のみで処理室壁に連結支持されている。
A high frequency voltage source 29 is connected to the susceptor 6 and also acts as a lower electrode. In the electrostatic chuck 2,
An electrode 4 such as a copper foil is arranged in the dielectric film, and this electrode is connected to a variable DC voltage source 36 by a lead wire. Therefore, by applying a DC voltage to the electrode 4, the wafer 1 placed on the electrostatic chuck 2 is held by the Coulomb force. In the example of FIG. 8, the substrate mounting table 5 on which the wafer is mounted is connected and supported to the processing chamber wall only at one central portion under the process chamber.

【0006】プラズマ処理装置内部品の表層破壊の際
に、その衝撃により超音波は発生すると考えられる。つ
まり、プラズマの異常放電発生時には、その位置におい
てAE(Acoustic Emission,超音波発生)事象が発生
していることになる。従って、AE事象のエネルギーμ
が、異常放電発生部位の表面破壊具合を表すことにな
り、エネルギーμを求めることが重要となる。その時超
音波検出部により検出された超音波の最大振幅幅(波高
値幅)Vppは、AE事象のエネルギーμと関係してお
り、次の式(1)のように近似的に表せる。
It is considered that ultrasonic waves are generated by the impact when the surface layer of the internal parts of the plasma processing apparatus is broken. That is, when an abnormal discharge of plasma occurs, an AE (Acoustic Emission, ultrasonic wave generation) event is occurring at that position. Therefore, the energy of the AE event μ
However, it means that the surface of the abnormal discharge is destroyed, and it is important to find the energy μ. At that time, the maximum amplitude width (peak value width) Vpp of the ultrasonic wave detected by the ultrasonic wave detection unit is related to the energy μ of the AE event, and can be approximately represented as the following Expression (1).

【0007】[0007]

【数1】 [Equation 1]

【0008】ここで、C1は超音波検出部の検出感度に
依存する定数、C2は超音波発生源から超音波検出部ま
での距離や伝播損失等に関係する定数である。また、処
理室1の構造材質により決まる超音波の速度V、異常放
電発生位置から超音波検出部までの距離をDとすると、
超音波検出部に超音波が到達するまでの伝播時間Tは次
の式(2)で表せる。
Here, C1 is a constant that depends on the detection sensitivity of the ultrasonic detecting section, and C2 is a constant that is related to the distance from the ultrasonic source to the ultrasonic detecting section, the propagation loss, and the like. Further, if the velocity V of the ultrasonic wave determined by the structural material of the processing chamber 1 and the distance from the abnormal discharge occurrence position to the ultrasonic wave detection unit are D,
The propagation time T until the ultrasonic wave reaches the ultrasonic detecting section can be expressed by the following equation (2).

【0009】[0009]

【数2】 [Equation 2]

【0010】本発明者らは処理壁に4個以上の超音波検
出部を処理室壁に付設し、異常放電発生時に生じた超音
波を計測し、計測波形をコンピュータ処理することによ
り、式(2)を基にして異常放電位置から複数個の超音
波検出部への各伝播時間の差から異常放電源を特定する
方法及び装置を発明した。
The present inventors attach four or more ultrasonic wave detecting portions to the processing wall on the processing chamber wall, measure the ultrasonic waves generated when an abnormal discharge occurs, and computer-process the measured waveform to obtain the equation ( Based on 2), the inventors have invented a method and an apparatus for identifying an abnormal discharge power source from the difference in each propagation time from an abnormal discharge position to a plurality of ultrasonic wave detecting portions.

【0011】又、式(1)と式(2)から求めた伝播距
離から伝播減衰を考慮して、ダスト発生、被処理基体
(ウェハー)表面の損傷、基体の汚染、基体の電気素子
に絶縁破壊等の影響を与えると思われる超音波の最大振
幅(波高値)Vppを設定し、それをしきい値とすること
により、異常放電判定後、異常放電源とアラームをモニ
タに表示し、外部に警告を発する装置を発明した。(特
願2000−89840号、国際出願PCT/JP01
/02536)
Further, considering the propagation attenuation from the propagation distances obtained from the equations (1) and (2), dust is generated, the surface of the substrate (wafer) to be treated is damaged, the substrate is contaminated, and the electrical elements of the substrate are insulated. By setting the maximum amplitude (peak value) V pp of ultrasonic waves that is thought to affect destruction, and setting it as the threshold value, after abnormal discharge judgment, abnormal discharge power source and alarm are displayed on the monitor, We invented a device that issues an external warning. (Japanese Patent Application No. 2000-89840, International Application PCT / JP01
// 02536)

【0012】[0012]

【発明が解決しようとする課題】静電チヤックが処理室
下部の中央一個所のみで支持されているプラズマ処理装
置では、静電チャックが処理室壁に連結する連結部分の
一個所のみを通過して伝播されて超音波検出部に到達す
るので、夫々の超音波検出部で検出される超音波の到達
時間に差は生じないため、静電チャックのウェハー表面
上Pで発生したプラズマの異常放電は、処理室の下面の
中央で連結されている場所P’を異常放電の発生位置と
して特定してしまう。(国際出願PCT/JP01/0
2536)そこで、本発明の目的とするところは、ウェ
ハー上に発生した異常放電の大きさの検出と位置特定と
を可能とするために超音波プローブを内臓したウェハー
支持体を提供することにある。
In a plasma processing apparatus in which the electrostatic chuck is supported only at the central portion of the lower portion of the processing chamber, the electrostatic chuck passes through only one portion of the connecting portion connected to the processing chamber wall. Since the ultrasonic waves are propagated as they reach the ultrasonic detection unit, there is no difference in the arrival time of the ultrasonic waves detected by the respective ultrasonic detection units. Therefore, the abnormal discharge of the plasma generated on the wafer surface P of the electrostatic chuck is generated. Would specify the location P ', which is connected at the center of the lower surface of the processing chamber, as the location of the abnormal discharge. (International application PCT / JP01 / 0
2536) Therefore, an object of the present invention is to provide a wafer support including an ultrasonic probe in order to detect the size of abnormal discharge generated on a wafer and to specify the position of the abnormal discharge. .

【0013】[0013]

【発明を解決するための手段】本発明は、ウェハー表面
で発生した異常放電による超音波が伝播する基板載置台
部材及びそれに設置された固い材質の部材に少なくとも
3個以上の超音波プローブを取付て、部材を伝播する超
音波をそれぞれ連結された超音波検出部に効率よく導く
ようにし超音波プローブの一部を内蔵した基板載置台を
提供する。
According to the present invention, at least three or more ultrasonic probes are attached to a substrate mounting table member through which ultrasonic waves due to abnormal discharge generated on the surface of a wafer propagate and a member made of a hard material. Thus, an ultrasonic wave propagating through a member is efficiently guided to an ultrasonic wave detecting section connected to each other, and a substrate mounting table having a part of an ultrasonic wave probe built therein is provided.

【0014】ブラズマ処理装置の基板載置台の外周縁部
に少なくとも3個以上の、超音波検出部に接続される超
音波プローブを外部より装着し、超音波プローブは、電
気的絶縁物で且つ載置台の構成材質と同程度の固く、音
響インピーダンスの近い材質で構成され、超音波検出部
へのウェーブガイドとなる超音波プローブの一部を内臓
させる基板載置台を提供する。
At least three ultrasonic probes connected to the ultrasonic detecting unit are externally attached to the outer peripheral edge of the substrate mounting table of the plasma processing apparatus, and the ultrasonic probes are electrically insulating materials and mounted. Provided is a substrate mounting table which is made of a material that is as hard as the constituent material of the mounting table and has a similar acoustic impedance, and in which a part of an ultrasonic probe that serves as a waveguide to an ultrasonic detection unit is incorporated.

【0015】さらに、本発明は、基板載置台のサセプタ
の外周縁部内にサセプタとの接続を接着材のみ、或いは
ねじ込みによる連結と接着剤による接合を併用して音響
的に結合をとり、また、その接続部以外のサセプタ部分
とは機械的接触をしない様にして音響的な結合をなくす
ことにより、異常放電による超音波を効率的に外部の超
音波検出部へ伝えることができるように基板載置台を構
成する。
Furthermore, according to the present invention, the connection with the susceptor is acoustically coupled within the outer peripheral edge of the susceptor of the substrate mounting table by using only an adhesive material, or a combination of screwing and bonding with an adhesive agent. By removing the acoustic coupling without making mechanical contact with the susceptor part other than the connection part, it is possible to efficiently transmit the ultrasonic wave due to abnormal discharge to the external ultrasonic wave detecting part. Configure the table.

