JP2003083501A - Fluidized bed boiler - Google Patents

Fluidized bed boiler

Info

Publication number
JP2003083501A
JP2003083501A JP2001277131A JP2001277131A JP2003083501A JP 2003083501 A JP2003083501 A JP 2003083501A JP 2001277131 A JP2001277131 A JP 2001277131A JP 2001277131 A JP2001277131 A JP 2001277131A JP 2003083501 A JP2003083501 A JP 2003083501A
Authority
JP
Japan
Prior art keywords
steam
reheater
superheater
furnace
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001277131A
Other languages
Japanese (ja)
Inventor
Daisuke Okada
大輔 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2001277131A priority Critical patent/JP2003083501A/en
Publication of JP2003083501A publication Critical patent/JP2003083501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluidized bed boiler capable of securely preventing the burnout of a superheater and a reheater in a starting process. SOLUTION: This fluidized bed boiler is provided with the first furnace 5 having an evaporator 11 located in a fluidized bed 9a, the second furnace 7 having a superheater 15 and a reheater 19 located in the fluidized bed 9b and evaporation-detecting means 75 and 77 detecting whether the evaporation by the evaporator 11 reaches the amount allowing the steam to circulate through the superheaters 13 and 15 and the reheater 19 at a predetermined flow amount or above. It is constituted to start the stationary operation of the second furnace 7 at the time when the evaporation-detecting means 75 and 77 detects that the evaporation by the evaporator 11 reaches the amount allowing the steam to circulate through the superheaters 13 and 15 and the reheater 19 at the predetermined flow amount or above after starting the first furnace 5. Thereby the stationary operation of the second furnace 7 is started at the time of detecting that the evaporation by the evaporator 11 reaches the amount allowing the cooling steam to circulate through the superheaters 13 and 15 and the reheater 19 at the predetermined flow amount or above, thus preventing the burnout of the superheater and reheater securely.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、流動層ボイラに係
り、特に、火炉内に形成される流動層内に位置する蒸発
器、過熱器、及び再熱器を有する流動層ボイラに関す
る。
TECHNICAL FIELD The present invention relates to a fluidized bed boiler, and more particularly to a fluidized bed boiler having an evaporator, a superheater, and a reheater located in a fluidized bed formed in a furnace.

【0002】[0002]

【従来の技術】流動層内に蒸発器、過熱器、そして再熱
器を設けた火炉を備えた流動層ボイラは、熱伝導率が大
きいため、伝熱面積を低減してボイラのコンパクト化を
図ることができるという利点がある。流動層ボイラで
は、流動層の熱で蒸発器を通流する給水を加熱して蒸気
を発生させ、この蒸気が過熱器を通流する際に流動層の
熱で加熱されて過熱蒸気となる。さらに、過熱器からの
過熱蒸気を利用する機器類などで利用された、つまり膨
張した蒸気は、再熱器で再度加熱されて過熱蒸気つまり
再熱蒸気となる。
2. Description of the Related Art A fluidized bed boiler equipped with a furnace having an evaporator, a superheater, and a reheater in a fluidized bed has a large thermal conductivity, so that the heat transfer area is reduced to make the boiler compact. There is an advantage that it can be achieved. In a fluidized bed boiler, the heat of the fluidized bed heats the feed water flowing through the evaporator to generate steam, and when this steam flows through the superheater, it is heated by the heat of the fluidized bed to become superheated steam. Further, the steam that has been used, that is, expanded steam has been reheated in the reheater to become superheated steam, that is, reheated steam.

【0003】このような流動層ボイラでは、流動層の燃
焼温度つまり層温度が800〜900℃程度であるた
め、流動層ボイラの起動時、過熱器と再熱器に十分な流
量の蒸気が流れていない場合、過熱器と再熱器は空焚き
のような状態となり、過熱器と再熱器を形成する蒸気の
流路の温度が、耐熱温度以上に上昇し、過熱器と再熱器
が焼損してしまう場合がある。
In such a fluidized bed boiler, since the combustion temperature of the fluidized bed, that is, the bed temperature is about 800 to 900 ° C., when the fluidized bed boiler is started, a sufficient amount of steam flows through the superheater and the reheater. If not, the superheater and reheater will be in the state of being heated, and the temperature of the steam flow path forming the superheater and reheater will rise above the heat resistant temperature, and the superheater and reheater will It may burn out.

【0004】これに対して実公平3−11521号公報
には、蒸発器を有する第1の火炉と過熱器と再熱器とを
有する第2の火炉とを備え、第1の火炉を単独で起動し
た後に過熱器と再熱器とに導入される蒸気の流量を検出
し、この検出した蒸気の流量が所定の値に達したときに
第2の火炉の定常運転を開始する流動層ボイラが提案さ
れている。そして、このような構成の流動層ボイラとす
ることにより、過熱器と再熱器に空焚きのような状態に
ならないように設定した所定の流量の蒸気、つまり十分
な流量のクーリング蒸気が確保されてから過熱器と再熱
器が加熱されるため、流動層ボイラの起動過程における
過熱器と再熱器の焼損を防止している。
On the other hand, Japanese Utility Model Publication No. 3-11521 includes a first furnace having an evaporator and a second furnace having a superheater and a reheater, and the first furnace alone. A fluidized bed boiler that detects the flow rate of steam introduced into the superheater and the reheater after starting and starts the steady operation of the second furnace when the detected flow rate of steam reaches a predetermined value Proposed. Then, by using the fluidized bed boiler having such a configuration, the steam having a predetermined flow rate that is set so that the superheater and the reheater are not in a state like being heated, that is, the cooling steam having a sufficient flow rate is secured. Since the superheater and the reheater are heated after that, the burnout of the superheater and the reheater during the startup process of the fluidized bed boiler is prevented.

