JP2003095610A - Method for producing hydrogen - Google Patents

Method for producing hydrogen

Info

Publication number
JP2003095610A
JP2003095610A JP2001287571A JP2001287571A JP2003095610A JP 2003095610 A JP2003095610 A JP 2003095610A JP 2001287571 A JP2001287571 A JP 2001287571A JP 2001287571 A JP2001287571 A JP 2001287571A JP 2003095610 A JP2003095610 A JP 2003095610A
Authority
JP
Japan
Prior art keywords
reaction
catalyst layer
wall
oxygen
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001287571A
Other languages
Japanese (ja)
Inventor
Satonobu Yasutake
聡信 安武
Shigeru Nojima
野島  繁
Satoru Watanabe
渡邊  悟
Masanao Yonemura
将直 米村
Hirohisa Yoshida
博久 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001287571A priority Critical patent/JP2003095610A/en
Publication of JP2003095610A publication Critical patent/JP2003095610A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten the starting time by speedily conducting the temperature elevation of the reaction part and also to decrease the heating load. SOLUTION: A method for producing hydrogen or a hydrogen-containing synthetic gas by a steam reforming of hydrocarbons, is characterized in that a catalyst layer 14 is positioned at a reaction part of a reaction pipe 11 having a double-piped structure consisting of an outer wall 12 and an inner wall 13, a burner 15 is located in the reaction pipe 11 and an oxidative reaction is induced in the reaction part by injecting air or oxygen into a raw gas consisting of hydrocarbons and steam at least during starting.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、都市ガス等の炭化
水素から水素又は水素を含む合成ガスを製造する水素製
造方法に関し、自動車あるいは家庭用発電等に有効な水
素製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen production method for producing hydrogen or a synthesis gas containing hydrogen from hydrocarbons such as city gas, and more particularly to a hydrogen production method effective for power generation for automobiles or households.

【0002】[0002]

【従来の技術】周知の如く、化石燃料の内でもメタンは
水素含有量を最も多く含む。従来、このメタンから水素
を製造する場合、図5に示すように行なっている。図中
の符番1は、外壁2と内壁3からなる二重管構造の反応
管を示す。前記外壁2と内壁3で囲まれた領域の一部
(反応部)には、触媒がある一定の高さにわたって充填
されて触媒層4を形成している。また、前記反応管1内
の中央部には、起動時に触媒層4を外部加熱するための
バーナ5が配置されている。前記触媒層4にはCH
Oが送られ、触媒層4で下記式(1)のような水蒸
気改質反応(吸熱反応)が行なわれる。
2. Description of the Related Art As is well known, methane is one of fossil fuels.
Contains the highest hydrogen content. Conventionally, hydrogen from this methane
Is manufactured as shown in FIG. In the figure
No. 1 is the reaction of double tube structure consisting of outer wall 2 and inner wall 3.
Shows a tube. Part of the area surrounded by the outer wall 2 and the inner wall 3
(Reaction part) is filled with catalyst over a certain height
Thus, the catalyst layer 4 is formed. In addition, in the reaction tube 1
In the central part of the
A burner 5 is arranged. CH in the catalyst layer 4 Four,
HTwoO is sent to the catalyst layer 4 and steamed as shown in the following formula (1).
A gas reforming reaction (endothermic reaction) is performed.

【0003】 CH+HO→CO+3H …(1)CH 4 + H 2 O → CO + 3H 2 (1)

【0004】[0004]

【発明が解決しようとする課題】このように、従来は起
動時にバーナを用いて外部加熱するため、伝熱効率が低
く、反応部の昇温に多くの時間がかかる。また、起動時
の温度分布が顕著になり、反応が定常状態になるまでに
も時間がかかるなどの問題点があった。図6は、従来技
術における反応管の長手方向に沿う距離と反応部及びそ
の周囲における温度との関係を示す特性図を示す。図6
に示すように、触媒層4の下部付近では温度が高いが、
それより上部側では触媒層4での吸熱反応により温度が
徐々に下がることが分かる。
As described above, since the external heating is conventionally performed by using the burner at the time of starting, the heat transfer efficiency is low and it takes a long time to raise the temperature of the reaction part. Further, there is a problem that the temperature distribution at the time of start-up becomes remarkable and it takes time until the reaction reaches a steady state. FIG. 6 is a characteristic diagram showing the relationship between the distance along the longitudinal direction of the reaction tube and the temperature in the reaction part and its surroundings in the prior art. Figure 6
As shown in, the temperature is high near the bottom of the catalyst layer 4,
It can be seen that the temperature gradually decreases on the upper side due to the endothermic reaction in the catalyst layer 4.

