JP2003082970A - Installation construction method of heat exchange into ground for retrieving shallow layer geothermal energy and hole drilling device thereof - Google Patents

Installation construction method of heat exchange into ground for retrieving shallow layer geothermal energy and hole drilling device thereof

Info

Publication number
JP2003082970A
JP2003082970A JP2001279793A JP2001279793A JP2003082970A JP 2003082970 A JP2003082970 A JP 2003082970A JP 2001279793 A JP2001279793 A JP 2001279793A JP 2001279793 A JP2001279793 A JP 2001279793A JP 2003082970 A JP2003082970 A JP 2003082970A
Authority
JP
Japan
Prior art keywords
hollow pipe
ground
hole
heat exchanger
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001279793A
Other languages
Japanese (ja)
Inventor
Teruo Yahiro
暉夫 八尋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001279793A priority Critical patent/JP2003082970A/en
Publication of JP2003082970A publication Critical patent/JP2003082970A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/53Methods for installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Earth Drilling (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an installation construction method of a heat exchanger into the ground for retrieving shallow layer geothermal energy and a construction device used in the method capable of providing excellent hole drilling efficiency irrespective of type and property of soil, drilling a hole by about 2 meters per minute in a short time, and installing the heat exchanger such as a heat pump type air conditioning system up to a predetermined depth in the ground at low cost. SOLUTION: When installing the heat exchanger into the ground for retrieving shallow layer geothermal energy, a hollow pipe such as a steel pipe for drilling a hole provided with a vibrohammer in a head part and a water jet injection nozzle at a lower end is used, the hollow pipe is penetrated up to the predetermined depth in the ground using the vibration generated by the vibrohammer and water jet together. Next, bentonite slurry is poured and filled into the hollow pipe, then the hollow pipe is pulled out to hold a hole wall. Next, cement milk is poured into a hole, and the tubular heat exchanger whose lower end is folded back into U shape is inserted up to a lower end in the hole and is fixed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、比較的浅い層の地
熱を利用して一般住宅や集合住宅、ハウス農業等の冷暖
房や給湯、道路の融雪等を行う場合に、冷媒が循環する
熱交換器を地中に設置するための工法とその設置のため
の地盤穿孔装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to heat exchange in which a refrigerant circulates when performing geothermal heating in a relatively shallow layer to perform heating and cooling, hot water supply, snow melting on roads, etc. in general houses, apartment houses, and house agriculture. The present invention relates to a construction method for installing a vessel in the ground and a ground drilling device for the installation.

【0002】[0002]

【従来の技術】浅層の地熱は、地球上どの場所でも、地
下2mから100m程度の地盤で、約7℃から21℃の
間で一定している。この地熱は無料かつ無限のエネルギ
ー(再生可能エネルギー)であり、熱を作り出すための
化学燃焼が不要であることから、地球温暖化の原因とな
る二酸化炭素や、その他の空気汚染物質も発生しないな
ど、多くの利点がある。
2. Description of the Related Art Geothermal heat in a shallow layer is constant at a temperature of about 7 ° C to 21 ° C on the ground 2m to 100m underground anywhere on the earth. This geothermal energy is free and unlimited energy (renewable energy), and because it does not require chemical combustion to generate heat, it does not generate carbon dioxide or other air pollutants that cause global warming. , Has many advantages.

【0003】ヒートポンプの熱源として浅層の地熱を利
用する場合、地盤を穿孔して熱交換器を地中に設置する
ことが必要となる。この場合、従来の施工法では、 (1)中空ロッド(鋼管)の先端に地盤を破砕、掘削す
るためのビットを装着し、これに押込み力を与えながら
ロッドを回転させる方法(ロータリー法)。 (2)ロッドを所定の高さから落下させて穿孔する方法
(パーカッション法)。 (3)上記2方法を併用したロータリー・パーカッショ
ン法。 などが採用されているが、これらはいずれも穿孔に時間
がかかり、コストも相当にかかってしまう。
In the case of utilizing the shallow ground heat as the heat source of the heat pump, it is necessary to pierce the ground and install the heat exchanger in the ground. In this case, in the conventional construction method, (1) a method of mounting a bit for crushing and excavating the ground at the tip of a hollow rod (steel pipe) and rotating the rod while applying a pushing force to the bit (rotary method). (2) A method of dropping a rod from a predetermined height to perforate it (percussion method). (3) A rotary percussion method using the above two methods together. Etc. have been adopted, but all of them require a long time for perforation and also cost considerably.

