JP2003089820A - Method for producing hot rolled sheet for nonoriented silicon steel having excellent surface property - Google Patents

Method for producing hot rolled sheet for nonoriented silicon steel having excellent surface property

Info

Publication number
JP2003089820A
JP2003089820A JP2001282974A JP2001282974A JP2003089820A JP 2003089820 A JP2003089820 A JP 2003089820A JP 2001282974 A JP2001282974 A JP 2001282974A JP 2001282974 A JP2001282974 A JP 2001282974A JP 2003089820 A JP2003089820 A JP 2003089820A
Authority
JP
Japan
Prior art keywords
hot
excellent surface
rolled sheet
silicon steel
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001282974A
Other languages
Japanese (ja)
Inventor
Takahide Shimazu
高英 島津
Norito Abe
憲人 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001282974A priority Critical patent/JP2003089820A/en
Publication of JP2003089820A publication Critical patent/JP2003089820A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a nonoriented silicon steel sheet which has excellent surface properties and magnetic properties by a process with the recycling of an iron source as a base. SOLUTION: In the method for producing a hot rolled sheet for nonoriented silicon steel having excellent surface properties, a slab having a composition containing, by mass, <=0.005% C, <1% Si, <=3% Al, <1% Mn, 0.05 to 0.3% P, <=0.02% S, >0.3 to 2% Cu and 0.0002 to 0.008% V, and the balance Fe with inevitable components is heated at <=1,200 deg.C, and is hot-rolled.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、電気産業分野での
モータや小型トランスのコアに使用される無方向性電磁
鋼板用の熱延板の製造方法に関わる。特に、地球環境問
題を解決する無方向性電磁鋼板の製造方法を提供する。 【0002】 【従来の技術】近年、地球環境の観点から、スクラップ
のリサイクルが大きな課題となってきた。このため、製
鉄業でいえば、鉄鉱石を高炉で還元した溶銑を製鋼原料
として使用する方法から、自動車や空き缶などのスクラ
ップを消費する製鋼法に転換する動きが始まっている。 【0003】しかしながら、例えば自動車の成分組成に
関して言えば、エンジンやバッテリーなどの部品を除い
た標準プレス品では、Cu量が1%以上もあり、このこ
とがリサイクルへのネックになっている。なぜなら、従
来はプレス品素材にCu量が0.3%以上含有すると、
熱延中に鋼板表面で脆化割れが生じ、最終製品で表面疵
として残存し鉄鋼製品とはならなかった。その上、自動
車のプレス品にCu含有量が多いのは、モータなどの電
装部品の数が多く、この電装部品が銅線のためである。 【0004】加えて、例えば食缶からSnなども混入
し、これらの不純物を有効利用方法が現在まで提案され
ていなかった。例えば特開平7−268568号公報
で、スクラップから混入する不純物を積極活用する技術
を提案しているが、0.3%超のCu量に対しては方策
がなかった。また特公平4−71989号公報では、C
uによる熱間脆性割れを0.1%以上のNi添加によっ
て回避しているが、Ni添加コストの問題があった。更
に特開平11−293338号公報で、Si添加による
Cu脆化抑制方法を提案しているが、1%未満のSi量
では対策がなかった。 【0005】 【発明が解決しようとする課題】本発明は上記の点に鑑
み、鉄スクラップを多量消費する道を切り開き、且つ、
脆性問題を解消しつつ、従前の優れた磁気特性を有する
無方向性電磁鋼板の製造方法を提供する。 【0006】 【課題を解決するための手段】すなわち本発明は、質量
%で、 C ≦0.005%、 Si<1%、 Al≦3%、 Mn<1%、 0.05%≦P≦0.3%、 S ≦0.02%、 0.3%<Cu≦2%、 0.0002%≦V≦0.008% とし、残部Feおよび不可避的成分を含有するスラブを
1200℃以下で加熱し、熱間圧延することを特徴とす
る表面性状の優れた無方向性電磁鋼用の熱延板の製造方
法である。 【0007】本発明の新しさは、以下の3つのポイント
となる発見から構成されると考える。一点目は、Cu量
が0.3%超でもP量が0.05%以上では、特定のV
量と熱延加熱温度範囲で、熱延中の表面割れによる疵が
発生しない。二点目は、この表面疵が発生しないV量は
0.0002%以上である。三点目は、疵の発生しない
熱延加熱温度は1200℃以下である。 【0008】 【発明の実施の形態】以下、本発明を詳細に説明する。
成分含有量は質量%である。C量は0.005%以下と
する。0.005%を超すC量では磁気時効に問題があ
るためである。 【0009】Si量は1%未満とする。Si量が1.0
%以上では、Cu量が0.3%を超えて含有する成分系
でも熱間脆性による疵は発生しないことが、特開平11
−293338号公報で公知である。本発明は、従来技
術で解決できなかった、Si量が1.0%未満で、なお
且つCu量を0.3%を超えて含有する成分系を対象と
する。 【0010】Al量を3%以下に制限する。Al量が3
%超では、冷間圧延や打ち抜きプレスでの鋼板の冷間脆
性が生じるので避けなければならない。なお、Alを増
量すれば鉄損が改善される。 【0011】Mn量は1%以下とする。MnはFeSに
よる赤熱脆性を緩和するのに有効であるが、1%超では
添加コストの問題があるので、1%以下とする。 【0012】P量は0.05〜0.3%に制限する。P
はCuによる熱間脆性を解決する元素であって、最低限
0.05%は必要である。また、0.3%超では偏析が
大きくなり、冷間での脆性問題が生じるので不可であ
る。PがCu熱間脆化を阻止するメタラジーとしては、
スラブ加熱で生じる表層の酸化鉄に、低融点型のP酸化
物−Cu酸化物−Fe酸化物が溶け込み、鉄マトリック
スとスケール界面の純Cu層形成が抑制されるためと推
定しているが、詳細はこれからの調査課題である。 【0013】S量は0.02%以下とする。S量が0.
02%を超えると、MnSやCu2Sまたは(Mn,C
u)1.8 S型の複合硫化物が増え、鉄損が劣化するので
避ける。 【0014】Cu量は0.3%超から2%以下に制限す
る。Cu量の下限を0.3%超としたのは、スクラップ
を積極的に活用するには0.3%を超えるCu量が必要
となるためである。また、2%超ではスクラップ以外の
Cu原料を添加する必要があり、コストアップになるた
