JP2003095763A - Porous glass and method of manufacturing the same - Google Patents

Porous glass and method of manufacturing the same

Info

Publication number
JP2003095763A
JP2003095763A JP2001290418A JP2001290418A JP2003095763A JP 2003095763 A JP2003095763 A JP 2003095763A JP 2001290418 A JP2001290418 A JP 2001290418A JP 2001290418 A JP2001290418 A JP 2001290418A JP 2003095763 A JP2003095763 A JP 2003095763A
Authority
JP
Japan
Prior art keywords
glass
water
porous
heating
autoclave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001290418A
Other languages
Japanese (ja)
Inventor
Kazumichi Yanagisawa
和道 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno Network Shikoku Co Ltd
Original Assignee
Techno Network Shikoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19112726&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2003095763(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Techno Network Shikoku Co Ltd filed Critical Techno Network Shikoku Co Ltd
Priority to JP2001290418A priority Critical patent/JP2003095763A/en
Publication of JP2003095763A publication Critical patent/JP2003095763A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/08Other methods of shaping glass by foaming

Abstract

PROBLEM TO BE SOLVED: To provide porous glass which does not need binders and various kinds of chemicals, has a uniform quality by uniform foaming, retains water floatability, is good in yield of manufacturing and is reduced in cost by performing a hydrothermal treatment using various kinds of waste glass or other glass alone as raw materials and a method of manufacturing the same. SOLUTION: The porous glass body fabricated as a porous body internally having pores by pressurizing a kneaded mixture composed of glass powder and water in an autoclave, then molding the kneaded mixture under hydrothermal conditions by heating the kneaded mixture up to a prescribed temperature while maintaining this state and cooling the mixture after holding the same for a specified time to obtain a solidified body diffused with the water and heating this solidified body for a prescribed time within a heating furnace to foam the solidified body and the method of manufacturing the same are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はガラス多孔体及びそ
の製造方法に関し、特には断熱材とかプラスチックの軽
量化及び高強度化を目的とする充填剤等として多用途に
使用可能な汎用性を有するガラス多孔体とその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous glass body and a method for producing the same, and in particular, it has versatility that can be used for various purposes as a filler for the purpose of reducing the weight and increasing the strength of a heat insulating material or plastic. The present invention relates to a porous glass body and a method for producing the same.

【0002】[0002]

【従来の技術】ガラス多孔体とは内部に気孔を多量に含
むガラス塊を総称する物体であって、特に従来から閉気
孔を多く含有するガラス多孔体は、断熱材とかプラスチ
ックの充填剤としての利用に供されている。ガラスを原
料として多孔体を作製する方法が種々試みられており、
原材料として一般のガラス以外に結合材としての粘土と
か発泡剤として石灰石等を添加する手段が採用されてい
る。また、シラスバルーンと呼称される中空ガラス球も
市販されている。
2. Description of the Related Art A porous glass body is a general term for a glass lump containing a large number of pores inside, and in particular, a porous glass body containing many closed pores has been used as a heat insulating material or a filler for plastics. It is used. Various methods for producing a porous body from glass have been tried,
In addition to ordinary glass as a raw material, a means for adding clay as a binder or limestone as a foaming agent is adopted. Hollow glass spheres called Shirasu balloon are also commercially available.

【0003】上記に関し、特開平6−87677号公報
には、都市ゴミとか下水汚泥等の廃棄物を溶融処理した
後に冷却固化してガラスを形成し、このガラスを粗粉砕
して粒状体としてから表面に粘土等の被覆材をコートし
て高温の炉内に投入して焼成発泡させる方法が記載され
ている。また、特開平7−25643号公報には、粒径
20μm以下の火山ガラス質堆積物粉末をアルカリ水溶
液で加熱処理した後、酸溶液に浸して表面のアルカリを
溶出させ、乾燥した後、900〜1100℃の温度で熱
処理してから水中での浮沈分離又は空気分級することに
よって超微粒中空ガラス球状体を得る方法が開示されて
いる。更に特開平1−46458号公報には、130〜
350℃、4〜170(kg/cm・G)の条件下で
ガラス粉末に尿素水溶液を圧入し、次いで1100〜1
600℃の加熱条件下で発泡させる中空ガラス球の製造
方法が記載されている。
With respect to the above, Japanese Patent Application Laid-Open No. 6-87677 discloses a method in which waste such as municipal waste and sewage sludge is melted and then cooled and solidified to form glass, and the glass is coarsely crushed to form granules. A method is described in which a surface is coated with a coating material such as clay and the mixture is placed in a high temperature furnace for firing and foaming. In Japanese Patent Laid-Open No. 7-25643, a volcanic glassy deposit powder having a particle size of 20 μm or less is heat-treated with an alkaline aqueous solution, then dipped in an acid solution to elute the alkali on the surface and dried. A method for obtaining ultrafine hollow glass spheres by heat-treatment at a temperature of 1100 ° C., followed by float-sink separation in water or air classification is disclosed. Further, Japanese Patent Laid-Open Publication No. 1-4458 / 130 discloses 130-
Aqueous urea solution was pressed into glass powder under the conditions of 350 ° C. and 4-170 (kg / cm 2 · G), and then 1100-1.
A method for producing hollow glass spheres that are foamed under heating conditions of 600 ° C. is described.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
ガラスを原料として多孔体を作製する方法は、原材料と
してガラス以外に結合材としての粘土及び発泡剤として
の石灰石等を添加する必要があり、シラスバルーンと呼
称される中空ガラス球も原材料が天然物であるため、原
材料の選択及び確保面での限界がある上、作製時に発泡
現象が均一に起こらずに品質の均一性が劣る難点があ
り、製品化した際の歩留まりが悪化してしまうという課
題がある。また、開気孔を多く含有するガラス多孔体で
あるため、浮水性が得られないという問題がある。
However, in the conventional method for producing a porous body using glass as a raw material, it is necessary to add clay as a binder and limestone as a foaming agent in addition to glass as a raw material. Since the raw material of the hollow glass spheres called a balloon is also a natural product, there is a limit in terms of selection and securing of the raw material, and there is a drawback that the foaming phenomenon does not occur uniformly during production and the uniformity of quality is poor, There is a problem that the yield when commercialized will deteriorate. Further, since it is a glass porous body containing a large number of open pores, there is a problem that the floating property cannot be obtained.