【0004】[0004]

【発明が解決しようとする課題】本発明は、土質の種類
や物性に関係なく穿孔能率が良くて、短時間で穿孔で
き、低コストでヒートポンプ式空調システム等の熱交換
器を地中の所定深度まで設置することができる方法とそ
れに使用する施工装置を提案するものである。
DISCLOSURE OF THE INVENTION The present invention has a high efficiency of piercing regardless of the type and physical properties of soil, enables piercing in a short time, and provides a heat exchanger such as a heat pump type air conditioning system at a predetermined cost in the ground. We propose a method that can be installed to a depth and a construction device used for it.

【0005】[0005]

【発明を解決するための手段】本発明では、所定径(例
えば直径10〜20cm)の鋼管等の中空管を振動機(バ
イブロハンマー)と気水噴流(水噴流と空気噴流の同時
噴射)を利用して地中の所定深度(例えば2〜100
m)まで挿入し、これを引抜くことによってまず穿孔す
る。この方法によれば、1分間に2m程度の穿孔が可能
であり、穿孔コストを5000円/m以下にすることも
できる。
According to the present invention, a hollow pipe such as a steel pipe having a predetermined diameter (for example, a diameter of 10 to 20 cm) is provided with a vibrator (vibro hammer) and a steam jet (simultaneous injection of a water jet and an air jet). Using a certain depth in the ground (for example 2-100
First, perforate by inserting up to m) and pulling it out. According to this method, it is possible to perforate about 2 m per minute, and the perforation cost can be reduced to 5000 yen / m or less.

【0006】この孔に冷媒が循環する管体である熱交換
器を入れ、所定の材料で埋め戻すことにより施工する。
A heat exchanger, which is a pipe through which a refrigerant circulates, is placed in this hole, and the work is carried out by backfilling with a predetermined material.

【0007】即ち、本発明は、頭部にバイブロハンマー
をまた下端に気水噴流噴射ノズルを備えた穿孔用の鋼管
等の中空管を用い、該中空管をバイブロハンマーによる
振動と気水噴流を併用して地中所定深度まで貫入し、次
いで該中空管内にベントナイト泥水を注入充填した後、
中空管を引き抜いて孔壁を保持し、次に該孔内にセメン
トミルクを注入すると共に下端がU字型に折り返された
管状の熱交換器を孔内下端まで挿入して固定する浅層地
熱エネルギー回収用熱交換器の地中への設置工法に関す
るものである。
That is, according to the present invention, a hollow pipe such as a steel pipe for drilling having a vibro hammer at the head and a steam jet nozzle at the lower end is used, and the hollow pipe is vibrated by the vibro hammer and the steam Penetrate to a predetermined depth in the ground using a jet flow, and then inject and fill bentonite mud in the hollow pipe,
Shallow layer that pulls out the hollow tube to hold the hole wall, then injects cement milk into the hole and inserts and fixes a tubular heat exchanger whose bottom end is folded back in a U shape to the bottom end inside the hole. The present invention relates to a method of installing a heat exchanger for recovering geothermal energy in the ground.

【0008】そして、上記中空管の地中への貫入に際し
ては、外周縁が中空管の外径よりも大きな下向き円錐形
をなすキャップを中空管下端に装着することにより、中
空管と周囲土壌との摩擦抵抗を低減することにより貫入
を更に容易とすることができ、該キャップは中空管引き
抜きの際に穿孔した孔下端に残置する。以下、本発明の
実施形態を図により説明する。
When the hollow tube is penetrated into the ground, a cap having a downward conical shape whose outer peripheral edge is larger than the outer diameter of the hollow tube is attached to the lower end of the hollow tube. Penetration can be further facilitated by reducing the frictional resistance between the cap and the surrounding soil, and the cap is left at the lower end of the hole drilled when the hollow tube is pulled out. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0009】[0009]

【発明の実施の形態】図1は、本発明の工法を施工する
装置の一例を示すもので、1は穿孔のために地盤に挿入
する中空管(ケーシング)で、土質により直径10〜2
0cm程度の鋼管や強化ポリエチレン管などが用いられ、
その頭部にはバイブロハンマーが設置されており、全体
をクレーン車等の吊り索3により吊持されている。ま
た、中空管1の下端外側には気水噴流(水噴流と空気噴
流を同時に噴射する)を噴射するノズル4が下向きに取
付けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of an apparatus for carrying out the construction method of the present invention, in which 1 is a hollow pipe (casing) which is inserted into the ground for drilling, and has a diameter of 10 to 2 depending on the soil quality.
0 cm steel pipe or reinforced polyethylene pipe is used,
A vibro hammer is installed on its head, and the whole is suspended by a suspension line 3 such as a crane truck. Further, a nozzle 4 for injecting a steam jet (which jets a water jet and an air jet at the same time) is attached downward to the outside of the lower end of the hollow tube 1.

