JP2003095787A - Molecular beam source cell for depositing thin film - Google Patents

Molecular beam source cell for depositing thin film

Info

Publication number
JP2003095787A
JP2003095787A JP2001291035A JP2001291035A JP2003095787A JP 2003095787 A JP2003095787 A JP 2003095787A JP 2001291035 A JP2001291035 A JP 2001291035A JP 2001291035 A JP2001291035 A JP 2001291035A JP 2003095787 A JP2003095787 A JP 2003095787A
Authority
JP
Japan
Prior art keywords
molecules
heating
film
film forming
beam source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001291035A
Other languages
Japanese (ja)
Other versions
JP3684343B2 (en
Inventor
Taketoshi Saitou
建勇 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON BIITEC KK
Original Assignee
NIPPON BIITEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON BIITEC KK filed Critical NIPPON BIITEC KK
Priority to JP2001291035A priority Critical patent/JP3684343B2/en
Publication of JP2003095787A publication Critical patent/JP2003095787A/en
Application granted granted Critical
Publication of JP3684343B2 publication Critical patent/JP3684343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently evaporate a heating material even when the material is a macromolecules such as an organic EL material and has a low thermal conductivity without a thermal damage to the material by making the temperature gradient of the materials small in vessels and to stop the emission of molecules in a short time with a good response when the emission of molecules is stopped. SOLUTION: A molecular beam source cell for depositing a thin film has heating material accommodating parts 3, 4 for accommodating the heating materials a, b composed of film forming materials c, d and a heat transmitting material e having higher thermal conductivity than those of the film forming materials c, d, heaters 32, 42 for heating the heating materials a, b in the heating material accommodating parts 3, 4 and emitting molecules c', d' of the film forming materials c, d, valves 33, 34 capable of being opened or closed so as to leak or stop the molecules of the film forming materials c, d emitted from the heating material accommodating part 3, 4, and molecule emission parts 11, 21 for emitting the molecules c', d' of the film forming materials c, d leaked from these valves 33, 43 to a substrate 33.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、成膜材料を加熱す
ることにより、その成膜材料を昇華するか或いは溶融、
蒸発し、固体表面に薄膜を成長させるための成膜材料の
分子を発生する薄膜堆積用分子線源セルに関し、特に熱
伝導率の低い有機エレクトロルミネッセンス材料等の昇
華や蒸発に好適な分子線源セルに関する。
TECHNICAL FIELD The present invention relates to heating a film forming material to sublimate or melt the film forming material.
A molecular beam source for thin film deposition that evaporates and generates molecules of a film forming material for growing a thin film on a solid surface, and is particularly suitable for sublimation and evaporation of an organic electroluminescent material having low thermal conductivity. Regarding cells.

【0002】[0002]

【従来の技術】分子線エピタキシ装置と呼ばれる薄膜堆
積装置は、高真空に減圧可能な真空チャンバ内に半導体
ウエハ等の基板を設置し、所要の温度に加熱すると共
に、この基板の薄膜成長面に向けてクヌードセンセル等
の分子線源セルを設置したものである。この分子線源セ
ルの坩堝に収納した成膜材料をヒータにより加熱し、昇
華させるか、或いは溶融、蒸発させ、これにより発生し
た分子を前記基板の薄膜成長面に入射し、その面に薄膜
をエピタキシャル成長させて、成膜材料の膜を形成す
る。
2. Description of the Related Art A thin film deposition apparatus called a molecular beam epitaxy apparatus places a substrate such as a semiconductor wafer in a vacuum chamber capable of reducing the pressure to a high vacuum, heats it to a required temperature, and grows it on the thin film growth surface of this substrate. A molecular beam source cell such as a Knudsen cell is installed for this purpose. The film forming material housed in the crucible of the molecular beam source cell is heated by a heater to be sublimated, or melted and evaporated, and the molecules generated by this are made incident on the thin film growth surface of the substrate, and a thin film is formed on the surface. Epitaxial growth is performed to form a film of a film forming material.

【0003】このような薄膜堆積装置に使用される分子
線源セルは、熱的、化学的に安定性の高い、例えばPB
N(パイロリティック・ボロン・ナイトライド)等から
なる坩堝の中に成膜材料を収納し、この成膜材料を坩堝
の外側に設けた電気ヒータで加熱し、これにより成膜材
料を昇華させるか或いは溶融、蒸発させ、その分子を発
生させるものである。
The molecular beam source cell used in such a thin film deposition apparatus has a high thermal and chemical stability, such as PB.
Whether the film forming material is housed in a crucible made of N (pyrolytic boron nitride) or the like, and this film forming material is heated by an electric heater provided outside the crucible to sublimate the film forming material. Alternatively, the molecule is melted and evaporated to generate the molecule.

【0004】近年、ディスプレイや光通信等の分野で、
有機エレクトロルミネッセンス素子(有機EL素子)の
研究、開発が進められている。この有機EL素子は、E
L発光能を有する有機低分子または有機高分子材料で発
光層を形成した素子であり、自己発光型の素子としてそ
の特性が注目されている。例えばその基本的な構造は、
ホール注入電極上にトリフェニルジアミン(TPD)等
のホール輸送材料の膜を形成し、この上にアルミキノリ
ノール錯体(Alq3) 等の蛍光物質を発光層として積
層し、さらにMg、Li、Cs等の仕事関数の小さな金
属電極を電子注入電極として形成したものである。
In recent years, in the fields of displays and optical communication,
Research and development of organic electroluminescence elements (organic EL elements) are under way. This organic EL device is
It is an element in which a light emitting layer is formed of an organic low molecule or an organic polymer material having an L light emitting ability, and its characteristics are drawing attention as a self light emitting element. For example, its basic structure is
A film of a hole transport material such as triphenyldiamine (TPD) is formed on the hole injecting electrode, and a fluorescent substance such as aluminum quinolinol complex (Alq 3 ) is laminated as a light emitting layer on the film, and further Mg, Li, Cs, etc. Is a metal electrode having a small work function as an electron injection electrode.

【0005】[0005]

【発明が解決しようとしている課題】前記のような有機
ELを形成する各層は、前述のような薄膜堆積装置を使
用して形成される。ところが、特に有機エレクトロルミ
ネッセンス膜を形成するための有機エレクトロルミネッ
センス材料は、融点が低く、しかも熱伝導率が低い。こ
のため、前述のような分子線源セルで加熱、蒸発しよう
とすると、ヒータで加熱される坩堝の周壁に近い周囲の
部分では、昇華や蒸発に必要な所要の温度が得られて
も、坩堝の中央側で温度が極端に低くなり、昇華や蒸発
に必要な温度に満たない状態となる。
Each layer forming the above-mentioned organic EL is formed by using the above-mentioned thin film deposition apparatus. However, in particular, the organic electroluminescent material for forming the organic electroluminescent film has a low melting point and a low thermal conductivity. For this reason, when trying to heat and evaporate in the molecular beam source cell as described above, even in the peripheral portion near the peripheral wall of the crucible heated by the heater, even if the required temperature for sublimation or evaporation is obtained, the crucible is The temperature becomes extremely low on the center side of the and becomes less than the temperature required for sublimation and evaporation.

