JP2003086230A - Polymer electrolyte type fuel cell - Google Patents

Polymer electrolyte type fuel cell

Info

Publication number
JP2003086230A
JP2003086230A JP2001274603A JP2001274603A JP2003086230A JP 2003086230 A JP2003086230 A JP 2003086230A JP 2001274603 A JP2001274603 A JP 2001274603A JP 2001274603 A JP2001274603 A JP 2001274603A JP 2003086230 A JP2003086230 A JP 2003086230A
Authority
JP
Japan
Prior art keywords
fuel cell
separator
mea
polymer electrolyte
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001274603A
Other languages
Japanese (ja)
Inventor
Tatsuto Yamazaki
達人 山崎
Kazuhito Hado
一仁 羽藤
Hideo Obara
英夫 小原
Hiroki Kusakabe
弘樹 日下部
Susumu Kobayashi
晋 小林
Nobunori Hase
伸啓 長谷
Shinsuke Takeguchi
伸介 竹口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001274603A priority Critical patent/JP2003086230A/en
Publication of JP2003086230A publication Critical patent/JP2003086230A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent performance deterioration by preventing position drift of a separator and an MEA, and prevent generation of short-circuit due to the contact or the like with a metal beforehand, and further reduce the number of parts by making parts for binding unnecessary. SOLUTION: When laminating single cells, electroconductive separators and MEAs are laminated in a case which is matched with the outside dimension of the electroconductive separator and the MEA.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポータブル電源、
電気自動車用電源、家庭内コージェネシステム等に使用
する固体高分子電解質を用いた燃料電池に関する。
TECHNICAL FIELD The present invention relates to a portable power source,
The present invention relates to a fuel cell using a solid polymer electrolyte used in a power source for electric vehicles, a domestic cogeneration system, and the like.

【0002】[0002]

【従来の技術】固体高分子電解質を用いた燃料電池は、
水素を含有する燃料ガスと、空気など酸素を含有する燃
料ガスとを、電気化学的に反応させることで、電力と熱
とを同時に発生させるものである。その構造は、まず、
水素イオンを選択的に輸送する高分子電解質膜の両面
に、白金系の金属触媒を担持したカーボン粉末を主成分
とする触媒反応層を形成する。次に、この触媒反応層の
外面に、燃料ガスの通気性と、電子導電性を併せ持つ拡
散層を形成し、この拡散層と触媒反応層とを合わせて電
極とする。
2. Description of the Related Art A fuel cell using a solid polymer electrolyte is
By electrochemically reacting a fuel gas containing hydrogen and a fuel gas containing oxygen such as air, electric power and heat are simultaneously generated. The structure is
On both sides of the polymer electrolyte membrane that selectively transports hydrogen ions, a catalytic reaction layer containing carbon powder carrying a platinum-based metal catalyst as a main component is formed. Next, a diffusion layer having both fuel gas permeability and electronic conductivity is formed on the outer surface of the catalytic reaction layer, and the diffusion layer and the catalytic reaction layer are combined to form an electrode.

【0003】次に、供給する燃料ガスが外にリークした
り、二種類の燃料ガスが互いに混合しないように、電極
の周囲には高分子電解質膜を挟んでガスシール材やガス
ケットを配置する。このシール材やガスケットは、電極
及び高分子電解質膜と一体化してあらかじめ組み立て、
これを、MEA(電極電解質膜接合体)と呼ぶ。MEA
の外側には、これを機械的に固定するとともに、隣接し
たMEAを互いに電気的に直列に接続するための導電性
のセパレータ板を配置する。セパレータ板のMEAと接
触する部分には、電極面に反応ガスを供給し、生成ガス
や余剰ガスを運び去るためのガス流路を形成する。ガス
流路はセパレータ板と別に設けることもできるが、セパ
レータの表面に溝を設けてガス流路とする方式が一般的
である。
Next, in order to prevent the supplied fuel gas from leaking to the outside and the two kinds of fuel gas from mixing with each other, a gas sealing material and a gasket are arranged around the electrodes with a polymer electrolyte membrane sandwiched therebetween. The sealing material and gasket are integrated with the electrode and the polymer electrolyte membrane in advance,
This is called MEA (electrode-electrolyte membrane assembly). MEA
An electrically conductive separator plate for mechanically fixing the MEA and electrically connecting adjacent MEAs to each other in series is arranged on the outer side of the. A gas flow path for supplying a reaction gas to the electrode surface and carrying away the generated gas and the surplus gas is formed in a portion of the separator plate that is in contact with the MEA. The gas flow channel may be provided separately from the separator plate, but it is common to provide a groove on the surface of the separator to form the gas flow channel.