【0010】バイブロハンマー2から発生する振動に
は、上下振動のほか、円錐振動、ねじれ振動があるが、
通常は上下振動による。この上下振動の発生機構は、対
称な偶数軸に偏心重鍾を取付け、これを鉛直面に対称に
逆回転させることにより、水平方向の振動を消滅させ、
上下方向のみの振動を発生させるようにしたもので、こ
の場合の起振力(F)は、次のような式で与えられる。
Vibrations generated from the vibro hammer 2 include conical vibration and torsional vibration in addition to vertical vibration.
Usually due to vertical vibration. This vertical vibration generation mechanism eliminates the horizontal vibration by attaching an eccentric weight to the symmetrical even-numbered shaft and rotating it in the reverse direction symmetrically with respect to the vertical plane.
The vibration is generated only in the vertical direction, and the exciting force (F) in this case is given by the following equation.

【0011】F=nMrw2 sinθ ここに、n:偏心重錘の数 M:偏心重錘の質量 r:偏心重錘の重心の回転半径 w2:回転角速度F = nMrw 2 sin θ Here, n: number of eccentric weights M: mass of eccentric weights r: radius of gyration of eccentric weights w 2 : rotational angular velocity

【0012】従って、大きな起振力を得るためには、偏
心重鍾の重量、回転半径、回転角速度等を大きくするこ
とが必要となる。ただし、振動数8000〜10000
C/min.程度の比較的小さな起振力でも次に記述する気
水噴流との併用で、高能率で中空管1を地盤に貫入さ
せ、また引き抜くことが可能となる。
Therefore, in order to obtain a large excitation force, it is necessary to increase the weight, the radius of gyration, the angular velocity of rotation, etc. of the eccentric weight. However, the frequency is 8000 to 10000
Even with a relatively small oscillating force of about C / min., It is possible to penetrate the hollow tube 1 into and out of the ground with high efficiency by using it together with the steam jet described below.

【0013】前記気水噴流を噴射するノズル4先端は、
その中心から高圧水が、またその周囲に設けられた円環
状スリットから高圧の圧縮空気が噴射されるようになっ
ており、気水噴流発生装置としてはウォータージェット
発生用の超高圧ポンプ5、特に施工後の水処理を考え
て、小型で高圧・小流量のプランジャポンプ又はダイヤ
フラムポンプが用いられ、その圧力は500Kg/cm2
下、流量は10〜40l/min.程度とし、土質の物性に
よって変えるようにする。また、圧縮空気を得るための
コンプレッサ6は、圧力3Kg/cm2以下、流量2m3/mi
n.以下でよい。
The tip of the nozzle 4 for injecting the steam jet is
High-pressure water is jetted from its center and high-pressure compressed air is jetted from an annular slit provided around it. As a steam jet generator, a super-high-pressure pump 5 for water jet generation, especially Considering the water treatment after construction, a compact, high-pressure, small-flow-rate plunger pump or diaphragm pump is used, the pressure is 500 Kg / cm 2 or less, and the flow rate is about 10-40 l / min. To do so. The compressor 6 for obtaining compressed air has a pressure of 3 kg / cm 2 or less and a flow rate of 2 m 3 / mi.
n.

【0014】7は超高圧水用ポンプ5に水を送る給水タ
ンク、8はバイブロハンマー2の操作盤を示し、そのほ
か図示されていないが、U字管状熱交換器を孔中に固定
するためのセメントミルクを供給するスラリーポンプも
必要となり、このポンプは圧力50Kg/cm2、流量10
l/min.程度とする。
Reference numeral 7 denotes a water supply tank for sending water to the ultra-high pressure water pump 5, 8 denotes an operation panel of the vibro hammer 2, and other not shown, for fixing the U-shaped tubular heat exchanger in the hole. A slurry pump for supplying cement milk is also required, and this pump has a pressure of 50 kg / cm 2 and a flow rate of 10
1 / min.

【0015】図2は、中空管1の先端部分を示すもの
で、9は先端に前記ノズル4を備える気水供給管で、前
記ポンプ5、6からの高圧の水と空気を流送する配管で
あり、この気水供給管は途中が中空管1内に配管される
ようにしてもよい。ノズル4は中空管1下端よりやや下
方にあって下向きに設けられる。10は中空管1下端に
装着する金属製又は硬質樹脂製のキャップで、下向き円
錐形をなす全体傘形をしていて、その基部の軸部分を中
空管1の下端内に密に嵌入し得るようになっており、上
記円錐形の外周縁は中空管1の外径よりも大きく、その
一部を切欠10aして気水供給管9下端のノズル4を該
切欠部10aに固定する。
FIG. 2 shows the distal end portion of the hollow tube 1, and 9 is a steam supply pipe having the nozzle 4 at the distal end, for sending high pressure water and air from the pumps 5 and 6. This is a pipe, and the steam supply pipe may be arranged in the hollow pipe 1 partway. The nozzle 4 is provided slightly below the lower end of the hollow tube 1 and faces downward. Reference numeral 10 denotes a metal or hard resin cap to be attached to the lower end of the hollow tube 1, which has a downwardly conical overall umbrella shape, and the shaft portion of its base is tightly fitted into the lower end of the hollow tube 1. The outer peripheral edge of the conical shape is larger than the outer diameter of the hollow tube 1, and a portion of the outer peripheral edge is cut out 10a to fix the nozzle 4 at the lower end of the water / water supply pipe 9 to the cutout 10a. To do.