【0005】[0005]

【発明が解決しようとする課題】上記のように、従来の
流動層ボイラでは、過熱器と再熱器を通流する蒸気の流
量のみを考慮している。しかし、もし、蒸発器での蒸発
量がクーリング蒸気を所定の流量で過熱器や再熱器に供
給できる量に達していないと、所定の流量のクーリング
蒸気を確保できず、クーリング蒸気の流量が所定の流量
以下に低下した際などに、過熱器と再熱器を形成する管
などからなる流路の温度が上昇し、過熱器と再熱器の焼
損が発生してしまう場合がある。 本発明の課題は、流
動層ボイラの起動過程における過熱器と再熱器の焼損を
確実に防止することにある。
As described above, in the conventional fluidized bed boiler, only the flow rate of steam flowing through the superheater and the reheater is considered. However, if the amount of evaporation in the evaporator does not reach the amount that can supply the cooling steam to the superheater or reheater at the specified flow rate, it is not possible to secure the cooling steam at the specified flow rate and the cooling steam flow rate When the flow rate falls below a predetermined flow rate, the temperature of the flow path including the tubes forming the superheater and the reheater may rise, and the superheater and the reheater may be burned. An object of the present invention is to reliably prevent burnout of a superheater and a reheater during a startup process of a fluidized bed boiler.

【課題を解決するための手段】[Means for Solving the Problems]

【0006】本発明の流動層ボイラは、流動層内に位置
する蒸発器を有する第1の火炉と、流動層内に位置する
過熱器及び再熱器を有する第2の火炉と、蒸発器での蒸
発量が所定の流量以上で蒸気を過熱器及び再熱器に通流
できる量に達しているか否かを検出する蒸発量検出手段
とを備え、第1の火炉を起動した後、蒸発量検出手段
で、蒸発器での蒸発量が所定の流量以上で蒸気を過熱器
及び再熱器に通流できる量に達していることを検出した
ときに第2の火炉の定常運転を開始する構成とすること
により上記課題を解決する。
The fluidized bed boiler of the present invention comprises a first furnace having an evaporator located in the fluidized bed, a second furnace having a superheater and a reheater located in the fluidized bed, and an evaporator. And an evaporation amount detecting means for detecting whether or not the evaporation amount of the vapor reaches a volume at which the vapor can flow through the superheater and the reheater at a predetermined flow rate or more, and the vaporization amount after starting the first furnace. A configuration for starting a steady operation of the second furnace when the detection means detects that the amount of vaporization in the evaporator has reached the amount at which vapor can flow through the superheater and reheater at a predetermined flow rate or more. By solving the above, the above problem is solved.

【0007】このような構成とすれば、蒸発量検出手段
で、蒸発器での蒸発量が所定の流量以上で蒸気を過熱器
及び再熱器に通流できる量に達していることを検出した
ときに第2の火炉の定常運転を開始するため、所定の流
量のクーリング蒸気を過熱器と再熱器に常に通流させる
ことができる状態で第2の火炉の定常運転を開始でき、
流動層ボイラの起動過程における過熱器と再熱器の焼損
を確実に防止することができる。
According to this structure, the evaporation amount detecting means detects that the evaporation amount in the evaporator has reached the amount at which the vapor can flow through the superheater and the reheater at a predetermined flow rate or more. Since the steady operation of the second furnace is sometimes started, the steady operation of the second furnace can be started in a state in which the cooling steam of a predetermined flow rate can be constantly passed through the superheater and the reheater,
Burnout of the superheater and reheater during the startup process of the fluidized bed boiler can be reliably prevented.

【0008】さらに、過熱器からの蒸気を再熱器に導く
流路に設けられてこの流路内を通流する蒸気を減圧する
弁を有し、蒸発量検出手段は、流路の弁よりも蒸気の流
れに対して上流側に設けられてこの流路内の圧力を検出
する圧力検出手段を含み、この圧力検出手段で検出した
圧力と弁の開度とから得られる弁を通過する蒸気流量か
ら、蒸発器での蒸発量が所定の流量以上で蒸気を過熱器
及び再熱器に通流できる量に達しているか否かを検出す
る構成とする。また、過熱器からの蒸気を再熱器に導く
流路が、過熱器からの蒸気を利用する機器類と並列に設
けられ、過熱器からの蒸気を利用する機器類を通らずに
過熱器からの蒸気を再熱器に導くバイパス管路である構
成とすることにより、弁を通過するクーリング蒸気の流
量から蒸発器での蒸発量が所定の値に達しているか否か
を検出できるので好ましい。
Further, the evaporation amount detecting means has a valve provided in a flow path for guiding the steam from the superheater to the reheater to reduce the pressure of the steam flowing in the flow path. Also includes a pressure detection means provided upstream of the flow of steam to detect the pressure in the flow path, and the steam passing through the valve obtained from the pressure detected by the pressure detection means and the opening degree of the valve. From the flow rate, it is configured to detect whether or not the vaporization amount in the evaporator has reached the amount at which vapor can flow through the superheater and the reheater at a predetermined flow rate or more. In addition, a flow path that guides the steam from the superheater to the reheater is provided in parallel with the equipment that uses the steam from the superheater, and does not pass through the equipment that uses the steam from the superheater. It is preferable to use a bypass pipe for guiding the steam of (1) to the reheater because it can be detected from the flow rate of the cooling steam passing through the valve whether or not the amount of evaporation in the evaporator has reached a predetermined value.

【0009】さらに、蒸発量検出手段で、蒸発器での蒸
発量が所定の流量以上で蒸気を過熱器及び再熱器に通流
できる量であることを検出できない場合には、蒸発器で
の蒸発量を増大させる構成とすれば、クーリング蒸気が
所定の流量となるように蒸発器での蒸発量を制御するこ
とができるので好ましい。
Further, when the evaporation amount detecting means cannot detect that the evaporation amount in the evaporator is equal to or more than a predetermined flow rate and allows the vapor to flow through the superheater and the reheater, the evaporation amount in the evaporator is The configuration in which the evaporation amount is increased is preferable because the evaporation amount in the evaporator can be controlled so that the cooling steam has a predetermined flow rate.