【0005】前記特開平6−87677号公報に記載さ
れた方法は、原材料として都市ゴミとか下水汚泥等の廃
棄物を溶融した後に冷却して得られたガラスを用いてい
るため、粒状体としてから表面に粘土等の被覆材をコー
トする必要があり、発泡体の気孔が閉じていないため、
気孔内に水が浸入して浮水性が得られないという難点が
ある。特開平7−25643号公報に記載された超微粒
中空ガラス球状体を得る方法は、火山ガラス質堆積物粉
末を加熱処理するためのアルカリ液を必要としており、
水溶液で加熱処理した後でもアルカリを溶出させるため
の酸溶液を必要としているため、工程が煩瑣であるとと
もに製造コストが高くなるという問題がある。
In the method described in the above-mentioned JP-A-6-87677, since glass obtained by melting wastes such as municipal waste and sewage sludge and then cooling is used as a raw material, it is possible to use the glass as a granular material. Since it is necessary to coat the surface with a coating material such as clay, the pores of the foam are not closed,
There is a drawback that water does not get into the pores and the floating property cannot be obtained. The method for obtaining ultrafine hollow glass spheres described in JP-A-7-25643 requires an alkaline liquid for heat treatment of volcanic vitreous deposit powder,
Since the acid solution for eluting the alkali is required even after the heat treatment with the aqueous solution, there are problems that the process is complicated and the manufacturing cost is high.

【0006】更に特開平1−46458号公報に記載さ
れた中空ガラス球の製造方法は、原材料としてのガラス
粉末に尿素水溶液を圧入してから加熱により発泡させる
方法であるため、高価な尿素を必要とする上、1100
〜1600℃という高温の加熱条件下で発泡させなけれ
ばならないため、電気炉の消費エネルギーが増大してコ
ストアップを招来するという問題がある。
Further, the method for producing hollow glass spheres described in JP-A-1-46458 requires expensive urea because it is a method in which an aqueous urea solution is pressed into glass powder as a raw material and then foamed by heating. And 1100
Since foaming must be performed under a high-temperature heating condition of ˜1600 ° C., there is a problem that the energy consumption of the electric furnace increases and the cost increases.

【0007】一般に内部に水が拡散しているガラス質の
原材料を加熱すると、ガラスが軟化し始めるのにつれて
ガラス内に気泡が形成され、加熱が高温になると気泡が
膨張して大きな気泡が形成される。この時の加熱条件が
前記した1100〜1600℃という高温に達すると、
気泡が破裂して開気孔となり、気泡自体の大きさが減少
して浮水性が得られないという問題が生じる。
Generally, when a glassy raw material in which water is diffused is heated, bubbles are formed in the glass as the glass begins to soften, and when the temperature becomes high, the bubbles are expanded and large bubbles are formed. It When the heating conditions at this time reach the high temperature of 1100 to 1600 ° C. described above,
There is a problem that the bubbles burst and become open pores, the size of the bubbles themselves decreases, and the floating property cannot be obtained.

【0008】そこで本発明は上記の問題点を解決して、
原材料として各種の廃ガラスその他のガラスのみを用い
て水蒸気による水熱処理を行うことにより、結合材及び
各種の化学薬品を不要とし、しかも均一な発泡現象によ
り気孔が閉気孔であって品質が均一で浮水性を保持し、
製造時の歩留まりが良好でコストが低廉化されたガラス
多孔体及びその製造方法を提供することを目的とするも
のである。
Therefore, the present invention solves the above problems,
By performing hydrothermal treatment with steam using only various kinds of waste glass and other glass as raw materials, there is no need for binders and various chemicals, and due to the uniform foaming phenomenon, the pores are closed pores and the quality is uniform. Keeps the water floating,
It is an object of the present invention to provide a glass porous body having a good yield at the time of production and a low cost, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
するために、ガラス粉末と水の混練物を水熱処理を行う
ことにより、水が拡散した固化体を得て、該固化体を加
熱することにより発泡させて、内部に気孔を有する多孔
体として作製したガラス多孔体、及びガラス粉末と水の
混練物をオートクレーブ内で加圧した後、この圧力状態
を保ったまま所定の温度まで加熱して水熱条件下で成形
し、一定の時間保持した後冷却することにより水が拡散
した固化体を得て、該固化体を加熱炉内で所定時間加熱
することにより発泡させて、内部に気孔を有する多孔体
として作製したガラス多孔体を提供する。その気孔は閉
気孔となっている。
In order to achieve the above object, the present invention performs a hydrothermal treatment on a kneaded material of glass powder and water to obtain a solidified body in which water is diffused and heat the solidified body. After foaming by pressing, the glass porous body produced as a porous body having pores inside, and the kneaded product of the glass powder and water are pressurized in the autoclave, and then heated to a predetermined temperature while maintaining this pressure state. Then, it is molded under hydrothermal conditions, and a solidified body in which water is diffused by cooling after holding for a certain time is obtained, and the solidified body is heated in a heating furnace for a predetermined time to foam, and Provided is a glass porous body produced as a porous body having pores. The pores are closed pores.