【0016】上記キャップ10を中空管1先端部に装着
することにより、中空管1周辺にかかる土壌との摩擦を
小さくすることができるので、貫入抵抗が小さくなり、
穿孔能率が向上する。また、中空管1を地盤から引き抜
いたときには、このキャップ10は孔下端に残置するこ
とになる。
By attaching the cap 10 to the tip of the hollow tube 1, the friction with the soil around the hollow tube 1 can be reduced, so that the penetration resistance is reduced.
Drilling efficiency is improved. Further, when the hollow pipe 1 is pulled out from the ground, the cap 10 is left at the lower end of the hole.

【0017】次に、本発明の工法の一例を図3以下で説
明する。 (1)まず、バイブロハンマー2、その操作盤8、気水
ジェットを発生させるための高圧ポンプ5、6、地盤に
打込む鋼管等の中空管1などの所定の機材を所定の場所
に設置する。図3は、バイブロハンマー2を設置した中
空管1がクレーン車のクレーンに吊持された状態を示し
ている。
Next, an example of the construction method of the present invention will be described with reference to FIG. (1) First of all, a predetermined equipment such as a vibro hammer 2, its operation panel 8, high-pressure pumps 5 and 6 for generating a steam jet, and a hollow pipe 1 such as a steel pipe driven into the ground are installed in a predetermined place. To do. FIG. 3 shows a state in which the hollow pipe 1 provided with the vibro hammer 2 is suspended by a crane of a mobile crane.

【0018】(2)次に、穿孔用の中空管1先端に前記
コーン型キャップ10を取付け、先端ノズル4から気水
噴流を噴射しながらバイブロハンマー2を作動させて、
中空管1を地下所定深度まで打込む(図4参照)。
(2) Next, the cone type cap 10 is attached to the tip of the hollow tube 1 for perforation, and the vibro hammer 2 is operated while jetting a steam jet from the tip nozzle 4,
The hollow pipe 1 is driven to a predetermined underground depth (see FIG. 4).

【0019】(3)次に、バイブロハンマー2と中空管
1のジョイント部を離し、バイブロハンマー2だけを吊
り上げ、土中に残した中空管1内にベントナイト泥水1
1あるいは粘土水、ポリマー泥水等のゲル状材料を注入
充填する(図5)。これは、後に中空管1を引抜いたと
きに、孔壁の崩壊を防ぐためである。
(3) Next, the joint portion between the vibro hammer 2 and the hollow pipe 1 is separated, only the vibro hammer 2 is lifted, and the bentonite muddy water 1 is placed in the hollow pipe 1 left in the soil.
1 or a gel-like material such as clay water or polymer mud water is injected and filled (FIG. 5). This is to prevent collapse of the hole wall when the hollow tube 1 is pulled out later.

【0020】(4)次いで、再びバイブロハンマー2を
中空管1頭部にジョイントし、バイブロハンマーを逆作
動させて中空管を引き抜く(図6)。
(4) Next, the vibro hammer 2 is again joined to the head of the hollow tube 1 and the vibro hammer is reversely operated to pull out the hollow tube (FIG. 6).

【0021】(5)そして、ベントナイト泥水11が充
填されている孔にセメントミルク12を注入しながら攪
拌し、この孔に下端がU字型に折り返されているアルミ
管、ポリエチレン管等の管状の熱交換器13を孔下端部
まで挿入し、固化させて固定する(図7)。なお、熱交
換器13としては、図7のようなシングルU字管型のほ
か、ダブルU字管型あるいは単なる同軸型(コアキシャ
ル型)など、いろいろなタイプがあり、穿孔の大きさや
熱効率等に応じて最適なタイプを選択することになる
が、シングルU字管型のものが最も一般的である。
(5) Then, the cement milk 12 is injected into the hole filled with the bentonite mud water 11 and stirred, and a tubular pipe such as an aluminum pipe or a polyethylene pipe whose lower end is folded back in a U-shape is formed. The heat exchanger 13 is inserted to the lower end of the hole, solidified and fixed (FIG. 7). As the heat exchanger 13, there are various types such as a single U-shaped tube type as shown in FIG. 7, a double U-shaped tube type or a simple coaxial type (coaxial type). The optimum type is selected depending on the type, but the single U-shaped type is the most common.