【0016】他の発明として、高周波電力等により電極
間にプラズマを発生させるブラズマ処理装置の基板載置
台の外周縁部上に設けられたフォーカスリングに、少な
くとも3個以上の、超音波検出部に接続される超音波プ
ローブを外部より装着し、超音波音響プローブは、電気
的に絶縁物で且つ載置台の構成材質と同程度の固く、音
響インピーダンスの近い材質で構成され、超音波検出部
へのウェーブ・ガイドで、フオーカスリング部分との接
続は接着材、或いはねじ込みと接着とを併用して音響的
に結合され、その他のサセプタ、サセプタ支持台等には
機械的接続をせず音響的に結合なくし、異常放電による
超音波を効率的に外部の超音波検出部へ伝えることがで
きるようにした基板載置台を提供する。
As another invention, a focus ring provided on an outer peripheral edge of a substrate mounting table of a plasma processing apparatus for generating plasma between electrodes by high-frequency power or the like has at least three ultrasonic detecting units. The ultrasonic probe to be connected is attached from the outside, and the ultrasonic acoustic probe is made of a material that is electrically insulating and is as hard as the constituent material of the mounting table and has a similar acoustic impedance. In the wave guide of, the connection with the focus ring part is acoustically coupled by using an adhesive material, or screwing and bonding together, and acoustically without mechanical connection to other susceptors, susceptor support bases, etc. (EN) Provided is a substrate mounting table capable of efficiently transmitting an ultrasonic wave due to an abnormal discharge to an external ultrasonic wave detecting section without being coupled to the external ultrasonic wave detecting section.

【0017】さらに、別の発明として、一端が処理室内
の基板載置台に固着され、他端が処理室外の大気中に配
置された超音波プローブに連結され、超音波を超音波検
出部に伝播する超音波プローブが貫通する処理壁貫通孔
を真空密封する装置において、音響隔離面となる弾性封
止部材の中心孔に断面円形の超音波プローブを貫通さ
せ、処理室外部より封止部材に与圧を加えることによ
り、貫通部分を真空絶縁する超音波プローブ貫通孔の密
閉装置を提供する。
Further, as another invention, one end is fixed to a substrate mounting table inside the processing chamber, and the other end is connected to an ultrasonic probe arranged in the atmosphere outside the processing chamber to propagate the ultrasonic wave to the ultrasonic detecting section. In a device for vacuum-sealing a processing wall through-hole through which an ultrasonic probe penetrates, a circular ultrasonic probe having a circular cross section is penetrated through a central hole of an elastic sealing member serving as an acoustic isolation surface, and the ultrasonic sealing is applied to the sealing member from outside the processing chamber. Provided is a device for sealing an ultrasonic probe through hole, which vacuum-insulates a through portion by applying pressure.

【0018】[0018]

【発明の実施の形態】図1は、本発明の超音波プローブ
を外周縁部内に内蔵する基板載置台の実施例を示す。図
中、8は高周波電圧源34に接続された高周波電圧給電
棒、9は可変直流電圧源31に接続された直流電圧供給
棒、10は冷媒導入管、11は冷却ジャケット、12は
冷媒導出管、13は超音波プローブを表す。15は直流
電圧給電棒9を導入する導入孔、16は超音波プローブ
13を基板載置台5の部材に接触することなく載置台外
周部内に内蔵させるための装着孔、超音波プローブ13
とサセプタ6との結合部分を表す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of a substrate mounting table in which the ultrasonic probe of the present invention is incorporated in the outer peripheral portion. In the figure, 8 is a high-frequency voltage feed rod connected to a high-frequency voltage source 34, 9 is a DC voltage supply rod connected to a variable DC voltage source 31, 10 is a refrigerant introduction pipe, 11 is a cooling jacket, and 12 is a refrigerant discharge pipe. , 13 are ultrasonic probes. Reference numeral 15 is an introduction hole for introducing the DC voltage feed rod 9, 16 is a mounting hole for incorporating the ultrasonic probe 13 in the outer periphery of the mounting table 5 without contacting the members of the substrate mounting table 5, and the ultrasonic probe 13
And a susceptor 6 is connected.

【0019】超音波プローブ13は装着孔16に挿入さ
れ、プローブ先端に塗布された接着材で載置台外周縁部
内の17に接着固定されている。冷却液は冷媒導入管1
0を介して導入されて冷却ジャケット11内を循環し、
冷媒排出管12より冷却液が蒸発した冷却ガスを排出
し、ウェハー1の全面温度を所望の温度に冷却する。な
お、本明細書及び図面に記載された同じ符号は同じもの
を表しているので、説明は省略する。
The ultrasonic probe 13 is inserted into the mounting hole 16 and is adhesively fixed to 17 inside the outer peripheral edge of the mounting table by an adhesive material applied to the tip of the probe. Coolant is refrigerant introduction pipe 1
It is introduced through 0 and circulates in the cooling jacket 11,
The cooling gas in which the cooling liquid is evaporated is discharged from the refrigerant discharge pipe 12 to cool the entire surface temperature of the wafer 1 to a desired temperature. Since the same reference numerals in the present specification and the drawings represent the same things, the description thereof will be omitted.

【0020】超音波プローブ13は基板載置台外部に設
置された超音波検出部まで伝播するため、ウェーブガイ
ドとなる音響プローブ13を3個或いはそれ以上をサセ
ブタ部内部に取付け、配置する。音響プローブは電気的
に絶縁物で、且つサセプタ(例えばアルミニウム)6の
材質と同じく機械的に固い物質で音響インピーダンスの
近い、例えば石英、セラミックス等で構成され、サセプ
タとの接続は接着材のみ、或いはねじ込みによる連結と
接着剤による接合とを併用して音響的な結合をとる。
Since the ultrasonic probe 13 propagates to the ultrasonic detecting section installed outside the substrate mounting table, three or more acoustic probes 13 serving as a waveguide are attached and arranged inside the receiving section. The acoustic probe is an electrically insulating material, and is made of a material that is mechanically hard like the material of the susceptor (for example, aluminum) 6 and has a similar acoustic impedance, such as quartz or ceramics, and is connected to the susceptor only by an adhesive material. Alternatively, acoustic coupling is achieved by jointly using screwing and joining with an adhesive.

【0021】また、超音波プローブ13はサセプタ6,
サセプタ支持台7に設けられた装着孔16内を貫通して
いるので、その接合部以外のサセプタ部分とは機械的接
触をせず、音響的な結合をなくすことにより、異常放電
による検出した超音波を効率的に外部の超音波検出部へ
伝えることができる。
The ultrasonic probe 13 includes a susceptor 6,
Since it penetrates the inside of the mounting hole 16 provided in the susceptor support base 7, it does not make mechanical contact with the susceptor portion other than the joint portion, and eliminates acoustic coupling, so that it is possible to detect an abnormal discharge detected by abnormal discharge. The sound wave can be efficiently transmitted to the external ultrasonic wave detection unit.

【0022】図2は、静電チャック2をその環内に載置
した環状のフォーカスリングを外周縁部上に設けた基板
載置台の場合において、フォーカスリングに超音波プロ
ーブを取り付け、超音波プローブを基板載置台に内蔵し
た本発明の実施例を示す。図2中、18はフォーカスリ
ングを、19は超音波プローブ13をフォーカスリング
18にネジ接合さる結合部分を表している。サセプタ6
の上端周縁部には、ウェハー1を囲むように環状のフォ
ーカスリング18が配置されている。このフォーカスリ
ング18は反応性イオンを引き寄せない絶縁性の材質か
らなり、反応イオンを内側のウェハーにだけ効果的に入
射するように作用する。
FIG. 2 shows an ultrasonic probe attached to the focus ring in the case of a substrate mounting table having an annular focus ring on the outer periphery of which the electrostatic chuck 2 is mounted. An embodiment of the present invention in which a substrate is mounted on the substrate mounting table will be described. In FIG. 2, reference numeral 18 denotes a focus ring, and 19 denotes a connecting portion where the ultrasonic probe 13 is screwed to the focus ring 18. Susceptor 6
An annular focus ring 18 is arranged around the upper edge of the so as to surround the wafer 1. The focus ring 18 is made of an insulating material that does not attract reactive ions, and acts so that the reactive ions are effectively incident only on the inner wafer.