【0010】[0010]

【発明の実施の形態】以下、本発明を適用してなる流動
層ボイラの一実施形態について図1及び図2を参照して
説明する。図1は、本発明を適用してなる流動層ボイラ
の概略構成を示すブロック図である。図2は、高圧ター
ビンバイパス流路の入口圧力とバイパス弁の開度とから
バイパス弁を通過するクーリング蒸気の流量を換算する
方法を説明する図である。なお、本実施形態では、流動
層ボイラで生成した蒸気を利用する機器類として蒸気タ
ービンを設けた発電システムの構成を例示している。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a fluidized bed boiler to which the present invention is applied will be described below with reference to FIGS. 1 and 2. FIG. 1 is a block diagram showing a schematic configuration of a fluidized bed boiler to which the present invention is applied. FIG. 2 is a diagram illustrating a method of converting the flow rate of cooling steam passing through the bypass valve from the inlet pressure of the high-pressure turbine bypass passage and the opening degree of the bypass valve. The present embodiment exemplifies a configuration of a power generation system in which a steam turbine is provided as a device that uses the steam generated in the fluidized bed boiler.

【0011】本実施形態の流動層ボイラは、図1に示す
ように、圧力容器1、3内に各々格納された第1火炉5
と第2火炉7を備えている。第1火炉5内と第2火炉7
内には、各々流動層を形成する流動媒体9a、9bが収
容されている。第1火炉5内には、流動媒体9aによっ
て形成された流動層内に位置し、この流動層の熱で給水
や復水を蒸発させて蒸気を発生する蒸発器11、そして
蒸発器11で発生した蒸気を流動層の熱で過熱する過熱
器13が設けられている。第2火炉7内には、流動媒体
9bによって形成された流動層内に位置し、この流動層
の熱で蒸発器11で発生した蒸気を過熱する過熱器1
5、そして過熱器15と過熱器13とで順次過熱された
過熱蒸気で駆動する蒸気タービン発電機16の蒸気ター
ビン17から排出された蒸気を再度過熱蒸気、つまり再
熱蒸気とする再熱器19が設けられている。
The fluidized bed boiler of this embodiment, as shown in FIG. 1, has a first furnace 5 housed in pressure vessels 1 and 3, respectively.
And a second furnace 7. Inside the first furnace 5 and the second furnace 7
Inside, fluid media 9a and 9b, which form a fluidized bed, are housed. The first furnace 5 is located in a fluidized bed formed by a fluidized medium 9a, and the heat of the fluidized bed evaporates the feed water and the condensate to generate vapor, and the vaporizer 11 generates the vapor. A superheater 13 that superheats the generated steam by the heat of the fluidized bed is provided. The superheater 1 located in the fluidized bed formed by the fluidized medium 9b in the second furnace 7 and superheats the steam generated in the evaporator 11 by the heat of the fluidized bed.
5, and the reheater 19 for converting the steam discharged from the steam turbine 17 of the steam turbine generator 16 driven by the superheated steam sequentially heated by the superheater 15 and the superheater 13 into superheated steam, that is, reheated steam. Is provided.

【0012】第1火炉5と第2火炉7には、第1火炉5
と第2火炉7とで発生した燃焼ガスを排出する燃焼ガス
管路21a、21bが各々連結されている。燃焼ガス管
路21a、21bには、各々、燃焼ガス中の灰やチャー
などを除去する脱塵装置23a、23bが設けられてい
る。燃焼ガス管路21a、21bは、各々に設けられた
脱塵装置23a、23bよりも燃焼ガスの流れに対して
下流側で合流して1本の燃焼ガス管路21となり、燃焼
ガス管路21は、ガスタービン発電機25のガスタービ
ン27に連結されている。また、ガスタービン27に
は、ガスタービン27から排出される排ガスが通流する
排気煙道29が連結されている。排気煙道29には、排
気ガスの脱硝を行う脱硝装置31、給水を排気ガスの熱
で加熱する高圧ガス給水加熱器33、そして復水を排気
ガスの熱で加熱する低圧ガス給水加熱器35が排気の流
れに対して上流側から順次設けられており、排気煙道2
9の端部は、煙突37に連結されている。
The first furnace 5 and the second furnace 7 include the first furnace 5
And combustion gas pipes 21a and 21b for discharging the combustion gas generated in the second furnace 7 are connected to each other. Dust removal devices 23a and 23b for removing ash and char in the combustion gas are provided in the combustion gas pipes 21a and 21b, respectively. The combustion gas pipelines 21a and 21b merge on the downstream side with respect to the flow of the combustion gas with respect to the dust removing devices 23a and 23b provided therein, respectively, to form one combustion gas pipeline 21. Are connected to the gas turbine 27 of the gas turbine generator 25. Further, an exhaust flue 29 through which exhaust gas discharged from the gas turbine 27 flows is connected to the gas turbine 27. In the exhaust flue 29, a denitration device 31 that denitrates the exhaust gas, a high pressure gas feed water heater 33 that heats the feed water with the heat of the exhaust gas, and a low pressure gas feed water heater 35 that heats the condensate water with the heat of the exhaust gas. Are sequentially installed from the upstream side with respect to the flow of exhaust gas.
The end of 9 is connected to the chimney 37.

【0013】第1火炉5と第2火炉7が各々収容されて
いる圧力容器1、3には、途中で2本の燃焼空気管路3
9a、39bに分岐する燃焼空気管路39を介して圧縮
した高圧燃焼用空気を供給するコンプレッサ41が連結
されている。また、圧力容器1と第1火炉5、及び圧力
容器3と第2火炉7には、各々、圧力容器1、3内の燃
焼空気を加熱して第1火炉5と第2火炉7に供給する起
動用熱風炉43a、43bが連結されている。なお、第
1火炉5と第2火炉7は、水冷壁を有しているが、図1
では水冷壁は図示しておらず、省略してある。
In the pressure vessels 1 and 3 in which the first furnace 5 and the second furnace 7 are respectively housed, two combustion air pipelines 3 are provided on the way.
A compressor 41 that supplies compressed high-pressure combustion air is connected via a combustion air pipe 39 that branches into 9a and 39b. Further, for the pressure vessel 1 and the first furnace 5, and for the pressure vessel 3 and the second furnace 7, the combustion air in the pressure vessels 1 and 3 is heated and supplied to the first furnace 5 and the second furnace 7, respectively. The hot air stoves 43a and 43b for starting are connected. Although the first furnace 5 and the second furnace 7 have water cooling walls,
Then, the water cooling wall is not shown and is omitted.

【0014】給水及び復水系統は、蒸気タービン17と
低圧ガス給水加熱器35を連結する復水管路45、復水
管路45に順次設けられた復水器47と低圧ガス給水加
熱器35方向に復水を送液する復水ポンプ49、低圧ガ
ス給水加熱器35と高圧ガス給水加熱器33とを連結す
る給水管路51、給水管路51に順次設けられた脱気器
53と高圧ガス給水加熱器33方向に給水を送液する給
水ポンプ55、そして高圧ガス給水加熱器33から第1
火炉5内の蒸発器11に給水を導くためのボイラ給水管
路57などで構成されている。
The water supply and condensate system is connected to the steam turbine 17 and the low pressure gas feed water heater 35 in the direction of the condensate pipe 45, the condenser 47 sequentially provided in the condensate pipe 45 and the low pressure gas feed water heater 35. A condensate pump 49 for sending condensate, a water supply line 51 connecting the low-pressure gas feed water heater 35 and the high-pressure gas feed water heater 33, a deaerator 53 and a high-pressure gas feed water sequentially provided in the water supply line 51. The feed water pump 55 for feeding the feed water toward the heater 33, and the high pressure gas feed water heater 33
It is composed of a boiler water supply conduit 57 for guiding the water supply to the evaporator 11 in the furnace 5.

【0015】一方、水蒸気系統は、第1火炉5内の蒸発
器11からの蒸気を第2のボイラの過熱器15に導く蒸
気管路59、蒸気管路59に設けられて蒸気から水分を
分離する汽水分離器61、汽水分離器61で分離された
水をボイラ給水管路57に戻して第1火炉5内の蒸発器
11と汽水分離器61との間で水を循環させる循環用管
路63、循環用管路63に設けられた循環ポンプ65、
第2のボイラの過熱器15と第1火炉5内の過熱器13
とで順次過熱した過熱蒸気を蒸気タービン17に導く過
熱蒸気管路67、蒸気タービン17で使用された蒸気を
第2火炉7内の再熱器19に導く再熱用管路69、そし
て第2火炉7内の再熱器19で再度過熱された再熱蒸気
を蒸気タービン17に導く再熱蒸気管路71などで構成
されている。
On the other hand, the steam system is provided in the steam pipe 59 and the steam pipe 59 for guiding the steam from the evaporator 11 in the first furnace 5 to the superheater 15 of the second boiler to separate water from the steam. Brackish water separator 61, a circulation conduit for returning the water separated by the brackish water separator 61 to the boiler feed water conduit 57 and circulating the water between the evaporator 11 and the brackish water separator 61 in the first furnace 5. 63, a circulation pump 65 provided in the circulation conduit 63,
Superheater 15 of the second boiler and superheater 13 in the first furnace 5
And a superheated steam pipe 67 that guides the superheated steam that has been superheated in sequence to the steam turbine 17, a reheat pipe 69 that guides the steam used in the steam turbine 17 to the reheater 19 in the second furnace 7, and a second The reheat steam in the furnace 7 is reheated in the reheater 19, and the reheated steam pipeline 71 guides the reheated steam to the steam turbine 17.

【0016】また、過熱蒸気管路67と再熱用管路69
との間には、蒸気タービン17と並列に設けられ、蒸気
タービン17を通らずに過熱蒸気管路67内を通流する
蒸気を再熱用管路69に導く高圧タービンバイパス管路
73が設けられている。高圧タービンバイパス管路73
には、蒸気の流れに対して上流側から、高圧タービンバ
イパス管路73内の入口側の圧力を検出する圧力センサ
75、過熱器13からの蒸気を再熱器19のクーリング
蒸気とするために所定の圧力に減圧するバイパス弁77
と所定の温度に減温する減温器79が順次設けられてい
る。これらの高圧タービンバイパス管路73、圧力制御
弁77、そして減温器79などは、高圧タービンバイパ
ス系統を構成している。
Further, a superheated steam line 67 and a reheating line 69
And a high-pressure turbine bypass line 73 that is provided in parallel with the steam turbine 17 and that guides the steam flowing through the superheated steam line 67 without passing through the steam turbine 17 to the reheat line 69. Has been. High pressure turbine bypass line 73
In order to use the pressure sensor 75 for detecting the pressure on the inlet side in the high-pressure turbine bypass pipe 73 from the upstream side with respect to the steam flow and the steam from the superheater 13 as the cooling steam for the reheater 19. Bypass valve 77 that reduces the pressure to a predetermined pressure
And a temperature reducer 79 for reducing the temperature to a predetermined temperature are sequentially provided. The high pressure turbine bypass line 73, the pressure control valve 77, the desuperheater 79 and the like constitute a high pressure turbine bypass system.

【0017】さらに、本実施形態の流動層ボイラは、再
熱器19からの蒸気を、減圧・減温した後に、復水器4
7へ供給する図示していない低圧タービンバイパス管路
などからなる図示していない低圧タービンバイパス系
統、流動層ボイラの起動過程における動作を制御する図
示していない起動制御手段、そして、第1火炉5と第2
火炉7に燃料である石炭を供給する図示していない燃料
供給手段などを備えている。
Further, in the fluidized bed boiler of this embodiment, the steam from the reheater 19 is decompressed / cooled, and then the condenser 4
7, a low-pressure turbine bypass system (not shown) including a low-pressure turbine bypass pipe line (not shown), start-up control means (not shown) for controlling the operation of the fluidized bed boiler in the start-up process, and the first furnace 5 And the second
The furnace 7 is provided with a fuel supply means (not shown) for supplying coal as a fuel.

【0018】このような構成の流動層ボイラの起動過程
における動作と本発明の特徴部について説明する。流動
層ボイラの起動時、第1火炉5と第2火炉7は、コンプ
レッサ41からの燃焼空気が起動用熱風炉43a、43
bで加熱され各々の火炉5、7に供給されることで、第
1火炉5内と第2火炉7内の流動媒体9a、9bが、石
炭が着火する温度以上に昇温される。この後、まず、第
1火炉5内にのみ、燃料である石炭が図示していない燃
料供給手段によって供給される。
The operation in the starting process of the fluidized bed boiler having such a configuration and the characteristic part of the present invention will be described. When starting the fluidized bed boiler, the combustion air from the compressor 41 of the first furnace 5 and the second furnace 7 is heated by the hot air stoves 43a, 43 for starting.
By being heated in b and supplied to the respective furnaces 5 and 7, the fluidized media 9a and 9b in the first furnace 5 and the second furnace 7 are heated to a temperature at which coal is ignited or higher. After this, first, coal, which is a fuel, is supplied only into the first furnace 5 by a fuel supply means (not shown).

【0019】この起動過程において、水蒸気系統では、
高圧ガス給水加熱器33で加熱した給水を、第1火炉5
と第2火炉7の水冷壁、そして蒸発器11で汽水混合状
態に加熱し、汽水分離器61で分離した蒸気を第2火炉
7内の過熱器15、そして第1火炉5内の過熱器13の
クーリング蒸気として過熱器15、13を通流する。第
1火炉5内の過熱器13を出た蒸気は、高圧タービンバ
イパス管路73に設けられた圧力制御弁77を開くこと
で、蒸気タービン17をバイパスして高圧タービンバイ
パス管路73を通流する。高圧タービンバイパス管路7
3などからなる高圧タービンバイパス系統では、再熱器
19の入口に達した蒸気を所定の圧力・温度とするため
に、高圧タービンバイパス系統を通流する蒸気は、圧力
制御弁77で減圧され、さらに減温器79で減温され
る。このように高圧タービンバイパス系統で、所定の圧
力・温度まで減圧・減温された蒸気は、クーリング蒸気
として再熱器19を通流する。
In this starting process, in the steam system,
The feed water heated by the high pressure gas feed water heater 33 is fed to the first furnace 5
And the water cooling wall of the second furnace 7, and the evaporator 11 to heat the mixture to a brackish water mixed state, and the steam separated by the brackish water separator 61 is heated by the superheater 15 in the second furnace 7 and the superheater 13 in the first furnace 5. The cooling steam of the above is passed through the superheaters 15 and 13. The steam exiting the superheater 13 in the first furnace 5 bypasses the steam turbine 17 and flows through the high pressure turbine bypass line 73 by opening the pressure control valve 77 provided in the high pressure turbine bypass line 73. To do. High-pressure turbine bypass line 7
In the high-pressure turbine bypass system including 3 or the like, in order to bring the steam reaching the inlet of the reheater 19 to a predetermined pressure / temperature, the steam flowing through the high-pressure turbine bypass system is decompressed by the pressure control valve 77, Further, the temperature is reduced by the temperature reducer 79. In the high pressure turbine bypass system, the steam decompressed / cooled to a predetermined pressure / temperature as described above flows through the reheater 19 as cooling steam.

【0020】このとき、第1火炉5内の蒸発器11での
蒸発量が所定流量でクーリング蒸気を供給できる状態に
あるか否かを検出するため、高圧タービンバイパス管路
73に設置しているバイパス弁77の開度信号と、圧力
センサ75により計測した高圧タービンバイパス管路7
3の入口圧力の計測値を基に、図2に示すような、予め
決定しておいたバイパス弁開度と高圧タービンバイパス
管路の入口圧力に対する流量特性からバイパス弁通過蒸
気流量を換算する。例えば、図2によれば、バイパス弁
77の開度が35%で高圧タービンバイパス管路73の
入口圧力が10MPaであれば、バイパス弁77の通過
蒸気流量は、88t/hと換算される。
At this time, in order to detect whether or not the amount of evaporation in the evaporator 11 in the first furnace 5 is such that cooling steam can be supplied at a predetermined flow rate, the high pressure turbine bypass pipe line 73 is installed. The opening signal of the bypass valve 77 and the high pressure turbine bypass line 7 measured by the pressure sensor 75.
Based on the measured value of the inlet pressure of No. 3, the bypass valve passing steam flow rate is converted from the predetermined flow rate characteristics with respect to the bypass valve opening and the inlet pressure of the high pressure turbine bypass pipe line as shown in FIG. For example, according to FIG. 2, if the opening degree of the bypass valve 77 is 35% and the inlet pressure of the high-pressure turbine bypass line 73 is 10 MPa, the passing steam flow rate of the bypass valve 77 is converted to 88 t / h.

【0021】図示していない起動制御手段は、この換算
したバイパス弁通過蒸気流量が、過熱器15、13と再
熱器19とに通流すべき所定のクーリング蒸気量以上に
なっているか否かで、蒸発器11での蒸発量が所定の流
量以上でクーリング蒸気を過熱器15、13と再熱器1
9とに通流できる量に達しているか否かを検出する。図
示していない起動制御手段は、蒸発器11での蒸発量が
所定の流量以上でクーリング蒸気を過熱器15、13と
再熱器19とに常に通流できる量に達していることを検
出すると、自動的に過熱器15、再熱器19を有する第
2火炉7に燃料である石炭を図示していない燃料供給手
段によって供給し、第2火炉7の定常運転を開始する。
The starting control means (not shown) determines whether or not the converted steam flow rate passing through the bypass valve is equal to or more than a predetermined cooling steam quantity to be passed through the superheaters 15 and 13 and the reheater 19. , The cooling steam is vaporized in the evaporator 11 at a predetermined flow rate or more and the superheaters 15 and 13 and the reheater 1
It is detected whether or not the amount has reached the value of 9 When the start-up control means (not shown) detects that the evaporation amount in the evaporator 11 is equal to or higher than a predetermined flow rate, the amount of cooling vapor that can always flow through the superheaters 15 and 13 and the reheater 19 is detected. The coal, which is the fuel, is automatically supplied to the second furnace 7 having the superheater 15 and the reheater 19 by the fuel supply means (not shown), and the steady operation of the second furnace 7 is started.

【0022】また、図示していない起動制御手段は、例
えば所定時間経過しても蒸発器11での蒸発量が所定の
流量以上でクーリング蒸気を過熱器15、13と再熱器
19とに通流できる量に達していない場合、第1火炉5
の負荷、つまり蒸発器11での蒸発量を増大させる。こ
れにより、蒸発器11での蒸発量が増大し、図示してい
ない起動制御手段が、蒸発器11での蒸発量が所定の流
量以上でクーリング蒸気を過熱器15、13と再熱器1
9とに常に通流できる量に達していることを検出する
と、第2火炉7の定常運転を開始する。このように、圧
力センサ75やバイパス弁77、そして図示していない
起動制御手段などは、蒸発量検出手段を構成している。
Further, the start-up control means (not shown) passes cooling vapor to the superheaters 15 and 13 and the reheater 19 when the amount of evaporation in the evaporator 11 is equal to or more than a predetermined flow rate even after a predetermined time elapses. If the amount that can be flowed is not reached, the first furnace 5
Load, that is, the amount of evaporation in the evaporator 11 is increased. As a result, the amount of evaporation in the evaporator 11 is increased, and the start-up control means (not shown) causes the cooling steam to flow into the superheaters 15 and 13 and the reheater 1 when the amount of evaporation in the evaporator 11 is not less than a predetermined flow rate.
When it is detected that the amount that can always flow to 9 and 9 is reached, the steady operation of the second furnace 7 is started. As described above, the pressure sensor 75, the bypass valve 77, the start control means (not shown), and the like constitute the evaporation amount detection means.

【0023】なお、第1火炉5と第2火炉7で発生した
燃焼ガスは、脱塵装置23a、23bで除塵された後、
ガスタービン27へ導かれガスタービン27を駆動する
と共にコンプレッサ41を駆動して、第1火炉5と第2
火炉7に供給される高圧燃焼空気を生成する。ガスター
ビン27からの排ガスは、脱硝装置31を通過し、高圧
ガス給水加熱器33で給水を加熱し、続いて低圧ガス給
水加熱器35で復水を加熱した後、煙突37から排出さ
れる。
The combustion gas generated in the first furnace 5 and the second furnace 7 is dedusted by the dedusters 23a and 23b, and then,
It is guided to the gas turbine 27 to drive the gas turbine 27 and drive the compressor 41 so that the first furnace 5 and the second furnace 5
The high pressure combustion air supplied to the furnace 7 is generated. The exhaust gas from the gas turbine 27 passes through the denitration device 31, the feed water is heated by the high pressure gas feed water heater 33, the condensate is heated by the low pressure gas feed water heater 35, and then discharged from the chimney 37.

【0024】流動層ボイラが定常運転に移行した後、給
水及び復水系統では、復水器47から供給された復水
は、低圧ガス給水加熱器35でガスタービン27からの
排ガスの熱で加熱された後、脱気器53に入る。脱気器
53を出た給水は、高圧ガス給水加熱器33でガスター
ビン27からの排ガスの熱で加熱された後、第1火炉5
内の蒸発器11に供給される。水蒸気系統では、第1火
炉5内の蒸発器11に供給された給水は、蒸発器11で
蒸発して蒸気となり、第2火炉7内の過熱器15と第1
火炉5内の過熱器13を通流して過熱蒸気となった後、
蒸気タービン17へ供給される。蒸気タービン17を駆
動するために使用された蒸気は、第2火炉7内の再熱器
19で再度過熱されて再熱蒸気となり、再び蒸気タービ
ン17へ供給されて蒸気タービン17を駆動する。
After the fluidized bed boiler shifts to the steady operation, the condensate supplied from the condenser 47 is heated by the heat of the exhaust gas from the gas turbine 27 in the low pressure gas feed water heater 35 in the water supply and condensate system. Then, the deaerator 53 is entered. The feed water exiting the deaerator 53 is heated by the heat of the exhaust gas from the gas turbine 27 in the high pressure gas feed water heater 33, and then the first furnace 5
It is supplied to the evaporator 11 inside. In the steam system, the feed water supplied to the evaporator 11 in the first furnace 5 is vaporized in the evaporator 11 to become steam, and the first superheater 15 in the second furnace 7 and the first
After passing through the superheater 13 in the furnace 5 to become superheated steam,
It is supplied to the steam turbine 17. The steam used to drive the steam turbine 17 is reheated in the reheater 19 in the second furnace 7 to be reheated steam, and is supplied to the steam turbine 17 again to drive the steam turbine 17.

【0025】このように本実施形態の流動層ボイラは、
蒸発量検出手段で、蒸発器11での蒸発量が所定の流量
以上でクーリング蒸気を過熱器13、15及び再熱器1
9に通流できる量に達していることを検出したときに第
2火炉7の定常運転を開始するため、所定の流量のクー
リング蒸気を過熱器13、15と再熱器19に常に通流
させることができる状態で第2火炉7の定常運転を開始
でき、流動層ボイラの起動過程における過熱器と再熱器
の焼損を確実に防止することができる。
As described above, the fluidized bed boiler of this embodiment is
By the evaporation amount detecting means, the amount of evaporation in the evaporator 11 is equal to or more than a predetermined flow rate, and the cooling steam is cooled by the superheaters 13, 15 and the reheater 1.
In order to start the steady operation of the second furnace 7 when it is detected that the amount of gas that can flow through the second furnace 7 is reached, cooling steam of a predetermined flow rate is constantly passed through the superheaters 13 and 15 and the reheater 19. In this state, the steady operation of the second furnace 7 can be started, and the burnout of the superheater and reheater during the startup process of the fluidized bed boiler can be reliably prevented.

【0026】さらに、蒸発器11での蒸発量が所定の流
量以上でクーリング蒸気を過熱器13、15と再熱器1
9とに通流できる量に達していない場合、第1火炉5の
負荷、つまり蒸発器11での蒸発量を増大させることに
より、所定流量以上のクーリング蒸気を確保でき、過熱
器13、15と再熱器19を形成する管などからなる流
路の温度が上昇することによる過熱器と再熱器の焼損を
より確実に防止することができる。
Further, when the amount of evaporation in the evaporator 11 is equal to or more than a predetermined flow rate, cooling steam is supplied to the superheaters 13 and 15 and the reheater 1.
9 has not reached the amount that can flow through the first furnace 5, by increasing the load of the first furnace 5, that is, the evaporation amount in the evaporator 11, it is possible to secure cooling steam at a predetermined flow rate or more, and It is possible to more reliably prevent burning of the superheater and the reheater due to an increase in the temperature of the flow path formed of the pipe forming the reheater 19.

【0027】[0027]

【発明の効果】本発明によれば、流動層ボイラの起動過
程における過熱器と再熱器の焼損を確実に防止すること
ができる。
According to the present invention, the burnout of the superheater and the reheater during the startup process of the fluidized bed boiler can be reliably prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用してなる流動層ボイラの一実施形
態の概略構成を示すブロック図である。
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of a fluidized bed boiler to which the present invention is applied.

【図2】高圧タービンバイパス流路の入口圧力とバイパ
ス弁の開度とからバイパス弁を通過するクーリング蒸気
の流量を換算する方法を説明する図である。
FIG. 2 is a diagram illustrating a method of converting a flow rate of cooling steam passing through a bypass valve from an inlet pressure of a high pressure turbine bypass passage and an opening degree of the bypass valve.

【符号の説明】[Explanation of symbols]

1、3 圧力容器 5 第1火炉 7 第2火炉 9a、9b 流動媒体 11 蒸発器 13、15 過熱器 19 再熱器 73 高圧タービンバイパス管路 75 圧力センサ 77 バイパス弁 1,3 pressure vessel 5 No. 1 furnace 7 Second furnace 9a, 9b Fluid medium 11 evaporator 13, 15 Superheater 19 Reheater 73 High-pressure turbine bypass line 75 Pressure sensor 77 Bypass valve

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G081 BA03 BA13 BB00 BC05 DA03 DA11 DA21 3K064 AA06 AA11 AB01 AC06 AC13 BA13 3L021 AA03 BA03 BA08 CA05 CA06 DA03 FA05 FA12 FA16    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3G081 BA03 BA13 BB00 BC05 DA03                       DA11 DA21                 3K064 AA06 AA11 AB01 AC06 AC13                       BA13                 3L021 AA03 BA03 BA08 CA05 CA06                       DA03 FA05 FA12 FA16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 流動層内に位置する蒸発器を有する第1
の火炉と、流動層内に位置する過熱器及び再熱器を有す
る第2の火炉と、前記蒸発器での蒸発量が所定の流量以
上で蒸気を前記過熱器及び前記再熱器に通流できる量に
達しているか否かを検出する蒸発量検出手段とを備え、
前記第1の火炉を起動した後、前記蒸発量検出手段で、
前記蒸発器での蒸発量が所定の流量以上で蒸気を前記過
熱器及び前記再熱器に通流できる量に達していることを
検出したときに前記第2の火炉の定常運転を開始してな
る流動層ボイラ。
1. A first having an evaporator located in a fluidized bed
And a second furnace having a superheater and a reheater located in a fluidized bed, and a vapor is passed through the superheater and the reheater when the evaporation amount in the evaporator is equal to or more than a predetermined flow rate. Equipped with evaporation amount detection means for detecting whether or not the amount has reached,
After starting the first furnace, the evaporation amount detecting means,
When it is detected that the amount of evaporation in the evaporator has reached the amount at which steam can flow through the superheater and the reheater at a predetermined flow rate or more, the steady operation of the second furnace is started. Becomes a fluidized bed boiler.
【請求項2】 前記過熱器からの蒸気を前記再熱器に導
く流路に設けられて前記流路内を通流する蒸気を減圧す
る弁を有し、前記蒸発量検出手段は、前記流路の前記弁
よりも蒸気の流れに対して上流側に設けられて前記流路
内の圧力を検出する圧力検出手段を含み、該圧力検出手
段で検出した圧力と、前記弁の開度とから得られる前記
弁を通過する蒸気流量から、前記蒸発器での蒸発量が所
定の流量以上で蒸気を前記過熱器及び前記再熱器に通流
できる量に達しているか否かを検出してなることを特徴
とする請求項1に記載の流動層ボイラ。
2. A valve provided in a flow path for guiding the steam from the superheater to the reheater to reduce the pressure of the steam flowing in the flow path, and the evaporation amount detecting means includes the flow rate controller. A pressure detecting means for detecting the pressure in the flow path, which is provided on the upstream side with respect to the flow of steam than the valve of the passage, from the pressure detected by the pressure detecting means and the opening degree of the valve. From the obtained flow rate of steam passing through the valve, it is detected whether or not the amount of vaporization in the evaporator has reached the amount at which vapor can flow through the superheater and the reheater at a predetermined flow rate or more. The fluidized bed boiler according to claim 1, wherein
【請求項3】 前記流路が、前記過熱器からの蒸気を利
用する機器類と並列に設けられ、前記過熱器からの蒸気
を利用する機器類を通らずに前記過熱器からの蒸気を前
記再熱器に導くバイパス管路であることを特徴とする請
求項2に記載の流動層ボイラ。
3. The flow path is provided in parallel with devices using steam from the superheater, and the steam from the superheater is passed through without passing through devices using steam from the superheater. The fluidized bed boiler according to claim 2, wherein the fluidized bed boiler is a bypass line leading to a reheater.
【請求項4】 前記蒸発量検出手段で、前記蒸発器での
蒸発量が所定の流量以上で蒸気を前記過熱器及び前記再
熱器に通流できる量であることを検出できない場合に
は、前記蒸発器での蒸発量を増大させてなることを特徴
とする請求項1乃至3のいずれか1項に記載の流動層ボ
イラ。
4. When the evaporation amount detecting means cannot detect that the amount of evaporation in the evaporator is equal to or more than a predetermined flow rate and allows the vapor to flow through the superheater and the reheater, The fluidized bed boiler according to any one of claims 1 to 3, wherein an evaporation amount in the evaporator is increased.
JP2001277131A 2001-09-12 2001-09-12 Fluidized bed boiler Pending JP2003083501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001277131A JP2003083501A (en) 2001-09-12 2001-09-12 Fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001277131A JP2003083501A (en) 2001-09-12 2001-09-12 Fluidized bed boiler

Publications (1)

Publication Number Publication Date
JP2003083501A true JP2003083501A (en) 2003-03-19

Family

ID=19101712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001277131A Pending JP2003083501A (en) 2001-09-12 2001-09-12 Fluidized bed boiler

Country Status (1)

Country Link
JP (1) JP2003083501A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150010465A (en) 2013-07-19 2015-01-28 한국전력공사 Variable heat exchanger of circulating fluid bed boiler
CN105674256A (en) * 2015-11-29 2016-06-15 集美大学 Quick-start system and method for circulating fluidized bed boilers
JP2020025908A (en) * 2018-08-09 2020-02-20 三菱日立パワーシステムズ株式会社 Flue gas denitration apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920506A (en) * 1982-07-26 1984-02-02 Hitachi Ltd Turbine bypass device of steam turbine plant
JPS59219604A (en) * 1983-05-26 1984-12-11 株式会社日立製作所 Controller for warm air in steam piping
JPH0311521Y2 (en) * 1983-11-22 1991-03-20
JPH04181082A (en) * 1990-11-15 1992-06-29 Tlv Co Ltd Regulating valve provided with flow rate meter function
JPH11182806A (en) * 1997-12-25 1999-07-06 Ishikawajima Harima Heavy Ind Co Ltd Method and device for monitoring flow rate of auxiliary steam of boiler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920506A (en) * 1982-07-26 1984-02-02 Hitachi Ltd Turbine bypass device of steam turbine plant
JPS59219604A (en) * 1983-05-26 1984-12-11 株式会社日立製作所 Controller for warm air in steam piping
JPH0311521Y2 (en) * 1983-11-22 1991-03-20
JPH04181082A (en) * 1990-11-15 1992-06-29 Tlv Co Ltd Regulating valve provided with flow rate meter function
JPH11182806A (en) * 1997-12-25 1999-07-06 Ishikawajima Harima Heavy Ind Co Ltd Method and device for monitoring flow rate of auxiliary steam of boiler

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150010465A (en) 2013-07-19 2015-01-28 한국전력공사 Variable heat exchanger of circulating fluid bed boiler
CN105674256A (en) * 2015-11-29 2016-06-15 集美大学 Quick-start system and method for circulating fluidized bed boilers
CN105674256B (en) * 2015-11-29 2019-09-27 桂林航天工业学院 Circulating fluidized bed boiler quick start system and method
JP2020025908A (en) * 2018-08-09 2020-02-20 三菱日立パワーシステムズ株式会社 Flue gas denitration apparatus
JP7260974B2 (en) 2018-08-09 2023-04-19 三菱重工業株式会社 Combustion exhaust gas denitration device

Similar Documents

Publication Publication Date Title
JP3783195B2 (en) Current generation in a combined power plant with gas and steam turbines.
JP2011523997A (en) Method and apparatus for generating power by oxyfuel combustion
JP2005534883A (en) Waste heat steam generator
JPH06229209A (en) Gas-steam turbine composite equipment and operating method thereof
JP5665621B2 (en) Waste heat recovery boiler and power plant
JPS61250306A (en) Hot air turbine and steam turbine combination power plant
KR20160093030A (en) Combined cycle system
JP6419888B1 (en) Power plant and operation method thereof
JPH06229207A (en) Operating method of power generating equipment and power generating equipment operated on basis of said method
JP2007187352A (en) Starting method of boiler
JPH0933005A (en) Water feeding device for waste heat recovery boiler
JP6516993B2 (en) Combined cycle plant and boiler steam cooling method
JP2007248017A (en) Temperature controller for fuel economizer of reheat boiler
JP2003083501A (en) Fluidized bed boiler
JPH01252890A (en) Recovery of exhaust heat of metallurical furnace
CN105980773A (en) Method and plant for co-generation of heat and power
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
JP2006266085A (en) Regenerative cycle type gas turbine power generation system
JP2004092426A (en) Cogeneration method and cogeneration system
JPH0783005A (en) Compound refuse power generation plant
JPH08312902A (en) Starting method and device for steam prime plant having a plurality of boilers
JP2006266086A (en) Regenerative cycle type gas turbine power generation system
JP7455781B2 (en) Ammonia supply unit for power generation plants, ammonia vaporization treatment method for power generation plants, and power generation plants
RU2031213C1 (en) Steam-gas power plant
JP2002106804A (en) Feedwater flow-rate controller of variable once- through boiler

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719