【0005】また、加熱用バーナの炊き込み量を多くす
れば反応部の昇温スピードを速めることができるが、触
媒層の温度分布が顕著になり、触媒の耐熱温度以上の高
温となるスポットが発生する可能性があるため、触媒の
耐久性の点から急激な昇温をすることができない。
Further, if the amount of cooking of the heating burner is increased, the rate of temperature rise in the reaction section can be increased, but the temperature distribution of the catalyst layer becomes remarkable, and spots are generated that are higher than the heat resistant temperature of the catalyst. Therefore, the temperature cannot be rapidly increased from the viewpoint of durability of the catalyst.

【0006】本発明は上記の課題を解決するためになさ
れたもので、外壁及び内壁からなる二重管構造の反応管
の反応部に触媒層を配置するとともに、反応管内にバー
ナを配置し、少なくとも起動時、炭化水素と水蒸気から
成る原料ガス中に空気又は酸素を注入して反応部内で酸
化反応を起こさせることにより、反応部の昇温を速やか
に行なって起動時間を短縮するとともに、加熱負荷を低
減しえる水素製造方法を提供することを目的とする。
The present invention has been made to solve the above problems. A catalyst layer is arranged in the reaction part of a reaction tube having a double tube structure consisting of an outer wall and an inner wall, and a burner is arranged in the reaction tube. At least at startup, by injecting air or oxygen into the raw material gas consisting of hydrocarbons and steam to cause an oxidation reaction in the reaction part, the temperature of the reaction part is rapidly raised to shorten the start-up time and heat. An object of the present invention is to provide a hydrogen production method capable of reducing the load.

【0007】また、本発明は、外壁及び内壁からなる二
重管構造の反応管の反応部に触媒層を配置し、少なくと
も起動時、炭化水素と水蒸気から成る原料ガス中に空気
又は酸素を注入して反応部内で酸化反応を起こさせるこ
とにより、上記と同様、反応部の昇温を速やかに行なっ
て起動時間を短縮するとともに、加熱負荷を低減しえる
水素製造方法を提供することを目的とする。さらに、二
重管の内管部にバーナの代わりに燃焼触媒を配置するこ
とにより、繊細な温度制御をすることを目的とする。
Further, according to the present invention, a catalyst layer is arranged in the reaction part of a reaction tube having a double tube structure consisting of an outer wall and an inner wall, and air or oxygen is injected into a raw material gas consisting of hydrocarbon and steam at least at the time of starting. Then, by causing an oxidation reaction in the reaction part, similarly to the above, while increasing the temperature of the reaction part quickly to shorten the start-up time, it is an object to provide a hydrogen production method that can reduce the heating load. To do. Further, it is an object of the present invention to perform delicate temperature control by disposing a combustion catalyst instead of the burner in the inner pipe portion of the double pipe.

【0008】[0008]

【課題を解決するための手段】本願第1の発明は、炭化
水素を水蒸気改質して水素又は水素を含む合成ガスを製
造する水素製造方法において、外壁及び内壁からなる二
重管構造の反応管の反応部に触媒層を配置するととも
に、反応管内にバーナを配置し、少なくとも起動時、炭
化水素と水蒸気から成る原料ガス中に空気又は酸素を注
入して反応部内で酸化反応を起こさせることを特徴とす
る水素製造方法である。
The first invention of the present application is a hydrogen production method for producing hydrogen or a synthesis gas containing hydrogen by steam reforming a hydrocarbon, and a reaction of a double tube structure having an outer wall and an inner wall. A catalyst layer is placed in the reaction section of the tube, and a burner is placed in the reaction tube. At least at startup, air or oxygen is injected into the raw material gas consisting of hydrocarbons and steam to cause an oxidation reaction in the reaction section. Is a method for producing hydrogen.

【0009】本願第2の発明は、炭化水素を水蒸気改質
して水素又は水素を含む合成ガスを製造する水素製造方
法において、外壁及び内壁からなる二重管構造の反応管
の反応部に触媒層を配置し、少なくとも起動時、炭化水
素と水蒸気から成る原料ガス中に空気又は酸素を注入し
て反応部内で酸化反応を起こさせることを特徴とする水
素製造方法である。
A second invention of the present application is a method for producing hydrogen for steam reforming a hydrocarbon to produce hydrogen or a synthesis gas containing hydrogen, wherein a catalyst is provided in a reaction part of a reaction tube having a double-tube structure having an outer wall and an inner wall. A hydrogen producing method is characterized in that a layer is arranged, and at least at start-up, air or oxygen is injected into a raw material gas composed of hydrocarbon and steam to cause an oxidation reaction in a reaction section.