【0022】このようにして地中所定深度に挿入固定さ
れた熱交換器13には、フロンやプロピレングリコール
水溶液等の不凍性の冷媒が封入されており、管状の熱交
換器13全体が閉回路を構成され、冷媒はポンプ14に
より閉回路内を循環する。
In this way, the heat exchanger 13 inserted and fixed at a predetermined depth in the ground is filled with an antifreezing refrigerant such as CFC or propylene glycol aqueous solution, and the tubular heat exchanger 13 is entirely closed. A circuit is formed, and the refrigerant circulates in the closed circuit by the pump 14.

【0023】地上に出ている熱交換器13の一部はヒー
トポンプ15に組み込まれ、熱源として用いられて、冷
暖房(図8参照)や給湯、融雪等に利用される。熱交換
器13を介して浅層の地熱から得られる温度は比較的低
温ではあるが、これをヒートポンプの熱源として用いる
ことにより、多方面で利用可能な高温のエネルギーに変
換することができるのである。
A part of the heat exchanger 13 on the ground is incorporated in the heat pump 15 and is used as a heat source for cooling and heating (see FIG. 8), hot water supply, snow melting and the like. Although the temperature obtained from the geothermal heat of the shallow layer via the heat exchanger 13 is relatively low, by using this as a heat source of the heat pump, it can be converted into high-temperature energy that can be used in various fields. .

【0024】[0024]

【発明の効果】本発明は上述のようにしてなり、次のよ
うな効果を有する。 (1) 中空管の地盤への貫入に際して、バイブロハンマー
と気水噴流(水噴流と空気噴流の同時噴射)を併用する
ので、土質の種類や物性の差異に関係なく迅速に貫入及
び引き抜きができて、熱交換器挿入孔を高能率で築造す
ることができる。例えば、1分間で2m貫入でき、人間
の頭大の砂礫層や一軸圧縮強度が2MPa程度の軟岩層
でも、通常の地盤と同じ掘削速度で穿孔できる。
As described above, the present invention has the following effects. (1) When the hollow pipe penetrates into the ground, a vibro hammer and a steam jet (simultaneous jet of water jet and air jet) are used together, so that the penetration and extraction can be performed quickly regardless of the difference in soil type and physical properties. As a result, the heat exchanger insertion hole can be constructed with high efficiency. For example, 2 m can be penetrated in 1 minute, and even a human-sized gravel layer or a soft rock layer having a uniaxial compressive strength of about 2 MPa can be drilled at the same excavation speed as the normal ground.

【0025】特に、中空管下端にコーン型キャップを装
着することにより、中空管と周囲土壌との摩擦抵抗を大
幅に低減できるので、例えば直径15cmの孔を50m穿
孔するのに、30分間程度で済む。
In particular, by mounting a cone type cap on the lower end of the hollow tube, the frictional resistance between the hollow tube and the surrounding soil can be significantly reduced. For example, a hole having a diameter of 15 cm can be drilled for 50 m for 30 minutes. It is enough.

【0026】(2) 地盤への貫入に気水噴流を使用し、中
空管の回転や落下(パーカッション)によらないので、
中空管は薄肉の鋼管や強化ポリエチレン管が使用できて
経済的であり、バイブロハンマーから発生する振動や騒
音も、国土交通省や都道府県で定めている規制値の範囲
内で施工できる。
(2) Since a steam jet is used for penetration into the ground and does not depend on rotation or drop (percussion) of the hollow pipe,
The hollow pipe is economical because thin steel pipes and reinforced polyethylene pipes can be used, and vibration and noise generated from the vibro hammer can also be installed within the range of regulations set by the Ministry of Land, Infrastructure, Transport and Tourism and prefectures.

【0027】(3) 貫入後の中空管内にゲル状のベントナ
イト泥水を充填するので、砂層や礫層のような崩壊性の
地盤で施工する場合、中空管を引抜いても、孔壁が崩壊
するようなことがない。
(3) Since gel-like bentonite muddy water is filled into the hollow pipe after penetration, when constructing on a collapsible ground such as a sand layer or a gravel layer, even if the hollow pipe is pulled out, the hole wall collapses. There is nothing to do.

【0028】なお、ベントナイト泥水の代わりに、通常
の水を使用し、穿孔した孔に下方を嵌入した地上1〜2
m程度の高さのスタンドパイプを立て、静水圧の水頭を
高くとるようにして、孔壁にかかる静水圧を大きくする
ことにより、孔壁の安定を図ることもできる。
Ordinary water is used instead of bentonite muddy water, and 1-2 above the ground where the lower part is fitted into the perforated hole.
It is also possible to stabilize the hole wall by erecting a stand pipe having a height of about m and increasing the hydrostatic head to increase the hydrostatic pressure applied to the hole wall.

【0029】(4) 穿孔した孔内に挿入した熱交換器を地
上のヒートポンプと結ぶことにより、戸建住宅や集合住
宅、ハウス農業の冷暖房、給湯、道路の融雪など、回収
した地熱による利用分野は広い。
(4) By connecting the heat exchanger inserted in the perforated hole to a heat pump on the ground, it can be used by collected geothermal heat such as heating and cooling of detached houses and apartments, greenhouses for water supply, snow melting on roads, etc. Is wide.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の工法を施工する装置全体の説明図であ
る。
FIG. 1 is an explanatory diagram of an entire apparatus for applying a construction method of the present invention.

【図2】地盤へ貫入する中空管の先端部分の説明図であ
る。
FIG. 2 is an explanatory diagram of a tip end portion of a hollow pipe that penetrates into the ground.

【図3】本発明工法による施工の一過程を示す説明図で
ある。
FIG. 3 is an explanatory diagram showing a process of construction by the method of the present invention.

【図4】本発明工法による施工の一過程を示す説明図で
ある。
FIG. 4 is an explanatory view showing a process of construction by the method of the present invention.

【図5】本発明工法による施工の一過程を示す説明図で
ある。
FIG. 5 is an explanatory view showing a process of construction by the method of the present invention.

【図6】本発明工法による施工の一過程を示す説明図で
ある。
FIG. 6 is an explanatory view showing a process of construction by the method of the present invention.

【図7】本発明工法による施工の一過程を示す説明図で
ある。
FIG. 7 is an explanatory diagram showing a process of construction by the method of the present invention.

【図8】本発明工法により地中に設置した熱交換器を利
用して暖冷房を行う場合(図は暖房)の空調システムの
説明図である。
FIG. 8 is an explanatory diagram of an air conditioning system in the case of performing heating / cooling using a heat exchanger installed in the ground by the method of the present invention (heating is shown).

【符号の説明】[Explanation of symbols]

1−中空管 2−バイブロハンマー 3−吊り索 4−気水噴流噴射ノズル 5−超高圧ポンプ 6−コンプレッサ 7−超高圧水用ポンプ 8−操作盤 9−気水供給管 10−先端キャップ 11−ベントナイト泥水 12−セメントミルク 13−U字型熱交換器 14−循環ポンプ 15−ヒートポンプ 16−暖冷房用室内ユニット 1-hollow tube 2-vibro hammer 3-hanging rope 4-Air-water jet injection nozzle 5-Ultra high pressure pump 6-compressor 7- Pump for ultra high pressure water 8-Operation panel 9-Air / water supply pipe 10-tip cap 11-Bentonite muddy water 12-cement milk 13-U-shaped heat exchanger 14-circulation pump 15-heat pump 16- Indoor unit for heating and cooling

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 頭部にバイブロハンマーをまた下端に気
水噴流噴射ノズルを備えた穿孔用の鋼管等の中空管を用
い、該中空管をバイブロハンマーによる振動と気水噴流
を併用して地中所定深度まで貫入し、次いで該中空管内
にベントナイト泥水を注入充填した後、中空管を引き抜
いて孔壁を保持し、次に該孔内にセメントミルクを注入
すると共に下端がU字型に折り返された管状の熱交換器
を孔内下端まで挿入して固定することを特徴とする浅層
地熱エネルギー回収用熱交換器の地中への設置工法。
1. A hollow pipe such as a steel pipe for perforation having a vibro hammer at the head and a steam jet nozzle at the lower end is used, and the hollow pipe is used together with vibration by the vibro hammer and steam jet. The hollow pipe to a predetermined depth, then inject and fill the hollow pipe with bentonite muddy water, and then pull out the hollow pipe to hold the hole wall, then inject cement milk into the hole and lower the U-shape. A method of installing a heat exchanger for shallow geothermal energy recovery in the ground, characterized by inserting and fixing a tubular heat exchanger folded back into a mold to the lower end of the hole.
【請求項2】 前記中空管の地中への貫入に際しては、
外周縁が中空管の外径よりも大きな下向き円錐形をなす
キャップを中空管下端に装着して中空管と周囲土壌との
摩擦抵抗を低減することにより貫入を容易とし、該キャ
ップは中空管引き抜きの際に穿孔した孔下端に残置する
ようにした請求項1記載の浅層地熱エネルギー回収用熱
交換器の地中への設置工法。
2. When the hollow pipe penetrates into the ground,
By attaching a downward conical cap whose outer peripheral edge is larger than the outer diameter of the hollow pipe to the lower end of the hollow pipe to reduce frictional resistance between the hollow pipe and surrounding soil, facilitating penetration, and the cap is The method for installing a heat exchanger for recovering shallow geothermal energy in the ground according to claim 1, wherein the hollow tube is left at the lower end of the hole when the hollow tube is pulled out.
【請求項3】 頭部にバイブロハンマーをまた下端に気
水噴流噴射ノズルを備えた穿孔用の鋼管等の中空管の下
端に外周縁が中空管の外径よりも大きな下向き円錐形を
なすキャップを該中空管の地中貫入の際に装着してなる
ことを特徴とする浅層地熱エネルギー回収用熱交換器設
置用穿孔装置。
3. A downward conical shape whose outer peripheral edge is larger than the outer diameter of the hollow pipe at the lower end of a hollow pipe such as a steel pipe for drilling having a vibro hammer on the head and a steam jet nozzle at the lower end. A perforating apparatus for installing a heat exchanger for shallow geothermal energy recovery, characterized in that an eggplant cap is attached when the hollow tube penetrates underground.
JP2001279793A 2001-09-14 2001-09-14 Installation construction method of heat exchange into ground for retrieving shallow layer geothermal energy and hole drilling device thereof Pending JP2003082970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001279793A JP2003082970A (en) 2001-09-14 2001-09-14 Installation construction method of heat exchange into ground for retrieving shallow layer geothermal energy and hole drilling device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001279793A JP2003082970A (en) 2001-09-14 2001-09-14 Installation construction method of heat exchange into ground for retrieving shallow layer geothermal energy and hole drilling device thereof

Publications (1)

Publication Number Publication Date
JP2003082970A true JP2003082970A (en) 2003-03-19

Family

ID=19103904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001279793A Pending JP2003082970A (en) 2001-09-14 2001-09-14 Installation construction method of heat exchange into ground for retrieving shallow layer geothermal energy and hole drilling device thereof

Country Status (1)

Country Link
JP (1) JP2003082970A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316828A (en) * 2003-04-18 2004-11-11 Taiheiyo Cement Corp Underground buried pipe
EP1705294A1 (en) * 2005-03-22 2006-09-27 Roxbury Limited Method and apparatus for introducing elongate members into the ground
JP2007023577A (en) * 2005-07-14 2007-02-01 Karuto Kk Excavating method for soil and method for burying pipe for purification in dug hole
KR100873566B1 (en) 2007-08-14 2008-12-12 차재선 Geothermal exchanger installing by penetrating rig and its construction method
JP2009162019A (en) * 2008-01-09 2009-07-23 Tohoku Electric Power Co Inc Burying construction method and burying construction apparatus for elongated workpiece
CN102002949A (en) * 2010-11-16 2011-04-06 江苏科技大学 Pipe burying device and method for ground source heat pump
NL1037890C2 (en) * 2010-04-06 2011-10-13 Demar Heiwerken B V METHOD FOR INSERTING A LONG-TERM ELEMENT INTO A BOTTOM
JP2012057824A (en) * 2010-09-06 2012-03-22 Kume Sekkei:Kk Heat exchange pile and installation method thereof
JP2012172937A (en) * 2011-02-23 2012-09-10 Chiyoda Kako Kensetsu Kk Construction method of pipe for heat extraction
JP2012255633A (en) * 2011-06-10 2012-12-27 Asahi Kasei Homes Co Heat transfer filling material, underground heat exchange device, and filling method of heat transfer filling material
JP2012255632A (en) * 2011-06-10 2012-12-27 Asahi Kasei Homes Co Heat transfer packing material, and geothermal heat exchanging apparatus
JP2015530557A (en) * 2012-09-21 2015-10-15 天津市格瑞思機電新技術有限公司Tianjin Geruisi New Technology Of Mechanical And Electrical Co.Ltd Regional geothermal heat pump and public water supply network system for middle water
CN106968606A (en) * 2017-05-08 2017-07-21 江苏盛世机电工程有限公司 Sizing device is returned in the punching of earth source heat pump mud normal circulation slewing drilling machine well
JP2017203573A (en) * 2016-05-10 2017-11-16 シャープ株式会社 Air conditioner and method for installing auxiliary heat exchanger

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316828A (en) * 2003-04-18 2004-11-11 Taiheiyo Cement Corp Underground buried pipe
EP1705294A1 (en) * 2005-03-22 2006-09-27 Roxbury Limited Method and apparatus for introducing elongate members into the ground
JP2007023577A (en) * 2005-07-14 2007-02-01 Karuto Kk Excavating method for soil and method for burying pipe for purification in dug hole
KR100873566B1 (en) 2007-08-14 2008-12-12 차재선 Geothermal exchanger installing by penetrating rig and its construction method
JP2009162019A (en) * 2008-01-09 2009-07-23 Tohoku Electric Power Co Inc Burying construction method and burying construction apparatus for elongated workpiece
WO2011126359A3 (en) * 2010-04-06 2011-12-15 Geothex Holding B.V. Method for introducing an elongated element, in particular geo-thermal heat exchanger, into the soil
NL1037890C2 (en) * 2010-04-06 2011-10-13 Demar Heiwerken B V METHOD FOR INSERTING A LONG-TERM ELEMENT INTO A BOTTOM
JP2012057824A (en) * 2010-09-06 2012-03-22 Kume Sekkei:Kk Heat exchange pile and installation method thereof
CN102002949A (en) * 2010-11-16 2011-04-06 江苏科技大学 Pipe burying device and method for ground source heat pump
JP2012172937A (en) * 2011-02-23 2012-09-10 Chiyoda Kako Kensetsu Kk Construction method of pipe for heat extraction
JP2012255633A (en) * 2011-06-10 2012-12-27 Asahi Kasei Homes Co Heat transfer filling material, underground heat exchange device, and filling method of heat transfer filling material
JP2012255632A (en) * 2011-06-10 2012-12-27 Asahi Kasei Homes Co Heat transfer packing material, and geothermal heat exchanging apparatus
JP2015530557A (en) * 2012-09-21 2015-10-15 天津市格瑞思機電新技術有限公司Tianjin Geruisi New Technology Of Mechanical And Electrical Co.Ltd Regional geothermal heat pump and public water supply network system for middle water
US9797627B2 (en) 2012-09-21 2017-10-24 Tianjin Geruisi New Technology Of Mechanical And Electrical Co. Ltd. District public water supply pipe network system compatible for source side water for ground source heat pump system and reclaomed water
JP2017203573A (en) * 2016-05-10 2017-11-16 シャープ株式会社 Air conditioner and method for installing auxiliary heat exchanger
CN106968606A (en) * 2017-05-08 2017-07-21 江苏盛世机电工程有限公司 Sizing device is returned in the punching of earth source heat pump mud normal circulation slewing drilling machine well
CN106968606B (en) * 2017-05-08 2019-05-14 江苏盛世机电工程有限公司 Sizing device is returned in the punching of earth source heat pump mud normal circulation slewing drilling machine well

Similar Documents

Publication Publication Date Title
JP2003082970A (en) Installation construction method of heat exchange into ground for retrieving shallow layer geothermal energy and hole drilling device thereof
CA2536928C (en) A method of geothermal loop installation
JP5438033B2 (en) Installation method of geothermal exchanger, concrete pile, micropile using sonic drill and removable or recoverable drill bit
ES2297429T3 (en) CONSTRUCTION METHOD OF A GEOTHERMAL HEAT EXCHANGER.
US8074740B2 (en) Method and system for installing cast-in-place concrete piles with a sonic drill and a removable or retrievable drill bit
JP4282022B2 (en) Drain pipe burial method and structures, etc. to prevent tilting, sinking or floating
JPH06212870A (en) Cement soil device of underground drill
CN201074340Y (en) Pile-drawing machine
CN109973037A (en) Reservoir exploits the recovery method of incentive structure and shale gas reservoir
JP3940764B2 (en) Drain pipe method and ground drilling device
KR101662694B1 (en) Construction Method for PHC Pile by Inner Excavation
JP5557503B2 (en) Steel pipe pile insertion method
CN114458184A (en) Hydraulic ultrasonic vibration pipe drawing machine and using method thereof
KR20180052201A (en) Soil agitating device for weak ground
JP2013023971A (en) Ground liquefaction suppression method
JP4025485B2 (en) Core collection method and core collection apparatus
JP2003184499A (en) Large diameter lock bolt anchor for natural ground reinforcement
CN109667266A (en) From construction method, device and its matched dedicated tubular pole for boring large-diameter tubular pile
KR102225882B1 (en) Double casing and compaction grouting method using the same
CN208501768U (en) Pressure by cibration perforating device
RU41312U1 (en) MOBILE TECHNICAL COMPLEX FOR THE FORMATION OF SUPPORTS IN SOILS
CN117703471A (en) Anti-floating anchor rod pore-forming construction method and pore-forming drill rod
CN116447942A (en) Multifunctional large-aperture static efficient blasting auxiliary device
JP2017133257A (en) Boring agitation apparatus
JPH076181B2 (en) Ground frozen sampling method and device