【0023】超音波(音響)プローブは、電気的に絶縁
物であって、且つフォーカスリング(例えば表面アルマ
イト処理アルミ、カーボン、シリコン等)18の材質と
同じく機械的に固い(弾性率の高い)物質で音響インピ
ーダンスが近い、例えば石英、セラミックス等で構成さ
れる。超音波(音響)プローブとフォーカスリング18
との接続はねじ込みによる連結と接着剤による接合とを
併用若しくは接着剤のみによる接合により音響的な結合
をとり、ウェハー表面に発生した異常放電による超音波
の結合面での反射を少なくする。
The ultrasonic (acoustic) probe is an electrically insulating material and is mechanically hard (having a high elastic modulus) like the material of the focus ring (for example, surface anodized aluminum, carbon, silicon, etc.) 18. It is made of a material such as quartz, ceramics, etc., which has a similar acoustic impedance. Ultrasonic (acoustic) probe and focus ring 18
The connection with is made by using a combination of screwing and joining with an adhesive, or by joining with only an adhesive to obtain acoustic coupling, and reduce reflection of ultrasonic waves on the coupling surface due to abnormal discharge generated on the wafer surface.

【0024】超音波プローブ13はサセプタ6,サセプ
タ支持台7に設けら装着孔16内を貫通しているので、
その他のサセプタ、サセプタ支持台等とは機械的接触を
せず、これらの部材との音響的な結合をなくして、異常
放電による超音波を受信して効率的に外部の超音波検出
部へ伝えることができる。
Since the ultrasonic probe 13 is provided in the susceptor 6 and the susceptor support 7 and penetrates through the mounting hole 16,
Does not make mechanical contact with other susceptors, susceptor support, etc., eliminates acoustic coupling with these members, receives ultrasonic waves due to abnormal discharge, and efficiently transmits them to external ultrasonic detectors. be able to.

【0025】図3の実施例は処理室外部に設けられた超
音波検出部14に超音波プローブ13を接続する際の、
処理室壁26を貫通する部位の密封装置を示している。
図中、20は超音波プローブ13を貫通させる貫通孔、
21はその中心孔に超音波プローブを貫通させる孔を有
する弾性封止部材、22は中心孔に超音波プローブを貫
通させる孔を有するスペーサ、23は処理室外側より弾
性封止部材21,スペーサ22を装着する孔、24は固
定板、25はボルトを表している。
In the embodiment shown in FIG. 3, when the ultrasonic probe 13 is connected to the ultrasonic detecting section 14 provided outside the processing chamber,
The sealing device of the part which penetrates the process chamber wall 26 is shown.
In the figure, 20 is a through hole for penetrating the ultrasonic probe 13,
Reference numeral 21 is an elastic sealing member having a hole for penetrating the ultrasonic probe in its central hole, 22 is a spacer having a hole for penetrating the ultrasonic probe in the central hole, 23 is an elastic sealing member 21 and a spacer 22 from the outside of the processing chamber. , 24 is a fixing plate, and 25 is a bolt.

【0026】超音波プローブ13は、基板載置台又は基
板載置台に配置された部材に取り付けるため接続部13
A、超音波を超音波検出部14まで伝播するウェーブガ
イド13Bとから構成される。超音波検出部取付部14
Aは接着材かカップランドを介したネジ止め固定により
ウェーブガイド13Bを超音波検出部に取り付ける取付
部である。
The ultrasonic probe 13 is connected to the substrate mounting table or a member arranged on the substrate mounting table so as to be connected to the connecting portion 13.
A, a wave guide 13B for propagating ultrasonic waves to the ultrasonic wave detecting section 14. Ultrasonic wave detector mounting part 14
Reference numeral A is a mounting portion for mounting the waveguide 13B to the ultrasonic detecting portion by screwing and fixing with an adhesive material or a cup land.

【0027】ウェーブガイド13Bは電気的に絶縁物で
構成することにより絶縁を保ち、且つ超音波プローブを
取り付ける部材(多くは金属)の構成材質と同程度の固
さの物質で音響インピーダンスの近い、例えば、石英、
セラミックス等で構成することにより超音波の結合面の
反射を少なくする。接続部分は層が薄く減衰特性少ない
接着剤(例えば、エポキシ樹脂)のみによる接続若しく
は接続はねじ込みによる連結と同接着剤にる接合との併
用により、減衰の少ない音響的結合を得ることができ
る。又、接着剤は脱着可能な材料を使用すと好都合であ
る。
The waveguide 13B is made of an electrically insulating material to maintain insulation, and is a substance having hardness similar to that of the member (mostly metal) to which the ultrasonic probe is attached, and has a similar acoustic impedance. For example, quartz,
By using ceramics or the like, the reflection of the ultrasonic coupling surface is reduced. The connection portion has a thin layer, and the connection using only an adhesive (for example, an epoxy resin) or the connection using the screwing and the bonding using the same adhesive can obtain an acoustic connection with low attenuation. It is also convenient to use a removable material for the adhesive.

【0028】弾性封止部材21、スペーサ22の中心孔
の径はウェーブガイド13bの径より大きい。ボルトの
25の締め付けにより、弾性封止部材21を押圧して、
弾性封止部材21を変形させて、装着孔、中心孔をそれ
ぞれ密閉して、外気と処理室とを完全に封止する。弾性
封止部材21とウェーブガイド13Bとは音響インピー
ダンスが著しく異なるので、ウェーブガイド13Bは処
理室壁と音響的に隔離される。
The diameters of the central holes of the elastic sealing member 21 and the spacer 22 are larger than the diameter of the waveguide 13b. By tightening 25 of the bolt, the elastic sealing member 21 is pressed,
The elastic sealing member 21 is deformed to hermetically seal the mounting hole and the central hole to completely seal the outside air and the processing chamber. Since the acoustic sealing member 21 and the waveguide 13B have significantly different acoustic impedances, the waveguide 13B is acoustically isolated from the processing chamber wall.

【0029】図3の実施例は弾性封止部材として、ゴム
製Oリングを2重にして、真空絶縁の安全を期した例で
ある。ウェーブガイド13Bを円形断面、装着孔23を
円形孔とすると、押圧されたOリング円の外側、内側は
それぞれウェーブガイド壁、装着孔壁を等しい力で押圧
するように変形するので、密着封止は効果的となる。
The embodiment shown in FIG. 3 is an example in which a rubber O-ring is doubled as an elastic sealing member to ensure vacuum insulation safety. If the waveguide 13B has a circular cross-section and the mounting hole 23 has a circular hole, the outside and inside of the pressed O-ring circle are deformed so as to press the waveguide wall and the mounting hole wall with equal force, so that they are closely sealed. Will be effective.

【0030】超音波検出部14は処理室外壁上に設けら
れたホルダー(図示せず。)により、音響隔離の状態で
処理室外で支持されている。また、封止部材の弾性密着
により、ウェーブガイド13Bが固定支持されることに
より、基板載置台に内蔵されたウェーブガイド13Bの
部分が装着孔16の内壁に確実に接触しないようにこと
ができる。
The ultrasonic detector 14 is supported outside the processing chamber in a state of acoustic isolation by a holder (not shown) provided on the outer wall of the processing chamber. Further, since the waveguide 13B is fixedly supported by the elastic contact of the sealing member, the portion of the waveguide 13B built in the substrate mounting table can be surely prevented from contacting the inner wall of the mounting hole 16.

【0031】図4は、図1,図2に配置された超音波検
出部14a〜14cが超音波検出部14a〜l4cの検
出波形の振幅幅が設定値以上に上昇したときに、超音波
検出部14a〜14cの検出波形を同一時間軸上で比較
した出力波形例を示している。14aは超音波を最初に
検出した超音波検出部(基準超音波検出部)の検出波
形、14bは次に検出された検出波形、14cは最後に
検出された検出波形である。
FIG. 4 shows that the ultrasonic detectors 14a to 14c arranged in FIGS. 1 and 2 detect ultrasonic waves when the amplitude width of the detected waveforms of the ultrasonic detectors 14a to 14c rises above a set value. The output waveform example which compared the detection waveform of the parts 14a-14c on the same time-axis is shown. Reference numeral 14a is a detected waveform of the ultrasonic wave detecting section (reference ultrasonic wave detecting section) that first detects the ultrasonic wave, 14b is a detected waveform detected next, and 14c is a detected waveform detected last.

【0032】T0は超音波検出部のいずれかが超音波を
最初に検出する時点、時間T1は最初に検出された検出
波形に対する次に検出された検出波形の遅延時間、時間
T2は最初に検出された検出波形に対する次に検出され
た検出波形の遅延時間を表している。コンピュータによ
る超音波の遅延時間は、例えば各検出波形の異常放電に
対応する期間内の特徴点(波高値等)における時点での
遅延時間を平均することにより算出することができる。
T0 is a time point at which one of the ultrasonic wave detecting sections first detects an ultrasonic wave, time T1 is a delay time of the detected waveform detected next to the detected waveform detected first, and time T2 is detected first. The delay time of the detected waveform detected next to the detected waveform is shown. The delay time of the ultrasonic wave by the computer can be calculated, for example, by averaging the delay times at the characteristic points (peak value etc.) in the period corresponding to the abnormal discharge of each detected waveform.