め避ける。 【0015】V量は0.0002〜0.008%に限定
する。VもCuによる熱間脆性を解決する元素であっ
て、最低限0.0002%は必要である。また、V量が
0.008%を超えると、Vの炭・窒化物が微細析出し
て結晶粒成長を阻害し、鉄損が劣化する。このため、V
量を0.0002〜0.008%に規制する。VがCu
熱間脆化を阻止する原因はまだ不明確であるが、低融点
型のP酸化物−Cu酸化物−Fe酸化物の形成に影響を
与えていると推定している。 【0016】熱延のスラブ加熱は、温度を1200℃以
下に制限する。1200℃を超えると、Cuによる脆化
が大きくなるため避けなければならない。この理由は未
だ明確ではないが、CuとSnを含む成分系でのスケー
ルの形成量が、1200℃を超えると急激に増大するこ
とに関係していると考えている。加熱時間は通常の10
分〜4時間である。次いで通常の熱間圧延を行う。 【0017】熱延板以降の工程については、従来の無方
向性電磁鋼板製造工程を採用することができる。熱延板
焼鈍を実施すると、磁束密度を向上させることができる
が、焼鈍コスト面から省略することも可能ではある。次
いで通常の冷延を施す。次いで焼鈍し、絶縁皮膜を塗布
・乾燥する。また、顧客で磁性焼鈍される場合は、最終
でスキンパス圧延を実施することもある。以下、本発明
の実施例について説明する。 【0018】 【実施例】〔実施例−1〕表1に示す各種成分を含有す
る鋼塊を真空溶解で作製し、加熱温度を1100℃とし
て、熱延を行い、2.0mm厚の熱延板を得た。この熱延
板を酸洗し、冷延して板厚0.50mmの鋼板とした。次
いで連続焼鈍を700℃で5秒均熱、水素中で実施し
た。磁気特性は、50mm×50mmの単板試料のL方向と
C方向とを測定し平均化した。結果を表1に示す。な
お、疵については、熱延板での端面クラックまたは製品
板での表面欠陥が一個所でも発生したものを×とし、全
くないものを○とした。本発明の範囲内の成分条件で、
優れた表面性状を示し、なお且つ磁気特性な無方向性電
磁鋼板が得られた。 【0019】 【表1】 【0020】〔実施例−2〕質量%で、0.003%
C、0.2%Si、0.003%Al、0.1%Mn、
0.12%P、0.007%S、0.45%Cu、0.
005%Vを含み、残部は不可避的不純物であるが、こ
れらを分析すると、0.0017%N、0.05%N
i、0.09%Cr、0.04%Sn、0.005%T
i、0.002%Nb、0.0004%Sb、0.00
6%Mo、0.01%O、0.0006%Mgであっ
た。この連続鋳造スラブを、連続熱延の加熱炉で表2に
示す温度で120分均熱した。3mm厚の熱延板としてか
ら、酸洗後、0.50mm厚に冷延して、750℃×30
秒の連続焼鈍を水素・窒素うず電流損混合気流中で行っ
た。鋼板表面欠陥、特に熱延でのCu特有の表面割れに
よるへげ状疵観察を行い、一ヶ所でも発生したものは
×、無欠陥のものは○と表2に記載した。また、鉄損W
15/50 をエプスタインで測定した。 【0021】 【表2】 【0022】表2から判るように、本発明範囲内の加熱
温度範囲で、優れた表面性状が得られた。なお、実験 N
o.4の1220℃よりも実験 No.5の1270℃の方
が、表面疵が2倍程度多かった。磁気特性は、実験水準
に拠らずほぼ同等となった。 【0023】 【発明の効果】以上の如く本発明によれば、鉄スクラッ
プを有効活用して、表面性状の優れた無方向性電磁鋼板
用の熱延板を製造することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a hot-rolled sheet for a non-oriented electrical steel sheet used for a core of a motor or a small transformer in the electric industry. Get involved. In particular, a method of manufacturing a non-oriented electrical steel sheet that solves global environmental problems is provided. [0002] In recent years, recycling of scrap has become a major issue from the viewpoint of the global environment. For this reason, the steel industry has begun to shift from using hot metal obtained by reducing iron ore in a blast furnace as a raw material for steelmaking to a steelmaking method that consumes scrap such as automobiles and empty cans. [0003] However, regarding the composition of components of automobiles, for example, a standard pressed product excluding parts such as an engine and a battery has a Cu content of 1% or more, which is a bottleneck for recycling. Because, conventionally, when the Cu content is 0.3% or more in the pressed material,
Embrittlement cracking occurred on the steel sheet surface during hot rolling, and remained as surface flaws in the final product and did not become a steel product. In addition, the reason why the content of Cu is large in a pressed product of an automobile is that the number of electrical components such as a motor is large, and the electrical components are copper wires. [0004] In addition, for example, Sn and the like are mixed in food cans, and a method for effectively utilizing these impurities has not been proposed until now. For example, Japanese Patent Application Laid-Open No. Hei 7-268568 proposes a technique for positively utilizing impurities mixed from scrap, but there is no measure for a Cu content exceeding 0.3%. In Japanese Patent Publication No. 4-71989, C
Although hot brittle cracking due to u is avoided by adding 0.1% or more of Ni, there is a problem with the cost of adding Ni. Further, Japanese Patent Application Laid-Open No. H11-293338 proposes a method of suppressing Cu embrittlement by adding Si, but there is no measure with a Si amount of less than 1%. SUMMARY OF THE INVENTION [0005] In view of the above, the present invention paves the way for consuming a large amount of iron scrap,