【0004】この溝に燃料ガスを供給するためは、燃料
ガスを供給する配管を、使用するセパレータの枚数に分
岐し、その分岐先を直接セパレータ状の溝につなぎ込む
配管治具が必要となる。この治具をマニホールドと呼
び、上記のような燃料ガスの供給配管から直接つなぎ込
むタイプを外部マニホールドを呼ぶ。このマニホールド
には、構造をより簡単にした内部マニホールドと呼ぶ形
式のものがある。内部マニホールドとは、ガス流路を形
成したセパレータ板に、貫通した孔を設け、ガス流路の
出入り口をこの孔まで通し、この孔から直接燃料ガスを
供給するものである。
In order to supply the fuel gas to this groove, a pipe jig for branching the pipe for supplying the fuel gas into the number of separators to be used and directly connecting the branch destination to the separator-shaped groove is required. . This jig is called a manifold, and the type directly connected from the fuel gas supply pipe as described above is called an external manifold. There is a type of this manifold called an internal manifold having a simpler structure. The internal manifold is one in which a through hole is provided in a separator plate having a gas flow path, the inlet and outlet of the gas flow path are passed to this hole, and the fuel gas is directly supplied from this hole.

【0005】燃料電池は運転中に発熱するので、電池を
良好な温度状態に維持するために、冷却水等で冷却する
必要がある。通常、1〜3セル毎に冷却水を流す冷却部
をセパレータとセパレータとの間に挿入するが、セパレ
ータの背面に冷却水流路を設けて冷却部とする場合が多
い。これらのMEAとセパレータおよび冷却部を交互に
重ねていき、10〜200セル積層した後、集電板と絶
縁板を介し、端板でこれを挟み、締結ボルトで両端から
固定するのが一般的な積層電池の構造である。
Since the fuel cell generates heat during operation, it is necessary to cool the fuel cell with cooling water or the like in order to maintain the cell in a good temperature state. Usually, a cooling unit for flowing cooling water for every 1 to 3 cells is inserted between the separators, but a cooling water channel is often provided on the back surface of the separator to serve as the cooling unit. It is common to stack these MEAs, separators, and cooling parts alternately, stack 10 to 200 cells, sandwich the plates with a collector plate and an insulating plate, end plates, and fix them with fastening bolts from both ends. It is a structure of various laminated batteries.

【0006】このような固体高分子型の燃料電池では、
セパレータは導電性が高く、かつ燃料ガスに対してガス
気密性が高く、更に水素/酸素を酸化還元する際の反応
に対して高い耐食性を持ち必要がある。このような理由
で、セパレータには通常等方性黒鉛や膨張黒鉛などのカ
ーボン材料で構成し、ガス流路もその表面での切削や、
膨張黒鉛の場合は型による成型で作製している。
In such a polymer electrolyte fuel cell,
The separator is required to have high conductivity, high gas-tightness with respect to the fuel gas, and high corrosion resistance against the reaction at the time of redox of hydrogen / oxygen. For this reason, the separator is usually made of a carbon material such as isotropic graphite or expanded graphite, and the gas flow path is cut on its surface,
In the case of expanded graphite, it is manufactured by molding with a mold.

【0007】[0007]

【発明が解決しようとする課題】このような高分子電解
質型燃料電池を実際に運転するときは、必要とする電圧
に応じて、導電性セパレータを介して単電池を数十から
数百枚、直列に積層する。このとき、導電性セパレータ
及びMEAの面方向に対する位置固定が難しく、特に、
MEAを介して対面する導電性セパレータ上の燃料ガス
流路の位置ズレが発生しやすい。また、導電性セパレー
タとMEAが積層された燃料電池では、導電性セパレー
タとMEAとの積層部分、つまり、側面部が剥き出しに
なっているため、そこに金属片等が接触した場合、短絡
が発生する可能性がある。さらに、燃料電池を組み上げ
る際、最終的にボルトを用いて締結していたが、部品点
数が多くなることや大掛かりな治具が必要になるなどの
課題があった。
When actually operating such a polymer electrolyte fuel cell as described above, depending on the required voltage, several tens to several hundreds of cells can be inserted through a conductive separator. Stack in series. At this time, it is difficult to fix the positions of the conductive separator and the MEA in the plane direction,
Misalignment of the fuel gas flow path on the conductive separator facing through the MEA is likely to occur. Further, in the fuel cell in which the conductive separator and the MEA are stacked, since the stacked portion of the conductive separator and the MEA, that is, the side surface is exposed, a short circuit occurs when a metal piece or the like contacts there. there's a possibility that. Furthermore, when the fuel cell was assembled, the bolts were finally used for fastening, but there were problems such as an increase in the number of parts and a large-scale jig.

【0008】[0008]

【課題を解決するための手段】このような課題を解決す
るため本発明の燃料電池は、水素イオン伝導性高分子電
解質膜と、前記高分子電解質膜を挟んだ一対の電極と、
前記電極の一方に水素を有する燃料ガスを供給分配し、
前記電極の他方に酸素を含む酸化剤ガスを供給分配する
手段とを具備した単電池とを、導電性セパレータを介し
て複数個積層した高分子電解質型燃料電池であって、前
記単電池と前記導電性セパレータを積層する筐体を有す
ることを特徴とする。
In order to solve such a problem, a fuel cell of the present invention comprises a hydrogen ion conductive polymer electrolyte membrane, a pair of electrodes sandwiching the polymer electrolyte membrane,
Supplying and distributing a fuel gas containing hydrogen to one of the electrodes,
A unit cell comprising a means for supplying and distributing an oxidant gas containing oxygen to the other of the electrodes, which is a polymer electrolyte fuel cell in which a plurality of layers are laminated via a conductive separator, wherein the unit cell and the It is characterized by having a case in which conductive separators are laminated.

【0009】このとき、電極と導電性セパレータとの締
結機構部を筐体の内部に有する持つことが有効である。
At this time, it is effective to have a fastening mechanism portion between the electrode and the conductive separator inside the housing.

【0010】[0010]

【発明の実施の形態】本発明のポイントは、燃料電池を
組み上げる際、導電性セパレータ及びMEAの外形寸法
に合わせた筐体を作り、この筐体の内側に、導電性セパ
レータとMEAとを積層することで、導電性セパレータ
とMEAとの積層位置が、筐体によりきちんと固定され
ることにある。また、筐体内に予め導電性セパレータと
MEAとに荷重を与える装置を内蔵することで、大掛か
りな治具を使用することなく、燃料電池を組み上げるこ
とが出来る。さらに、筐体内に導電性セパレータ及びM
EA積層し、締結荷重を与えた後、その筐体の空いてい
る面に蓋をすることで、燃料電池全体が密閉され、燃料
電池の外部との絶縁性を確保する。
BEST MODE FOR CARRYING OUT THE INVENTION The point of the present invention is that when assembling a fuel cell, a casing is made to match the outer dimensions of the conductive separator and the MEA, and the conductive separator and the MEA are laminated inside this casing. By doing so, the stacking position of the conductive separator and the MEA is properly fixed by the housing. In addition, by incorporating a device that applies a load to the conductive separator and the MEA in advance in the housing, the fuel cell can be assembled without using a large jig. Furthermore, a conductive separator and M
After stacking the EA, applying a fastening load, and covering the open surface of the housing with the lid, the entire fuel cell is hermetically sealed to ensure insulation from the outside of the fuel cell.

【0011】以下、本発明の実施の形態を図面を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】[0012]

【実施例】(実施例1)アセチレンブラック粉末に、平
均粒径約30Åの白金粒子を25重量%担持したものを
電極の触媒とした。この触媒粉末をイソプロパノ−ルに
分散させた溶液と、パーフルオロカーボンスルホン酸の
粉末をエチルアルコールに分散したディスパージョン溶
液(アルドリッチ社、ナフィオン)とを混合し、ペース
ト状にした。このペーストを原料とし、スクリ−ン印刷
法をもちいて、厚み250μmのカ−ボン不織布の一方
の面に電極触媒層を形成した。形成後の反応電極中に含
まれる白金量は0.5mg/cm2、パーフルオロカー
ボンスルホン酸の量は1.2mg/cm2となるよう調
整した。
Example 1 An electrode catalyst was prepared by supporting 25% by weight of platinum particles having an average particle size of about 30Å on acetylene black powder. A solution prepared by dispersing the catalyst powder in isopropanol and a dispersion solution prepared by dispersing a powder of perfluorocarbon sulfonic acid in ethyl alcohol (Aldrich, Nafion) were mixed to form a paste. Using this paste as a raw material, a screen printing method was used to form an electrode catalyst layer on one surface of a 250 μm thick carbon nonwoven fabric. Amount of platinum contained in the reaction electrode after forming the 0.5 mg / cm 2, the amount of perfluorocarbon sulfonic acid was adjusted to be 1.2 mg / cm 2.

【0013】つぎに、図1に示したように、正極・負極
共に同一構成とし、電極より一回り大きい面積を有する
水素イオン伝導性高分子電解質膜の中心部の両面に、触
媒層が電解質膜側に接するようにホットプレスした。こ
れを電極/電解質接合体(MEA)とした。ここでは、
水素イオン伝導性高分子電解質として、パーフルオロカ
ーボンスルホン酸を25μmの厚みに薄膜化したもの
(米国デュポン社、ナフィオン112)を用いた。ま
た、MEAの外周部にはガスシール性を確保するための
ガスケット1を貼りつける。
Next, as shown in FIG. 1, a positive electrode and a negative electrode have the same structure, and a catalyst layer is provided on both sides of the central part of the hydrogen ion conductive polymer electrolyte membrane having an area slightly larger than the electrode. Hot pressed to touch the side. This was used as an electrode / electrolyte assembly (MEA). here,
As the hydrogen ion conductive polymer electrolyte, a thin film of perfluorocarbon sulfonic acid having a thickness of 25 μm (Nafion 112, DuPont, USA) was used. Further, a gasket 1 for securing gas sealing property is attached to the outer peripheral portion of the MEA.

【0014】本実施例で作製した高分子電解質型燃料電
池の各構成要素及び構造を図2,図3,図4,図5,図
6及び図7に示した。
The components and structure of the polymer electrolyte fuel cell produced in this example are shown in FIGS. 2, 3, 4, 5, 6 and 7.

【0015】まず、等方性黒鉛材料よりなる導電性セパ
レータを図2,図3及び図4に示した。図2に示すよう
に、外形寸法が厚さ2mm,高さ130mm×幅260
mmの黒鉛板に、その空気側となる片方の面の中央部2
0cm×9cmの領域に、2.9mmピッチ,幅約2m
mの溝2、その水素側となる他方の面には、同ピッチ、
同幅の溝3をサーペンタイン形状で切削加工により形成
した。このとき、図2に示したように空気、水素ガス及
び冷却水を供給・排出する孔4を導電性セパレータ外周
部に設けた。
First, a conductive separator made of an isotropic graphite material is shown in FIGS. 2, 3 and 4. As shown in FIG. 2, the external dimensions are a thickness of 2 mm, a height of 130 mm and a width of 260.
mm graphite plate, the center part 2 of one surface on the air side
Area of 0 cm x 9 cm, 2.9 mm pitch, width about 2 m
The groove 2 of m and the other surface on the hydrogen side have the same pitch,
The groove 3 having the same width was formed by cutting in a serpentine shape. At this time, as shown in FIG. 2, holes 4 for supplying / discharging air, hydrogen gas and cooling water were provided in the outer peripheral portion of the conductive separator.

【0016】つぎに、図3に示すように、図2の導電性
セパレータと同様に、外形寸法が厚さ2mm,高さ13
0mm×幅260mmの前記黒鉛板の片側の面に図2の
空気側の面と同様の溝6を設け、他方の面に冷却水を流
すためのピッチ2.9mm,幅約2mmの溝7を切削加
工により形成し、空気、水素ガス及び冷却水を供給・排
出する孔8をセパレータ外周部に設けた。
Next, as shown in FIG. 3, as in the case of the conductive separator shown in FIG. 2, the outer dimensions are 2 mm in thickness and 13 in height.
A groove 6 similar to the air side surface of FIG. 2 is provided on one surface of the graphite plate of 0 mm × width 260 mm, and a groove 7 having a pitch of 2.9 mm and a width of about 2 mm for flowing cooling water is provided on the other surface. Holes 8 which are formed by cutting and which supply and discharge air, hydrogen gas and cooling water are provided in the outer peripheral portion of the separator.

【0017】また図4に示すように、図2の導電性セパ
レータと同様に、外形寸法が厚さ2mm,高さ130m
m×幅260mmの黒鉛板の片側の面に図2の水素側の
面と同様の溝10を設け、他方の面に図3の導電性セパ
レータの冷却水側の溝形状と対応する溝11を切削加工
により形成し、空気、水素ガス及び冷却水を供給・排出
する孔12をセパレータ外周部に設けた。
Further, as shown in FIG. 4, as in the case of the conductive separator of FIG. 2, the external dimensions are 2 mm in thickness and 130 m in height.
A groove 10 similar to the surface on the hydrogen side of FIG. 2 is provided on one surface of a graphite plate having a width of m × 260 mm, and a groove 11 corresponding to the groove shape on the cooling water side of the conductive separator of FIG. 3 is provided on the other surface. Holes 12 formed by cutting and for supplying / discharging air, hydrogen gas and cooling water were provided in the outer peripheral portion of the separator.

【0018】先述した図2,図3及び図4の3種類のセ
パレータにより、図1に示したMEAを挟み電池の構成
単位とし、それを図5に示した。また図6で示したよう
に、水素側のガス流通溝14と空気側のガス流通溝15
の位置は対応するように構成とし、電極に過剰なせん断
力がかからないようにした。さらに、単電池を2セル積
層ごとに冷却水を流す冷却部16を設けた。この冷却部
は冷却水用の溝を持つ2種類のセパレータ各々の、冷却
水面が対面するようにシール剤で貼り合わせることで形
成する。セパレータ板とMEAの組合せにおけるガスシ
ール性はMEAに貼り付けられたガスケットにて確保
し、セパレータ板同士の組合せにおけるガスシール性は
液状ガスケット(東レ・ダウ コーニング・シリコーン
株式会社:SE9186L)で貼り合わせることで確保
した。
The MEA shown in FIG. 1 is sandwiched by the three types of separators shown in FIGS. 2, 3 and 4, and the constitutional unit of the battery is shown in FIG. Further, as shown in FIG. 6, the gas flow groove 14 on the hydrogen side and the gas flow groove 15 on the air side.
The positions of (1) and (2) were configured so as to correspond to each other so that excessive shearing force was not applied to the electrodes. Further, the cooling unit 16 for flowing the cooling water is provided for every two cell stacks of the unit cell. This cooling unit is formed by bonding two kinds of separators each having a groove for cooling water with a sealing agent so that the cooling water surfaces face each other. The gas sealability of the combination of the separator plate and the MEA is secured by the gasket attached to the MEA, and the gas sealability of the combination of the separator plates is attached with a liquid gasket (Toray Dow Corning Silicone Co., Ltd .: SE9186L). Secured by that.

【0019】つぎに、図7に示した導電性セパレータ及
びMEAを格納する筐体について以下に説明する。筐体
はPPS材料により水素を供給・排出する管17、空気
を供給・排出する管18及び冷却水を供給・排出する管
19を一体成型する構造とし、その管を持つ面の裏側の
面に当たる筐体の内壁には、各々の管より水素、空気及
び冷却水を供給・排出するための孔20が設けられてい
る。その筐体のガス供給・排出孔を有する面の対面に位
置する内壁21に締結用小型油圧ジャッキ22を装着
し、さらにその油圧ジャッキ22に導電性セパレータ締
結用の端板23を装着する。このとき筐体凹部の寸法は
高さ131mm×幅261mmとする。
Next, the casing for accommodating the conductive separator and MEA shown in FIG. 7 will be described below. The casing has a structure in which a pipe 17 for supplying / discharging hydrogen, a pipe 18 for supplying / discharging air, and a pipe 19 for supplying / discharging cooling water are integrally molded with a PPS material, and correspond to the surface on the back side of the surface having the pipe. The inner wall of the housing is provided with holes 20 for supplying / discharging hydrogen, air and cooling water from the respective tubes. A small hydraulic jack 22 for fastening is attached to the inner wall 21 located opposite to the surface of the housing having the gas supply / exhaust holes, and further an end plate 23 for fastening the conductive separator is attached to the hydraulic jack 22. At this time, the dimensions of the recess of the housing are 131 mm in height and 261 mm in width.

【0020】以上に示した筐体のガス供給・排出孔を有
する内壁24に集電板25を置き、MEAをセパレータ
を介して50セット積層した後、その端面に集電板26
を置き、油圧ジャッキに装着された端板23によって。
5kgf/cm2の圧力で締結した。この状態を図8に
示す。最後に、図9に示すように、セパレータ及びME
Aを格納した筐体の開いている面に蓋27を取り付けビ
ス28で締める。
The collector plate 25 is placed on the inner wall 24 having the gas supply / exhaust holes of the above-mentioned housing, 50 sets of MEA are laminated through the separator, and the collector plate 26 is provided on the end face thereof.
With the end plate 23 attached to the hydraulic jack.
Fastening was performed at a pressure of 5 kgf / cm 2 . This state is shown in FIG. Finally, as shown in FIG. 9, the separator and the ME
The lid 27 is attached to the open surface of the housing in which A is stored and fastened with the screw 28.

【0021】このように作製した本実施例の高分子電解
質型燃料電池を、85℃に保持し、一方の電極側に83
℃の露点となるよう加湿・加温した水素ガスを、もう一
方の電極側に78℃の露点となるように加湿・加温した
空気を供給した。その結果、電流を外部に出力しない無
負荷時には、50Vの電池開放電圧を得た。
The polymer electrolyte fuel cell of this example produced in this manner was maintained at 85 ° C., and 83% was provided on one electrode side.
Hydrogen gas humidified and heated to a dew point of ° C was supplied, and air humidified and heated to a dew point of 78 ° C was supplied to the other electrode side. As a result, a battery open circuit voltage of 50 V was obtained when no load was applied and the current was not output to the outside.

【0022】(実施例2)本実施例で使用する導電性セ
パレータ及びMEAは、実施例1で使用した物と同一で
ある。実施例1と同様に、図2、図3及び図4の3種類
のセパレータにより、MEAをはさみ電池の構成単位と
した。
Example 2 The conductive separator and MEA used in this example are the same as those used in Example 1. Similar to Example 1, MEA was used as a constituent unit of a scissor battery by using the three kinds of separators shown in FIGS. 2, 3, and 4.

【0023】ここで、図10に示す、導電性セパレータ
及びMEAを格納する筐体について以下に説明する。本
実施例で用いる筐体も実施例1で用いた筐体と基本的な
構造は同様で、PPS材料により水素を供給・排出する
管29、空気を供給・排出する管30及び冷却水を供給
・排出する管31を一体成型する構造とした。次に、図
11に示す導電性セパレータとMEAの積層体に荷重を
与えるための端板ブロックについて以下に説明する。セ
パレータとMEAに荷重を与えるために19個のバネ3
2を用い、それをPPS製の二枚の端板33と34で挟
む構成とし、筐体内に締結用端板ブロックを格納した後
に、セパレータとMEAを積層できるように、筐体内の
スペースに余裕を持たせるために、バネの縮みしろを大
きく取り仮締結をする。仮締結の方法はバネを挟む二枚
の端板に予め六角穴付きボルト35を取り付ける穴36
を設け、バネが6mm縮むまで、ボルトで締め上げる。
この仮締結状態の端板ブロックをセパレータ及びMEA
を積層する前に、筐体内のガス供給・排出孔37を有す
る面の対面に位置する内壁38に合わせて格納する。こ
の時、筐体からボルトを取り外すための穴39を開けて
おく。さらに実施例1と同様に、筐体のガス供給・排出
孔を有する面に集電板40を置き、筐体の内壁に沿うよ
うに導電性セパレータを介して、MEAを50セット積
層した後、その上端面に集電板41を置く。最後に端板
ブロックを仮締結しているボルトを外し、筐体でセパレ
ータ及びMEAを締結した状態にする。このとき、バネ
は3.4mm縮んだ状態であり、バネ常数は15.5k
gf/mmであるから、セパレータ及びMEAには約1
000kgfの荷重が掛かかる。この状態を図12に示
す。最後に、実施例1と同様に、図13に示すように、
セパレータ及びMEAを格納した筐体の開いている面に
蓋42を取り付けビス43で締める。
Here, the housing for housing the conductive separator and the MEA shown in FIG. 10 will be described below. The casing used in this embodiment has the same basic structure as the casing used in Embodiment 1, and a pipe 29 for supplying / discharging hydrogen, a pipe 30 for supplying / discharging air, and a cooling water are made of a PPS material. The discharge pipe 31 is integrally molded. Next, the end plate block for applying a load to the laminate of the conductive separator and MEA shown in FIG. 11 will be described below. 19 springs 3 to load the separator and MEA
2 is used, and it is sandwiched between two end plates 33 and 34 made of PPS, and after the fastening end plate block is stored in the housing, a space can be provided in the housing so that the separator and the MEA can be stacked. In order to hold the spring, the shrinkage margin of the spring is taken large and temporarily tightened. The temporary fastening method is that holes 36 for attaching hexagon socket head cap bolts 35 are previously attached to the two end plates that sandwich the spring.
And tighten the bolt until the spring contracts by 6 mm.
This temporary fastening end plate block is used as a separator and MEA.
Before being stacked, the sheets are stored in conformity with the inner wall 38 located opposite to the surface having the gas supply / discharge holes 37 in the housing. At this time, a hole 39 for removing the bolt from the housing is opened. Further, as in Example 1, the current collector 40 was placed on the surface of the housing having the gas supply / exhaust holes, and 50 sets of MEAs were laminated via the conductive separator along the inner wall of the housing, The current collector plate 41 is placed on the upper end surface. Finally, the bolts that temporarily fasten the end plate block are removed, and the separator and the MEA are fastened in the housing. At this time, the spring is contracted by 3.4 mm and the spring constant is 15.5 k.
Since it is gf / mm, it is about 1 for separator and MEA.
A load of 000 kgf is applied. This state is shown in FIG. Finally, as in the first embodiment, as shown in FIG.
The lid 42 is attached to the open surface of the housing in which the separator and the MEA are stored, and the screw 43 is tightened.

【0024】このように作製した、本実施例の高分子電
解質型燃料電池を、75℃に保持し、一方の電極側に7
0℃の露点となるよう加湿・加温した水素ガスを、もう
一方の電極側に65℃の露点となるように加湿・加温し
た空気を供給した。その結果、電圧測定端子より各単電
池の電圧を測定し、燃料電池全体で、電流を外部に出力
しない無負荷時での電池開放電圧が50Vであることを
確認した。
The polymer electrolyte fuel cell of this example produced in this manner was held at 75 ° C., and one of the electrodes was provided with 7
Hydrogen gas humidified and heated to a dew point of 0 ° C was supplied, and air humidified and heated to a dew point of 65 ° C was supplied to the other electrode side. As a result, the voltage of each unit cell was measured from the voltage measurement terminal, and it was confirmed that the cell open voltage was 50 V in the entire fuel cell when no load was applied and no current was output to the outside.

【0025】[0025]

【発明の効果】本発明によると、セパレータ及びMEA
が位置決めの機構を持たない形状でも、筐体によりセパ
レータ及びMEAが位置決めされるため、容易にセパレ
ータとMEAの位置ズレを防止でき、性能低下を防ぐこ
とが可能となる。また、燃料電池の最終形態が全体を筐
体で覆われた状態になるので、燃料電池運転中に、セパ
レータ部と外部の接触を防止することができ、金属との
接触等による短絡の発生を未然に防ぎ、発熱や発火など
の危険状態になることも回避できる。さらにセパレータ
及びMEAを最終的に筐体そのもので締結するため、従
来用いていた締結用のボルトなどの部品が不要となり、
部品点数が削減できる。
According to the present invention, a separator and an MEA are provided.
Even if the shape does not have a positioning mechanism, since the separator and the MEA are positioned by the housing, it is possible to easily prevent the positional deviation between the separator and the MEA and prevent the performance from deteriorating. Further, since the final form of the fuel cell is entirely covered with the housing, it is possible to prevent contact between the separator part and the outside during operation of the fuel cell, and to prevent short circuit due to contact with metal or the like. It is possible to prevent it from happening and to avoid a dangerous state such as fever or ignition. Furthermore, since the separator and the MEA are finally fastened by the housing itself, parts such as fastening bolts that have been conventionally used are unnecessary,
The number of parts can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の燃料電池で用いたME
Aの構成を示した図
FIG. 1 is an ME used in a fuel cell according to a first embodiment of the present invention.
Diagram showing the configuration of A

【図2】本発明の第1の実施例の燃料電池で用いた第1
の導電性セパレータの構成を示した図
FIG. 2 shows a first example used in a fuel cell according to a first example of the present invention.
Diagram showing the structure of the conductive separator

【図3】本発明の第1の実施例の燃料電池で用いた第2
の導電性セパレータの構成を示した図
FIG. 3 is a second diagram used in the fuel cell according to the first embodiment of the present invention.
Diagram showing the structure of the conductive separator

【図4】本発明の第1の実施例の燃料電池で用いた第3
の導電性セパレータの構成を示した図
FIG. 4 is a third view used in the fuel cell of the first embodiment of the present invention.
Diagram showing the structure of the conductive separator

【図5】本発明の第1の実施例の燃料電池の積層の構成
単位を示した図
FIG. 5 is a view showing a constitutional unit of a stack of the fuel cell according to the first embodiment of the present invention.

【図6】本発明の第1の実施例の燃料電池の導電性セパ
レータとMEAのガス流通溝部の積層断面を示した図
FIG. 6 is a view showing a laminated cross-section of the conductive separator of the fuel cell of the first embodiment of the present invention and the gas flow groove portion of the MEA.

【図7】本発明の第1の実施例の燃料電池の導電性セパ
レータ及びMEAを格納する筐体の形状を示した図
FIG. 7 is a view showing a shape of a housing that houses a conductive separator and an MEA of the fuel cell according to the first embodiment of the present invention.

【図8】本発明の第1の実施例の燃料電池で用いた筐体
に導電性セパレータ、MEA、締結機構が格納された状
態を示した図
FIG. 8 is a diagram showing a state in which a conductive separator, an MEA, and a fastening mechanism are stored in a housing used in the fuel cell according to the first embodiment of the present invention.

【図9】本発明の第1の実施例の燃料電池の最終形態を
示した図
FIG. 9 is a diagram showing a final form of the fuel cell according to the first embodiment of the present invention.

【図10】本発明の第2の実施例の燃料電池の導電性セ
パレータ及びMEAを格納する筐体の形状を示した図
FIG. 10 is a diagram showing the shape of a housing that houses a conductive separator and an MEA of a fuel cell according to a second embodiment of the present invention.

【図11】本発明の第2の実施例の燃料電池の導電性セ
パレータ及びMEAに荷重を与えるための締結機構体を
示した図
FIG. 11 is a view showing a fastening mechanism for applying a load to the conductive separator and the MEA of the fuel cell according to the second embodiment of the present invention.

【図12】本発明の第2の実施例の燃料電池で用いた筐
体に導電性セパレータ、MEA、締結機構が格納された
状態を示した図
FIG. 12 is a view showing a state in which a conductive separator, an MEA, and a fastening mechanism are stored in a housing used in the fuel cell according to the second embodiment of the present invention.

【図13】本発明の第2の実施例の燃料電池の最終形態
を示した図
FIG. 13 is a diagram showing a final form of a fuel cell according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ガスケット 2 空気側のガス流通溝 3 水素側のガス流通溝 4 マニホールド孔 5 電気絶縁性ガラス繊維入り樹脂 6 空気側のガス流通溝 7 冷却水の流通溝 8 マニホールド孔 9 電気絶縁性ガラス繊維入り樹脂 10 水素側のガス流通溝 11 冷却水の流通溝 12 マニホールド孔 13 電気絶縁性ガラス繊維入り樹脂 14 水素側のガス流通溝 15 空気側のガス流通溝 16 冷却水の流通溝 17 水素の供給・排出管 18 空気の供給・排出管 19 冷却水の供給・排出管 20 燃料ガス及び冷却水の供給・排出孔 21 筐体内壁面 22 油圧ジャッキ 23 端板 24 筐体内壁面 25 集電板 26 集電板 27 蓋 28 ビス 29 水素の供給・排出管 30 空気の供給・排出管 31 冷却水の供給・排出管 32 バネ 33 端板 34 端板 35 六角穴付きボルト 36 ボルト用取り付け穴 37 燃料ガス及び冷却水の供給・排出孔 38 筐体内壁面 39 ボルト取り出し用の穴 40 集電板 41 集電板 42 蓋 43 ビス 1 gasket 2 Gas circulation groove on the air side 3 Hydrogen side gas distribution groove 4 manifold holes 5 Resin with electrical insulation glass fiber 6 Air side gas distribution groove 7 Cooling water circulation groove 8 manifold holes 9 Resin with electrically insulating glass fiber 10 Gas circulation groove on the hydrogen side 11 Cooling water circulation groove 12 manifold holes 13 Resin with electrical insulation glass fiber 14 Gas circulation groove on the hydrogen side 15 Air circulation groove on the air side 16 Cooling water circulation groove 17 Hydrogen supply and discharge pipes 18 Air supply / exhaust pipes 19 Cooling water supply / discharge pipe 20 Fuel gas and cooling water supply / discharge holes 21 inner wall surface 22 hydraulic jack 23 End plate 24 Inner wall surface 25 current collector 26 Current collector 27 Lid 28 screws 29 Hydrogen supply and discharge pipes 30 Air supply / exhaust pipe 31 Cooling water supply / discharge pipe 32 spring 33 End plate 34 End plate 35 Hexagon socket head cap screw 36 bolt mounting holes 37 Fuel gas and cooling water supply / discharge holes 38 Inner wall surface 39 Bolt removal hole 40 current collector 41 current collector 42 lid 43 screws

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小原 英夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 日下部 弘樹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小林 晋 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 長谷 伸啓 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 竹口 伸介 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H026 AA06 CC01 CC03 CC08 CX10 HH03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hideo Ohara             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Hiroki Kusakabe             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Shin Kobayashi             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Nobuhiro Hase             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Shinsuke Takeguchi             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F term (reference) 5H026 AA06 CC01 CC03 CC08 CX10                       HH03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素イオン伝導性高分子電解質膜と、前
記高分子電解質膜を挟んだ一対の電極と、前記電極の一
方に水素を有する燃料ガスを供給分配し、前記電極の他
方に酸素を含む酸化剤ガスを供給分配する手段とを具備
した単電池とを、導電性セパレータを介して複数個積層
した高分子電解質型燃料電池であって、前記単電池と前
記導電性セパレータを積層する筐体を有することを特徴
とする高分子電解質型燃料電池。
1. A hydrogen ion conductive polymer electrolyte membrane, a pair of electrodes sandwiching the polymer electrolyte membrane, and a fuel gas containing hydrogen is supplied and distributed to one of the electrodes, and oxygen is supplied to the other of the electrodes. A polymer electrolyte fuel cell in which a plurality of unit cells each having a means for supplying and distributing an oxidant gas containing the unit cells are stacked via a conductive separator, and a casing for stacking the unit cells and the conductive separator. A polymer electrolyte fuel cell having a body.
【請求項2】 電極と導電性セパレータとの締結機構部
を筐体の内部に有する持つことを特徴とする請求項1記
載の高分子電解質型燃料電池。
2. The polymer electrolyte fuel cell according to claim 1, further comprising a fastening mechanism portion for connecting the electrode and the conductive separator inside the housing.
JP2001274603A 2001-09-11 2001-09-11 Polymer electrolyte type fuel cell Pending JP2003086230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001274603A JP2003086230A (en) 2001-09-11 2001-09-11 Polymer electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001274603A JP2003086230A (en) 2001-09-11 2001-09-11 Polymer electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JP2003086230A true JP2003086230A (en) 2003-03-20

Family

ID=19099608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001274603A Pending JP2003086230A (en) 2001-09-11 2001-09-11 Polymer electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JP2003086230A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050771A1 (en) * 2003-11-20 2005-06-02 Nissan Motor Co., Ltd. Fuel cell and production of fuel cell stack
US7763389B2 (en) 2007-01-25 2010-07-27 Toyota Jidosha Kabushiki Kaisha Fuel cell manufacturing device and fuel cell
WO2012141305A1 (en) * 2011-04-15 2012-10-18 Jx日鉱日石エネルギー株式会社 Fuel cell module
WO2012141309A1 (en) * 2011-04-15 2012-10-18 Jx日鉱日石エネルギー株式会社 Fuel cell module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050771A1 (en) * 2003-11-20 2005-06-02 Nissan Motor Co., Ltd. Fuel cell and production of fuel cell stack
KR100772770B1 (en) * 2003-11-20 2007-11-01 닛산 지도우샤 가부시키가이샤 Fuel cell and production of fuel cell stack
DE112004002237B4 (en) * 2003-11-20 2010-03-11 Nissan Motor Co., Ltd., Yokohama-shi Method and device for producing a fuel cell
US7981572B2 (en) 2003-11-20 2011-07-19 Nissan Motor Co., Ltd. Fuel cell and production of fuel cell stack
US8247137B2 (en) 2003-11-20 2012-08-21 Nissan Motor Co., Ltd. Fuel cell and production of fuel cell stack
US7763389B2 (en) 2007-01-25 2010-07-27 Toyota Jidosha Kabushiki Kaisha Fuel cell manufacturing device and fuel cell
WO2012141305A1 (en) * 2011-04-15 2012-10-18 Jx日鉱日石エネルギー株式会社 Fuel cell module
WO2012141309A1 (en) * 2011-04-15 2012-10-18 Jx日鉱日石エネルギー株式会社 Fuel cell module
JP2012226872A (en) * 2011-04-15 2012-11-15 Jx Nippon Oil & Energy Corp Fuel cell module

Similar Documents

Publication Publication Date Title
US8105731B2 (en) Fuel cell system
JP3596761B2 (en) Polymer electrolyte fuel cell
JP4051076B2 (en) Polymer electrolyte fuel cell
JP4077509B2 (en) Polymer electrolyte fuel cell
US8003273B2 (en) Polymer electrolyte fuel cell and fuel cell sealing member for the same
CA2544055A1 (en) Fuel cell end plate assembly
JP5086581B2 (en) Fuel cell stack
JP2002025584A (en) Solid high polymer molecule electrolyte fuel cell and its humidifying method
CN101764240B (en) Fuel battery pack
JP2002352817A (en) Polymer electrolyte fuel cell
US20090136807A1 (en) Mea component, and polymer electrolyte fuel cell
JP4213515B2 (en) Polymer electrolyte fuel cell
JP5235581B2 (en) Fuel cell separator
JP2003086230A (en) Polymer electrolyte type fuel cell
JP4439646B2 (en) Conductive separator, polymer electrolyte fuel cell, and method for producing polymer electrolyte fuel cell
JP2009164081A (en) Fuel battery and separator sealing structure
JP4340413B2 (en) Polymer electrolyte fuel cell
JP3685039B2 (en) Polymer electrolyte fuel cell system
JP4083600B2 (en) Fuel cell
JP5136051B2 (en) Fuel cell
JP2004273264A (en) Fuel-cell stack
JP3580525B2 (en) Polymer electrolyte fuel cell
JP2005216535A (en) Fuel cell
US11552311B2 (en) Fuel cell
JP4615266B2 (en) Polymer electrolyte fuel cell