【0033】超音波波形は、超音波検出部14a〜14
cで検出された後、コンピュータでデータ解析される。
その際、超音波の周波数と波高値はAE事象のエネルギ
ーとその材質に依存しているため、本発明の実施例で
は、超音波検出部14a〜14cの検出波形の振幅幅が
設定値以上に上昇したときに、超音波検出部14a〜1
4cの検出波形を同一時間軸上で比較し、基準超音波検
出部への超音波伝播時間に対するそれぞれの超音波検出
部への伝播の遅延時間を算出し、超音波検出部13a〜
13cの検出波形の中から最大振幅幅を求める。
The ultrasonic waveform has ultrasonic wave detecting portions 14a to 14a.
After being detected in c, the data is analyzed by a computer.
At that time, since the frequency and the peak value of the ultrasonic wave depend on the energy of the AE event and the material thereof, in the embodiment of the present invention, the amplitude width of the detected waveforms of the ultrasonic wave detection units 14a to 14c becomes equal to or larger than the set value. When it goes up, the ultrasonic detection units 14a-1
The detected waveforms of 4c are compared on the same time axis, and the delay time of the propagation to each ultrasonic detection unit with respect to the ultrasonic propagation time to the reference ultrasonic detection unit is calculated.
The maximum amplitude width is obtained from the detected waveform of 13c.

【0034】図4の計測波形の中から最大振幅を選定
し、超音波の伝搬距離とそれぞれの部位における超音波
波形の伝搬損失が分かっているので、式(1)の定数C
2が演算されるので、AE事象のエネルギーμが計算で
きる。このようにして求めた発生部位(位置)と最大振
幅幅から異常放電発生時のAE事象の大きさをモニタ画
面に表示する。最大振幅を、前もって発生部位ごとに設
定されたしきい値と比較することで、そのレベルを超え
る場合に、警告を発する、もしくは、装置を停止させる
ことができる。
Since the maximum amplitude is selected from the measured waveforms in FIG. 4 and the propagation distance of the ultrasonic wave and the propagation loss of the ultrasonic waveform at each site are known, the constant C of the equation (1) is used.
Since 2 is calculated, the energy μ of the AE event can be calculated. The magnitude of the AE event at the time of abnormal discharge occurrence is displayed on the monitor screen from the occurrence portion (position) thus obtained and the maximum amplitude width. By comparing the maximum amplitude with a threshold value set in advance for each occurrence site, a warning can be issued or the device can be stopped when the level is exceeded.

【0035】異常放電源から超音波検出部14a〜14
cまでの最短距離をそれぞれD1〜D3、超音波の音速
をV、基準超音波検出部を超音波検出部1とすると、超
音波検出部で計測した遅延時間から計算した距離は、異
常放電源から基準超音波検出部までの距離と、異常放電
源からそれぞれの超音波検出部までの距離との差に一致
するので、次の方程式(3.l)〜(3.2)が成立す
る。
From the abnormal discharge power source to the ultrasonic wave detecting portions 14a to 14
If the shortest distance to c is D1 to D3, the sound velocity of the ultrasonic wave is V, and the reference ultrasonic wave detecting unit is the ultrasonic wave detecting unit 1, the distance calculated from the delay time measured by the ultrasonic wave detecting unit is From the reference ultrasonic wave detection unit and the distance from the abnormal discharge power source to each ultrasonic wave detection unit, the following equations (3.1) to (3.2) are established.

【0036】[0036]

【数3】 [Equation 3]

【0037】次に、3個の超音波検出手段により、異常
放電源の位置を特定する方法について説明する。その前
に、異常放電源の位置を特定するために使用する座標系
を定義する。図5の座標系は、上部電極2の周辺位置に
取り付けられた超音波プローブの超音波受信点を原点0
とし、原点0と基板載置台中心点をとおる直線をX軸、
原点をとおりX軸に垂直な直線をZ軸、原点をとおり
X,Z軸に直角な直線をY軸と定義する。図中のウェハ
ー1、静電チャック2、サセプタ6の形状は円盤形状体
である場合の例である。他の形状でも同様に計算でき
る。
Next, a method of identifying the position of the abnormal discharge power source by the three ultrasonic wave detecting means will be described. Before that, define the coordinate system used to identify the location of the abnormal discharge source. In the coordinate system of FIG. 5, the ultrasonic wave reception point of the ultrasonic probe attached to the peripheral position of the upper electrode 2 is the origin 0.
And a straight line passing through the origin 0 and the center of the substrate mounting table is the X axis,
A straight line passing through the origin and perpendicular to the X axis is defined as the Z axis, and a straight line passing through the origin and perpendicular to the X and Z axes is defined as the Y axis. The wafer 1, the electrostatic chuck 2, and the susceptor 6 in the figure are examples of disk-shaped bodies. Other shapes can be calculated similarly.

【0038】図5(a)はZ軸,X軸を含む平面、
(b)はZ軸上方向からウェハーをみた図を示してい
る。ウェハー1、静電チャック2は半径Rの円盤形状体
で、サセプタ6は上側は半径R、下側は半径R+lとす
る円盤形状体で、それぞれの円盤状体の中心はXYZ座
標で(q,0,0)の位置にあるとする。超音波プロー
ブ13の超音波検出端は図5のようにサセプタ6の周縁
部を3等分する位置にそれぞれ結合されている。
FIG. 5A shows a plane including the Z axis and the X axis,
(B) shows a view of the wafer viewed from above the Z axis. The wafer 1 and the electrostatic chuck 2 are disk-shaped bodies having a radius R, the susceptor 6 is a disk-shaped body having a radius R on the upper side and a radius R + 1 on the lower side, and the center of each disk-shaped body is represented by XYZ coordinates (q, 0, 0) position. The ultrasonic wave detecting ends of the ultrasonic wave probe 13 are respectively coupled to positions where the peripheral edge of the susceptor 6 is divided into three, as shown in FIG.

【0039】ウェハー上の異常放電源位置P1はX,Y
座標(x,y)で表現できる。異常放電源が図のP1に
位置する場合、原点0に位置する超音波プローブ13a
に超音波が伝播する最短経路の距離D1は、直線距離で
次の式(4.1)で求まる。異常放電源がウェハ上のP
3に位置する場合は、伝播する最短経路は下部電極のS
のため屈曲し、次の式(4.2)で求められる。
The abnormal power supply position P1 on the wafer is X, Y
It can be expressed by coordinates (x, y). When the abnormal discharge source is located at P1 in the figure, the ultrasonic probe 13a located at the origin 0
The distance D1 of the shortest path through which the ultrasonic wave propagates is calculated by the following equation (4.1) as a linear distance. Abnormal discharge power source is P on the wafer
In the case of being located at 3, the shortest path to propagate is S of the lower electrode.
Therefore, it bends and is calculated by the following equation (4.2).

【0040】[0040]

【数4】 [Equation 4]

【0041】最短距離が式(4.1),式(4.2)の
どちらかで求めるかは、異常放電源が図中の0,Sをと
おる直線上でウェハー上の位置P2の外側か、内側の位
置によって決まる。原点、S(xm,ym,zm)(ただ
し、zm=h)とウェハー上の点との交点を(x,y,
z)(ただし、z=H)とすると、xm/x=ym/y=
h/Hの関係があり、且つxmとymとは円曲線(xm
q)2+y2=(q−l)2の上にあるので、次の式
(5)で表される。
Whether the shortest distance is obtained by the equation (4.1) or the equation (4.2) is whether the abnormal discharge source is outside the position P2 on the wafer on a straight line passing through 0 and S in the figure. , Determined by the inner position. Origin, S (x m, y m , z m) ( However, z m = h) and the intersection of the points on the wafer (x, y,
z) (However, if z = H) to, x m / x = y m / y =
There is a relationship of h / H, and x m and y m are circular curves (x m
Since it is above q) 2 + y 2 = (q-1) 2 , it is represented by the following equation (5).

【0042】[0042]

【数5】 [Equation 5]

【0043】式(4.2)で求められる最短距離は式
(5)の曲線から超音波プローブ12a側の領域(図
(b)のハッチング領域)である。超音波プローブの超
音波受信点(座標原点)の上側にウェハーの外周縁端が
あれば(l=0)のときは、最短距離は式(4.1)の
みから求められる。
The shortest distance calculated by the equation (4.2) is the area on the ultrasonic probe 12a side (the hatched area in FIG. 7B) from the curve of the equation (5). When the outer peripheral edge of the wafer is above the ultrasonic wave reception point (coordinate origin) of the ultrasonic probe (l = 0), the shortest distance can be obtained only from the equation (4.1).