Provided is a method for producing a non-oriented electrical steel sheet having excellent magnetic properties while solving the problem of brittleness. [0006] That is, the present invention provides, in mass%, C ≦ 0.005%, Si <1%, Al ≦ 3%, Mn <1%, 0.05% ≦ P ≦ 0.3%, S ≦ 0.02%, 0.3% <Cu ≦ 2%, 0.0002% ≦ V ≦ 0.008%, and the slab containing the balance of Fe and inevitable components at 1200 ° C. or less This is a method for producing a hot-rolled sheet for non-oriented electrical steel having excellent surface properties, characterized by heating and hot rolling. The novelty of the present invention is considered to consist of the following three points of discovery. The first point is that when the Cu content exceeds 0.3% and the P content is 0.05% or more, the specific V
In the range of the amount and the heating temperature range, no flaw is generated due to surface cracks during hot rolling. The second point is that the V amount at which the surface flaw does not occur is 0.0002% or more. Third, the hot rolling heating temperature at which no flaw is generated is 1200 ° C. or less. Hereinafter, the present invention will be described in detail.
The component content is% by mass. The C content is 0.005% or less. This is because a C content exceeding 0.005% has a problem in magnetic aging. [0009] The amount of Si is less than 1%. Si content is 1.0
%, The flaw due to hot embrittlement does not occur even in a component system containing Cu in excess of 0.3%.
-293338. The present invention is directed to a component system having a Si content of less than 1.0% and a Cu content of more than 0.3%, which could not be solved by the prior art. [0010] The amount of Al is limited to 3% or less. Al content is 3
%, It must be avoided since cold brittleness of the steel sheet occurs in cold rolling or punching press. The iron loss is improved by increasing the amount of Al. [0011] The Mn content is 1% or less. Mn is effective in alleviating red-hot embrittlement due to FeS, but if it exceeds 1%, there is a problem of addition cost, so Mn is made 1% or less. The amount of P is limited to 0.05 to 0.3%. P
Is an element that solves hot brittleness due to Cu, and at least 0.05% is necessary. On the other hand, if it exceeds 0.3%, segregation increases, and a brittleness problem in the cold state occurs, which is not possible. As metallurgy in which P prevents Cu hot embrittlement,
It is presumed that the low-melting-type P oxide-Cu oxide-Fe oxide dissolves into the surface iron oxide generated by slab heating, thereby suppressing the formation of a pure Cu layer at the interface between the iron matrix and the scale. Details are for future research. The amount of S is set to 0.02% or less. S amount is 0.
If it exceeds 0.2%, MnS or Cu 2 S or (Mn, C
u) 1.8 S-type compound sulfides increase and iron loss is reduced, so avoid them. The Cu content is limited to more than 0.3% to 2% or less. The lower limit of the Cu content is set to more than 0.3% because a Cu content exceeding 0.3% is required to actively utilize scrap. On the other hand, if the content exceeds 2%, it is necessary to add a Cu raw material other than the scrap, and the cost is increased. The amount of V is limited to 0.0002 to 0.008%. V is also an element that solves hot brittleness due to Cu, and at least 0.0002% is necessary. On the other hand, if the V content exceeds 0.008%, carbon / nitride of V is finely precipitated to inhibit crystal grain growth, and iron loss is deteriorated. Therefore, V
The amount is regulated to 0.0002-0.008%. V is Cu
Although the cause of preventing hot embrittlement is still unclear, it is presumed that it affects the formation of low-melting-type P oxide-Cu oxide-Fe oxide. The slab heating of hot rolling limits the temperature to 1200 ° C. or less. If the temperature exceeds 1200 ° C., embrittlement due to Cu becomes large, and thus must be avoided. The reason for this is not clear yet, but it is thought to be related to the fact that the amount of scale formed in the component system containing Cu and Sn sharply increases when the temperature exceeds 1200 ° C. Heating time is normal 10
Minutes to 4 hours. Next, normal hot rolling is performed. For the steps after the hot-rolled sheet, a conventional non-oriented electrical steel sheet manufacturing step can be employed. When the hot-rolled sheet annealing is performed, the magnetic flux density can be improved, but it is possible to omit it from the viewpoint of annealing cost. Next, normal cold rolling is performed. Next, annealing is performed, and an insulating film is applied and dried. In addition, when magnetic annealing is performed by a customer, skin pass rolling may be performed at the end. Hereinafter, examples of the present invention will be described. EXAMPLES Example 1 A steel ingot containing various components shown in Table 1 was prepared by vacuum melting, hot-rolled at a heating temperature of 1100 ° C., and hot-rolled to a thickness of 2.0 mm. I got a board. The hot rolled sheet was pickled and cold rolled to obtain a steel sheet having a thickness of 0.50 mm. Subsequently, continuous annealing was performed in hydrogen at 700 ° C. for 5 seconds. The magnetic properties were measured and averaged in the L and C directions of a 50 mm × 50 mm veneer sample. Table 1 shows the results. In addition, regarding the flaws, those in which the end face cracks in the hot rolled sheet or the surface defects in the product sheet occurred even in one place were evaluated as x, and those in which there was no surface defect were evaluated as o. With component conditions within the scope of the present invention,
A non-oriented electrical steel sheet having excellent surface properties and magnetic properties was obtained. [Table 1] Example 2 0.003% by mass
C, 0.2% Si, 0.003% Al, 0.1% Mn,
0.12% P, 0.007% S, 0.45% Cu, 0.
005% V, and the rest are unavoidable impurities.
i, 0.09% Cr, 0.04% Sn, 0.005% T
i, 0.002% Nb, 0.0004% Sb, 0.00
It was 6% Mo, 0.01% O, and 0.0006% Mg. The continuously cast slab was soaked in a heating furnace for continuous hot rolling at a temperature shown in Table 2 for 120 minutes. After hot-rolled sheet of 3 mm thickness, after pickling, cold-rolled to 0.50 mm thickness, 750 ° C x 30
The continuous annealing for 2 seconds was performed in a mixed gas flow of hydrogen / nitrogen eddy current. The surface defects of the steel sheet, in particular, bald flaws due to the surface cracks specific to Cu during hot rolling were observed. In addition, iron loss W
15/50 was measured with Epstein. [Table 2] As can be seen from Table 2, excellent surface properties were obtained within the heating temperature range within the range of the present invention. Experiment N
The surface flaws of Experiment No. 5 at 1270 ° C. were about twice as large as those of Experiment No. 5 at 1220 ° C. The magnetic properties were almost the same regardless of the experimental level. As described above, according to the present invention, a hot rolled sheet for a non-oriented electrical steel sheet having excellent surface properties can be manufactured by effectively utilizing iron scrap.

Claims (1)

【特許請求の範囲】 【請求項1】 質量%で、 C ≦0.005%、 Si<1%、 Al≦3%、 Mn<1%、 0.05%≦P≦0.3%、 S ≦0.02%、 0.3%<Cu≦2%、 0.0002%≦V≦0.008% とし、残部Feおよび不可避的成分を含有するスラブを
1200℃以下で加熱し、熱間圧延することを特徴とす
る表面性状の優れた無方向性電磁鋼板用の熱延板の製造
方法。
Claims 1. In mass%, C ≦ 0.005%, Si <1%, Al ≦ 3%, Mn <1%, 0.05% ≦ P ≦ 0.3%, S ≦ 0.02%, 0.3% <Cu ≦ 2%, 0.0002% ≦ V ≦ 0.008%, and the slab containing the balance Fe and unavoidable components is heated at 1200 ° C. or less, and hot-rolled. A method for producing a hot-rolled sheet for a non-oriented electrical steel sheet having excellent surface properties.
JP2001282974A 2001-09-18 2001-09-18 Method for producing hot rolled sheet for nonoriented silicon steel having excellent surface property Withdrawn JP2003089820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001282974A JP2003089820A (en) 2001-09-18 2001-09-18 Method for producing hot rolled sheet for nonoriented silicon steel having excellent surface property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001282974A JP2003089820A (en) 2001-09-18 2001-09-18 Method for producing hot rolled sheet for nonoriented silicon steel having excellent surface property

Publications (1)

Publication Number Publication Date
JP2003089820A true JP2003089820A (en) 2003-03-28

Family

ID=19106546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001282974A Withdrawn JP2003089820A (en) 2001-09-18 2001-09-18 Method for producing hot rolled sheet for nonoriented silicon steel having excellent surface property

Country Status (1)

Country Link
JP (1) JP2003089820A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033349A1 (en) * 2003-10-06 2005-04-14 Nippon Steel Corporation High-strength magnetic steel sheet and worked part therefrom, and process for producing them
WO2007063581A1 (en) * 2005-11-30 2007-06-07 Sumitomo Metal Industries, Ltd. Nonoriented electromagnetic steel sheet and process for producing the same
CN101921956A (en) * 2010-06-23 2010-12-22 北京科技大学 High-magnetic induction, low-iron loss, low-carbon, low-silicon and non-oriented electrical steel and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033349A1 (en) * 2003-10-06 2005-04-14 Nippon Steel Corporation High-strength magnetic steel sheet and worked part therefrom, and process for producing them
KR100772243B1 (en) * 2003-10-06 2007-11-01 신닛뽄세이테쯔 카부시키카이샤 High-strength magnetic steel sheet and process for producing them
US8097094B2 (en) 2003-10-06 2012-01-17 Nippon Steel Corporation High-strength electrical steel sheet and processed part of same
WO2007063581A1 (en) * 2005-11-30 2007-06-07 Sumitomo Metal Industries, Ltd. Nonoriented electromagnetic steel sheet and process for producing the same
CN101921956A (en) * 2010-06-23 2010-12-22 北京科技大学 High-magnetic induction, low-iron loss, low-carbon, low-silicon and non-oriented electrical steel and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TWI665313B (en) Non-oriented electromagnetic steel plate and manufacturing method thereof
CA3122122C (en) Non-oriented electrical steel sheet and method for producing same
CN110023525B (en) Non-oriented electromagnetic steel sheet
TW202104613A (en) Method for producing non-oriented electromagnetic steel sheet, method for producing motor core, and motor core
JP2003089820A (en) Method for producing hot rolled sheet for nonoriented silicon steel having excellent surface property
JP6950748B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP3508436B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
JP3962155B2 (en) Method for producing non-oriented electrical steel sheet
JP3430794B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same
JP2005002401A (en) Method for producing non-oriented silicon steel sheet
JP4374095B2 (en) Method for producing non-oriented electrical steel sheet
JP3890011B2 (en) Method for producing grain-oriented electrical steel sheet
TWI834484B (en) Non-oriented electromagnetic steel plate and manufacturing method thereof
JPH0841541A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
CN116685704B (en) Non-oriented electromagnetic steel sheet and method for producing non-oriented electromagnetic steel sheet
JP7473862B1 (en) Manufacturing method of non-oriented electrical steel sheet
KR102513027B1 (en) Grain oriented electrical steel sheet and method for menufacturing the same
WO2024095595A1 (en) Non-oriented electromagnetic steel sheet and production method therefor
WO2023149269A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
JP3331402B2 (en) Manufacturing method of semi-process non-oriented electrical steel sheet with excellent all-around magnetic properties
JP2001279326A (en) Method for producing non-oriented silicon steel sheet for high frequency
JP2001279327A (en) Method for producing nonoriented silicon steel sheet for high frequency
TW202334452A (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
TW202400819A (en) Non-oriented electromagnetic steel sheet and method for producing same
JP4244393B2 (en) Method for producing non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics, and non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202