【0010】そして、ガラスを水とともに水熱処理を行
うことによりガラス中に水を拡散させ、その後加熱する
ことにより発泡させて、内部に閉気孔を有するように作
製するガラス多孔体の製造方法、及びガラス粉末に水を
加えて混練し、オートクレーブ内で所定の圧力で加圧し
た後、この圧力を保ったまま所定の温度まで加熱して水
蒸気による水熱条件下で成形し、一定の時間保持した後
に室温まで冷却することにより水が拡散した固化体を得
て、該固化体を加熱炉内で所定時間加熱して発泡させ
て、内部に閉気孔を有するように作製するガラス多孔体
の製造方法、更に原材料としての廃ガラスを粉砕してか
ら分級し、得られたガラス粉末に水を加えて混練してか
らピストン・シリンダタイプのオートクレーブ内に充填
して所定の圧力で加圧した後、この圧力を保ったまま所
定の温度まで加熱して水熱条件下で成形し、一定の時間
保持した後に室温まで冷却することにより水が拡散した
固化体を得て、この固化体を電気炉内で所定時間加熱し
て発泡させて、内部に閉気孔を有するように作製するガ
ラス多孔体の製造方法を提供する。
Then, a method for producing a porous glass body in which water is diffused in the glass by subjecting the glass to hydrothermal treatment together with water and then foamed by heating to have closed pores inside, After adding water to the glass powder and kneading, pressurizing at a predetermined pressure in the autoclave, heating to a predetermined temperature while maintaining this pressure, molding under hydrothermal conditions with steam, and holding for a certain time After that, a solidified body in which water is diffused by cooling to room temperature is obtained, and the solidified body is heated in a heating furnace for a predetermined time to foam, and a method for producing a porous glass body having closed pores inside is produced. Further, waste glass as a raw material is crushed and then classified, and water is added to the obtained glass powder to knead and then filled in a piston / cylinder type autoclave and applied at a predetermined pressure. After that, it is heated to a predetermined temperature while maintaining this pressure and molded under hydrothermal conditions, and after holding for a certain time, it is cooled to room temperature to obtain a solidified body in which water is diffused, and this solidified body is obtained. Provided is a method for producing a porous glass body, which is produced by heating in an electric furnace for a predetermined period of time to cause it to foam to have closed pores inside.

【0011】原材料としてガラス粉末の粒子直径が50
μm以下であり、ガラス粉末に対する添加水量は10重
量%以上とする。オートクレーブ内でガラス粉末を加圧
する圧力は10MPa以上とし、加熱炉による加熱温度
は750℃とする。また、オートクレーブ内の昇温速度
と降温速度を毎分1℃とする。
As a raw material, the particle diameter of glass powder is 50
μm or less, and the amount of water added to the glass powder is 10% by weight or more. The pressure for pressing the glass powder in the autoclave is 10 MPa or more, and the heating temperature in the heating furnace is 750 ° C. Further, the rate of temperature increase and the rate of temperature decrease in the autoclave are set to 1 ° C. per minute.

【0012】かかるガラス多孔体及びその製造方法によ
れば、原材料として各種の廃ガラスその他のガラス粉末
がオートクレーブ内で水蒸気のみを用いた水熱処理によ
って成形され、一定の時間保持した後に室温まで冷却す
ることによって内部に水が拡散した固化体となる。この
固化体を加熱炉内で所定時間加熱することによってガラ
ス自体が軟化すると同時に水を放出するので、高温で蒸
気として放出されて発泡が行われて、その泡が気泡とな
って所定の密度と圧縮強度及び熱伝導率を有するととも
に軽量で浮水性を保持した閉気孔のガラス多孔体が得ら
れる。
According to the porous glass body and the method for producing the same, various kinds of waste glass and other glass powders as raw materials are formed by hydrothermal treatment using only steam in the autoclave, and after being kept for a certain period of time, cooled to room temperature. As a result, it becomes a solidified body with water diffused inside. By heating this solidified body in a heating furnace for a predetermined time, the glass itself softens and releases water at the same time, so it is released as vapor at a high temperature and foams, and the bubbles become bubbles and have a predetermined density. It is possible to obtain a glass porous body having closed pores, which has a compressive strength and a thermal conductivity, is lightweight, and retains the floating property.

【0013】[0013]

【発明の実施の形態】以下図面に基づいて本発明にかか
るガラス多孔体及びその製造方法の実施形態を説明す
る。図1は本発明を適用したガラス多孔体の製造工程の
概要を示すフロー図であり、先ずステップ1で原材料と
してのガラスを準備する。ガラスとしては廃ガラスその
他の任意のガラスを使用することができる。本実施形態
では廃ガラスを使用した。ステップ2で該廃ガラスを粉
砕してから篩を用いて分級する。この時に原材料として
ガラス粉末の粒子直径が50μm以下であることが好ま
しい。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a glass porous body and a method for producing the same according to the present invention will be described below with reference to the drawings. FIG. 1 is a flow chart showing an outline of a manufacturing process of a glass porous body to which the present invention is applied. First, in step 1, glass as a raw material is prepared. As the glass, waste glass or any other glass can be used. In this embodiment, waste glass is used. In step 2, the waste glass is crushed and then classified using a sieve. At this time, it is preferable that the glass powder as a raw material has a particle diameter of 50 μm or less.

【0014】次にステップ3で得られたガラス粉末に水
を加えて乳鉢を用いて混練する。そしてステップ4で混
練物をピストン・シリンダタイプのオートクレーブ内に
充填し、ステップ5で所定の圧力で加圧する。この圧力
を保ったままステップ6で所定の温度まで加熱すること
により、水蒸気による水熱条件下で成形が行われる。そ
して一定の時間だけ保持してからステップ7で室温まで
冷却する。この時の昇温速度と降温速度は温度プログラ
マを用いて制御する。
Next, water is added to the glass powder obtained in step 3 and the mixture is kneaded in a mortar. Then, in step 4, the kneaded material is filled in a piston / cylinder type autoclave, and in step 5, it is pressurized at a predetermined pressure. By heating to a predetermined temperature in step 6 while maintaining this pressure, molding is performed under hydrothermal conditions with steam. Then, after holding for a certain period of time, in step 7, it is cooled to room temperature. The temperature raising rate and the temperature lowering rate at this time are controlled using a temperature programmer.

【0015】ステップ8で上記の冷却により硬化した固
化体を得て、この固化体をオートクレーブから取り出し
てからステップ9で加熱炉内で所定時間加熱して発泡を
行わせることにより、ステップ10でガラス多孔体を得
る。
In step 8, a solidified body hardened by the above cooling is obtained, and the solidified body is taken out of the autoclave and then heated in a heating furnace for a predetermined time in step 9 to cause foaming. A porous body is obtained.

【0016】良好なガラス多孔体を得るには廃ガラスの
粉末に対する添加水量が10重量%以上であることが必
要であり、オートクレーブ内でガラス粉末を加圧する圧
力は10MPa以上とする。また、加熱炉による加熱温
度は750℃以上とし、オートクレーブ内の昇温速度と
降温速度は概ね毎分1℃とするのが適当である。
To obtain a good glass porous body, the amount of water added to the powder of waste glass must be 10% by weight or more, and the pressure for pressing the glass powder in the autoclave is 10 MPa or more. Further, it is appropriate that the heating temperature in the heating furnace is 750 ° C. or higher, and the rate of temperature increase and temperature decrease in the autoclave is approximately 1 ° C. per minute.

【0017】以下に具体的な各種実施例を説明する。 [実施例1]先ず原材料としての青色廃ガラスを用意
し、該原材料を粉砕、分級して粒子径が43〜53μm
の粉末試料を作製する。この粉末試料に10重量%の水
を加え、乳鉢の中で充分に混練してから混練物を得た。
オートクレーブは直径2cmのものと、直径6cmのも
のの2種類を使用し、直径2cmのピストン・シリンダ
タイプのオートクレーブ内には前記混練物の粉末試料1
0g分を充填し、直径10cmのピストン・シリンダタ
イプのオートクレーブ内には混練物の粉末試料200g
分を充填した。
Various specific examples will be described below. Example 1 First, blue waste glass as a raw material was prepared, and the raw material was crushed and classified to have a particle diameter of 43 to 53 μm.
A powder sample of is prepared. 10% by weight of water was added to this powder sample and kneaded thoroughly in a mortar to obtain a kneaded product.
Two types of autoclave, one with a diameter of 2 cm and the other with a diameter of 6 cm, are used. Inside the piston / cylinder type autoclave with a diameter of 2 cm, the powder sample 1
Filled with 0g, and 200g of powder sample of kneaded material in piston / cylinder type autoclave with 10cm diameter.
The minutes were filled.

【0018】次に油圧ポンプを用いてオートクレーブの
上下からピストンを駆動して、該オートクレーブ内のガ
ラス粉末を20MPaの圧力で加圧する。この圧力を保
ったままでオートクレーブ内の混練物を毎分1℃の昇温
速度で200℃まで加熱し、水熱条件下で成形して2時
間保持してから毎分1℃の降温速度で室温まで冷却す
る。オートクレーブの昇温速度と降温速度は温度プログ
ラマを用いて制御する。
Next, a piston is driven from above and below the autoclave using a hydraulic pump to press the glass powder in the autoclave at a pressure of 20 MPa. While maintaining this pressure, the kneaded material in the autoclave was heated to 200 ° C at a temperature rising rate of 1 ° C / min, molded under hydrothermal conditions and held for 2 hours, and then cooled at a temperature of 1 ° C / min to room temperature. Cool down. The temperature increase rate and the temperature decrease rate of the autoclave are controlled using a temperature programmer.

【0019】次にオートクレーブ内の圧力を大気圧まで
戻し、密度が2.3g/cmの緻密な固化体を取り出
す。この固化体を電気炉に入れて毎分10℃の昇温速度
で750℃まで加熱し、そのまま1時間保持する。この
加熱処理により発泡現象が起こり、ガラス多孔体が得ら
れた。
Next, the pressure in the autoclave is returned to atmospheric pressure, and a dense solidified body having a density of 2.3 g / cm 3 is taken out. The solidified body is placed in an electric furnace, heated to 750 ° C. at a temperature rising rate of 10 ° C./min, and kept as it is for 1 hour. A foaming phenomenon occurred by this heat treatment, and a glass porous body was obtained.

【0020】発泡現象のメカニズムは次のように考えら
れる。ガラス粉末に水を添加して、加圧しながら加熱す
ることにより、ガラス粉末と水との反応が起こる。この
ときガラスのアルカリ成分が溶出しガラスが水に溶解し
やすくなるために、加圧によるガラス粒子の流動機構に
よる緻密化が起こる。さらに水とガラスとの反応は徐々
に進行し、水がガラス粒子内へ拡散していく。水が拡散
することにより、ガラス自体の粘性が低下して流動しや
すくなり、粒界は消失して均一な固化体が得られる。こ
のガラス固化体の中には、拡散した水を含んでいる。こ
の固化体を加熱すると、ガラス自体が軟化すると同時に
水を放出するので、高温で蒸気として放出された水が軟
化したガラス中に泡をつくり、その泡が気泡となって多
孔体が作成できるのである。
The mechanism of the foaming phenomenon is considered as follows. The reaction between the glass powder and water occurs by adding water to the glass powder and heating it while applying pressure. At this time, the alkaline component of the glass is eluted and the glass is easily dissolved in water, so that densification occurs due to the flow mechanism of the glass particles due to pressurization. Furthermore, the reaction between water and glass gradually progresses, and water diffuses into the glass particles. The diffusion of water reduces the viscosity of the glass itself and facilitates the flow, and the grain boundaries disappear to obtain a uniform solidified body. This vitrified body contains diffused water. When this solidified body is heated, the glass itself softens and releases water at the same time, so the water released as steam at high temperature creates bubbles in the softened glass, and the bubbles become bubbles to create a porous body. is there.

【0021】得られたガラス多孔体の密度は0.35g
/cm、圧縮強度が12MPa、熱伝導率は0.2W
/m・Kであり、このガラス多孔体を水に浸すと浮き続
け、内部に水が浸入しない閉気孔を有するガラス多孔体
が作製された。
The density of the obtained glass porous body was 0.35 g.
/ Cm 3 , compressive strength 12 MPa, thermal conductivity 0.2 W
When the glass porous body was immersed in water, the glass porous body continued to float, and a glass porous body having closed pores into which water did not enter was produced.

【0022】本発明に係るガラス多孔体の特徴の一つは
気孔が閉じていることであるが、そのメカニズムは次の
ように考えられる。水熱処理により、ガラスの中に拡散
して存在している水は、表面に吸着している水とは異な
り、簡単には蒸発させることができず、高温までガラス
内に存在する。この水が拡散したガラスを加熱していく
と、ガラスが軟化し始めると同時にガラス内に蒸気の固
まり(気泡)が形成され、さらなる加熱でガラス自体が
さらに軟化し、ガラス中からの蒸気が気泡内にたまると
同時に膨張して、ガラス内に大きな気泡が形成される。
この時、あまり高温まで加熱すると気泡が破裂してしま
い開気孔となり、気泡自体の大きさが減少するのであ
る。
One of the features of the porous glass body according to the present invention is that the pores are closed, and the mechanism is considered as follows. The water diffused and present in the glass by the hydrothermal treatment cannot be easily evaporated unlike the water adsorbed on the surface, and remains in the glass up to a high temperature. When the glass with the water diffused is heated, the glass begins to soften, and at the same time, a vapor mass (air bubbles) is formed in the glass, and further heating further softens the glass itself and the vapor from the glass bubbles. When it accumulates inside, it expands and forms large bubbles in the glass.
At this time, if heated to an excessively high temperature, the bubbles burst and become open pores, which reduces the size of the bubbles themselves.

【0023】[実施例2〜実施例9]上記実施例1にお
ける粉末試料への添加水量、オートクレーブ内のガラス
粉末を加圧する圧力、電気炉による加熱温度を変更して
多孔体を作製し、得られたガラス多孔体の密度と圧縮強
度を測定した結果を表1に示す。尚、オートクレーブ内
の昇温速度は毎分1℃として200℃まで加熱し、降温
速度は毎分1℃として室温まで冷却する方法は一定とし
た。
[Examples 2 to 9] A porous body was prepared by changing the amount of water added to the powder sample in Example 1 above, the pressure for pressurizing the glass powder in the autoclave, and the heating temperature in the electric furnace. The results of measuring the density and compressive strength of the obtained porous glass body are shown in Table 1. The method for heating the autoclave at a temperature rising rate of 1 ° C./minute to 200 ° C. and cooling the temperature in the autoclave to a room temperature was constant.

【0024】[0024]

【表1】 [Table 1]

【0025】表1によれば、粉末試料に対する添加水量
を5重量%とした実施例2は、得られた多孔体の圧縮強
度が5MPaと低く、添加水量を20重量%とした実施
例3は良好な結果が得られている。オートクレーブ内の
ガラス粉末を加圧する圧力を5MPaにした実施例4も
圧縮強度が8MPaとやや低い結果となった。これは添
加水量が少なかったり圧力が低いと固化体の緻密化が充
分に進行せず、該固化体の密度と硬度が低くなることが
原因であるものと考慮される。従って粉末試料に対する
添加水量は10重量%以上であることが必要である。
According to Table 1, in Example 2 in which the amount of water added to the powder sample was 5% by weight, the compressive strength of the obtained porous body was as low as 5 MPa, and in Example 3 in which the amount of added water was 20% by weight. Good results have been obtained. In Example 4 in which the pressure for pressing the glass powder in the autoclave was 5 MPa, the compressive strength was 8 MPa, which was slightly low. It is considered that this is because if the amount of added water is small or the pressure is low, the densification of the solidified body does not proceed sufficiently, and the density and hardness of the solidified body become low. Therefore, the amount of water added to the powder sample must be 10% by weight or more.

【0026】実施例4,5,6は実施例1のオートクレ
ーブ内のガラス粉末を加圧する圧力20MPaを5MP
a,10MPa,30MPaに変えた例であり、圧力が
低い実施例4は多孔体の密度が0.4g/cmとやや
高く、圧縮強度が8MPaとやや低くなっており、実施
例5,6はほぼ良好な結果が得られていることから、良
好なガラス多孔体を得るにはオートクレーブ内のガラス
粉末を加圧する圧力は10MPa以上であることが必要
であることが分かる。
In Examples 4, 5 and 6, pressure of 20 MPa for pressurizing the glass powder in the autoclave of Example 1 was 5 MPa.
a, 10 MPa, 30 MPa, Example 4 where the pressure is low, the density of the porous body is slightly high at 0.4 g / cm 3, and the compressive strength is slightly low at 8 MPa. Since almost good results are obtained, it is understood that the pressure for pressing the glass powder in the autoclave needs to be 10 MPa or more in order to obtain a good glass porous body.

【0027】実施例7,8,9は実施例1の電気炉によ
る加熱温度750℃を、600℃,700℃,850℃
に変えた例であり、加熱温度を600℃に下げた実施例
7は多孔体の密度が1.8g/cmと高くて圧縮強度
は測定できず、固化体が発泡により多孔化していないこ
とが判明した。加熱温度を700℃にした実施例8は多
孔体が発泡しているものの密度が0.35g/cm
低く、圧縮強度も4MPaと低くなっている。
In Examples 7, 8 and 9, the heating temperature of 750 ° C. in the electric furnace of Example 1 was changed to 600 ° C., 700 ° C. and 850 ° C.
In Example 7 in which the heating temperature was lowered to 600 ° C., the density of the porous body was as high as 1.8 g / cm 3 , the compressive strength could not be measured, and the solidified body was not porous due to foaming. There was found. In Example 8 in which the heating temperature was 700 ° C., although the porous body was foamed, the density was low at 0.35 g / cm 3 and the compressive strength was low at 4 MPa.

【0028】走査型電子顕微鏡により多孔体の密度変化
及び破断面を観察したところ、加熱温度が650℃以上
で発泡現象が生じていることが確認されたが、圧縮強度
が高い多孔体を得るには750℃以上の加熱温度が必要
である。また、電気炉による加熱温度を850℃に高め
た実施例9は多孔体の密度と圧縮強度がほぼ満足する結
果が得られたが、多孔体内の気孔が破裂して気孔自体の
丸みが減少しているとともに気孔の壁の厚みが増加して
いることが判明した。
When the density change and fracture surface of the porous body were observed by a scanning electron microscope, it was confirmed that the foaming phenomenon occurred at a heating temperature of 650 ° C. or higher. However, in order to obtain a porous body having high compressive strength. Requires a heating temperature of 750 ° C. or higher. Further, in Example 9 in which the heating temperature by the electric furnace was raised to 850 ° C., the result was that the density and compressive strength of the porous body were almost satisfied, but the pores in the porous body burst and the roundness of the pores themselves decreased. It was found that the wall thickness of the pores increased as well.

【0029】前記したようにオートクレーブ内の昇温速
度と降温速度は一定としたが、この昇温速度と降温速度
を毎分1℃以上に高めると、得られた固化体に亀裂が生
じて固化体自体の強度も低下することが判明した。
As described above, the heating rate and the cooling rate in the autoclave were constant, but when the heating rate and the cooling rate were increased to 1 ° C. or more per minute, cracks were generated in the obtained solidified body to solidify it. It was also found that the strength of the body itself was reduced.

【0030】上記各実施例に加えて、粉末試料の粒子径
を53μmアンダーにしても同様な多孔体が得られた。
原材料としての青色廃ガラスに代えて、緑色、茶色、透
明ガラスを用いても上記と同一の工程により性能的にも
満足するガラス多孔体が得られた。
In addition to each of the above examples, a similar porous material was obtained even if the particle size of the powder sample was under 53 μm.
Even if green, brown, or transparent glass was used in place of the blue waste glass as a raw material, a glass porous body satisfying the performance was obtained by the same steps as above.

【0031】その結果、本発明を実施するための好まし
い水熱条件等を整理すれば、次記のようになる。 ・ガラスの種類:青色、緑色、茶色、透明(全種類) ・添加する水の量:5−20wt%(10−15wt%
が望ましい) ・成形する圧力:5MPa以上(10MPa以上が望ま
しい、10MPaでも十分) ・成形する温度:150−250℃(180℃以上が望
ましい) ・成形するための加熱速度、冷却速度:低速度(例えば
毎分1℃が望ましい) ・発泡させる温度:650−850℃(750℃が望ま
しい。低温だと発泡不十分、高温だと発泡体が破裂、収
縮して気泡が小さくなる) ・発泡させる時間:比較的短時間でも十分(実験では1
時間を使用) ・発泡させるための加熱速度:低速度(実験では毎分1
0℃を使用した。高速だと固化体が割れる。)
As a result, the preferable hydrothermal conditions for carrying out the present invention are summarized as follows. -Glass type: blue, green, brown, transparent (all types) -Amount of added water: 5-20 wt% (10-15 wt%)
-Molding pressure: 5 MPa or more (10 MPa or more is desirable, 10 MPa is sufficient) -Molding temperature: 150-250 ° C (180 ° C or more is desirable) -Heating rate and cooling rate for molding: Low rate ( For example, 1 ° C per minute is desirable.) Foaming temperature: 650-850 ° C (750 ° C is desirable. At low temperature, foaming is insufficient, at high temperature, foam ruptures and shrinks to reduce bubbles). : Relatively short time is enough (1 in the experiment
-Uses time) -Heating rate for foaming: Low rate (1 minute per minute in the experiment)
0 ° C was used. At high speeds, solidified bodies break. )

【0032】[0032]

【発明の効果】以上詳細に説明したように、本発明によ
れば原材料として各種の廃ガラスをオートクレーブ内で
水蒸気のみを用いた水熱処理を行ってから一定の時間保
持した後に室温まで冷却することによって固化体とな
り、この固化体を加熱炉内で所定時間加熱して発泡させ
ることにより、所定の密度と圧縮強度及び熱伝導率を有
しているとともに軽量で浮水性を保持した閉気孔のガラ
ス多孔体を得ることができる。特に本発明では従来のガ
ラスを原料とする多孔体のように、ガラス以外の材料、
例えば結合材としての粘土とか発泡剤としての石灰石等
は添加する必要がなく、かつ、アルカリ溶液とか酸溶液
及び尿素等は用いていないため、加熱炉の消費エネルギ
ーの低下にも伴って製造コストを低廉化することができ
る。
As described above in detail, according to the present invention, various kinds of waste glass as raw materials are hydrothermally treated using only steam in an autoclave, and after being kept for a certain period of time, cooled to room temperature. It becomes a solidified body by heating, and by heating this solidified body in a heating furnace for a predetermined time to foam, it is a glass with closed pores that has a predetermined density, compressive strength and thermal conductivity, and is lightweight and retains floating water. A porous body can be obtained. In particular, in the present invention, a material other than glass, such as a conventional porous body made of glass,
For example, it is not necessary to add clay as a binder or limestone as a foaming agent, and since an alkali solution, an acid solution, urea, etc. are not used, the manufacturing cost is reduced due to the reduction in the energy consumption of the heating furnace. The cost can be reduced.

【0033】更に本発明で使用する原材料は各種の廃ガ
ラスであるため、従来の中空ガラス球のように天然物の
原材料は用いる必要がなく、原材料の選択及び確保面で
の限界は生じない。また、水熱条件下で成形した後の加
熱炉による発泡現象は均一に起こるため、ガラス多孔体
の品質は均一であるとともに閉気孔を多く含有している
ことにより軽量で浮水性を有しており、製造時の歩留ま
りを高く維持することができる。
Further, since the raw material used in the present invention is various kinds of waste glass, it is not necessary to use the natural raw material unlike the conventional hollow glass spheres, and there is no limitation in selection and securing of the raw material. In addition, since the foaming phenomenon by the heating furnace after molding under hydrothermal conditions occurs uniformly, the quality of the porous glass body is uniform and it contains a lot of closed pores, so it is lightweight and floating. Therefore, the production yield can be maintained high.

【0034】従って本発明によれば、原材料として各種
の廃ガラスのみを用いて、水蒸気を用いた水熱処理を行
うことにより、従来必要とされている結合材及び各種の
化学薬品を不要とし、しかも均一な発泡現象により品質
が均一で浮水性を保持し、製造コストが低廉化されたガ
ラス多孔体及びその製造方法が提供される。
Therefore, according to the present invention, by using only various kinds of waste glass as the raw material and performing the hydrothermal treatment with steam, the conventionally required binder and various chemicals are unnecessary, and Provided are a porous glass body having a uniform quality and a floating property by a uniform foaming phenomenon, and a low manufacturing cost, and a method for manufacturing the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用したガラス多孔体の製造工程の概
要を示すフロー図。
FIG. 1 is a flowchart showing an outline of a manufacturing process of a porous glass body to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1…廃ガラス 2…粉砕・分級工程 3…水との混練工程 4…オートクレーブへの充填工程 5…加圧工程 6…加熱工程 7…冷却工程 8…固化体 9…加熱・発泡工程 10…ガラス多孔体 整理番号 P3349 1 ... Waste glass 2 ... Crushing / classifying process 3 ... Kneading process with water 4 ... Autoclave filling process 5 ... Pressure process 6 ... Heating process 7 ... Cooling process 8 ... Solidified body 9 ... Heating / foaming process 10 ... Porous glass Reference number P3349

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 ガラス粉末と水の混練物を水熱処理を行
うことにより、水が拡散した固化体を得て、該固化体を
加熱することにより発泡させて、内部に気孔を有する多
孔体として作製したことを特徴とするガラス多孔体。
1. A kneaded product of glass powder and water is subjected to hydrothermal treatment to obtain a solidified body in which water is diffused, and the solidified body is heated to foam to obtain a porous body having pores inside. A porous glass body characterized by being produced.
【請求項2】 ガラス粉末と水の混練物をオートクレー
ブ内で加圧した後、この圧力状態を保ったまま所定の温
度まで加熱して水熱条件下で成形し、一定の時間保持し
た後冷却することにより水が拡散した固化体を得て、該
固化体を加熱炉内で所定時間加熱することにより発泡さ
せて、内部に気孔を有する多孔体として作製したことを
特徴とするガラス多孔体。
2. A kneaded product of glass powder and water is pressurized in an autoclave, heated to a predetermined temperature while maintaining this pressure state, molded under hydrothermal conditions, and held for a certain period of time and then cooled. By doing so, a solidified body in which water is diffused is obtained, and the solidified body is heated in a heating furnace for a predetermined time so as to be foamed to produce a porous body having pores inside.
【請求項3】 気孔が閉気孔である請求項1又は2記載
のガラス多孔体。
3. The glass porous body according to claim 1, wherein the pores are closed pores.
【請求項4】 ガラスを水とともに水熱処理を行うこと
によりガラス中に水を拡散させ、その後加熱することに
より発泡させて、内部に閉気孔を有するように作製する
ことを特徴とするガラス多孔体の製造方法。
4. A porous glass body, characterized in that water is diffused into glass by subjecting glass to hydrothermal treatment together with water, and is then foamed by heating to have closed pores inside. Manufacturing method.
【請求項5】 ガラス粉末に水を加えて混練し、オート
クレーブ内で所定の圧力で加圧した後、この圧力を保っ
たまま所定の温度まで加熱して水蒸気による水熱条件下
で成形し、一定の時間保持した後に室温まで冷却するこ
とにより水が拡散した固化体を得て、該固化体を加熱炉
内で所定時間加熱して発泡させて、内部に閉気孔を有す
るように作製することを特徴とするガラス多孔体の製造
方法。
5. The glass powder is kneaded by adding water, pressurized at a predetermined pressure in an autoclave, heated to a predetermined temperature while maintaining this pressure, and molded under hydrothermal conditions with steam, To obtain a solidified body in which water is diffused by holding it for a certain period of time and then cooling it to room temperature, and heating the solidified body in a heating furnace for a predetermined time to foam and produce it so that it has closed pores inside. A method for producing a glass porous body, comprising:
【請求項6】 原材料としての廃ガラスを粉砕してから
分級し、得られたガラス粉末に水を加えて混練してから
ピストン・シリンダタイプのオートクレーブ内に充填し
て所定の圧力で加圧した後、この圧力を保ったまま所定
の温度まで加熱して水熱条件下で成形し、一定の時間保
持した後に室温まで冷却することにより水が拡散した固
化体を得て、この固化体を電気炉内で所定時間加熱して
発泡させて、内部に閉気孔を有するように作製すること
を特徴とするガラス多孔体の製造方法。
6. A waste glass as a raw material is crushed and then classified, water is added to the obtained glass powder to knead the mixture, and the mixture is filled in a piston / cylinder type autoclave and pressurized at a predetermined pressure. After that, while maintaining this pressure, it is heated to a predetermined temperature and molded under hydrothermal conditions, and after holding it for a certain period of time, it is cooled to room temperature to obtain a solidified body in which water has diffused, and this solidified body is converted into an electric material. A method for producing a porous glass body, which is characterized in that the porous glass body is produced by heating in a furnace for a predetermined period of time to foam and produce it with closed pores inside.
【請求項7】 ガラス粉末の粒子直径が50μm以下で
ある請求項4,5,又は6に記載のガラス多孔体の製造
方法。
7. The method for producing a glass porous body according to claim 4, 5, or 6, wherein the particle diameter of the glass powder is 50 μm or less.
【請求項8】 ガラス粉末に対する添加水量が10重量
%以上である請求項4,5,6又は7に記載のガラス多
孔体の製造方法。
8. The method for producing a glass porous body according to claim 4, 5, 6 or 7, wherein the amount of water added to the glass powder is 10% by weight or more.
【請求項9】 オートクレーブ内のガラス粉末を加圧す
る圧力が10MPa以上である請求項4,5,6,7又
は8に記載のガラス多孔体の製造方法。
9. The method for producing a porous glass body according to claim 4, wherein the pressure for pressing the glass powder in the autoclave is 10 MPa or more.
【請求項10】 加熱炉による加熱温度が750℃以上
である請求項4,5,6,7,8又は9に記載のガラス
多孔体の製造方法。
10. The method for producing a porous glass body according to claim 4, wherein the heating temperature in the heating furnace is 750 ° C. or higher.
【請求項11】 オートクレーブ内の昇温速度と降温速
度を毎分1℃とした請求項4,5,6,7,8,9又は
10に記載のガラス多孔体の製造方法。
11. The method for producing a glass porous body according to claim 4, 5, 6, 7, 8, 9, or 10, wherein the rate of temperature rise and rate of temperature decrease in the autoclave are 1 ° C./min.
JP2001290418A 2001-09-25 2001-09-25 Porous glass and method of manufacturing the same Pending JP2003095763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001290418A JP2003095763A (en) 2001-09-25 2001-09-25 Porous glass and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001290418A JP2003095763A (en) 2001-09-25 2001-09-25 Porous glass and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003095763A true JP2003095763A (en) 2003-04-03

Family

ID=19112726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001290418A Pending JP2003095763A (en) 2001-09-25 2001-09-25 Porous glass and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003095763A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004071685A1 (en) * 2003-02-14 2004-08-26 Japan Science And Technology Agency Method of treating waste glass
JP2007509021A (en) * 2003-07-22 2007-04-12 ブァルケ・デ・マセド、ペドロ・エム Strong high-density foam glass tile with small pore size
JP2009252582A (en) * 2008-04-08 2009-10-29 Hiroshima Univ Proton conductor, and method for manufacturing of proton conductor
JP2011116607A (en) * 2009-12-07 2011-06-16 Kochi Univ Method for producing glass hollow body, and glass hollow body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004071685A1 (en) * 2003-02-14 2004-08-26 Japan Science And Technology Agency Method of treating waste glass
JPWO2004071685A1 (en) * 2003-02-14 2006-06-01 独立行政法人科学技術振興機構 Waste glass treatment method
JP4535449B2 (en) * 2003-02-14 2010-09-01 独立行政法人科学技術振興機構 Waste glass treatment method
JP2007509021A (en) * 2003-07-22 2007-04-12 ブァルケ・デ・マセド、ペドロ・エム Strong high-density foam glass tile with small pore size
JP4808615B2 (en) * 2003-07-22 2011-11-02 ブァルケ・デ・マセド、ペドロ・エム Strong high-density foam glass tile with small pore size
JP2009252582A (en) * 2008-04-08 2009-10-29 Hiroshima Univ Proton conductor, and method for manufacturing of proton conductor
JP2011116607A (en) * 2009-12-07 2011-06-16 Kochi Univ Method for producing glass hollow body, and glass hollow body

Similar Documents

Publication Publication Date Title
US10336641B2 (en) Method for producing a foam glass with high open pore content
CN110713377B (en) Preparation of CaO-MgO-SiO by using asbestos tailings2Method for making foamed ceramics
CN113480327A (en) Atomizing core, porous ceramic and preparation method of porous ceramic
JPS6219481B2 (en)
JP2002129204A (en) Method for manufacturing porous metal
CN112552072A (en) Construction waste regenerated foamed ceramic and preparation method thereof
WO2006085591A1 (en) Process for producing silica glass product
JP2007320805A (en) Hard foamed pearlite and its manufacturing method
CN109534820A (en) A kind of glass bending molding ceramic mold and preparation method thereof
CN109265136A (en) A method of ceramics are produced using waste sand of quartz
JP2003095763A (en) Porous glass and method of manufacturing the same
CN115108812B (en) Method for regulating and controlling structural characteristics and mechanical strength of ceramsite, lightweight high-strength ceramsite with pomegranate-like structure and preparation method of lightweight high-strength ceramsite
JP5108703B2 (en) Method for manufacturing perlite
CN113735569B (en) Preparation method of magnesium oxide and boron nitride composite microspheres
CN107552795B (en) A method of foam metal is prepared using porous-starch foaming
CN110255939B (en) Foamed ceramic lightweight aggregate and preparation method thereof
JP2004156092A (en) Porous metal having excellent energy absorbability, and production method therefor
CN114573323A (en) 3DP (three-dimensional DP) formed high-density sanitary ceramic and preparation method thereof
JPS58500284A (en) Porous shaped body made of sintered glassy and/or crystalline material and method for producing such a porous shaped body
US3992216A (en) Lightweight aggregate for concrete and method for making same
EP4149884B1 (en) Expandable silica particle
CN111299596B (en) Method for preparing biomedical degradable porous zinc by protein foaming
JPS62226874A (en) Porous ceramic burnt body and manufacture
CN108499522B (en) Coal gangue cenosphere/aluminosilicate polymer composite adsorbent and preparation method thereof
JPS62252383A (en) Manufacture of ceramic foam