【0044】他の超音波プローブ13B,13Cへの最
短距離D2,D3も同様に求めることができる。D1〜
D3はウェハー上の2次元平面上の座標(x,y)の変
数(未知量)として表せるので、方程式(3.1)〜
(3.2)はx,yを変数とする2変数の方程式とな
る。よって、2つの方程式(3.1),(3.2)から
異常放電発生源の座標(x,y)が求まる。
The shortest distances D2 and D3 to the other ultrasonic probes 13B and 13C can be similarly obtained. D1
Since D3 can be expressed as a variable (unknown quantity) of coordinates (x, y) on a two-dimensional plane on the wafer, equations (3.1) to
(3.2) is a two-variable equation in which x and y are variables. Therefore, the coordinates (x, y) of the abnormal discharge source can be obtained from the two equations (3.1) and (3.2).

【0045】方程式の近似解を求める数値解法には、ニ
ュートン法の他に二分法や線形逆補間法などがあるが、
本発明の実施例では、短い演算時間で高精度の近似解が
得られるニュートン法を用いて2つの方程式(3.
1),(3.2)の近似解を求める方法を説明する。
Numerical solution methods for obtaining approximate solutions of equations include the bisection method and the linear inverse interpolation method in addition to the Newton method.
In the embodiment of the present invention, two equations (3.
A method for obtaining an approximate solution of 1) and (3.2) will be described.

【0046】先ず、図6を参照して、ニュートン法によ
る最適解を計算する方法を説明する。方程式f(x)=0
を計算するための初期値をx=x0とし、x0におけるy
=f(x)の接線とX軸との交点である漸近点x1を次の
(6)式から求める。
First, with reference to FIG. 6, a method for calculating an optimum solution by the Newton method will be described. Equation f (x) = 0
The initial value for calculating the x = x 0, y in x 0
The asymptotic point x 1 which is the intersection of the tangent line of = f (x) and the X axis is obtained from the following equation (6).

【0047】[0047]

【数6】 [Equation 6]

【0048】更に、その交点におけるy=f(x)の接
線と、X軸との交点である次の漸近点x2を求める。こ
れを繰り返して、Δxn-1=xn-1−xnの絶対値が限り
なく零のとき反復漸近点x0−ΣΔxnを方程式f(x)
=0の解の点として求める。
Further, the next asymptotic point x 2 that is the intersection of the tangent of y = f (x) and the X axis at that intersection is determined. By repeating this, when the absolute value of Δx n-1 = x n-1 −x n is infinitely zero, the iterative asymptotic point x 0 −ΣΔx n is calculated by the equation f (x).
It is obtained as a solution point of = 0.

【0049】同様に、f1(x,y)=0,f2(x,y)
=0の解は、2次元ニュートン法により、x,yの初期
値x0,y0から、次の式(7.1),(7.2)からΔ
x,Δyの値をもとめ、この値をもとにΔx,Δyのの
絶対値が限りなく零に近づくまで、繰り返して、x0
ΣΔxn ,y0−ΣΔynの反復漸近点により求めること
ができる。
Similarly, f 1 (x, y) = 0, f 2 (x, y)
The solution of = 0 is Δ by the two-dimensional Newton method from the initial values x 0 and y 0 of x and y, and from the following equations (7.1) and (7.2).
The values of x and Δy are determined, and based on these values, x 0 − is repeated until the absolute values of Δx and Δy approach zero.
It can be obtained by the iterative asymptotic point of ΣΔx n , y 0 −ΣΔy n .

【0050】[0050]

【数7】 [Equation 7]

【0051】異常放電源の位置座標(x,y)を変数と
する方程式(3.1),(3.2)の左辺をそれぞれ
f1,f2とし、変数が異常放電源の位置座標であるとき、
f1=0,f2=0となる。式(7.1),(7.2)を使
用した2次元ニュートン法によりf1=0,f2=0の近似
解を求めることで、異常放電源の位置座標(x,y)を
求めることができる。即ち、式(7.1),(7.2)
の∂f1/∂x,∂f2/∂x,∂f1/∂y,∂f2/∂y
を、初期値x0,y0におけるx又はyの微小な変化△x
0,△y0に対する変化量として近似的に求め、これらの
値を式(7.l),(7.2)に代入し、方程式を解く
と、△x,△yの値が求まる。この△xと△yが求めた
い誤差範囲以下になるまで、xとyを初期値x0,y0
ら−△x,−△yずつ移動させながら式(7.l),
(7.2)の演算を繰り返していくと、近似的に異常放
電源の座標(x,y)が求まる。
The left sides of the equations (3.1) and (3.2) in which the position coordinates (x, y) of the abnormal discharge source are variables are respectively set.
When f 1 and f 2 are set and the variable is the position coordinate of the abnormal discharge source,
f 1 = 0 and f 2 = 0. The position coordinates (x, y) of the abnormal discharge source are obtained by finding an approximate solution of f 1 = 0 and f 2 = 0 by the two-dimensional Newton method using the equations (7.1) and (7.2). be able to. That is, equations (7.1) and (7.2)
∂f 1 / ∂x, ∂f 2 / ∂x, ∂f 1 / ∂y, ∂f 2 / ∂y
Is a small change in x or y at initial values x 0 , y 0 Δx
0, △ y approximately calculated as a change amount with respect to 0, these values formula (7.L), substituted in (7.2) and solving the equation, △ x, △ y values is obtained. Until Δx and Δy fall within the error range to be obtained, while moving x and y from the initial values x 0 and y 0 by −Δx and −Δy respectively, formula (7.1),
By repeating the calculation of (7.2), the coordinates (x, y) of the abnormal discharge power source are approximately obtained.

【0052】図7のフロー図により、ウェハー上の異常
放電源の位置特定方法を説明する。ステップS1で、超
音波プローブから伝播した超音波を超音波検出部11a
〜11cにより計測する。ステップS2で、コンピュー
タにより超音波検出部14a〜14cの検出波形を同一
時間軸上で比較し、基準超音波検出部への超音波伝播時
間に対するそれぞれの超音波検出部への伝播の遅延時間
T1,T2を算出し、超音波検出部14a〜14cの検
出波形の中から最大振幅幅を求める。ステップS3にお
いて、異常放電源がウェハー上にあるとして、反復漸近
計算のための初期値(x0,y0)を設定する。
A method of identifying the position of the abnormal discharge power source on the wafer will be described with reference to the flowchart of FIG. In step S1, the ultrasonic wave propagated from the ultrasonic probe is detected by the ultrasonic wave detector 11a.
Measure with ~ 11c. In step S2, the detection waveforms of the ultrasonic detecting units 14a to 14c are compared by the computer on the same time axis, and the delay time T1 of the propagation to each ultrasonic detecting unit with respect to the ultrasonic propagation time to the reference ultrasonic detecting unit. , T2 is calculated, and the maximum amplitude width is obtained from the detected waveforms of the ultrasonic wave detecting units 14a to 14c. In step S3, the initial value (x 0 , y 0 ) for the iterative asymptotic calculation is set assuming that the abnormal discharge source is on the wafer.

【0053】ステップS4で、初期位置(x0,y0)の
領域によって、超音波プローブへの最短距離を式(4.
1),(4.2)により求める。次のステップS5で、
設定位置をX方向にΔx0微小移動して、その領域によ
って超音波プローブへの最短距離D1x,D2x,D3
xを式(4.1)、(4.2)により求める。続くステ
ップS6で、設定位置をY方向にΔy0微小移動して、
その領域によって超音波プローブへの最短距離D1y,
D2y,D3yを式(4.1),(4.2)により求め
る。
In step S4, the shortest distance to the ultrasonic probe is calculated by the formula (4. 4) according to the area of the initial position (x 0 , y 0 ).
It is calculated by 1) and (4.2). In the next step S5,
The set position is slightly moved by Δx 0 in the X direction, and the shortest distance D1x, D2x, D3 to the ultrasonic probe is determined depending on the area.
x is calculated by the equations (4.1) and (4.2). In a succeeding step S6, the set position is slightly moved by Δy 0 in the Y direction,
Depending on the area, the shortest distance D1y to the ultrasonic probe,
D2y and D3y are calculated by the equations (4.1) and (4.2).