【0010】[0010]

【発明の実施の形態】以下、本発明の水素製造方法につ
いて更に詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen production method of the present invention will be described in more detail below.

【0011】本発明において、少なくとも起動時に、炭
化水素と水蒸気から成る原料ガス中に空気又は酸素を注
入するのは、起動時における反応が特にバラツキやすい
からであり、起動時のみならず、その後も空気又は酸素
を炭化水素と水蒸気から成る原料ガス中に注入すること
もできる。ここで、空気(又は酸素)と炭化水素とH
Oの配合割合は、炭化水素の炭素数1molに対し、空
気0.5〜5mol(酸素0.1〜1mol)のように
することが好ましい。この理由は,加熱源にバーナ又は
燃焼触媒を用いない場合には炭化水素の水蒸気改質に使
われる熱量と同等以上の熱量を補う必要があること、加
熱源にバーナ又は燃焼触媒を用いる場合においても、補
助的に入熱することにより触媒の昇温を速やかにするこ
とができるためである。
In the present invention, charcoal is used at least at startup.
Inject air or oxygen into the source gas consisting of hydrogen chloride and water vapor
It is especially easy to put the reaction in when starting up.
The air or oxygen not only at startup but also afterwards.
Injecting into a source gas consisting of hydrocarbons and steam
You can also Where air (or oxygen), hydrocarbons and H Two
The compounding ratio of O is empty for 1 mol of carbon number of hydrocarbon.
As in the case of 0.5 to 5 mol (0.1 to 1 mol of oxygen)
Preferably. The reason for this is that the heating source is a burner or
Used for steam reforming of hydrocarbons when no combustion catalyst is used.
It is necessary to supplement the amount of heat equal to or greater than the amount of heat
Even when a burner or combustion catalyst is used as the heat source,
The temperature of the catalyst can be raised quickly by supplementary heat input.
This is because you can

【0012】本発明において、前記空気又は酸素は、前
記触媒層の積層方向に対して多段で供給することが好ま
しい。ここで、触媒層の段数は2つ以上であればよい。
これにより、空気等が触媒層に対してより均等に供給さ
れ、反応部内での酸化反応がより促進される。
In the present invention, the air or oxygen is preferably supplied in multiple stages in the stacking direction of the catalyst layers. Here, the number of stages of the catalyst layer may be two or more.
As a result, air or the like is more evenly supplied to the catalyst layer, and the oxidation reaction in the reaction section is further promoted.

【0013】本発明において、前記空気又は酸素を、前
記触媒層の円周方向に対して等間隔の位置から供給する
ことが好ましい。この場合も、上記と同じように、空気
等が触媒層に対してより均等に供給され、反応部内での
酸化反応がより促進される。
In the present invention, it is preferable to supply the air or oxygen from positions at equal intervals in the circumferential direction of the catalyst layer. Also in this case, as in the above case, air or the like is supplied to the catalyst layer more evenly, and the oxidation reaction in the reaction section is further promoted.

【0014】本発明において、前記反応管(内壁)の内
側に燃焼触媒層を配置し、この燃焼触媒層に夫々空気又
は酸素を注入することが好ましい。但し、この場合、内
壁に該内壁の周方向に沿って空気等を供給するための空
気供給穴を均等に設けることが好ましい。これにより、
従来のようにバーナを用いずに、反応部での昇温を速や
かに行なうとともに、触媒層の温度分布がフラットにな
り反応を効率的に起こすことができる。
In the present invention, it is preferable to arrange a combustion catalyst layer inside the reaction tube (inner wall) and inject air or oxygen into the combustion catalyst layer. However, in this case, it is preferable that the inner wall be uniformly provided with air supply holes for supplying air or the like along the circumferential direction of the inner wall. This allows
It is possible to quickly raise the temperature in the reaction section without using a burner as in the conventional case, and to flatten the temperature distribution of the catalyst layer to efficiently cause the reaction.