【0006】このような状態では、坩堝に収納された成
膜材料のうち、坩堝の周壁に近い周囲の部分のみが昇華
または蒸発され、坩堝の中央部にある成膜材料が蒸発さ
れずに残ってしまう。そのため、材料の歩留まりが悪い
だけでなく、温度の不均一性による膜の欠陥等が生じや
すい。
In such a state, of the film-forming material stored in the crucible, only the peripheral portion near the peripheral wall of the crucible is sublimated or evaporated, and the film-forming material in the center of the crucible remains without being evaporated. Will end up. Therefore, not only the yield of the material is poor, but also the defects of the film due to the nonuniformity of the temperature are likely to occur.

【0007】本件発明者らは、このような従来の分子線
源セルにおける課題を解決するため、先の特願2001
−192261号において、化学的、熱的に安定してお
り、且つその成膜材料より熱伝導率の高い伝熱媒体と共
に、坩堝に成膜材料を収納することを提案した。具体的
には、パイロリティック・ボロン・ナイトライド(PB
N)、シリコンカーバイト、窒化アルミニウム等の高熱
伝導材料からなる粒子状の伝熱媒体に、有機エレクトロ
ルミネッセンス等の成膜材料を被覆した加熱材料を坩堝
に収納し、これを加熱するものである。これにより、ヒ
ータの熱を前記の伝熱媒体を介して坩堝の内部にまで伝
熱し、坩堝の内部の成膜材料をも効率的に昇華または蒸
発できるようにした。
In order to solve the problems in the conventional molecular beam source cell as described above, the inventors of the present invention proposed the above-mentioned Japanese Patent Application No. 2001.
In No. 192261, it was proposed to store the film forming material in the crucible together with a heat transfer medium that is chemically and thermally stable and has a higher thermal conductivity than the film forming material. Specifically, pyrolytic boron nitride (PB
N), a silicon carbide, a high heat conductive material such as aluminum nitride or the like, a particulate heat transfer medium coated with a film forming material such as organic electroluminescence in a crucible, and the crucible is heated. . Thus, the heat of the heater is transferred to the inside of the crucible through the heat transfer medium, and the film forming material inside the crucible can be efficiently sublimated or evaporated.

【0008】ところが、前記のような高伝熱材料からな
る伝熱媒体は、有機エレクトロルミネッセンス等の成膜
材料に比べて熱容量が大きく、坩堝に収納された加熱材
料全体が大きな熱容量を持つようになる。そのため、ヒ
ータにより加熱されても容易に温度が上昇せず、またヒ
ータによる加熱を停止し、シュラウドで冷却しても、容
易に温度が下降しない。すなわち、熱応答性が悪く、そ
れが故に成膜材料の放射開始及びその停止の制御が困難
であるという問題がある。
However, the heat transfer medium made of the high heat transfer material as described above has a large heat capacity as compared with a film forming material such as organic electroluminescence so that the whole heating material housed in the crucible has a large heat capacity. Become. Therefore, the temperature does not easily rise even when heated by the heater, and the temperature does not easily fall even when the heating by the heater is stopped and the shroud cools. That is, there is a problem in that the thermal response is poor, which makes it difficult to control the start and stop of radiation of the film forming material.

【0009】特に、分子の放射停止時の分子のリークに
よる基板への飛散が問題である。分子の放射開始時の加
熱材料の昇温時間の短縮は、ヒータの熱量を大きくする
ことで可能であるが、放射停止時には、ヒータの発熱を
停止し、シュラウドで冷却しても、十分な降温速度がえ
られず、分子放射の停止が遅れる。
In particular, there is a problem of scattering of molecules onto the substrate due to leakage of molecules when radiation of the molecules is stopped. It is possible to shorten the temperature rise time of the heating material at the start of radiation of molecules by increasing the amount of heat of the heater, but at the time of radiation stop, even if the heat generation of the heater is stopped and it is cooled by the shroud The speed cannot be obtained, and the stop of molecular emission is delayed.

【0010】特に、有機エレクトロルミネッセンスを使
用したカラーディスプレイでは、主成分である有機エレ
クトロルミネッセンス材料にRGBの発色を与えるため
の3種類のドーパントをそれぞれ分けて注入する必要が
ある。ところが、ドーパントの放射停止の遅れにより、
前後に放射するドーパントが基板上で混じり合ってしま
うため、RGBの発色が得られない結果となる。
Particularly, in a color display using organic electroluminescence, it is necessary to separately implant three kinds of dopants for giving RGB color development to the organic electroluminescence material which is the main component. However, due to the delay of the radiation stop of the dopant,
Since the front and rear radiating dopants are mixed with each other on the substrate, RGB coloration cannot be obtained.

【0011】本発明は、このような従来の分子線源セル
における課題に鑑み、容器の中で加熱材料の温度勾配を
小さくし、有機EL材料のような高分子であって熱伝導
率の低い加熱材料でも、熱損傷を与えることなく、効率
よく蒸発して蒸発分子を発生することができるようにす
ることを目的とする。さらに、分子の放射停止時に、応
答性よく短時間で分子の放射を停止することが出来るよ
うにすることを目的とする。
In view of the above problems in the conventional molecular beam source cell, the present invention reduces the temperature gradient of the heating material in the container, and is a polymer such as an organic EL material and has a low thermal conductivity. It is an object of the present invention to enable efficient evaporation of vaporized molecules even with a heating material without causing thermal damage. Further, it is another object of the present invention to make it possible to stop the emission of molecules in a short time with good response when the emission of molecules is stopped.

【0012】[0012]

【課題を解決するための手段】本発明では、前記の目的
を達成するため、伝熱性の悪い成膜材料c、dに加え
て、それより伝熱性の良い伝熱材料eを含む加熱材料
a、bを使用し、これらの加熱材料a、bを加熱するこ
とで、成膜材料c、dの伝熱性を改善した。さらに、伝
熱材料eを含むため、全体として加熱材料a、bの熱容
量が大きくなったことによる分子放出停止時の放出停止
の遅れについては、ニードルバルブ等のバルブ33、4
3を使用することにより、分子発生源側から放出される
分子を即時に停止できるようにした。
In the present invention, in order to achieve the above-mentioned object, in addition to the film-forming materials c and d having poor heat conductivity, a heating material a containing a heat transfer material e having a better heat conductivity than that. , B are used to heat the heating materials a and b, thereby improving the heat conductivity of the film forming materials c and d. Further, since the heat transfer material e is included, the delay of the release stop at the time of stopping the release of molecules due to the increase in the heat capacity of the heating materials a and b as a whole will be explained by the valves 33, 4 such as needle valves.
By using 3, it was possible to immediately stop the molecule released from the molecule source side.

【0013】すなわち、本発明による薄膜堆積用分子線
源セルは、成膜材料c、dとそれより熱伝導率の高い伝
熱材料eとからなる加熱材料a、bを収納した加熱材料
収納部3、4と、この加熱材料収納部3、4の中の加熱
材料a、bを加熱し、その成膜材料c、dの分子c’、
d’を放出するためのヒータ32、42と、加熱材料収
納部3、4から放出される成膜材料a、bの分子をリー
クまたは停止するよう開閉されるバルブ33、43と、
このバルブ33、43からリークした成膜材料c、dの
分子c’、d’を基板33に向けて放出する分子放射部
11、21とを有するものである。
That is, the molecular beam source cell for thin film deposition according to the present invention has a heating material accommodating portion for accommodating heating materials a and b made of the film forming materials c and d and the heat transfer material e having a higher thermal conductivity. 3, 4 and the heating materials a and b in the heating material accommodating portions 3 and 4 are heated to generate molecules c ′ of the film forming materials c and d,
heaters 32 and 42 for discharging d ′, valves 33 and 43 that are opened and closed to leak or stop molecules of the film forming materials a and b discharged from the heating material storage units 3 and 4,
The molecular emission parts 11 and 21 for emitting the molecules c ′ and d ′ of the film forming materials c and d leaking from the valves 33 and 43 toward the substrate 33.

【0014】この場合、基板33の成膜面に堆積させる
主成分となる成膜材料cを放射する第一の分子線源セル
1と、基板33の成膜面に堆積させる副成分となる成膜
材料dを放射する第二の分子線源セル2とを組み合わせ
たものである。第二の分子線源セル2は複数使用する場
合もある。
In this case, the first molecular beam source cell 1 for radiating the film-forming material c which is the main component to be deposited on the film-forming surface of the substrate 33 and the sub-component which is to be deposited on the film-forming surface of the substrate 33. This is a combination with the second molecular beam source cell 2 that emits the film material d. A plurality of second molecular beam source cells 2 may be used.

【0015】このような分子線源セルにおいて、成膜材
料c、dは熱伝導率が低く、ヒータの熱が十分伝熱でき
ない場合であっても、伝熱媒体eがヒータの熱を伝熱
し、速やかに加熱材料a、bの全体及びその内部まで熱
を伝える。このため、ヒータの近くとそれから離れた部
分との温度差が小さくなり、成膜材料c、dの全体を容
易に蒸発させることができる。
In such a molecular beam source cell, the film forming materials c and d have low thermal conductivity, and even if the heat of the heater cannot be sufficiently transferred, the heat transfer medium e transfers the heat of the heater. The heat is quickly transmitted to the entire heating materials a and b and the inside thereof. Therefore, the temperature difference between the vicinity of the heater and the portion away from the heater becomes small, and the entire film forming materials c and d can be easily evaporated.

【0016】また、加熱材料収納部3、4から放出され
る成膜材料a、bの分子をリークまたは停止するよう開
閉されるバルブ33、43を備えたため、加熱材料a、
bが伝熱媒体eを含むことにより、その全体の熱容量が
大きくなっても、バルブ33、34の開閉操作により、
分子放射部11、21からの分子の放射開始及び放射停
止を直ちに行うことができる。
Further, since the valves 33 and 43 which are opened and closed so as to leak or stop the molecules of the film forming materials a and b discharged from the heating material accommodating portions 3 and 4, the heating material a and b are provided.
Since b contains the heat transfer medium e, even if the heat capacity of the whole becomes large, by opening and closing the valves 33 and 34,
It is possible to immediately start and stop the emission of molecules from the molecule emission units 11 and 21.

【0017】なお、バルブ33、43は、ニードル3
4、44の先鋭な先端部で分子通過孔38、48を開閉
するニードルバルブが最適である。実験によれば、この
ようなニードルバルブは、そのニードルの位置と分子の
放出量との関係がほぼ直線的である。そのため、分子の
放出量を正確に制御しやすく、例えば主成分である成膜
材料cの分子と副成分である成膜材料dの分子との比を
正確に制御できるという利点がある。
The valves 33 and 43 are provided for the needle 3
A needle valve that opens and closes the molecule passage holes 38 and 48 at the sharpened tip ends of 4, 44 is most suitable. According to experiments, such a needle valve has a substantially linear relationship between the position of the needle and the amount of released molecules. Therefore, there is an advantage that the amount of released molecules can be easily controlled accurately, for example, the ratio of the molecules of the film-forming material c that is the main component to the molecules of the film-forming material d that is the sub-component can be accurately controlled.

【0018】[0018]

【発明の実施の形態】次に、図面を参照しながら、本発
明の実施の形態について、具体的且つ詳細に説明する。
図1は、基板33に成膜する薄膜として、主成分の蒸発
材料aを蒸発し、その分子を放出する第一の分子線源セ
ル1とドーパント等の副成分の蒸発材料bを蒸発し、そ
の分子を放出する第二の分子線源セル2とを組み合わせ
た複合分子線源セルの例である。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described specifically and in detail with reference to the drawings.
In FIG. 1, as a thin film to be formed on the substrate 33, the evaporation material a, which is the main component, is evaporated, the first molecular beam source cell 1 that emits its molecules, and the evaporation material b, which is a subcomponent such as a dopant, are evaporated. It is an example of the composite molecular beam source cell which combined with the 2nd molecular beam source cell 2 which discharges the molecule.

【0019】これらの分子線セル1、2は、容器31、
41の中に加熱材料a、bを収納し、ヒータ32、42
でこの加熱材料a、bに含まれる成膜材料を昇華または
蒸発させる加熱材料収納部3、4と、この加熱材料収納
部3、4から放出される成膜材料a、bの分子をリーク
または停止するよう開閉されるバルブ33、43と、こ
のバルブ33、43から送られてきた成膜材料の分子
c’、d’をヒータ15、24で再加熱し、基板33に
向けて放出する分子放射部11、21とを有する。
These molecular beam cells 1 and 2 include a container 31,
The heating materials a and b are housed in 41, and the heaters 32 and 42 are
Then, the heating material storage parts 3 and 4 for sublimating or evaporating the film forming material contained in the heating materials a and b, and the molecules of the film forming materials a and b released from the heating material storage parts 3 and 4 leak or The valves 33 and 43 that are opened and closed to stop, and the molecules c ′ and d ′ of the film-forming material sent from the valves 33 and 43 are reheated by the heaters 15 and 24 and released to the substrate 33. It has radiation parts 11 and 21.

【0020】図2は、主成分の成膜材料cを昇華または
蒸発して放射する第一の分子線源セル1を示す。この分
子線源セル1の加熱材料収納部3は、SUS等の金属の
高熱伝導材料からなる円筒状の容器31を有し、この容
器31の中に加熱材料aが収納されている。この加熱材
料aは、図8に示すように、粒状の伝熱媒体eをコアと
して、その表面に膜の主成分となる成膜材料cを被覆す
るようにして設けたものである。この加熱材料aを前記
の加熱材料収納部3の容器31に収納している。
FIG. 2 shows a first molecular beam source cell 1 which radiates by sublimating or evaporating a film-forming material c as a main component. The heating material storage unit 3 of the molecular beam source cell 1 has a cylindrical container 31 made of a highly heat-conductive material such as SUS, and the heating material a is stored in the container 31. As shown in FIG. 8, this heating material a has a granular heat transfer medium e as a core, and its surface is covered with a film forming material c which is a main component of the film. The heating material a is stored in the container 31 of the heating material storage unit 3.

【0021】また、伝熱媒体eの表面に成膜材料cを被
覆する代わりに、伝熱媒体eと成膜材料cとを適当な割
合で均一に混合した状態で加熱材料収納部3の容器31
に収納してもよい。伝熱媒体eと蒸発材料cを内に収納
する容積比は、70%:30%前後が一般的である。伝
熱媒体eは、熱的、化学的に安定しており、且つ成膜材
料cより熱伝導率の高いもので作られる。例えば伝熱媒
体eは、PBN、シリコンカーバイト或いは窒化アルミ
ニウム等の高熱伝導材料で作られている。
Further, instead of coating the surface of the heat transfer medium e with the film forming material c, the container of the heating material accommodating portion 3 in a state where the heat transfer medium e and the film forming material c are uniformly mixed at an appropriate ratio. 31
May be stored in. The volume ratio in which the heat transfer medium e and the evaporation material c are housed is generally around 70%: 30%. The heat transfer medium e is made of a material that is thermally and chemically stable and has a higher thermal conductivity than the film forming material c. For example, the heat transfer medium e is made of a highly heat conductive material such as PBN, silicon carbide or aluminum nitride.

【0022】図2に示すように、容器31の周囲にはヒ
ータ32が配置され、その外側は液体窒素水等で冷却さ
れるシュラウド39で囲まれている。容器31に設けた
熱電対等の温度測定手段(図示せず)により、ヒータ3
2の発熱量を制御し、容器31の加熱材料aを加熱する
ことにより、容器31内の成膜材料cが昇華または蒸発
し、その分子が発生する。また、ヒータ32の発熱を停
止し、シュラウド39で容器31の内部を冷却すること
により、加熱材料aが冷却され、成膜材料の昇華または
蒸発が停止される。
As shown in FIG. 2, a heater 32 is arranged around the container 31, and the outside thereof is surrounded by a shroud 39 cooled by liquid nitrogen water or the like. The heater 3 is provided by a temperature measuring means (not shown) such as a thermocouple provided in the container 31.
By controlling the heat generation amount of 2 and heating the heating material a in the container 31, the film forming material c in the container 31 is sublimated or evaporated, and its molecules are generated. Further, by stopping the heat generation of the heater 32 and cooling the inside of the container 31 with the shroud 39, the heating material a is cooled and the sublimation or evaporation of the film forming material is stopped.

【0023】加熱時には、伝熱媒体dを介して成膜材料
cが加熱される。伝熱媒体eは成膜材料cより熱伝導率
が高いため、成膜材料cだけでは容器31の中央にまで
熱が伝わらない場合でも、この伝熱媒体eにより容器3
1の中央まで熱が伝わり、その容器31の中央にある成
膜材料cも加熱して溶融、蒸発させる。これにより、容
器31に収納された成膜材料cが満遍なく加熱、溶融、
蒸発される。
During heating, the film forming material c is heated via the heat transfer medium d. Since the heat transfer medium e has a higher thermal conductivity than the film forming material c, even if the heat is not transferred to the center of the container 31 only by the film forming material c, the heat transfer medium e causes the container 3 to move.
Heat is transferred to the center of the container 1, and the film forming material c in the center of the container 31 is also heated to melt and evaporate. As a result, the film forming material c stored in the container 31 is evenly heated, melted,
Is evaporated.

【0024】また伝熱媒体eは、PBN、シリコンカー
バイト或いは窒化アルミニウム等のように、熱的、化学
的に安定した材料で作られているため、ヒータ32での
加熱によって溶融、蒸発することはない。従って、容器
31の蒸気放出口2から放射される蒸発分子の中に伝熱
媒体eを形成する分子が含まれることはなく、結晶成長
する膜の組成に影響を与えない。
Since the heat transfer medium e is made of a thermally and chemically stable material such as PBN, silicon carbide or aluminum nitride, it should be melted and vaporized by heating with the heater 32. There is no. Therefore, the molecules forming the heat transfer medium e are not included in the vaporized molecules radiated from the vapor discharge port 2 of the container 31, and the composition of the film for crystal growth is not affected.

【0025】なお、成膜材料cがEL発光能を有する有
機低分子または有機高分子材料である場合、その気化温
度は、銅等の金属等に比べて遙かに低く、大半は200
℃以下である。他方、耐熱温度も比較的低く、前記のよ
うな有機低分子または有機高分子材料の蒸発には、その
気化温度以上、耐熱温度以下の温度で加熱する必要があ
る。
When the film-forming material c is an organic low molecular weight or organic high molecular weight material having EL light emitting ability, its vaporization temperature is much lower than that of a metal such as copper, and most of them have a vaporization temperature of 200.
It is below ℃. On the other hand, the heat resistance temperature is also relatively low, and in order to evaporate the organic low molecular weight or organic polymer material as described above, it is necessary to heat at a temperature not lower than the vaporization temperature but not higher than the heat resistant temperature.

【0026】この容器31の成膜材料の分子が放出され
る側にバルブ33が設けられている。このバルブ33
は、ニードルバルブであり、先鋭なニードル34と、そ
のニードル34の先端が嵌まり込むことにより、流路が
閉じられ或いは流路断面積が絞られる分子通過孔を有す
る弁座35を有している。前記のニードル34は、ベロ
ーズ37を介してサーボモータ36により導入されるリ
ニア運動によりその中心軸方向に移動される。
A valve 33 is provided on the side of the container 31 where molecules of the film forming material are released. This valve 33
Is a needle valve having a sharp needle 34 and a valve seat 35 having a molecule passage hole in which the tip of the needle 34 is fitted to close the flow passage or narrow the flow passage cross-sectional area. There is. The needle 34 is moved in the direction of its central axis by a linear motion introduced by a servo motor 36 via a bellows 37.

【0027】図4(a)は図2のA部を拡大した図であ
るが、前記のリニア運動により、ニードル34の先端が
弁座45の分子通過孔38に嵌合され、あるいはその分
子通過孔38から離れて分子通過孔38が開かれる。図
4(a)は、ニードル34の先端が弁座35の分子通過
孔38に嵌まり込んでその弁座通過孔38を閉塞してい
る状態であり、バルブ33が閉じられている状態を示し
ている。
FIG. 4 (a) is an enlarged view of the portion A in FIG. 2. The tip of the needle 34 is fitted into the molecule passage hole 38 of the valve seat 45 or the molecule passage therethrough by the linear movement. The molecular passage hole 38 is opened apart from the hole 38. FIG. 4A shows a state in which the tip of the needle 34 is fitted into the molecule passage hole 38 of the valve seat 35 to close the valve seat passage hole 38, and the valve 33 is closed. ing.

【0028】図2に示すように、このバルブ33により
開閉される弁座35の分子通過孔の先には、分子放射部
11がある。この分子放射部11は円筒形の分子加熱室
12を有し、この分子加熱室12の周囲にヒータ15が
設けられている。前記のバルブ33側からリークし、分
子放射部11に至った成膜材料の分子は、この分子加熱
室12で所要の温度に再加熱され、分子放出口14から
基板に向けて放射される。
As shown in FIG. 2, the molecular radiation portion 11 is located in front of the molecular passage hole of the valve seat 35 which is opened and closed by the valve 33. The molecular radiation unit 11 has a cylindrical molecular heating chamber 12, and a heater 15 is provided around the molecular heating chamber 12. The molecules of the film-forming material that have leaked from the valve 33 side and have reached the molecular emission unit 11 are reheated to a required temperature in the molecular heating chamber 12, and are emitted from the molecular emission port 14 toward the substrate.

【0029】他方、図3は、副成分の成膜材料dを昇華
または蒸発して放射する第二の分子線源セル2を示す。
この第二の分子線源セル2の構成は、基本的に前述した
第一の分子線源セル1と同じである。すなわち、この第
二の分子線源セル2の加熱材料収納部4は、SUS等の
金属の高熱伝導材料からなる円筒状の容器41を有し、
この容器41の中に加熱材料bが収納されている。この
加熱材料bは、図8に示すように、前記の加熱材料aと
同様に粒状の伝熱媒体eをコアとして、その表面に膜の
副成分である成膜材料dを被覆するようにして設けたも
のである。
On the other hand, FIG. 3 shows a second molecular beam source cell 2 for sublimating or evaporating and emitting the film forming material d as a subcomponent.
The configuration of the second molecular beam source cell 2 is basically the same as that of the first molecular beam source cell 1 described above. That is, the heating material storage portion 4 of the second molecular beam source cell 2 has a cylindrical container 41 made of a highly heat-conductive material such as metal such as SUS,
The heating material b is stored in the container 41. As shown in FIG. 8, this heating material b has a granular heat transfer medium e as a core, and its surface is coated with a film forming material d which is a sub ingredient of the film, as in the heating material a. It is provided.

【0030】図3に示すように、容器41の周囲にはヒ
ータ42が配置され、その外側は液体窒素水等で冷却さ
れるシュラウド49で囲まれている。これらヒータ42
とシュラウド49の構造及び機能は、図2により前述し
たヒータ32とシュラウド39と全く同様である。
As shown in FIG. 3, a heater 42 is arranged around the container 41, and the outside thereof is surrounded by a shroud 49 which is cooled by liquid nitrogen water or the like. These heaters 42
The structure and function of the shroud 49 and the shroud 49 are exactly the same as the heater 32 and the shroud 39 described above with reference to FIG.

【0031】この容器41の成膜材料の分子が放出され
る側にバルブ43が設けられている。このバルブ43
は、やはりニードルバルブであり、先鋭なニードル44
と、そのニードル44の先端が嵌まり込むことにより、
流路が閉じられ或いは流路断面積が絞られる分子通過孔
を有する弁座45を有している。前記のニードル44
は、ベローズ47を介してサーボモータ46により導入
されるリニア運動によりその中心軸方向に移動される。
図4(b)は図3のB部を拡大した図であるが、前記の
リニア運動により、ニードル44の先端が弁座45の分
子通過孔48に嵌合され、あるいはその分子通過孔48
から離れて分子通過孔48が開かれる。
A valve 43 is provided on the side of the container 41 where molecules of the film forming material are released. This valve 43
Is also a needle valve and has a sharp needle 44.
By fitting the tip of the needle 44,
It has a valve seat 45 having a molecule passage hole in which the flow passage is closed or the flow passage cross-sectional area is narrowed. The needle 44
Is moved in the direction of its central axis by the linear movement introduced by the servomotor 46 via the bellows 47.
FIG. 4B is an enlarged view of the portion B of FIG. 3, but the tip of the needle 44 is fitted into the molecule passage hole 48 of the valve seat 45 or the molecule passage hole 48 thereof due to the linear movement.
The molecular passage hole 48 is opened apart from.

【0032】図4(a)と図4(b)を比較すると明ら
かなように、主成分の成膜材料を供給、停止するための
バルブ33と副成分の成膜材料を供給停止するバルブ4
3とでは、分子通過孔38、48の径が異なっており、
これに嵌合されるニードル34、44の先端のテーパも
異なっている。すなわち、前者のバルブ33の分子通過
孔38は、後者のバルブ43の分子通過孔48より径が
大きく、また前者のバルブ33のニードル34の先端の
テーパは、後者のニードル44のテーパより大きい。こ
れにより、バルブ33、43を開いたときの分子の通過
量、すなわち分子放出口14、24から放射される分子
c’、d’の放射量に違いが生じる。この分子c’、
d’の放射量は、膜の主成分と副成分の組成比率に応じ
て決定する。例えば、主成分:副成分の組成比が10
0:1の場合、バルブ33、43を最大に開いたときの
分子の通過量も100:1とする。また、後述するよう
に分子線源セル1、2からの分子の放射量は、容器3
1、41内の加熱材料a、bの加熱温度によっても設定
できる。
As is clear from a comparison between FIG. 4A and FIG. 4B, the valve 33 for supplying and stopping the film forming material of the main component and the valve 4 for stopping the supply of the film forming material of the auxiliary component.
3, the molecular passage holes 38 and 48 have different diameters,
The taper of the tips of the needles 34 and 44 fitted in this is also different. That is, the diameter of the molecule passage hole 38 of the former valve 33 is larger than that of the molecule passage hole 48 of the latter valve 43, and the taper of the tip of the needle 34 of the former valve 33 is larger than that of the latter needle 44. This causes a difference in the amount of molecules passing when the valves 33 and 43 are opened, that is, the amounts of radiation of the molecules c ′ and d ′ emitted from the molecule emission ports 14 and 24. This molecule c ',
The radiation amount of d'is determined according to the composition ratio of the main component and the subcomponent of the film. For example, the composition ratio of main component: subcomponent is 10
In the case of 0: 1, the passage amount of molecules when the valves 33 and 43 are opened to the maximum is also 100: 1. In addition, as will be described later, the amount of radiation of molecules from the molecular beam source cells 1 and 2 is
It can also be set by the heating temperature of the heating materials a and b in the Nos. 1 and 41.

【0033】図3に示すように、このバルブ43により
開閉される弁座45の分子通過孔の先には、分子放射部
21がある。この分子放射部21は円筒形の分子加熱室
22を有し、この分子加熱室22の周囲にヒータ25が
設けられている。前記のバルブ43側からリークし、分
子放射部21に至った成膜材料の分子は、この分子加熱
室22で所要の温度に再加熱され、再凝固することなく
分子放出口24から基板に向けて放射される。
As shown in FIG. 3, the molecular radiation portion 21 is located at the tip of the molecular passage hole of the valve seat 45 which is opened and closed by the valve 43. The molecule emitting section 21 has a cylindrical molecule heating chamber 22, and a heater 25 is provided around the molecule heating chamber 22. The molecules of the film-forming material that have leaked from the valve 43 side and have reached the molecular emission part 21 are reheated to a required temperature in this molecular heating chamber 22 and directed from the molecular emission port 24 to the substrate without being re-solidified. Is emitted.

【0034】図5は、図2と図4(a)に示す分子線源
セル1において、バルブ33のニードル34の先端の位
置と分子放射口14から発射される成膜材料の分子のビ
ーム圧との関係を示すグラフの一例である。この図5か
ら明らか通り、バルブ33のニードル34の先端の位置
と分子放射口14から発射される成膜材料の分子のビー
ム圧とはほぼ直線的な関係にある。従って、バルブ33
のニードル34の先端の位置により、分子放射口14か
ら発射される成膜材料の分子の量を正確に制御できるこ
とがわかる。この点は、他方の分子線源セル2でも同様
である。
FIG. 5 shows the position of the tip of the needle 34 of the valve 33 and the beam pressure of the molecules of the film-forming material emitted from the molecule emission port 14 in the molecular beam source cell 1 shown in FIGS. 2 and 4A. It is an example of a graph showing the relationship with. As is clear from FIG. 5, the position of the tip of the needle 34 of the valve 33 and the beam pressure of the molecules of the film-forming material emitted from the molecule emission port 14 have a substantially linear relationship. Therefore, the valve 33
It can be seen that the amount of molecules of the film-forming material emitted from the molecule emission port 14 can be accurately controlled by the position of the tip of the needle 34. This point is the same in the other molecular beam source cell 2.

【0035】図6は、やはり図2と図4(a)に示す分
子線源セル1において、弁座35の分子通過孔をバルブ
33のニードル34の先端で閉塞した状態から瞬時に全
開したときの分子放射口14から発射される成膜材料の
分子のビーム圧との時間との関係を示すグラフの一例で
ある。この図6から明らか通り、弁座35の分子通過孔
を瞬時に全開すると、放出される成膜材料の分子の量が
急峻に立ち上がることが分かる。
FIG. 6 shows that when the molecular beam source cell 1 shown in FIG. 2 and FIG. 4A is instantly fully opened from the state where the molecular passage hole of the valve seat 35 is closed by the tip of the needle 34 of the valve 33. 3 is an example of a graph showing the relationship between the beam pressure of molecules of the film-forming material emitted from the molecule emission port 14 and time. As is clear from FIG. 6, when the molecule passage hole of the valve seat 35 is instantly fully opened, the amount of the released molecules of the film forming material rises sharply.

【0036】図7は、やはり図2と図4(a)に示す分
子線源セル1において、弁座35の分子通過孔を全開し
た状態からバルブ33のニードル34の先端で瞬時に全
閉したときの分子放射口14から発射される成膜材料の
分子のビーム圧との時間との関係を示すグラフの一例で
ある。この図7から明らか通り、弁座35の分子通過孔
を瞬時に全閉すると、成膜材料の分子の量が急速に収束
することがることが分かる。10-8Torrは真空チャ
ンバ内の真空度であり、分子線源セル1のバックグラン
ドである。
In the molecular beam source cell 1 shown in FIGS. 2 and 4 (a), the molecular passage hole of the valve seat 35 is fully opened and then the needle 34 of the valve 33 is instantaneously fully closed. 9 is an example of a graph showing the relationship between the beam pressure of molecules of the film-forming material emitted from the molecule emission port 14 and time. As is clear from FIG. 7, it is found that when the molecule passage hole of the valve seat 35 is instantaneously fully closed, the amount of molecules of the film forming material converges rapidly. 10 −8 Torr is the degree of vacuum in the vacuum chamber and is the background of the molecular beam source cell 1.

【0037】このような2つの分子線源セル1、2を図
1に示すように基板33に向けて設置し、それぞれの分
子放出口14、24から主成分と副成分の成膜材料の分
子c’、d’を発射し、基板33上に成膜させる。副成
分の成膜材料の分子d’を発射する分子線源セル2は複
数のものを使用する場合があり、例えば有機エレクトロ
ルミネッセンスを使用したカラーディスプレイのための
発光膜を成膜する場合、RGBをそれぞれ発色するドー
パントをそれぞれ別の分子線源セル2から発射する。
Two such molecular beam source cells 1 and 2 are installed toward the substrate 33 as shown in FIG. 1, and the molecules of the film-forming material of the main component and the sub-component are supplied from the respective molecular emission ports 14 and 24. C'and d'are fired to form a film on the substrate 33. A plurality of molecular beam source cells 2 that emit molecules d ′ of a film forming material as an accessory component may be used, and for example, when forming a light emitting film for a color display using organic electroluminescence, RGB is used. Are emitted from different molecular beam source cells 2.

【0038】図5に示すように、前記の分子線源セル
1、2においては、それらのバルブ33、43のニード
ル34、44の先端の位置により、分子放射口14、2
4から発射される成膜材料の分子c’、d’の量を正確
に制御できるため、分子線源セル1、2から発射される
成膜材料の分子c’、d’の比を正確に設定できる。ま
た、分子放射口14、24から発射される成膜材料の分
子c’、d’の量は、ヒータ32、42による加熱材料
a、bの加熱温度にも依存する。このため、前記バルブ
33、43のニードル34、44の先端の位置と共に、
ヒータ32、42の発熱温度を制御することにより、広
い範囲で分子線源セル1、2から発射される成膜材料の
分子c’、d’の比を設定できることになる。
As shown in FIG. 5, in the molecular beam source cells 1 and 2 described above, depending on the positions of the tips of the needles 34 and 44 of the valves 33 and 43, the molecular radiation ports 14 and 2 are formed.
Since the amounts of the molecules c ′ and d ′ of the film forming material emitted from No. 4 can be accurately controlled, the ratio of the molecules c ′ and d ′ of the film forming material emitted from the molecular beam source cells 1 and 2 can be accurately obtained. Can be set. Further, the amounts of the molecules c ′ and d ′ of the film forming material emitted from the molecular emission ports 14 and 24 also depend on the heating temperatures of the heating materials a and b by the heaters 32 and 42. Therefore, together with the positions of the tips of the needles 34 and 44 of the valves 33 and 43,
By controlling the heat generation temperatures of the heaters 32 and 42, the ratio of the molecules c ′ and d ′ of the film forming material emitted from the molecular beam source cells 1 and 2 can be set in a wide range.

【0039】[0039]

【発明の効果】以上説明した通り、本発明による分子線
源セルでは、熱伝導率が低い成膜材料でも、容器31、
41内で均一な温度分布に加熱して溶融、蒸発すること
ができるので、成膜材料を歩留まりよく蒸発して固体の
表面に結晶成長させることができる。これにより、材料
の使用効率を高めることができるだけでなく、成膜材料
の温度ムラがなくなり、結晶成長により形成された膜の
品質を高めることができる。
As described above, in the molecular beam source cell according to the present invention, even if the film-forming material having a low thermal conductivity is used, the container 31,
Since it can be heated to a uniform temperature distribution in 41 to be melted and evaporated, the film-forming material can be evaporated with a high yield and crystals can be grown on the surface of the solid. Thereby, not only the use efficiency of the material can be improved, but also the temperature unevenness of the film forming material can be eliminated, and the quality of the film formed by crystal growth can be improved.

【0040】さらに、加熱材料a、bが伝熱媒体eを含
むことにより、その全体の熱容量が大きくなっても、バ
ルブ33、34の開閉操作により、分子放射部11、2
1からの分子の放射開始及び放射停止を直ちに行うこと
ができる。なお、バルブ33、43としてニードルバル
ブを用いることにより、分子の放出量を正確に制御しや
すく、例えば主成分である成膜材料cの分子と副成分で
ある成膜材料dの分子の放射量の比を正確に制御できる
という利点がある。
Furthermore, even if the heating materials a and b contain the heat transfer medium e, and the heat capacity of the whole becomes large, the molecular radiation parts 11 and 2 are opened and closed by opening and closing the valves 33 and 34.
The emission initiation and emission termination of the molecule from 1 can be done immediately. By using needle valves as the valves 33 and 43, it is easy to accurately control the amount of released molecules, and for example, the amount of radiation of molecules of the film-forming material c which is the main component and molecules of the film-forming material d which is a sub-component. The advantage is that the ratio of can be accurately controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態による分子線源セルを2つ
同時に使用した例を示す真空チャンバの分子線源セルの
装着部分の縦断側面図である。
FIG. 1 is a vertical cross-sectional side view of a mounting portion of a molecular beam source cell of a vacuum chamber showing an example in which two molecular beam source cells according to an embodiment of the present invention are simultaneously used.

【図2】同実施形態による一方の分子線源セルを示す縦
断側面図である。
FIG. 2 is a longitudinal side view showing one molecular beam source cell according to the same embodiment.

【図3】同実施形態による他方の分子線源セルを示す縦
断側面図である。
FIG. 3 is a longitudinal side view showing the other molecular beam source cell according to the same embodiment.

【図4】図3と図4のそれぞれA部とB部を示す拡大断
面図である。
FIG. 4 is an enlarged cross-sectional view showing portions A and B of FIGS. 3 and 4, respectively.

【図5】前記実施形態による分子線源セルのバルブのニ
ードルの位置と放射される分子のビーム圧との関係の例
を示すグラフである。
FIG. 5 is a graph showing an example of the relationship between the position of the needle of the valve of the molecular beam source cell according to the embodiment and the beam pressure of emitted molecules.

【図6】前記実施形態による分子線源セルのバルブのニ
ードルで分子通過孔を瞬時に開いた直後の時間と放射さ
れる分子のビーム圧との関係の例を示すグラフである。
FIG. 6 is a graph showing an example of the relationship between the time immediately after the molecular passage hole is instantly opened by the needle of the valve of the molecular beam source cell according to the embodiment and the beam pressure of the emitted molecule.

【図7】前記実施形態による分子線源セルのバルブのニ
ードルで分子通過孔を瞬時に閉じた直後の時間と放射さ
れる分子のビーム圧との関係の例を示すグラフである。
FIG. 7 is a graph showing an example of the relationship between the time immediately after the molecular passage hole is instantly closed by the needle of the valve of the molecular beam source cell according to the embodiment and the beam pressure of the emitted molecule.

【図8】前記実施形態による分子線源セルに使用される
加熱材料の概念を示す断面図である。
FIG. 8 is a sectional view showing the concept of a heating material used in the molecular beam source cell according to the embodiment.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 成膜材料(c)、(d)をヒータで加熱
して蒸発し、その分子(c’)、(d’)を放出口(1
4)、(24)から放出し、基板(33)の成膜面上に
堆積させて薄膜を形成する薄膜堆積用分子線源セルにお
いて、成膜材料(c)、(d)とそれより熱伝導率の高
い伝熱材料(e)とからなる加熱材料(a)、(b)を
収納した加熱材料収納部(3)、(4)と、この加熱材
料収納部(3)、(4)の中の加熱材料(a)、(b)
を加熱し、その成膜材料(c)、(d)の分子
(c’)、(d’)を放出するためのヒータ(32)、
(42)と、加熱材料収納部(3)、(4)から放出さ
れる成膜材料(a)、(b)の分子をリークまたは停止
するよう開閉されるバルブ(33)、(43)と、この
バルブ(33)、(43)からリークした成膜材料
(c)、(d)の分子(c’)、(d’)を基板(3
3)に向けて放出する分子放射部(11)、(21)と
を有することを特徴とする薄膜堆積用分子線源セル。
1. A film forming material (c), (d) is heated by a heater to evaporate, and its molecules (c '), (d') are emitted through an emission port (1).
4), in the molecular beam source cell for thin film deposition, which emits from (24) and is deposited on the film-forming surface of the substrate (33) to form a thin film, the film-forming materials (c) and (d) and heat from them. Heating material storage parts (3) and (4) storing heating materials (a) and (b) made of a heat transfer material (e) having high conductivity, and the heating material storage parts (3) and (4). Heating materials (a), (b)
A heater (32) for heating the film and releasing the molecules (c ') and (d') of the film-forming material (c), (d),
(42) and valves (33) and (43) that are opened and closed to leak or stop the molecules of the film forming materials (a) and (b) released from the heating material storage units (3) and (4). , The molecules (c ′) and (d ′) of the film forming materials (c) and (d) leaked from the valves (33) and (43) are used as the substrate (3
A molecular beam source cell for depositing a thin film, comprising: a molecular radiation portion (11), (21) for emitting toward 3).
【請求項2】 基板(33)の成膜面に堆積させる主成
分となる成膜材料(c)を含む加熱材料(a)を放射す
る第一の分子線源セル(1)と、基板(33)の成膜面
に堆積させる副成分となる成膜材料(d)を放射する第
二の分子線源セル(2)とを組み合わせたことを特徴と
する請求項1に記載の薄膜堆積用分子線源セル。
2. A first molecular beam source cell (1) for radiating a heating material (a) containing a film forming material (c) as a main component to be deposited on a film forming surface of a substrate (33), and a substrate ( 33. The thin film deposition apparatus according to claim 1, which is combined with a second molecular beam source cell (2) for radiating a film forming material (d) which is an auxiliary component to be deposited on the film forming surface of 33). Molecular beam source cell.
【請求項3】 バルブ(33)、(43)は、ニードル
(34)、(44)の先鋭な先端部で分子通過孔(3
8)、(48)を開閉するニードルバルブであることを
特徴とする請求項1または2に記載の薄膜堆積用分子線
源セル。
3. The valves (33), (43) have a molecular passage hole (3) at the sharp tips of the needles (34), (44).
The molecular beam source cell for thin film deposition according to claim 1 or 2, which is a needle valve for opening and closing 8) and (48).
JP2001291035A 2001-09-25 2001-09-25 Molecular beam source cell for thin film deposition Expired - Lifetime JP3684343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001291035A JP3684343B2 (en) 2001-09-25 2001-09-25 Molecular beam source cell for thin film deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001291035A JP3684343B2 (en) 2001-09-25 2001-09-25 Molecular beam source cell for thin film deposition

Publications (2)

Publication Number Publication Date
JP2003095787A true JP2003095787A (en) 2003-04-03
JP3684343B2 JP3684343B2 (en) 2005-08-17

Family

ID=19113242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001291035A Expired - Lifetime JP3684343B2 (en) 2001-09-25 2001-09-25 Molecular beam source cell for thin film deposition

Country Status (1)

Country Link
JP (1) JP3684343B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225706A (en) * 2005-02-17 2006-08-31 Hitachi Zosen Corp Vapor deposition apparatus
JP2006274284A (en) * 2005-03-28 2006-10-12 Hitachi Zosen Corp Flow rate control device for evaporation material, and vapor deposition apparatus
WO2007037268A1 (en) * 2005-09-29 2007-04-05 Tokyo Electron Limited Raw material feeder and vapor deposition apparatus
JP2007126303A (en) * 2005-11-01 2007-05-24 Nippon Biitec:Kk Molecular beam source for depositing thin film and method for controlling molecular beam quantity
EP1871923A1 (en) * 2005-04-22 2008-01-02 Beneq Oy Source, an arrangement for installing a source, and a method for installing and removing a source
US7369758B2 (en) 2004-03-02 2008-05-06 Chosu Industry Co., Ltd. Molecular beam source for use in accumulation of organic thin-films
JP2008523245A (en) * 2004-12-07 2008-07-03 アドン Vacuum deposition apparatus with recharge reservoir and corresponding vacuum deposition method
US8110509B2 (en) 2002-05-17 2012-02-07 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating light emitting devices
JP2012026041A (en) * 2011-10-27 2012-02-09 Tokyo Electron Ltd Vapor deposition apparatus
US8206507B2 (en) 2002-05-17 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Evaporation method, evaporation device and method of fabricating light emitting device
JP2013108137A (en) * 2011-11-21 2013-06-06 Panasonic Corp Inline vapor-deposition apparatus
US9209427B2 (en) 2002-04-15 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating light-emitting device and apparatus for manufacturing light-emitting device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9209427B2 (en) 2002-04-15 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating light-emitting device and apparatus for manufacturing light-emitting device
US8206507B2 (en) 2002-05-17 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Evaporation method, evaporation device and method of fabricating light emitting device
US8110509B2 (en) 2002-05-17 2012-02-07 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating light emitting devices
US7369758B2 (en) 2004-03-02 2008-05-06 Chosu Industry Co., Ltd. Molecular beam source for use in accumulation of organic thin-films
JP2008523245A (en) * 2004-12-07 2008-07-03 アドン Vacuum deposition apparatus with recharge reservoir and corresponding vacuum deposition method
JP4583200B2 (en) * 2005-02-17 2010-11-17 日立造船株式会社 Vapor deposition equipment
JP2006225706A (en) * 2005-02-17 2006-08-31 Hitachi Zosen Corp Vapor deposition apparatus
JP4535917B2 (en) * 2005-03-28 2010-09-01 日立造船株式会社 Evaporating material flow control device and vapor deposition device
JP2006274284A (en) * 2005-03-28 2006-10-12 Hitachi Zosen Corp Flow rate control device for evaporation material, and vapor deposition apparatus
EP1871923A4 (en) * 2005-04-22 2010-05-26 Beneq Oy Source, an arrangement for installing a source, and a method for installing and removing a source
US7922821B2 (en) 2005-04-22 2011-04-12 Beneq Oy Source, an arrangement for installing a source, and a method for installing and removing a source
EP1871923A1 (en) * 2005-04-22 2008-01-02 Beneq Oy Source, an arrangement for installing a source, and a method for installing and removing a source
WO2007037268A1 (en) * 2005-09-29 2007-04-05 Tokyo Electron Limited Raw material feeder and vapor deposition apparatus
US7682670B2 (en) 2005-11-01 2010-03-23 Choshu Industry Co., Ltd. Method for controlling the volume of a molecular beam
JP4673190B2 (en) * 2005-11-01 2011-04-20 長州産業株式会社 Molecular beam source for thin film deposition and its molecular dose control method
JP2007126303A (en) * 2005-11-01 2007-05-24 Nippon Biitec:Kk Molecular beam source for depositing thin film and method for controlling molecular beam quantity
JP2012026041A (en) * 2011-10-27 2012-02-09 Tokyo Electron Ltd Vapor deposition apparatus
JP2013108137A (en) * 2011-11-21 2013-06-06 Panasonic Corp Inline vapor-deposition apparatus

Also Published As

Publication number Publication date
JP3684343B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
KR100951493B1 (en) A morecular beam epitaxy effusion cell for use in vacuum thin film deposition and a method therefor
KR100826743B1 (en) Organic thin film manufacturing apparatus
TWI357775B (en) Vaporizing temperature sensitive materials for ole
JP4041005B2 (en) Molecular beam source for thin film deposition and thin film deposition method using the same
US20030131796A1 (en) Vapor deposition method and vapor deposition apparatus for forming organic thin films
JP3684343B2 (en) Molecular beam source cell for thin film deposition
KR101232910B1 (en) apparatus for supplying organic matter, Apparatus and method for depositing organic matter using the same
KR20090106506A (en) Vapor deposition sources and method
TW201244223A (en) Large capacity depositing apparatus for forming thin film
US20060251811A1 (en) Controllably feeding powdered or granular material
KR101284394B1 (en) A molecular beam source for use of thin-film accumulation and a method for controlling volume of molecular beam
JP2007224393A (en) Vapor deposition source cell, thin film deposition method, aperture diaphragm member, and vapor deposition source heater
JP3616586B2 (en) Molecular beam source cell for thin film deposition
US7727335B2 (en) Device and method for the evaporative deposition of a coating material
US20080254217A1 (en) Fine control of vaporized organic material
JP2004022401A (en) Apparatus and method for forming organic film
US7369758B2 (en) Molecular beam source for use in accumulation of organic thin-films
JP2003253433A (en) Thin film deposition apparatus
JP4268847B2 (en) Molecular beam source cell for thin film deposition
KR200365703Y1 (en) Apparatus for vapor deposition of thin film
KR101094001B1 (en) A molecular beam source for use in accumulation of organic thin-films
JP2004152698A (en) Crucible for sublimable material evaporation and evaporation method using the crucible
JP2004162108A (en) Molecular beam source cell for thin film deposition
TWI375727B (en) A molecular beam source for use in accumulation of organic thin-films
KR100625966B1 (en) Method of vacuum evaporation for EL and appratus the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

R150 Certificate of patent or registration of utility model

Ref document number: 3684343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080603

Year of fee payment: 3

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080603

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080603

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080603

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080603

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080603

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250