【0054】続く、ステップS7において、ステップS
4〜S6で求められた最短距離及びf1,f2の値から、漸
近位置の変動量Δx,Δyを次のようにして求める。方
程式(7.1),(7.2)の初期位置x0,y0におけ
るf1,f2,∂f1/∂x,∂f1/∂y,∂f2/∂x,∂f2
/∂yの値は次式から求まる。これらの値を方程式
(7.1),(7.2)に代入し、Δx,Δyを求め
る。
Then, in step S7, step S
From the shortest distances obtained in 4 to S6 and the values of f 1 and f 2 , the variation amounts Δx and Δy of the asymptotic position are obtained as follows. F 1 , f 2 , ∂f 1 / ∂x, ∂f 1 / ∂y, ∂f 2 / ∂x, ∂f at initial positions x 0 and y 0 in equations (7.1) and (7.2) 2
The value of / ∂y is obtained from the following equation. These values are substituted into equations (7.1) and (7.2) to obtain Δx and Δy.

【0055】[0055]

【数8】 [Equation 8]

【0056】初期位置より解に近づいた漸近位置として
0−Δx,y0−Δyが求まる。ステップS8で、異常
放電位置への漸近が十分行われたか否かをΔx,Δyの
変動量で判定する。Δx,Δyの変動量が所定精度範囲
内の値でないと判断されると、ステップS9で初期位置
を−Δx,−Δyだけ移動した位置を次の漸近位置とし
て設定し、次のΔx,Δyの変動量が所定精度範囲内の
値になるまで反復繰り返す。
X 0 −Δx and y 0 −Δy are obtained as asymptotic positions closer to the solution than the initial position. In step S8, it is determined whether or not the asymptotic approach to the abnormal discharge position is sufficiently performed based on the variation amounts of Δx and Δy. If it is determined that the variation amounts of Δx and Δy are not within the predetermined accuracy range, the position moved by −Δx, −Δy from the initial position is set as the next asymptotic position in step S9, and the next Δx, Δy Iteratively repeats until the variation amount becomes a value within a predetermined accuracy range.

【0057】Δx,Δyの変動量が所定精度範囲内の値
と判断されると、ステップS10でx=x0−ΣΔx,
y=y0−ΣΔyの近似解を求め、この解がウェハー上
の位置であるか否かを判断する。ウェハー上の位置と判
断されると、この解の位置が異常放電源の発生位とであ
る。もし、ウェハー上の位置でないと判断されると、異
常放電源はウェハー上にないと認定され、本発明の計算
を中断し、本発明者らが発明した前記異常放電検出方法
により処理室壁上等の異常放電源の位置を特定する。若
しくは、初期位置を変えて再計算する。
When it is determined that the variation amounts of Δx and Δy are within the predetermined accuracy range, x = x 0 −ΣΔx,
An approximate solution of y = y 0 −ΣΔy is obtained, and it is determined whether or not this solution is a position on the wafer. When the position is determined to be the position on the wafer, the position of this solution is the generation position of the abnormal discharge power source. If it is determined that the position is not on the wafer, the abnormal discharge power source is determined not to be on the wafer, the calculation of the present invention is interrupted, and the abnormal discharge detection method invented by the present inventors is applied to the processing chamber wall. Specify the position of the abnormal discharge power source. Or, change the initial position and recalculate.

【0058】図2のフォーカスリング18を介して超音
波を検出する場合、サセプタ6から超音波プローブ13
までの伝播距離は各超音波プローブで同じ値となるよう
に各超音波プローブは配置され、且つ式(3.1),
(3.2)は距離の差に基づく計算となるので、上記伝
播距離は相殺されて、異常放電の位置特定には影響しな
い。
When detecting an ultrasonic wave through the focus ring 18 in FIG. 2, the susceptor 6 to the ultrasonic probe 13 are used.
The ultrasonic probes are arranged so that the propagation distances to the ultrasonic probe have the same value, and equation (3.1),
Since (3.2) is calculated based on the difference in distance, the above propagation distances are canceled out and do not affect the location of abnormal discharge.

【0059】[0059]

【発明の効果】基板載置台の外周縁内部にウェーブガイ
ドとなる超音波プローブを3個以上接続し、ウェハー表
面で発生した異常放電による超音波を超音波プローブを
介して、基板載置台外部に配置されている超音波検出部
に効率よく伝播し、夫々の超音波検出部によって検出さ
れた超音波の到着時間の差を計測して、ウェハー表面に
発生した異常放電による不良個所の確認が容易になり、
不良解析の効率が向上する。又、超音波プローブが処理
壁を貫通する貫通孔を与圧を印加された弾性封止部材に
より、真空密閉し、音響隔離するとともに超音波プロー
ブを固定支持する。
EFFECTS OF THE INVENTION Three or more ultrasonic probes serving as waveguides are connected to the inside of the outer periphery of the substrate mounting table, and ultrasonic waves due to abnormal discharge generated on the wafer surface are transferred to the outside of the substrate mounting table via the ultrasonic probe. Efficiently propagates to the ultrasonic detectors that are placed, and the difference in arrival time of the ultrasonic waves detected by each ultrasonic detector is measured, making it easy to confirm defective areas due to abnormal discharge that has occurred on the wafer surface. become,
The efficiency of failure analysis is improved. Further, the ultrasonic probe vacuum-seals a through hole penetrating the processing wall by an elastic sealing member to which a predetermined pressure is applied, acoustically isolates the ultrasonic probe, and fixes and supports the ultrasonic probe.

【図面の簡単な説明】[Brief description of drawings]

【図1】サセプタに超音波プローブを取り付けた本発明
の実施例を示す。
FIG. 1 shows an embodiment of the present invention in which an ultrasonic probe is attached to a susceptor.

【図2】フォーカスリングに超音波プローブを取り付け
た本発明の実施例を示す
FIG. 2 shows an embodiment of the present invention in which an ultrasonic probe is attached to a focus ring.

【図3】超音波プローブが処理室壁を密閉貫通する方法
を説明する図である。
FIG. 3 is a diagram illustrating a method in which an ultrasonic probe hermetically penetrates a processing chamber wall.

【図4】超音波検出部で計測された超音波波形例を示
す。
FIG. 4 shows an example of an ultrasonic waveform measured by an ultrasonic detector.

【図5】ウェハー上の異常放電源から超音波プローブへ
の最短伝播経路を説明する図である。
FIG. 5 is a diagram illustrating a shortest propagation path from an abnormal discharge power source on a wafer to an ultrasonic probe.

【図6】ニュートン法によるf(x)=0の解法を説明する図
である。
FIG. 6 is a diagram illustrating a solution method of f (x) = 0 according to the Newton method.

【図7】本発明による3個の超音波検出部によりウェハ
ー上の異常放電源を特定する方法によるフロー図を示
す。
FIG. 7 shows a flow chart of a method for identifying an abnormal discharge power source on a wafer by three ultrasonic wave detecting units according to the present invention.

【図8】従来の異常放電検出装置を説明する図である。FIG. 8 is a diagram illustrating a conventional abnormal discharge detection device.

【符号の説明】[Explanation of symbols]

1 ウェハー 2 静電チャック 5 基板載置台 6 サセプタ(下部電極) 7 サセプタ支持台 13 超音波プローブ 13A 結合部 13B ウェーブガイド 14 超音波検出部 16 装着孔 18 フォーカスリング 20 弾性封止部材 30 処理室 31 処理室壁 1 wafer 2 electrostatic chuck 5 Substrate mounting table 6 Susceptor (lower electrode) 7 Susceptor support 13 Ultrasonic probe 13A connection 13B Waveguide 14 Ultrasonic detector 16 mounting holes 18 focus ring 20 Elastic sealing member 30 processing room 31 Processing room wall

【手続補正書】[Procedure amendment]

【提出日】平成14年2月26日(2002.2.2
6)
[Submission date] February 26, 2002 (2002.2.2)
6)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Name of item to be amended] Title of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の名称】 超音波プローブの一部を内蔵した基
板載置台及び超音波プローブ貫通孔の密閉装置
Title: Substrate mounting table incorporating a part of an ultrasonic probe and a sealing device for an ultrasonic probe through hole

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】[0012]

【発明が解決しようとする課題】静電チヤックが処理室
下部の中央一個所のみで支持されているプラズマ処理装
置では、静電チャックが処理室壁に連結する連結部分の
一個所のみを通過して伝播されて超音波検出部に到達す
るので、夫々の超音波検出部で検出される超音波の到達
時間に差は生じないため、静電チャックのウェハー表面
上Pで発生したプラズマの異常放電は、処理室の下面の
中央で連結されている場所P’を異常放電の発生位置と
して特定してしまう。(国際出願PCT/JP01/0
2536)そこで、本発明の目的とするところは、ウェ
ハー上に発生した異常放電の大きさの検出と位置特定と
を可能とするために超音波プローブを内蔵したウェハー
支持体を提供することにある。
In a plasma processing apparatus in which the electrostatic chuck is supported only at the central portion of the lower portion of the processing chamber, the electrostatic chuck passes through only one portion of the connecting portion connected to the processing chamber wall. Since the ultrasonic waves are propagated as they reach the ultrasonic detection unit, there is no difference in the arrival time of the ultrasonic waves detected by the respective ultrasonic detection units. Therefore, the abnormal discharge of the plasma generated on the wafer surface P of the electrostatic chuck is generated. Would specify the location P ', which is connected at the center of the lower surface of the processing chamber, as the location of the abnormal discharge. (International application PCT / JP01 / 0
2536) Therefore, an object of the present invention is to provide a wafer support incorporating an ultrasonic probe in order to detect the size of abnormal discharge generated on a wafer and to specify the position. .