【0015】本発明において、前記触媒層、燃焼触媒層
を形成する触媒としては、ニッケル、コバルト、鉄、モ
リブデンから成る少なくとも一種類以上の遷移金属又は
その酸化物、或いはルテニウム、白金、ロジウム、パラ
ジウムから成る少なくとも一種類以上の貴金属又はその
酸化物を触媒成分とし、アルミナ、ジルコニア、ランタ
ニアのうち少なくとも一種類以上から成る酸化物或いは
複合酸化物を担体とする触媒等が挙げられる。
In the present invention, as the catalyst for forming the catalyst layer and the combustion catalyst layer, at least one or more kinds of transition metals consisting of nickel, cobalt, iron and molybdenum or oxides thereof, or ruthenium, platinum, rhodium and palladium are used. A catalyst having at least one or more noble metal or oxide thereof as a catalyst component and an oxide or complex oxide as a carrier, which is at least one or more of alumina, zirconia, and lanthanum, is used.

【0016】[0016]

【実施例】以下、本発明の各実施例について説明する。
なお、下記実施例で述べる各部材の材料や数値等の一例
を示すもので、本発明の権利範囲はこれにより限定され
るものではない。
Embodiments of the present invention will be described below.
It should be noted that the examples of the materials, numerical values, etc. of the respective members described in the following examples are shown, and the scope of rights of the present invention is not limited thereby.

【0017】(実施例1)図1を参照する。図中の符番
11は、外壁12と内壁13からなる二重管構造のステ
ンレス製の反応管を示す。前記外壁12と内壁13で囲
まれた領域の一部には、例えば担体にアルミナを用いル
テニウムを触媒成分とする触媒がある一定の高さにわた
って充填されて触媒層14を形成している。また、前記
反応管11内の中央部には、起動時に触媒層14を外部
加熱するためのバーナ15が配置されている。前記触媒
層14には、少なくとも起動時にCH、HO等の原
料ガスの他、酸素(O)が供給されるようになってい
る。
Example 1 Reference is made to FIG. Reference numeral 11 in the figure denotes a stainless steel reaction tube having a double-tube structure including an outer wall 12 and an inner wall 13. A part of the region surrounded by the outer wall 12 and the inner wall 13 is filled with a catalyst having a catalyst component of ruthenium using alumina as a carrier over a certain height to form a catalyst layer 14. In addition, a burner 15 for externally heating the catalyst layer 14 at the time of startup is arranged in the center of the reaction tube 11. Oxygen (O 2 ) is supplied to the catalyst layer 14 at least at the time of startup, in addition to source gases such as CH 4 and H 2 O.

【0018】なお、改質部に供給する原料ガスは触媒1
体積当たりCH1000体積に対しHO2000、
Air1000の体積比で供給し、バーナ部に供給する
ガスはCH240、Air2400とした。この流量
比はメタンが水蒸気改質するのに要する熱量の1.5倍
比の入熱量で反応が維持できることを意味する。また触
媒を充填している反応部の内管壁13とバーナ15の火
炎部は触媒部が1000℃を越えないように約30mm
の距離とした。
The raw material gas supplied to the reforming section is the catalyst 1
H 2 O 2000 for 1000 volumes of CH 4 per volume,
The gas supplied at a volume ratio of Air 1000 and the gas supplied to the burner part was CH 4 240 and Air 2400. This flow rate ratio means that the reaction can be maintained with a heat input amount of 1.5 times the heat amount required for steam reforming of methane. Also, the inner tube wall 13 of the reaction section filled with the catalyst and the flame section of the burner 15 are about 30 mm so that the temperature of the catalyst section does not exceed 1000 ° C.
And the distance.

【0019】このように、実施例1では、起動時に触媒
層14にCH,HO,Oを適宜な配合割合で供給
して反応部内で直接酸化反応を起こさせるため、昇温を
速やかに行なうとともに、図2に示されるように触媒層
14の温度分布がフラットになり反応を効率的に起こす
ことができる。なお、図2において、「予熱部」(バー
ナ部)とは、加熱バーナ15の炎の最下部から触媒層1
4の入口直前までを示す。さらに、反応の熱源にバーナ
のみを用いる従来法では、メタンの水蒸気改質で必要と
する熱量の約3倍の入熱量が必要となるのに対し、本発
明では1.5倍量と少なくでき、加熱バーナ15の小型
化、13の伝熱面積の減少化を図ることができるため装
置のコンパクト化が可能となる。従って、実施例1によ
る方法を例えば自動車用の燃料電池の駆動に利用する場
合、起動時間を短縮し、装置のコンパクト化を図ること
ができる。
As described above, in Example 1, since CH 4 , H 2 O and O 2 are supplied to the catalyst layer 14 at an appropriate mixing ratio at the time of start-up to cause an oxidation reaction directly in the reaction section, the temperature is raised. The reaction can be carried out promptly, and the temperature distribution of the catalyst layer 14 becomes flat as shown in FIG. 2 to allow the reaction to occur efficiently. In addition, in FIG. 2, the “preheating part” (burner part) means the catalyst layer 1 from the bottom of the flame of the heating burner 15.
It shows just before the entrance of No. 4. Further, in the conventional method using only the burner as the heat source for the reaction, the heat input amount that is about 3 times the heat amount required for steam reforming of methane is required, whereas in the present invention it can be reduced to 1.5 times the amount. Since the heating burner 15 can be downsized and the heat transfer area of 13 can be reduced, the apparatus can be downsized. Therefore, when the method according to the first embodiment is used for driving a fuel cell for an automobile, for example, it is possible to shorten the start-up time and make the apparatus compact.

【0020】(比較例)図5に示される装置を用い、反
応管中にO(空気)を供給しないこと以外は実施例1
と全て同一の実施方法とした。なお、改質部に供給する
原料ガスは触媒1体積当たりCH900体積に対しH
O2000で供給し、バーナ部に供給するガスはCH
680、Air6800とした。この流量比はメタン
が水蒸気改質するのに要する熱量の3倍比の入熱量で反
応が維持できることを意味する。
(Comparative Example) Example 1 was carried out using the apparatus shown in FIG. 5 except that O 2 (air) was not supplied into the reaction tube.
The same implementation method was used. The raw material gas supplied to the reforming unit was H 4 per volume of CH 4 900 per volume of catalyst.
2 O2000 is supplied, and the gas supplied to the burner is CH
4 680 and Air 6800. This flow rate ratio means that the reaction can be maintained with a heat input amount that is three times the heat amount required for steam reforming of methane.

【0021】このように比較例1では、改質反応部と加
熱部がそれぞれ分割しているため、昇温が速やかでない
ばかりか、図6に示されるように実施例1と比較して触
媒層14の温度分布が大きくなる。従って反応効率の低
下、バーナ及び伝熱面積の大容量化に伴う装置の大型化
が問題になる可能性がある。
As described above, in Comparative Example 1, since the reforming reaction section and the heating section are separated from each other, the temperature rise is not rapid and, as shown in FIG. The temperature distribution of 14 becomes large. Therefore, there is a possibility that the reaction efficiency may be lowered and that the burner and the heat transfer area may be increased in capacity to make the apparatus larger.

【0022】(実施例2)図3(A),(B)を参照す
る。ここで、図3(A)は実施例2に係る反応管の概略
断面図、図3(B)は図3(A)の平面図を示す。但
し、図1と同部材は同符番を付して説明を省略する。本
実施例2はバーナレスタイプで、反応管11の外壁12
の多段(3段)でかつ周方向に沿って均等に酸素注入穴
16を設け、触媒層14にCH,HOを供給する一
方、前記触媒層14に前記酸素注入穴16からOを供
給することを特徴とする。
(Embodiment 2) Reference is made to FIGS. 3 (A) and 3 (B). Here, FIG. 3A is a schematic cross-sectional view of the reaction tube according to Example 2, and FIG. 3B is a plan view of FIG. 3A. However, the same members as those in FIG. The second embodiment is a burnerless type and has an outer wall 12 of the reaction tube 11.
Oxygen injection holes 16 are evenly provided along the circumferential direction in multiple stages (3 steps), and while CH 4 and H 2 O are supplied to the catalyst layer 14, the catalyst layer 14 is supplied with O 2 from the oxygen injection holes 16 It is characterized by supplying.

【0023】実施例2によれば、実施例1と同様に、昇
温を速やかに行なうとともに、図4に示されるように触
媒層14の温度分布がフラットになり反応を効率的に起
こすことができる。さらに、反応の熱源にバーナのみを
用いる従来法では、メタンの水蒸気改質で必要とする熱
量の約3倍の入熱量が必要となるのに対し、本発明では
1.5倍量と少なくでき、加熱バーナ15の小型化、1
3の伝熱面積の減少化を図ることができるため装置のコ
ンパクト化が可能となる。従って、実施例2による方法
を例えば自動車用の燃料電池の駆動に利用する場合、起
動時間を短縮し、装置のコンパクト化を図ることができ
る。
According to the second embodiment, similarly to the first embodiment, the temperature is rapidly raised, and the temperature distribution of the catalyst layer 14 becomes flat as shown in FIG. 4, so that the reaction can occur efficiently. it can. Further, in the conventional method using only the burner as the heat source for the reaction, the heat input amount that is about 3 times the heat amount required for steam reforming of methane is required, whereas in the present invention it can be reduced to 1.5 times the amount. , Miniaturization of heating burner 15, 1
Since the heat transfer area of 3 can be reduced, the device can be made compact. Therefore, when the method according to the second embodiment is used for driving a fuel cell for an automobile, for example, the start-up time can be shortened and the device can be made compact.

【0024】(実施例3)図7を参照する。但し、図1
と同部材は同符番を付して説明を省略する。本実施例3
は、反応管11の内壁12の内側に多段(例えば4段)
に燃焼触媒層17を設けるとともに、この燃焼触媒層1
7が位置する内壁12に該内壁12の周方向に沿って均
等に酸素注入穴(図示せず)を例えば4個穿設し、反応
管11の内壁12、外壁13間の触媒層14にOをC
,HOとともに供給するとともに、酸素注入穴よ
り燃焼触媒層17にも供給することを特徴とする。
(Embodiment 3) Referring to FIG. However, in FIG.
The same members as and are denoted by the same reference numerals, and description thereof will be omitted. Example 3
Is a multi-stage (for example, 4 stages) inside the inner wall 12 of the reaction tube 11.
The combustion catalyst layer 17 is provided on the
For example, four oxygen injection holes (not shown) are evenly formed in the inner wall 12 where the inner wall 7 is located along the circumferential direction of the inner wall 12, and the catalyst layer 14 between the inner wall 12 and the outer wall 13 of the reaction tube 11 is filled with O. 2 for C
It is characterized in that it is supplied together with H 4 and H 2 O and also supplied to the combustion catalyst layer 17 through the oxygen injection hole.

【0025】実施例3によれば、反応管11の内壁の内
側に燃焼触媒層17を配置し、内壁12・外壁13間の
触媒層14のみならず、燃焼触媒層17にもOを供給
するようになっているため、従来のようにバーナを用い
ずに、昇温を速やかに行なうとともに、触媒層14の温
度分布がフラットになり反応を効率的に起こすことがで
きる。従って、実施例3による方法を例えば自動車用の
燃料電池の駆動に利用する場合、起動時間を短縮し、装
置のコンパクト化を図ることができる。
According to the third embodiment, the combustion catalyst layer 17 is arranged inside the inner wall of the reaction tube 11, and O 2 is supplied not only to the catalyst layer 14 between the inner wall 12 and the outer wall 13 but also to the combustion catalyst layer 17. Therefore, it is possible to raise the temperature quickly without using a burner as in the conventional case, and to flatten the temperature distribution of the catalyst layer 14 to efficiently cause the reaction. Therefore, when the method according to the third embodiment is used for driving a fuel cell for an automobile, for example, the start-up time can be shortened and the device can be made compact.

【0026】[0026]

【発明の効果】以上詳記したように本発明によれば、外
壁及び内壁からなる二重管構造の反応管の反応部に触媒
層を配置するとともに、反応管内にバーナを配置し、少
なくとも起動時、炭化水素と水蒸気から成る原料ガス中
に空気又は酸素を注入して反応部内で酸化反応を起こさ
せることにより、反応部の昇温を速やかに行なって起動
時間を短縮するとともに、加熱負荷を低減しえる水素製
造方法を提供できる。
As described in detail above, according to the present invention, the catalyst layer is arranged in the reaction part of the reaction tube having the double-walled structure consisting of the outer wall and the inner wall, and the burner is arranged in the reaction tube to start at least At this time, by injecting air or oxygen into the raw material gas consisting of hydrocarbons and steam to cause an oxidation reaction in the reaction part, the temperature of the reaction part is rapidly raised to shorten the start-up time and heat load. It is possible to provide a method for producing hydrogen that can be reduced.

【0027】また、本発明は、外壁及び内壁からなる二
重管構造の反応管の反応部に触媒層を配置し、少なくと
も起動時、炭化水素と水蒸気から成る原料ガス中に空気
又は酸素を注入して反応部内で酸化反応を起こさせるこ
とにより、上記と同様、反応部の昇温を速やかに行なっ
て起動時間を短縮するとともに、加熱負荷を低減しえる
水素製造方法を提供できる。
Further, according to the present invention, a catalyst layer is arranged in the reaction part of a reaction tube having a double tube structure consisting of an outer wall and an inner wall, and air or oxygen is injected into a raw material gas composed of hydrocarbon and steam at least at the time of starting. Then, by causing an oxidation reaction in the reaction section, similarly to the above, it is possible to provide a hydrogen production method capable of rapidly raising the temperature of the reaction section to shorten the start-up time and reduce the heating load.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係る水素製造方法の概略説
明図。
FIG. 1 is a schematic explanatory diagram of a hydrogen production method according to a first embodiment of the present invention.

【図2】図1の水素製造方法による反応管の長手方向に
沿う距離と反応部及びその周囲における温度との関係を
示す特性図。
2 is a characteristic diagram showing the relationship between the distance along the longitudinal direction of the reaction tube and the temperature in the reaction part and its surroundings according to the hydrogen production method of FIG.

【図3】本発明の実施例2に係る水素製造方法の概略説
明図。
FIG. 3 is a schematic explanatory diagram of a hydrogen production method according to a second embodiment of the present invention.

【図4】図3の水素製造方法による反応管の長手方向に
沿う距離と反応部及びその周囲における温度との関係を
示す特性図。
FIG. 4 is a characteristic diagram showing the relationship between the distance along the longitudinal direction of the reaction tube and the temperature in the reaction part and its surroundings according to the hydrogen production method of FIG.

【図5】従来の水素製造方法の概略説明図。FIG. 5 is a schematic explanatory view of a conventional hydrogen production method.

【図6】従来方法による反応管の長手方向に沿う距離と
反応部及びその周囲における温度との関係を示す特性
図。
FIG. 6 is a characteristic diagram showing the relationship between the distance along the longitudinal direction of the reaction tube and the temperature in the reaction section and its surroundings according to the conventional method.

【図7】本発明の実施例3に係る水素製造方法の概略説
明図。
FIG. 7 is a schematic explanatory diagram of a hydrogen production method according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…反応管、 12…外壁、 13…内壁、 14…触媒層、 15…バーナ、 16…酸素注入穴、 17…燃焼触媒層。 11 ... Reaction tube, 12 ... outer wall, 13 ... inner wall, 14 ... Catalyst layer, 15 ... Burner, 16 ... Oxygen injection hole, 17 ... Combustion catalyst layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡邊 悟 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 米村 将直 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 吉田 博久 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 Fターム(参考) 4G040 EA03 EA06 EB14 EB24 EB27 EB43 EB46    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Satoru Watanabe             4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture               Mitsubishi Heavy Industries Ltd. Hiroshima Research Center (72) Inventor Masanao Yonemura             4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture               Mitsubishi Heavy Industries Ltd. Hiroshima Research Center (72) Inventor Hirohisa Yoshida             4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture               Mitsubishi Heavy Industries Ltd. Hiroshima Research Center F-term (reference) 4G040 EA03 EA06 EB14 EB24 EB27                       EB43 EB46

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素を水蒸気改質して水素又は水素
を含む合成ガスを製造する水素製造方法において、外壁
及び内壁からなる二重管構造の反応管の反応部に触媒層
を配置するとともに、反応管の内管にバーナを配置し、
少なくとも起動時、炭化水素と水蒸気から成る原料ガス
中に空気又は酸素を注入して反応部内で酸化反応を起こ
させることを特徴とする水素製造方法。
1. A hydrogen production method for producing hydrogen or a synthesis gas containing hydrogen by steam reforming a hydrocarbon, wherein a catalyst layer is arranged in a reaction part of a reaction tube having a double tube structure having an outer wall and an inner wall. , Place a burner in the inner tube of the reaction tube,
A hydrogen production method characterized by injecting air or oxygen into a raw material gas consisting of hydrocarbons and steam at least at startup to cause an oxidation reaction in a reaction section.
【請求項2】 炭化水素を水蒸気改質して水素又は水素
を含む合成ガスを製造する水素製造方法において、外壁
及び内壁からなる二重管構造の反応管の反応部に触媒層
を配置し、少なくとも起動時、炭化水素と水蒸気から成
る原料ガス中に空気又は酸素を注入して反応部内で酸化
反応を起こさせることを特徴とする水素製造方法。
2. In a hydrogen production method for producing hydrogen or a synthesis gas containing hydrogen by steam reforming a hydrocarbon, a catalyst layer is disposed in a reaction part of a reaction tube having a double-tube structure having an outer wall and an inner wall, A hydrogen production method characterized by injecting air or oxygen into a raw material gas consisting of hydrocarbons and steam at least at startup to cause an oxidation reaction in a reaction section.
【請求項3】 前記空気又は酸素を、前記触媒層の積層
方向に対して多段で供給することを特徴とする請求項2
記載の水素製造方法。
3. The air or oxygen is supplied in multiple stages in the stacking direction of the catalyst layers.
The hydrogen production method described.
【請求項4】 前記空気又は酸素を、前記触媒層の円周
方向に対して等間隔の位置から供給することを特徴とす
る請求項2記載の水素製造方法。
4. The method for producing hydrogen according to claim 2, wherein the air or oxygen is supplied from positions at equal intervals in the circumferential direction of the catalyst layer.
【請求項5】 前記反応管の内管側に燃焼触媒層を配置
し、この燃焼触媒層に炭化水素及び空気又は酸素を注入
することを特徴とする請求項2記載の水素製造方法。
5. The method for producing hydrogen according to claim 2, wherein a combustion catalyst layer is arranged on the inner tube side of the reaction tube, and hydrocarbon and air or oxygen is injected into the combustion catalyst layer.
JP2001287571A 2001-09-20 2001-09-20 Method for producing hydrogen Withdrawn JP2003095610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001287571A JP2003095610A (en) 2001-09-20 2001-09-20 Method for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001287571A JP2003095610A (en) 2001-09-20 2001-09-20 Method for producing hydrogen

Publications (1)

Publication Number Publication Date
JP2003095610A true JP2003095610A (en) 2003-04-03

Family

ID=19110357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001287571A Withdrawn JP2003095610A (en) 2001-09-20 2001-09-20 Method for producing hydrogen

Country Status (1)

Country Link
JP (1) JP2003095610A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100684771B1 (en) 2005-09-27 2007-02-20 삼성에스디아이 주식회사 Apparatus for reforming fuel and driving method of the same
US7682587B2 (en) 2005-07-29 2010-03-23 Samsung Sdi Co., Ltd. Fuel cell reformer
US8017088B2 (en) 2005-09-27 2011-09-13 Samsung Sdi Co., Ltd. Fuel reformer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682587B2 (en) 2005-07-29 2010-03-23 Samsung Sdi Co., Ltd. Fuel cell reformer
KR100684771B1 (en) 2005-09-27 2007-02-20 삼성에스디아이 주식회사 Apparatus for reforming fuel and driving method of the same
US8017088B2 (en) 2005-09-27 2011-09-13 Samsung Sdi Co., Ltd. Fuel reformer

Similar Documents

Publication Publication Date Title
TWI392543B (en) Method and apparatus for rapid heating of fuel reforming reactants
RU2539561C2 (en) Gas-generator for fuel conversion to oxygen-depleted gas and/or to hydrogen-enriched gas, its application and method of fuel conversion to oxygen-depleted gas and/or to hydrogen-enriched gas (versions)
CN100446324C (en) Reformer of fuel cell system
JP4854037B2 (en) Fuel reformer, driving method thereof, and fuel cell system
JP5154272B2 (en) Fuel cell reformer
EA016159B1 (en) Improvements in or relating to fuel cells
EP2198951B1 (en) Reformer
JP6541729B2 (en) Fuel reformer
JP4937076B2 (en) Reaction vessel and reactor
JP5317136B2 (en) Burner nozzle device and fuel reformer equipped with the same
JP2003321206A (en) Single tubular cylinder type reforming apparatus
JP2005213133A (en) Reforming device and fuel cell system
KR102315289B1 (en) Steam Reformer with Multi Reforming Reactor
KR20060111068A (en) Steam reformer equipped with metal monolithic catalysts
JP2002003204A (en) Fuel reformer
JP2003095610A (en) Method for producing hydrogen
RU113729U1 (en) PROCESSOR FOR CONVERSION OF HYDROCARBON FUELS IN SYNTHESIS-GAS FOR APPLICATION IN SOLID-OXIDE FUEL ELEMENTS
KR100837679B1 (en) Fuel processor of fuel cell system
JP4664767B2 (en) Reformer
JP2009161370A (en) Fuel reforming apparatus
JP5252479B2 (en) Fuel reformer and fuel reformed gas production method
JPH0335241B2 (en)
JPH01122902A (en) Fuel reformer for fuel cell
JP2005281097A (en) Reforming apparatus
JPH0611641B2 (en) Methanol reformer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202