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】ブラズマ処理装置の基板載置台の外周縁部
に少なくとも3個以上の、超音波検出部に接続される超
音波プローブを外部より装着し、超音波プローブは、電
気的絶縁物で且つ載置台の構成材質と同程度の固く、音
響インピーダンスの近い材質で構成され、超音波検出部
へのウェーブガイドとなる超音波プローブの一部を内蔵
させる基板載置台を提供する。
At least three ultrasonic probes connected to the ultrasonic detecting unit are externally attached to the outer peripheral edge of the substrate mounting table of the plasma processing apparatus, and the ultrasonic probes are electrically insulating materials and mounted. Provided is a substrate mounting table which is made of a material that is as hard as the constituent material of the mounting table and has a similar acoustic impedance, and in which a part of an ultrasonic probe that serves as a waveguide to an ultrasonic detection unit is built .

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Name of item to be corrected] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0027】ウェーブガイド13Bは電気的に絶縁物で
構成することにより絶縁を保ち、且つ超音波プローブを
取り付ける部材(多くは金属)の構成材質と同程度の固
さの物質で音響インピーダンスの近い、例えば、石英、
セラミックス等で構成することにより超音波の結合面の
反射を少なくする。接続部分は層が薄く減衰特性少ない
接着剤(例えば、エポキシ樹脂)のみによる接続若しく
は接続はねじ込みによる連結と同接着剤にる接合との
併用により、減衰の少ない音響的結合を得ることができ
る。又、接着剤は脱着可能な材料を使用すと好都合で
ある。
The waveguide 13B is made of an electrically insulating material to maintain insulation, and is a substance having hardness similar to that of the member (mostly metal) to which the ultrasonic probe is attached, and has a similar acoustic impedance. For example, quartz,
By using ceramics or the like, the reflection of the ultrasonic coupling surface is reduced. Connecting portion layer is thin attenuation less adhesive (e.g., epoxy resin) only connection or connection by can by used with due that joined to connecting the same adhesive by screwing, to obtain an acoustic coupling less attenuation . Further, the adhesive is conveniently to use the releasable material.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0049[Correction target item name] 0049

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0049】同様に、f1(x,y)=0,f2(x,y)
=0の解は、2次元ニュートン法により、x,yの初期
値x0,y0から、次の式(7.1),(7.2)からΔ
x,Δyの値をもとめ、この値をもとにΔx,Δyの絶
対値が限りなく零に近づくまで、繰り返して、x0−Σ
Δxn ,y0−ΣΔynの反復漸近点により求めることが
できる。
Similarly, f 1 (x, y) = 0, f 2 (x, y)
The solution of = 0 is Δ by the two-dimensional Newton method from the initial values x 0 and y 0 of x and y, and from the following equations (7.1) and (7.2).
The values of x and Δy are determined, and based on these values, x 0 −Σ is repeated until the absolute values of Δx and Δy approach zero .
It can be obtained by the iterative asymptote of Δx n , y 0 −ΣΔy n .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹下 正吉 熊本県阿蘇郡西原村鳥子358−3 株式会 社東京カソード研究所九州事業所内 Fターム(参考) 5F004 AA16 BB22 BB29 BC08 CB20 5F031 CA02 HA01 HA02 HA16 HA38 JA09 JA17 JA22 JA45 MA28 5F045 BB20 EB10 EH01 EM02 EM06 GB17    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masayoshi Takeshita             358-3 Stock Association, Toriko Nishihara Village, Aso District, Kumamoto Prefecture             Company Tokyo Cathode Research Institute Kyushu Office F term (reference) 5F004 AA16 BB22 BB29 BC08 CB20                 5F031 CA02 HA01 HA02 HA16 HA38                       JA09 JA17 JA22 JA45 MA28                 5F045 BB20 EB10 EH01 EM02 EM06                       GB17

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高電圧電源により電極間にプラズマを発
生させるブラズマ処理装置の基板載置台の外周縁部に少
なくとも3個以上の、超音波検出部に接続される超音波
プローブを外部より装着し、 超音波音響プローブは、電気的に絶縁物で且つ載置台の
構成材質と同程度の固く、音響インピーダンスの近い材
質で構成され、超音波検出部へのウェーブガイドとなる
ことを特徴とした超音波プローブの一部を内臓した基板
載置台。
1. At least three or more ultrasonic probes connected to an ultrasonic detection unit are externally attached to an outer peripheral edge of a substrate mounting table of a plasma processing apparatus for generating plasma between electrodes by a high voltage power source. The ultrasonic acoustic probe is an electrically insulating material and is made of a material that is as hard as the constituent material of the mounting table and has a similar acoustic impedance, and serves as a waveguide to the ultrasonic detecting section. Substrate mounting table that incorporates a part of the sonic probe.
【請求項2】 基板載置台のサセプタの外周縁部内にサ
セプタとの接続を接着材のみ、或いはねじ込みによる連
結と接着剤による接合を併用して音響的に結合をとり、
且つ、その接続部以外のサセプタ部分及びサセプタ支持
台とは機械的接触をしないようにして外部の超音波検出
部に超音波を伝えることができることを特徴とする請求
項1記載の超音波プローブの一部を内臓した基板載置
台。
2. An acoustic coupling is provided in the outer peripheral edge portion of the susceptor of the substrate mounting table by connecting with the susceptor only by using an adhesive material, or by connecting by screwing and jointing with an adhesive agent.
The ultrasonic probe according to claim 1, wherein the ultrasonic wave can be transmitted to an external ultrasonic wave detecting portion without making mechanical contact with the susceptor portion and the susceptor support base other than the connecting portion. Substrate mounting table with a part built in.
【請求項3】 高圧電源により電極間にプラズマを発生
させるブラズマ処理装置の基板載置台の外周縁部上に設
けられたフォーカスリングに、少なくとも3個以上の、
超音波検出部に接続される超音波プローブを外部より装
着し、 超音波音響プローブは、電気的に絶縁物で且つ載置台の
構成材質と同程度の固く、音響インピーダンスの近い材
質で構成され、超音波検出部へのウェーブガイドで、 フオーカスリング部分との接続は接着材、或いはねじ込
みと接着とを併用して音響的に結合され、基板載置台と
は機械的接触をしないようにして外部の超音波検出部へ
伝えることができることを特徴とした超音波プローブの
一部を内臓した基板載置台。
3. At least three or more focus rings are provided on a focus ring provided on an outer peripheral edge portion of a substrate mounting table of a plasma processing apparatus for generating plasma between electrodes by a high voltage power source.
An ultrasonic probe connected to the ultrasonic detecting section is attached from the outside, and the ultrasonic acoustic probe is made of a material that is electrically insulating and is as hard as the constituent material of the mounting table and has a similar acoustic impedance. With a wave guide to the ultrasonic detection part, the connection with the focus ring part is acoustically coupled by using an adhesive material, or screwing and bonding together, and there is no mechanical contact with the substrate mounting table, The substrate mounting table incorporating a part of the ultrasonic probe, which is capable of being transmitted to the ultrasonic detecting section.
【請求項4】 一端が処理室内の基板載置台に固着さ
れ、他端が処理室外の大気中に配置された超音波プロー
ブに連結され、超音波を超音波検出部に伝播する超音波
プローブが貫通する処理壁貫通孔を真空密封する装置に
おいて、 音響隔離面となる弾性封止部材の中心孔に断面円形の超
音波プローブを貫通させ、処理室外部より封止部材に与
圧を加えることにより、貫通部分を真空絶縁することを
特徴とする超音波プローブ貫通孔の密閉装置。
4. An ultrasonic probe, one end of which is fixed to a substrate mounting table inside the processing chamber, the other end of which is connected to an ultrasonic probe arranged in the atmosphere outside the processing chamber, for propagating ultrasonic waves to an ultrasonic detecting section. In a device for vacuum-sealing a through-hole through a processing wall, an ultrasonic probe with a circular cross section is penetrated through the central hole of an elastic sealing member that serves as an acoustic isolation surface, and pressure is applied to the sealing member from outside the processing chamber. A device for sealing an ultrasonic probe through hole, characterized in that the through portion is vacuum-insulated.
JP2001285985A 2001-09-19 2001-09-19 Substrate mounting table incorporating part of ultrasonic probe and sealing device for ultrasonic probe through hole Expired - Fee Related JP3541359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001285985A JP3541359B2 (en) 2001-09-19 2001-09-19 Substrate mounting table incorporating part of ultrasonic probe and sealing device for ultrasonic probe through hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001285985A JP3541359B2 (en) 2001-09-19 2001-09-19 Substrate mounting table incorporating part of ultrasonic probe and sealing device for ultrasonic probe through hole

Publications (2)

Publication Number Publication Date
JP2003100714A true JP2003100714A (en) 2003-04-04
JP3541359B2 JP3541359B2 (en) 2004-07-07

Family

ID=19109039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001285985A Expired - Fee Related JP3541359B2 (en) 2001-09-19 2001-09-19 Substrate mounting table incorporating part of ultrasonic probe and sealing device for ultrasonic probe through hole

Country Status (1)

Country Link
JP (1) JP3541359B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031881A (en) * 2002-05-02 2004-01-29 Hitachi Ltd Semiconductor processing apparatus and diagnostic method for semiconductor processing apparatus
WO2008004528A1 (en) * 2006-07-03 2008-01-10 Ritsumeikan University Plasma abnormal discharge diagnosis method, plasma abnormal discharge diagnosis system, and computer program
JP2011523774A (en) * 2008-05-12 2011-08-18 ラム リサーチ コーポレーション Detection of arcing phenomena during wafer plasma processing by monitoring trace gas concentrations
CN102856149A (en) * 2011-06-27 2013-01-02 东京毅力科创株式会社 Anomaly detection device and anomaly detection method
CN102859665A (en) * 2010-04-30 2013-01-02 泰拉半导体株式会社 Plasma processing apparatus
JP2014022594A (en) * 2012-07-19 2014-02-03 Tokyo Electron Ltd Film crack detector and deposition apparatus
US8751196B2 (en) 2009-06-30 2014-06-10 Tokyo Electron Limited Abnormality detection system, abnormality detection method, recording medium, and substrate processing apparatus
JP2015026700A (en) * 2013-07-25 2015-02-05 株式会社クリエイティブ テクノロジー Sensor-integrated suction chuck and processing equipment
CN108288592A (en) * 2018-01-10 2018-07-17 德淮半导体有限公司 The method for scanning contact hole open defect
KR20200136981A (en) * 2018-03-28 2020-12-08 소이텍 Method for detecting a weakened substrate segmentation by implanting atomic species
DE102020100004A1 (en) * 2019-12-19 2021-06-24 Taiwan Semiconductor Manufacturing Co., Ltd. METHOD AND SYSTEM FOR ACOUSTIC DETECTION OF ARC FORMATION DURING A SEMICONDUCTOR PROCESS
TWI749350B (en) * 2018-08-10 2021-12-11 日商住友重機械工業股份有限公司 Abnormal monitoring device, abnormal monitoring method, and abnormal monitoring program product

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031881A (en) * 2002-05-02 2004-01-29 Hitachi Ltd Semiconductor processing apparatus and diagnostic method for semiconductor processing apparatus
WO2008004528A1 (en) * 2006-07-03 2008-01-10 Ritsumeikan University Plasma abnormal discharge diagnosis method, plasma abnormal discharge diagnosis system, and computer program
JP2008016517A (en) * 2006-07-03 2008-01-24 Ritsumeikan Method and system for plasma abnormal discharge diagnosis and computer program
KR100990845B1 (en) 2006-07-03 2010-10-29 도쿄엘렉트론가부시키가이샤 Plasma abnormal discharge diagnosis method, plasma abnormal discharge diagnosis system, and computer-readable recording medium having computer program thereon
US8082124B2 (en) 2006-07-03 2011-12-20 Ritsumeikan University Method and system for diagnosing abnormal plasma discharge
KR101570552B1 (en) 2008-05-12 2015-11-19 램 리써치 코포레이션 Detection of arcing events in wafer plasma processing through monitoring of trace gas concentrations
JP2011523774A (en) * 2008-05-12 2011-08-18 ラム リサーチ コーポレーション Detection of arcing phenomena during wafer plasma processing by monitoring trace gas concentrations
US8751196B2 (en) 2009-06-30 2014-06-10 Tokyo Electron Limited Abnormality detection system, abnormality detection method, recording medium, and substrate processing apparatus
CN102859665A (en) * 2010-04-30 2013-01-02 泰拉半导体株式会社 Plasma processing apparatus
CN102856149A (en) * 2011-06-27 2013-01-02 东京毅力科创株式会社 Anomaly detection device and anomaly detection method
JP2014022594A (en) * 2012-07-19 2014-02-03 Tokyo Electron Ltd Film crack detector and deposition apparatus
JP2015026700A (en) * 2013-07-25 2015-02-05 株式会社クリエイティブ テクノロジー Sensor-integrated suction chuck and processing equipment
CN108288592A (en) * 2018-01-10 2018-07-17 德淮半导体有限公司 The method for scanning contact hole open defect
KR20200136981A (en) * 2018-03-28 2020-12-08 소이텍 Method for detecting a weakened substrate segmentation by implanting atomic species
KR102526747B1 (en) * 2018-03-28 2023-04-27 소이텍 Method for Detecting Splitting of a Weakened Substrate by Implanting Atomic Species
TWI749350B (en) * 2018-08-10 2021-12-11 日商住友重機械工業股份有限公司 Abnormal monitoring device, abnormal monitoring method, and abnormal monitoring program product
DE102020100004A1 (en) * 2019-12-19 2021-06-24 Taiwan Semiconductor Manufacturing Co., Ltd. METHOD AND SYSTEM FOR ACOUSTIC DETECTION OF ARC FORMATION DURING A SEMICONDUCTOR PROCESS
US11688413B2 (en) 2019-12-19 2023-06-27 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for audio recognition of arcing during semiconductor process

Also Published As

Publication number Publication date
JP3541359B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
JP3569898B2 (en) Plasma abnormal discharge detection apparatus and its detection method
JP4607517B2 (en) Plasma processing equipment
JP2003100714A (en) Substrate mounting stage incorporating a part of ultrasonic probe and device for sealing through-hole for ultrasonic probe
JP2003318115A (en) Window type probe, plasma monitoring apparatus, and plasma treatment apparatus
CN103913714A (en) Calibration system of partial discharge supersonic detector
JP2007003443A (en) Abnormal state detection method and sheet-like piezoelectric sensor
JP2012027020A (en) Device and system for measuring material thickness
JP5721126B2 (en) Piezoelectric sensor
CN102414807A (en) Non-destructive signal propagation system and method to determine substrate integrity
US4175441A (en) Gauge for measuring distance to planar surfaces and thicknesses of planar members
KR20190026619A (en) Plasma probe device and plasma processing apparatus
CN215639321U (en) Piezoelectric ultrasonic sensor and detection system for high-temperature pipeline
JP5313117B2 (en) Corrosion inspection system, corrosion inspection apparatus, and corrosion inspection method
EP3171166B1 (en) Ultrasonic testing apparatus using an acoustic waveguide
Yasaka et al. Detection of supersonic waves emitted from anomalous arc discharge in plasma processing equipment
JP3653668B2 (en) Ultrasonic sensor contact state confirmation method, ultrasonic sensor contact state confirmation function, plasma abnormal discharge monitoring device, and plasma processing device
Kasashima et al. Detection of micro-arc discharge using ESC wafer stage with built-in AE sensor
TWI807466B (en) Susceptor element and plasma processing apparatus
CN108732246B (en) Design of receiving and transmitting integrated array sensor for detecting weld joint through ultrasonic guided wave
KR102173952B1 (en) High temperature Protector and Delay Probe
CN117074526A (en) Method and device for detecting micro defects of circumferential weld joint of high-attenuation material pipeline
WO2021195827A1 (en) Acoustic wave transducer and driving method therefor
CN113654495A (en) Ultrasonic sensor for high-temperature pipeline, preparation method and detection system
JPH04310858A (en) Method and apparatus for ultrasonic detection and position detection for defective part of cable
Imano et al. Detecting pipe wall reduction using air-coupled MHz range ultrasonic wave

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031031

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees