JP2003081639A - Manganese-containing layer lithium-transition metal compound oxide, and production method therefor - Google Patents

Manganese-containing layer lithium-transition metal compound oxide, and production method therefor

Info

Publication number
JP2003081639A
JP2003081639A JP2002057053A JP2002057053A JP2003081639A JP 2003081639 A JP2003081639 A JP 2003081639A JP 2002057053 A JP2002057053 A JP 2002057053A JP 2002057053 A JP2002057053 A JP 2002057053A JP 2003081639 A JP2003081639 A JP 2003081639A
Authority
JP
Japan
Prior art keywords
manganese
transition metal
metal composite
composite oxide
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002057053A
Other languages
Japanese (ja)
Inventor
Tsuneyoshi Kamata
恒好 鎌田
Koichi Numata
幸一 沼田
Janko Marinov Todorov
ヤンコ マリノフ トドロフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2002057053A priority Critical patent/JP2003081639A/en
Publication of JP2003081639A publication Critical patent/JP2003081639A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive pole active substance for a lithium ion secondary battery which has excellent safety, has high chargeability, holds high discharge capacity even after a cycle, and has excellent rate properties. SOLUTION: The manganese-containing layer lithium-transition metal compound oxide has a specific surface area of <=1 m<2> /g, a tap density of >=1.6 g/cm<3> , and a mean grain diameter of 5 to 50 μm, and in which the content of manganese is 10 to 60 mol.% to the total content of transition elements. The molar ratio of lithium to the whole transition metal contained is 1.05 to 1.45.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマンガン含有層状リチウ
ム−遷移金属複合酸化物及びその製造方法に関し、詳し
くは、非水電解質二次電池用正極材料にした時に、安全
性に優れ、充填性が高く、サイクル後も高い放電容量を
維持し、レート特性に優れたマンガン含有層状リチウム
−遷移金属複合酸化物及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a layered lithium-transition metal composite oxide containing manganese, and a method for producing the same. TECHNICAL FIELD The present invention relates to a manganese-containing layered lithium-transition metal composite oxide which is high, maintains a high discharge capacity even after cycling, and is excellent in rate characteristics, and a method for producing the same.

【0002】[0002]

【従来技術】近年のパソコンや電話等のポータブル化、
コードレス化の急速な進歩によりそれらの駆動用電源と
しての二次電池の需要が高まっている。その中でも非水
電解質二次電池は最も小型かつ高エネルギー密度を持つ
ため特に期待されている。上記の要望を満たす非水電解
質二次電池の正極活物質としてはコバルト酸リチウム
(LiCoO)、ニッケル酸リチウム(LiNi
)、マンガン酸リチウム(LiMn)等があ
る。これらの複合酸化物はリチウムに対し4V以上の電
圧を有していることから、高エネルギー密度を有する電
池となり得る。
2. Description of the Related Art In recent years, portable computers and telephones,
Due to the rapid progress of making cordless, the demand for secondary batteries as a power source for driving them is increasing. Among them, the non-aqueous electrolyte secondary battery is particularly expected because it is the smallest and has the highest energy density. Lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNi) is used as a positive electrode active material of a non-aqueous electrolyte secondary battery satisfying the above demands.
O 2 ), lithium manganate (LiMn 2 O 4 ) and the like. Since these composite oxides have a voltage of 4 V or more with respect to lithium, they can be a battery having a high energy density.

【0003】上記の複合酸化物のうちコバルト酸リチウ
ム(LiCoO)、ニッケル酸リチウム(LiNiO
)では初期放電容量が高いものの安全性が悪い。マン
ガン酸リチウム(LiMn)は安全性が高いもの
の初期容量が低いという問題があった。そこで現在、ニ
ッケルやコバルトなどにマンガンを固溶させて安全性に
優れかつサイクル後も高い放電容量を維持した非水電解
質二次電池用正極活物質が検討されている。しかし、現
在のところ粒子が細かいため充填性が低くなるやレート
特性は悪いという課題である。
Among the above composite oxides, lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO)
In 2 ), the initial discharge capacity is high but the safety is poor. Lithium manganate (LiMn 2 O 4 ) has high safety but has a problem of low initial capacity. Therefore, at present, a positive electrode active material for a non-aqueous electrolyte secondary battery, which is excellent in safety by dissolving manganese in nickel, cobalt or the like and maintains a high discharge capacity after cycling, is being studied. However, at present, since the particles are fine, the rate characteristic is poor as the filling property becomes low.

【0004】[0004]

【発明が解決しようとする課題】従って本発明の目的
は、非水電解質二次電池用正極活物質としたときに、安
全性に優れ、充填性が高く、サイクル後も高い放電容量
を維持し、レート特性に優れたマンガン含有リチウム−
遷移金属複合酸化物を提供することにある。
Therefore, an object of the present invention is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery, which is excellent in safety, has a high filling property, and maintains a high discharge capacity even after cycling. , Manganese-containing lithium with excellent rate characteristics
It is to provide a transition metal composite oxide.

【0005】[0005]

【課題を解決するための手段】本発明者は鋭意研究の結
果、粉体特性および含有させるマンガン量を特定したマ
ンガン含有層状リチウム−遷移金属複合酸化物およびそ
の原料となる遷移金属複合水酸化物の製造方法を規定す
ることにより上記目的を達し得ることを知見した。
Means for Solving the Problems As a result of earnest research by the present inventors, the manganese-containing layered lithium-transition metal composite oxide and the transition metal composite hydroxide which is a raw material thereof are specified in powder characteristics and manganese content to be contained. It was found that the above object can be achieved by defining the manufacturing method of.

【0006】よって、本発明は、比表面積1m/g以
下、タップ密度1.6g/cm以上、平均粒径5〜5
0μmであり、マンガン含有量が全遷移元素に対して1
0〜60モル%であることを特徴とするマンガン含有層
状リチウム−遷移金属複合酸化物である。
Therefore, the present invention has a specific surface area of 1 m 2 / g or less, a tap density of 1.6 g / cm 3 or more, and an average particle diameter of 5 to 5.
0 μm, manganese content is 1 relative to all transition elements
It is a manganese-containing layered lithium-transition metal composite oxide characterized by being 0 to 60 mol%.

【0007】また、リチウムと全遷移金属のモル比が
1.05〜1.45であることを特徴とする前記記載の
マンガン含有層状リチウム−遷移金属複合酸化物であ
る。
The above manganese-containing layered lithium-transition metal composite oxide is characterized in that the molar ratio of lithium to all transition metals is 1.05 to 1.45.

【0008】また、前記記載のマンガン含有層状リチウ
ム−遷移金属複合酸化物がリチウム原料とマンガン含有
遷移金属複合水酸化物とをリチウム/全遷移金属のモル
比が1.05〜1.45となるように混合し、最終温度
として750℃以上で焼成されることを特徴とするマン
ガン含有層状リチウム−遷移金属複合酸化物の製造方法
である。
Further, the manganese-containing layered lithium-transition metal composite oxide described above has a lithium raw material and a manganese-containing transition metal composite hydroxide having a lithium / total transition metal molar ratio of 1.05 to 1.45. Is mixed and baked at a final temperature of 750 ° C. or higher.

【0009】また、マンガン含有層状リチウム−遷移金
属複合酸化物の原料であるマンガン含有遷移金属複合水
酸化物の合成工程が不活性ガス雰囲気下においてこのマ
ンガン含有層状リチウム−遷移金属複合酸化物中に含ま
れる遷移金属元素塩の水溶液とアルカリ水溶液及びアン
モニウムイオンを含む水溶液を密閉された反応槽内に連
続的に供給し、成長した複合水酸化物を連続的に取り出
されることを特徴とする前記記載のマンガン含有層状リ
チウム−遷移金属複合酸化物の製造方法である。
Further, the manganese-containing layered lithium-transition metal composite oxide, which is a raw material for the manganese-containing layered lithium-transition metal composite oxide, is synthesized in the inert gas atmosphere in the manganese-containing layered lithium-transition metal composite oxide. An aqueous solution of a transition metal element salt contained therein, an aqueous alkali solution and an aqueous solution containing ammonium ions are continuously supplied into a closed reaction tank, and the grown composite hydroxide is continuously taken out. Is a method for producing the layered lithium-transition metal composite oxide containing manganese.

【0010】また、密閉された槽内溶液中の溶存酸素量
が0.5mg/L以下で合成されることを特徴とする前
記記載のマンガン含有層状リチウム−遷移金属複合酸化
物の製造方法である。
The method for producing a manganese-containing layered lithium-transition metal composite oxide as described above, characterized in that the dissolved oxygen content in the sealed solution in the tank is 0.5 mg / L or less. .

【0011】また、槽内の平均滞留時間が3時間以上1
8時間以下であり、槽内の反応温度が25℃以上55℃
以下で反応させることを特徴とする前記記載のマンガン
含有層状リチウム−遷移金属複合酸化物の製造方法であ
る。
The average residence time in the tank is 3 hours or more 1
8 hours or less, the reaction temperature in the tank is 25 ° C or more and 55 ° C
The method for producing a layered lithium-transition metal composite oxide containing manganese as described above, characterized in that the reaction is carried out below.

【0012】また、前記記載のマンガン含有層状リチウ
ム−遷移金属複合酸化物または、前記記載のいずれか一
項に記載の製造方法によって得られたマンガン含有層状
リチウム−遷移金属複合酸化物からなることを特徴とす
る非水電解質二次電池用正極材料である。
Further, it is composed of the above-mentioned manganese-containing layered lithium-transition metal composite oxide or the manganese-containing layered lithium-transition metal composite oxide obtained by the manufacturing method according to any one of the above-mentioned. It is a featured positive electrode material for a non-aqueous electrolyte secondary battery.

【0013】また、前記記載の非水電解質二次電池用正
極材料を用いた正極とリチウムを吸蔵、脱蔵できる負極
と非水電解質とから構成されることを特徴とする非水電
解質二次電池である。
A non-aqueous electrolyte secondary battery comprising a positive electrode using the above-mentioned positive electrode material for a non-aqueous electrolyte secondary battery, a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte. Is.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態である
マンガン含有層状リチウム−遷移金属複合酸化物の詳細
について説明する。マンガン含有層状リチウム−遷移金
属複合酸化物の安全性を高めるために、比表面積が1m
/g以下であり、マンガン含有量が全遷移金属元素に
対して10モル%以上であることが好ましい。また、マ
ンガン含有量は60モル%を超えると初期放電容量が低
下するので好ましくない。充填性はタップ密度で1.6
g/cc以上であることが好ましい。平均粒径は5〜5
0μmが好ましく、5μm未満だとタップ密度が1.6
g/cc以上であっても電極に塗着した場合充填性があ
がらず、50μmを超えると正極材料として形成される
膜にひび割れ等発生し、均一な膜厚が形成しにくくなる
からである。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the manganese-containing layered lithium-transition metal composite oxide, which is an embodiment of the present invention, will be described below. In order to enhance the safety of the manganese-containing layered lithium-transition metal composite oxide, the specific surface area is 1 m.
It is preferably 2 / g or less and the manganese content is 10 mol% or more based on all transition metal elements. Further, if the manganese content exceeds 60 mol%, the initial discharge capacity decreases, which is not preferable. Fillability is tap density of 1.6
It is preferably at least g / cc. Average particle size is 5-5
0 μm is preferable, and if it is less than 5 μm, the tap density is 1.6.
This is because even if it is g / cc or more, the filling property does not decrease when it is applied to the electrode, and if it exceeds 50 μm, cracks or the like occur in the film formed as the positive electrode material, and it becomes difficult to form a uniform film thickness.

【0015】マンガン含有層状リチウム−遷移金属複合
酸化物はリチウム原料とマンガン含有遷移金属複合水酸
化物とを混合し、焼成して得られる。リチウム原料とし
ては、炭酸リチウム(LiCO)、硝酸リチウム
(LiNO)、水酸化リチウム(LiOH)等が挙げ
られる。マンガン含有層状リチウム−遷移金属複合酸化
物の合成はリチウムと全遷移金属元素のモル比が1.0
5〜1.45が好ましい。このモル比が1.05未満で
は、レート特性が悪く、1.45を超えては初期放電容
量が低下するので好ましくない。マンガン含有遷移金属
複合水酸化物とリチウム原料は、より大きな反応面積を
得るために、原料混合前あるいは後に粉砕することも好
ましい。秤量、混合された原料はそのままでもあるいは
造粒して使用してもよい。造粒方法は、湿式でも乾式で
もよく、押し出し造粒、転動造粒、流動造粒、混合造
粒、噴霧乾燥造粒、加圧成型造粒、あるいはロール等を
用いたフレーク造粒でもよい。
The manganese-containing layered lithium-transition metal composite oxide is obtained by mixing a lithium raw material and a manganese-containing transition metal composite hydroxide and firing the mixture. Examples of the lithium raw material include lithium carbonate (Li 2 CO 3 ), lithium nitrate (LiNO 3 ), and lithium hydroxide (LiOH). The manganese-containing layered lithium-transition metal composite oxide was synthesized with a molar ratio of lithium to all transition metal elements of 1.0.
5 to 1.45 is preferable. When the molar ratio is less than 1.05, the rate characteristics are poor, and when it exceeds 1.45, the initial discharge capacity is reduced, which is not preferable. It is also preferable that the manganese-containing transition metal composite hydroxide and the lithium raw material are pulverized before or after mixing the raw materials in order to obtain a larger reaction area. The weighed and mixed raw materials may be used as they are or after granulation. The granulation method may be wet or dry, and may be extrusion granulation, tumbling granulation, fluidized granulation, mixed granulation, spray drying granulation, pressure molding granulation, or flake granulation using a roll or the like. .

【0016】このようにして得られた原料は焼成炉内に
投入され、600〜1000℃で焼成することによっ
て、マンガン含有層状リチウム−遷移金属複合酸化物が
得られる。単一相のマンガン含有層状リチウム−遷移金
属複合酸化物を得るには600℃程度でも十分である
が、焼成温度が低いと粒成長が進まないので750℃以
上の焼成温度、好ましくは850℃以上の焼成温度が必
要となる。ここで用いられる焼成炉としては、ロータリ
ーキルンあるいは静置炉等が例示される。焼成時間は1
時間以上、好ましくは5〜20時間である。
The raw material thus obtained is put into a firing furnace and fired at 600 to 1000 ° C. to obtain a manganese-containing layered lithium-transition metal composite oxide. About 600 ° C. is sufficient to obtain a single-phase manganese-containing layered lithium-transition metal composite oxide, but grain growth does not proceed if the firing temperature is low, so a firing temperature of 750 ° C. or higher, preferably 850 ° C. or higher Firing temperature is required. Examples of the firing furnace used here include a rotary kiln and a stationary furnace. Firing time is 1
It is time or more, preferably 5 to 20 hours.

【0017】マンガン含有層状リチウム−遷移金属複合
酸化物の原料であるマンガン含有遷移金属複合水酸化物
の合成工程は不活性ガス雰囲気下においてこのマンガン
含有層状リチウム−遷移金属複合酸化物中に含まれる遷
移金属元素塩の水溶液とアルカリ水溶液及びアンモニウ
ムイオンを含む水溶液を密閉された反応槽内に連続的に
供給し、成長した複合水酸化物を連続的に取り出される
ことを特徴とする製造方法である。この密閉された槽内
溶液中の溶存酸素量が0.5mg/L以下で合成され
る。溶存酸素量が0.5mg/Lを超えると合成された
マンガン含有遷移金属複合水酸化物がマンガンとその他
の元素に分離してしまうため、焼成して得られたマンガ
ン含有層状リチウム−遷移金属複合酸化物は単一相にな
らない。
The manganese-containing layered lithium-transition metal composite oxide, which is a raw material of the manganese-containing layered lithium-transition metal composite oxide, is synthesized in the manganese-containing layered lithium-transition metal composite oxide under an inert gas atmosphere. A production method characterized in that an aqueous solution of a transition metal element salt, an aqueous alkali solution and an aqueous solution containing ammonium ions are continuously supplied into a closed reaction tank, and the grown composite hydroxide is continuously taken out. . The amount of dissolved oxygen in the sealed in-tank solution is 0.5 mg / L or less. When the dissolved oxygen amount exceeds 0.5 mg / L, the synthesized manganese-containing transition metal composite hydroxide separates into manganese and other elements. Therefore, the manganese-containing layered lithium-transition metal composite obtained by firing was obtained. The oxide does not become a single phase.

【0018】合成工程の平均滞留時間は3時間以上18
時間以下であることが好ましく、槽内の反応温度が25
℃以上55℃以下で反応させることが好ましい。平均滞
留時間が3時間以下であると平均粒径が小さくなりす
ぎ、18時間を超えると平均粒径が大きくなりすぎるた
め好ましくない。このような製造法によって得られたマ
ンガン含有層状リチウム−遷移金属複合酸化物からなる
ことを特徴とする非水電解質二次電池用正極活物質であ
る。本発明の非水電解質二次電池では、上記正極材料と
カーボンブラック等の導電材とテトラフルオロエチレン
・バインダー等の結着剤とを混合して正極合剤とし、ま
た、負極にはリチウムまたはカーボン等のリチウムを吸
蔵、脱蔵できる材料が用いられ、非水系電解質として
は、六フッ化リン酸リチウム(LiPF)等のリチウ
ム塩をエチレンカーボネート−ジメチルカーボネート等
の混合溶媒に溶解したものが用いられるが、特に限定さ
れるものではない。
The average residence time in the synthesis process is 3 hours or more 18
The reaction temperature in the tank is preferably 25 hours or less.
It is preferable to carry out the reaction at a temperature of not less than 0 ° C and not more than 55 ° C. If the average residence time is 3 hours or less, the average particle size becomes too small, and if it exceeds 18 hours, the average particle size becomes too large, which is not preferable. A positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a manganese-containing layered lithium-transition metal composite oxide obtained by such a production method. In the non-aqueous electrolyte secondary battery of the present invention, the positive electrode material, a conductive material such as carbon black, and a binder such as tetrafluoroethylene binder are mixed to form a positive electrode mixture, and lithium or carbon is used for the negative electrode. A material capable of inserting and extracting lithium such as lithium is used as the non-aqueous electrolyte, and a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) dissolved in a mixed solvent such as ethylene carbonate-dimethyl carbonate is used. However, it is not particularly limited.

【0019】[0019]

【実施例】実施例1 1.75mol/Lに調整したニッケル/マンガン=
5:5の硫酸塩水溶液、13mol/Lのアンモニア水
溶液、6mol/Lの水酸化ナトリウム水溶液を準備し
た。槽内には窒素ガスを毎分1リットルバブリングさせ
た。そのときの溶存酸素量は0.2mg/Lであった。
上記ニッケル−マンガン塩水溶液を毎分10ml及びア
ンモニアを毎分1mlの速度で、30℃に保ちながら速
やかに均一になるよう混合撹拌した。槽内温度を30℃
に保ったまま6mol/Lの水酸化ナトリウム水溶液を
平均毎分6.2mlの速度で反応槽内のpHが12.0
±0.2の範囲で保持するように供給しつつ撹拌した。
ニッケル、マンガン塩の総量1に対して水酸化ナトリ
ウムは2.0、アンモニアは1.35になるようにし
た。
EXAMPLES Example 1 Nickel / manganese adjusted to 1.75 mol / L =
A 5: 5 sulfate aqueous solution, a 13 mol / L aqueous ammonia solution, and a 6 mol / L aqueous sodium hydroxide solution were prepared. Nitrogen gas was bubbled through the tank at 1 liter per minute. The amount of dissolved oxygen at that time was 0.2 mg / L.
The above nickel-manganese salt aqueous solution was mixed and stirred at a rate of 10 ml / min and ammonia at a rate of 1 ml / min so as to be rapidly uniform while maintaining the temperature at 30 ° C. The temperature in the tank is 30 ℃
The pH in the reaction tank was kept at 12.0 at an average rate of 6.2 ml per minute with a 6 mol / L sodium hydroxide aqueous solution.
The mixture was stirred while being supplied so as to maintain the range of ± 0.2.
Sodium hydroxide was 2.0 and ammonia was 1.35 with respect to the total amount of nickel and manganese salts.

【0020】生成したマンガン含有複合水酸化物を反応
槽上部よりオーバーフローさせ連続的に取り出した。こ
のときの滞留時間は7時間であり、7時間連続作動させ
たのちサンプルを採取し、水洗濾過後、80℃で12時
間乾燥してマンガン含有複合水酸化物を得た。 得られ
たマンガン含有複合水酸化物とリチウム原料として水酸
化リチウムをリチウム/(ニッケル+マンガン)のモル
比が1.25となるように混合し、箱型炉中、800℃
で20時間焼成してマンガン含有層状リチウム−遷移金
属複合酸化物を得た。このときの比表面積、タップ密度
および平均粒径を表1に示す。
The produced manganese-containing composite hydroxide was overflowed from the upper part of the reaction tank and continuously taken out. The residence time at this time was 7 hours, and after operating continuously for 7 hours, a sample was collected, washed with water and filtered, and then dried at 80 ° C. for 12 hours to obtain a manganese-containing composite hydroxide. The obtained manganese-containing composite hydroxide was mixed with lithium hydroxide as a lithium raw material so that the molar ratio of lithium / (nickel + manganese) was 1.25, and the mixture was heated in a box furnace at 800 ° C.
And was baked for 20 hours to obtain a manganese-containing layered lithium-transition metal composite oxide. Table 1 shows the specific surface area, tap density and average particle size at this time.

【0021】[0021]

【表1】 [Table 1]

【0022】このようにして得られたスピネル型マンガ
ン酸リチウムを80重量部、導電剤としてカーボンプラ
ック15重量部および結着剤としてポリ四フッ化エチレ
ン5重量部を混合して正極合剤を作製した。この正極合
剤を用いて図1に示すコイン型非水電解質二次電池を作
製した。すなわち、耐有機電解液性のステンレス鋼製の
正極ケース1の内側には同じくステンレス鋼製の集電体
3がスポット熔接されている。集電体3の上面には上記
正極合剤からなる正極5が圧着されている。正極5の上
面には、電解液を含浸した微孔性のポリプロピレン樹脂
製のセパレータ6が配置されている。正極ケース1の開
口部には、下方に金属リチウムからなる負極4を接合し
た封口板2が、ポリプロピレン製のガスケット7を挟ん
で配置されており、これにより電池は密封されている。
封口板2は、負極端子を兼ね、正極ケース1と同様のス
テンレス鋼製である。電池の直径は20mm、電池総高
1.6mmである。電解液には、エチレンカーボネート
と1,3−ジメトキシエタンを等体積混合したものを溶
媒とし、これに溶質として六フッ化リン酸リチウムを1
mol/リットル溶解させたものを用いた。
80 parts by weight of the spinel-type lithium manganate thus obtained, 15 parts by weight of carbon plaque as a conductive agent, and 5 parts by weight of polytetrafluoroethylene as a binder were mixed to prepare a positive electrode mixture. did. A coin type non-aqueous electrolyte secondary battery shown in FIG. 1 was produced using this positive electrode mixture. That is, the stainless steel collector 3 is also spot-welded inside the organic electrolytic solution-resistant stainless steel positive electrode case 1. A positive electrode 5 made of the positive electrode mixture is pressure-bonded to the upper surface of the current collector 3. A separator 6 made of microporous polypropylene resin impregnated with an electrolytic solution is arranged on the upper surface of the positive electrode 5. At the opening of the positive electrode case 1, a sealing plate 2 to which a negative electrode 4 made of metallic lithium is joined is arranged with a gasket 7 made of polypropylene sandwiched therebetween, whereby the battery is sealed.
The sealing plate 2 also serves as a negative electrode terminal and is made of the same stainless steel as the positive electrode case 1. The diameter of the battery is 20 mm, and the total height of the battery is 1.6 mm. For the electrolyte, a mixture of ethylene carbonate and 1,3-dimethoxyethane in equal volumes was used as a solvent, and lithium hexafluorophosphate was added as a solute to the solvent.
Mol / liter was used after being dissolved.

【0023】このようにして得られた電池について充放
電試験を行った。充放電試験は20℃において行われ、
電流密度を0.5mA/cmとし、電圧4.3Vから
3.0Vの範囲で行った。その初期放電容量および25
サイクル時の放電容量の測定結果を表1に示す。また、
電流密度を5mA/cmとして放電したときの放電容
量と0.5mA/cmとしたときの放電容量の比
((5mA/cmの放電容量)/0.5mA/cm
時の放電容量))をレート特性として表1に示す。
The battery thus obtained was subjected to a charge / discharge test. The charge / discharge test is performed at 20 ° C,
The current density was 0.5 mA / cm 2 and the voltage was in the range of 4.3V to 3.0V. Its initial discharge capacity and 25
Table 1 shows the measurement results of the discharge capacity during the cycle. Also,
The ratio of the discharge capacity when the discharge capacity and 0.5 mA / cm 2 when discharged at a current density of 5mA / cm 2 ((discharge capacity 5mA / cm 2) /0.5mA/cm 2
Table 1 shows the discharge capacity))) as rate characteristics.

【0024】実施例2 1.75mol/Lに調整したニッケル/マンガンの比
が9:1とした以外は、実施例1と同様にマンガン含有
層状リチウム−遷移金属複合酸化物の合成を行った。こ
のときの比表面積、タップ密度および平均粒径を表1に
示す。また、このマンガン含有層状リチウム−遷移金属
複合酸化物を正極材料として実施例1と同様にしてコイ
ン型非水電解質二次電池を作製し、初期放電容量、25
サイクル時の放電容量およびレート特性の測定結果を表
1に示す。
Example 2 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that the nickel / manganese ratio adjusted to 1.75 mol / L was 9: 1. Table 1 shows the specific surface area, tap density and average particle size at this time. A coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material.
Table 1 shows the measurement results of the discharge capacity and rate characteristics during the cycle.

【0025】実施例3 75mol/Lに調整したニッケル/マンガンの比が
4:6とした以外は、実施例1と同様にマンガン含有層
状リチウム−遷移金属複合酸化物の合成を行った。この
ときの比表面積、タップ密度および平均粒径を表1に示
す。また、このマンガン含有層状リチウム−遷移金属複
合酸化物を正極材料として実施例1と同様にしてコイン
型非水電解質二次電池を作製し、初期放電容量、25サ
イクル時の放電容量およびレート特性の測定結果を表1
に示す。
Example 3 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that the nickel / manganese ratio adjusted to 75 mol / L was 4: 6. Table 1 shows the specific surface area, tap density and average particle size at this time. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, and the initial discharge capacity, discharge capacity at 25 cycles and rate characteristics were evaluated. Table 1 shows the measurement results
Shown in.

【0026】実施例4 ニッケルの替わりにコバルトとした以外は、実施例1と
同様にマンガン含有層状リチウム−遷移金属複合酸化物
の合成を行った。このときの比表面積、タップ密度およ
び平均粒径を表1に示す。また、このマンガン含有層状
リチウム−遷移金属複合酸化物を正極材料として実施例
1と同様にしてコイン型非水電解質二次電池を作製し、
初期放電容量、25サイクル時の放電容量およびレート
特性の測定結果を表1に示す。
Example 4 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that cobalt was used instead of nickel. Table 1 shows the specific surface area, tap density and average particle size at this time. A coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material.
Table 1 shows the measurement results of the initial discharge capacity, the discharge capacity after 25 cycles, and the rate characteristics.

【0027】実施例5 1.75mol/Lに調整したコバルト/マンガンの比
が9:1とした以外は、実施例4と同様にマンガン含有
層状リチウム−遷移金属複合酸化物の合成を行った。こ
のときの比表面積、タップ密度および平均粒径を表1に
示す。また、このマンガン含有層状リチウム−遷移金属
複合酸化物を正極材料として実施例1と同様にしてコイ
ン型非水電解質二次電池を作製し、初期放電容量、25
サイクル時の放電容量およびレート特性の測定結果を表
1に示す。
Example 5 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 4 except that the cobalt / manganese ratio adjusted to 1.75 mol / L was 9: 1. Table 1 shows the specific surface area, tap density and average particle size at this time. A coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material.
Table 1 shows the measurement results of the discharge capacity and rate characteristics during the cycle.

【0028】実施例6 1.75mol/Lに調整したコバルト/マンガンの比
が4:6とした以外は、実施例4と同様にマンガン含有
層状リチウム−遷移金属複合酸化物の合成を行った。こ
のときの比表面積、タップ密度および平均粒径を表1に
示す。また、このマンガン含有層状リチウム−遷移金属
複合酸化物を正極材料として実施例1と同様にしてコイ
ン型非水電解質二次電池を作製し、初期放電容量、25
サイクル時の放電容量およびレート特性の測定結果を表
1に示す。
Example 6 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 4 except that the cobalt / manganese ratio adjusted to 1.75 mol / L was 4: 6. Table 1 shows the specific surface area, tap density and average particle size at this time. A coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material.
Table 1 shows the measurement results of the discharge capacity and rate characteristics during the cycle.

【0029】実施例7 遷移金属元素をニッケル、マンガン、コバルトとし、そ
のモル比を1:1:1とした以外は、実施例1と同様に
マンガン含有層状リチウム−遷移金属複合酸化物の合成
を行った。このときの比表面積、タップ密度および平均
粒径を表1に示す。また、このマンガン含有層状リチウ
ム−遷移金属複合酸化物を正極材料として実施例1と同
様にしてコイン型非水電解質二次電池を作製し、初期放
電容量、25サイクル時の放電容量およびレート特性の
測定結果を表1に示す。
Example 7 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that the transition metal elements were nickel, manganese, and cobalt, and the molar ratio was 1: 1: 1. went. Table 1 shows the specific surface area, tap density and average particle size at this time. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, and the initial discharge capacity, discharge capacity at 25 cycles and rate characteristics were evaluated. The measurement results are shown in Table 1.

【0030】実施例8 遷移金属元素をニッケル、マンガン、コバルトとし、そ
のモル比を6:3:1とした以外は、実施例1と同様に
マンガン含有層状リチウム−遷移金属複合酸化物の合成
を行った。このときの比表面積、タップ密度および平均
粒径を表1に示す。また、このマンガン含有層状リチウ
ム−遷移金属複合酸化物を正極材料として実施例1と同
様にしてコイン型非水電解質二次電池を作製し、初期放
電容量、25サイクル時の放電容量およびレート特性の
測定結果を表1に示す。
Example 8 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that the transition metal elements were nickel, manganese, and cobalt, and the molar ratio was 6: 3: 1. went. Table 1 shows the specific surface area, tap density and average particle size at this time. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, and the initial discharge capacity, discharge capacity at 25 cycles and rate characteristics were evaluated. The measurement results are shown in Table 1.

【0031】実施例9 遷移金属元素をニッケル、マンガン、コバルトとし、そ
のモル比を1:3:6とした以外は、実施例1と同様に
マンガン含有層状リチウム−遷移金属複合酸化物の合成
を行った。このときの比表面積、タップ密度および平均
粒径を表1に示す。また、このマンガン含有層状リチウ
ム−遷移金属複合酸化物を正極材料として実施例1と同
様にしてコイン型非水電解質二次電池を作製し、初期放
電容量、25サイクル時の放電容量およびレート特性の
測定結果を表1に示す。
Example 9 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that the transition metal elements were nickel, manganese, and cobalt, and the molar ratio thereof was 1: 3: 6. went. Table 1 shows the specific surface area, tap density and average particle size at this time. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, and the initial discharge capacity, discharge capacity at 25 cycles and rate characteristics were evaluated. The measurement results are shown in Table 1.

【0032】実施例10 リチウム原料として水酸化リチウムをリチウム/(ニッ
ケル+マンガン)のモル比が1.05となるように混合
した以外は、実施例1と同様にマンガン含有層状リチウ
ム−遷移金属複合酸化物の合成を行った。このときの比
表面積、タップ密度および平均粒径を表1に示す。ま
た、このマンガン含有層状リチウム−遷移金属複合酸化
物を正極材料として実施例1と同様にしてコイン型非水
電解質二次電池を作製し、初期放電容量、25サイクル
時の放電容量およびレート特性の測定結果を表1に示
す。
Example 10 A manganese-containing layered lithium-transition metal composite was prepared in the same manner as in Example 1 except that lithium hydroxide was mixed as a lithium raw material so that the molar ratio of lithium / (nickel + manganese) was 1.05. The oxide was synthesized. Table 1 shows the specific surface area, tap density and average particle size at this time. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, and the initial discharge capacity, discharge capacity at 25 cycles and rate characteristics were evaluated. The measurement results are shown in Table 1.

【0033】実施例11 リチウム原料として水酸化リチウムをリチウム/(ニッ
ケル+マンガン)のモル比が1.45となるように混合
した以外は、実施例1と同様にマンガン含有層状リチウ
ム−遷移金属複合酸化物の合成を行った。このときの比
表面積、タップ密度および平均粒径を表1に示す。ま
た、このマンガン含有層状リチウム−遷移金属複合酸化
物を正極材料として実施例1と同様にしてコイン型非水
電解質二次電池を作製し、初期放電容量、25サイクル
時の放電容量およびレート特性の測定結果を表1に示
す。
Example 11 A manganese-containing layered lithium-transition metal composite was prepared in the same manner as in Example 1 except that lithium hydroxide was mixed as a lithium raw material so that the molar ratio of lithium / (nickel + manganese) was 1.45. The oxide was synthesized. Table 1 shows the specific surface area, tap density and average particle size at this time. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, and the initial discharge capacity, discharge capacity at 25 cycles and rate characteristics were evaluated. The measurement results are shown in Table 1.

【0034】実施例12 焼成温度を750℃とした以外は、実施例1と同様にマ
ンガン含有層状リチウム−遷移金属複合酸化物の合成を
行った。このときの比表面積、タップ密度および平均粒
径を表1に示す。また、このマンガン含有層状リチウム
−遷移金属複合酸化物を正極材料として実施例1と同様
にしてコイン型非水電解質二次電池を作製し、初期放電
容量、25サイクル時の放電容量およびレート特性の測
定結果を表1に示す。
Example 12 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that the firing temperature was 750 ° C. Table 1 shows the specific surface area, tap density and average particle size at this time. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, and the initial discharge capacity, discharge capacity at 25 cycles and rate characteristics were evaluated. The measurement results are shown in Table 1.

【0035】実施例13 焼成温度を900℃とした以外は、実施例1と同様にマ
ンガン含有層状リチウム−遷移金属複合酸化物の合成を
行った。このときの比表面積、タップ密度および平均粒
径を表1に示す。また、このマンガン含有層状リチウム
−遷移金属複合酸化物を正極材料として実施例1と同様
にしてコイン型非水電解質二次電池を作製し、初期放電
容量、25サイクル時の放電容量およびレート特性の測
定結果を表1に示す。
Example 13 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that the firing temperature was 900 ° C. Table 1 shows the specific surface area, tap density and average particle size at this time. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, and the initial discharge capacity, discharge capacity at 25 cycles and rate characteristics were evaluated. The measurement results are shown in Table 1.

【0036】実施例14 上記ニッケル−マンガン塩水溶液を毎分20ml及びア
ンモニアを毎分2mlの速度で、30℃に保ちながら速
やかに均一になるよう混合撹拌した。槽内温度を30℃
に保ったまま6mol/Lの水酸化ナトリウム水溶液を
平均毎分12.4mlの速度で反応槽内のpHが12.
0±0.2の範囲で保持するように供給しつつ撹拌した
以外は、実施例1と同様にマンガン含有層状リチウム−
遷移金属複合酸化物の合成を行った。このときの比表面
積、タップ密度および平均粒径を表1に示す。また、こ
のマンガン含有層状リチウム−遷移金属複合酸化物を正
極材料として実施例1と同様にしてコイン型非水電解質
二次電池を作製し、初期放電容量、25サイクル時の放
電容量およびレート特性の測定結果を表1に示す。
Example 14 The above nickel-manganese salt aqueous solution was mixed and stirred at a rate of 20 ml / min and ammonia at a rate of 2 ml / min so as to be rapidly uniform while maintaining the temperature at 30 ° C. The temperature in the tank is 30 ℃
The pH in the reaction vessel was kept at 12.4 ml / min of a 6 mol / L sodium hydroxide aqueous solution at an average rate of 12.4 ml / min.
Manganese-containing layered lithium-as in Example 1 except that stirring was carried out while supplying so as to maintain the range of 0 ± 0.2.
A transition metal composite oxide was synthesized. Table 1 shows the specific surface area, tap density and average particle size at this time. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, and the initial discharge capacity, discharge capacity at 25 cycles and rate characteristics were evaluated. The measurement results are shown in Table 1.

【0037】実施例15 上記ニッケル−マンガン塩水溶液を毎分5ml及びアン
モニアを毎分0.5mlの速度で、30℃に保ちながら
速やかに均一になるよう混合撹拌した。槽内温度を30
℃に保ったまま6mol/Lの水酸化ナトリウム水溶液
を平均毎分3.1mlの速度で反応槽内のpHが12.
0±0.2の範囲で保持するように供給しつつ撹拌した
以外は、実施例1と同様にマンガン含有層状リチウム−
遷移金属複合酸化物の合成を行った。このときの比表面
積、タップ密度および平均粒径を表1に示す。また、こ
のマンガン含有層状リチウム−遷移金属複合酸化物を正
極材料として実施例1と同様にしてコイン型非水電解質
二次電池を作製し、初期放電容量、25サイクル時の放
電容量およびレート特性の測定結果を表1に示す。
Example 15 The above nickel-manganese salt aqueous solution was mixed and stirred at a rate of 5 ml / min and ammonia at a rate of 0.5 ml / min so as to be rapidly uniform while maintaining the temperature at 30 ° C. The tank temperature is 30
While keeping the temperature at 0 ° C, 6 mol / L sodium hydroxide aqueous solution had an average pH of 3.1 ml / min and a pH of 12.
Manganese-containing layered lithium-as in Example 1 except that stirring was carried out while supplying so as to maintain the range of 0 ± 0.2.
A transition metal composite oxide was synthesized. Table 1 shows the specific surface area, tap density and average particle size at this time. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, and the initial discharge capacity, discharge capacity at 25 cycles and rate characteristics were evaluated. The measurement results are shown in Table 1.

【0038】実施例16 槽内温度を25℃にした以外は、実施例1と同様にマン
ガン含有層状リチウム−遷移金属複合酸化物の合成を行
った。このときの比表面積、タップ密度および平均粒径
を表1に示す。また、このマンガン含有層状リチウム−
遷移金属複合酸化物を正極材料として実施例1と同様に
してコイン型非水電解質二次電池を作製し、初期放電容
量、25サイクル時の放電容量およびレート特性の測定
結果を表1に示す。
Example 16 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that the temperature in the bath was set to 25 ° C. Table 1 shows the specific surface area, tap density and average particle size at this time. In addition, this manganese-containing layered lithium-
A coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the transition metal composite oxide as a positive electrode material, and Table 1 shows the measurement results of the initial discharge capacity, the discharge capacity at 25 cycles, and the rate characteristics.

【0039】実施例17 槽内温度を55℃にした以外は、実施例1と同様にマン
ガン含有層状リチウム−遷移金属複合酸化物の合成を行
った。このときの比表面積、タップ密度および平均粒径
を表1に示す。また、このマンガン含有層状リチウム−
遷移金属複合酸化物を正極材料として実施例1と同様に
してコイン型非水電解質二次電池を作製し、初期放電容
量、25サイクル時の放電容量およびレート特性の測定
結果を表1に示す。
Example 17 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that the temperature in the bath was set to 55 ° C. Table 1 shows the specific surface area, tap density and average particle size at this time. In addition, this manganese-containing layered lithium-
A coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the transition metal composite oxide as a positive electrode material, and Table 1 shows the measurement results of the initial discharge capacity, the discharge capacity at 25 cycles, and the rate characteristics.

【0040】比較例1 75mol/Lに調整したニッケル/マンガンの比が9
5:5とした以外は、実施例1と同様にマンガン含有層
状リチウム−遷移金属複合酸化物の合成を行った。この
ときの比表面積、タップ密度および平均粒径を表2に示
す。また、このマンガン含有層状リチウム−遷移金属複
合酸化物を正極材料として実施例1と同様にしてコイン
型非水電解質二次電池を作製し、初期放電容量、25サ
イクル時の放電容量およびレート特性の測定結果を表2
に示す。
Comparative Example 1 The nickel / manganese ratio adjusted to 75 mol / L was 9
A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that the ratio was set to 5: 5. Table 2 shows the specific surface area, tap density and average particle size at this time. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, and the initial discharge capacity, discharge capacity at 25 cycles and rate characteristics were evaluated. Table 2 shows the measurement results
Shown in.

【0041】[0041]

【表2】 [Table 2]

【0042】比較例2 1.75mol/Lに調整したニッケル/マンガンの比
が3:7とした以外は、実施例1と同様にマンガン含有
層状リチウム−遷移金属複合酸化物の合成を行った。こ
のときの比表面積、タップ密度および平均粒径を表2に
示す。また、このマンガン含有層状リチウム−遷移金属
複合酸化物を正極材料として実施例1と同様にしてコイ
ン型非水電解質二次電池を作製し、初期放電容量、25
サイクル時の放電容量およびレート特性の測定結果を表
1に示す。
Comparative Example 2 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that the nickel / manganese ratio adjusted to 1.75 mol / L was 3: 7. Table 2 shows the specific surface area, tap density and average particle size at this time. A coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material.
Table 1 shows the measurement results of the discharge capacity and rate characteristics during the cycle.

【0043】比較例3 ニッケルの替わりにコバルトとした以外は、比較例1と
同様にマンガン含有層状リチウム−遷移金属複合酸化物
の合成を行った。このときの比表面積、タップ密度およ
び平均粒径を表2に示す。また、このマンガン含有層状
リチウム−遷移金属複合酸化物を正極材料として実施例
1と同様にしてコイン型非水電解質二次電池を作製し、
初期放電容量、25サイクル時の放電容量およびレート
特性の測定結果を表1に示す。
Comparative Example 3 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Comparative Example 1 except that cobalt was used instead of nickel. Table 2 shows the specific surface area, tap density and average particle size at this time. A coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material.
Table 1 shows the measurement results of the initial discharge capacity, the discharge capacity after 25 cycles, and the rate characteristics.

【0044】比較例4 1.75mol/Lに調整したコバルト/マンガンの比
が3:7とした以外は、比較例3と同様にマンガン含有
層状リチウム−遷移金属複合酸化物の合成を行った。こ
のときの比表面積、タップ密度および平均粒径を表2に
示す。また、このマンガン含有層状リチウム−遷移金属
複合酸化物を正極材料として実施例1と同様にしてコイ
ン型非水電解質二次電池を作製し、初期放電容量、25
サイクル時の放電容量およびレート特性の測定結果を表
1に示す。
Comparative Example 4 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Comparative Example 3 except that the cobalt / manganese ratio adjusted to 1.75 mol / L was 3: 7. Table 2 shows the specific surface area, tap density and average particle size at this time. A coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material.
Table 1 shows the measurement results of the discharge capacity and rate characteristics during the cycle.

【0045】比較例5 遷移金属元素をニッケル、マンガン、コバルトとし、そ
のモル比を90:5:5とした以外は、実施例1と同様
にマンガン含有層状リチウム−遷移金属複合酸化物の合
成を行った。このときの比表面積、タップ密度および平
均粒径を表2に示す。また、このマンガン含有層状リチ
ウム−遷移金属複合酸化物を正極材料として実施例1と
同様にしてコイン型非水電解質二次電池を作製し、初期
放電容量、25サイクル時の放電容量およびレート特性
の測定結果を表1に示す。
Comparative Example 5 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that the transition metal elements were nickel, manganese, and cobalt, and the molar ratio was 90: 5: 5. went. Table 2 shows the specific surface area, tap density and average particle size at this time. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, and the initial discharge capacity, discharge capacity at 25 cycles and rate characteristics were evaluated. The measurement results are shown in Table 1.

【0046】比較例6 遷移金属元素をニッケル、マンガン、コバルトとし、そ
のモル比を5:5:90とした以外は、実施例1と同様
にマンガン含有層状リチウム−遷移金属複合酸化物の合
成を行った。このときの比表面積、タップ密度および平
均粒径を表2に示す。また、このマンガン含有層状リチ
ウム−遷移金属複合酸化物を正極材料として実施例1と
同様にしてコイン型非水電解質二次電池を作製し、初期
放電容量、25サイクル時の放電容量およびレート特性
の測定結果を表1に示す。
Comparative Example 6 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that the transition metal elements were nickel, manganese, and cobalt and the molar ratio was 5: 5: 90. went. Table 2 shows the specific surface area, tap density and average particle size at this time. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, and the initial discharge capacity, discharge capacity at 25 cycles and rate characteristics were evaluated. The measurement results are shown in Table 1.

【0047】比較例7 遷移金属元素をニッケル、マンガン、コバルトとし、そ
のモル比を1:7:2とした以外は、実施例1と同様に
マンガン含有層状リチウム−遷移金属複合酸化物の合成
を行った。このときの比表面積、タップ密度および平均
粒径を表2に示す。また、このマンガン含有層状リチウ
ム−遷移金属複合酸化物を正極材料として実施例1と同
様にしてコイン型非水電解質二次電池を作製し、初期放
電容量、25サイクル時の放電容量およびレート特性の
測定結果を表1に示す。
Comparative Example 7 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that the transition metal elements were nickel, manganese, and cobalt and the molar ratio was 1: 7: 2. went. Table 2 shows the specific surface area, tap density and average particle size at this time. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, and the initial discharge capacity, discharge capacity at 25 cycles and rate characteristics were evaluated. The measurement results are shown in Table 1.

【0048】比較例8 遷移金属元素をニッケル、マンガン、コバルトとし、そ
のモル比を2:7:1とした以外は、実施例1と同様に
マンガン含有層状リチウム−遷移金属複合酸化物の合成
を行った。このときの比表面積、タップ密度および平均
粒径を表2に示す。また、このマンガン含有層状リチウ
ム−遷移金属複合酸化物を正極材料として実施例1と同
様にしてコイン型非水電解質二次電池を作製し、初期放
電容量、25サイクル時の放電容量およびレート特性の
測定結果を表1に示す。
Comparative Example 8 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that the transition metal elements were nickel, manganese, and cobalt, and the molar ratio was 2: 7: 1. went. Table 2 shows the specific surface area, tap density and average particle size at this time. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, and the initial discharge capacity, discharge capacity at 25 cycles and rate characteristics were evaluated. The measurement results are shown in Table 1.

【0049】比較例9 リチウム原料として水酸化リチウムをリチウム/(ニッ
ケル+マンガン)のモル比が1.03となるように混合
した以外は、実施例1と同様にマンガン含有層状リチウ
ム−遷移金属複合酸化物の合成を行った。このときの比
表面積、タップ密度および平均粒径を表2に示す。ま
た、このマンガン含有層状リチウム−遷移金属複合酸化
物を正極材料として実施例1と同様にしてコイン型非水
電解質二次電池を作製し、初期放電容量、25サイクル
時の放電容量およびレート特性の測定結果を表1に示
す。
Comparative Example 9 A manganese-containing layered lithium-transition metal composite was prepared in the same manner as in Example 1 except that lithium hydroxide was mixed as the lithium raw material so that the molar ratio of lithium / (nickel + manganese) was 1.03. The oxide was synthesized. Table 2 shows the specific surface area, tap density and average particle size at this time. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, and the initial discharge capacity, discharge capacity at 25 cycles and rate characteristics were evaluated. The measurement results are shown in Table 1.

【0050】比較例10 リチウム原料として水酸化リチウムをリチウム/(ニッ
ケル+マンガン)のモル比1.48となるように混合し
た以外は、実施例1と同様にマンガン含有層状リチウム
−遷移金属複合酸化物の合成を行った。このときの比表
面積、タップ密度および平均粒径を表2に示す。また、
このマンガン含有層状リチウム−遷移金属複合酸化物を
正極材料として実施例1と同様にしてコイン型非水電解
質二次電池を作製し、初期放電容量、25サイクル時の
放電容量およびレート特性の測定結果を表1に示す。
Comparative Example 10 A manganese-containing layered lithium-transition metal composite oxide was prepared in the same manner as in Example 1 except that lithium hydroxide was mixed as a lithium raw material so that the lithium / (nickel + manganese) molar ratio was 1.48. The product was synthesized. Table 2 shows the specific surface area, tap density and average particle size at this time. Also,
Using this manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity, the discharge capacity at 25 cycles, and the measurement results of rate characteristics. Is shown in Table 1.

【0051】比較例11 焼成温度を700℃とした以外は、実施例1と同様にマ
ンガン含有層状リチウム−遷移金属複合酸化物の合成を
行った。このときの比表面積、タップ密度および平均粒
径を表2に示す。また、このマンガン含有層状リチウム
−遷移金属複合酸化物を正極材料として実施例1と同様
にしてコイン型非水電解質二次電池を作製し、初期放電
容量、25サイクル時の放電容量およびレート特性の測
定結果を表1に示す。
Comparative Example 11 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that the firing temperature was 700 ° C. Table 2 shows the specific surface area, tap density and average particle size at this time. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, and the initial discharge capacity, discharge capacity at 25 cycles and rate characteristics were evaluated. The measurement results are shown in Table 1.

【0052】比較例12 上記ニッケル−マンガン塩水溶液を毎分40ml及びア
ンモニアを毎分4mlの速度で、30℃に保ちながら速
やかに均一になるよう混合撹拌した。槽内温度を30℃
に保ったまま6mol/Lの水酸化ナトリウム水溶液を
平均毎分24.8mlの速度で反応槽内のpHが12.
0±0.2の範囲で保持するように供給しつつ撹拌した
以外は、実施例1と同様にマンガン含有層状リチウム−
遷移金属複合酸化物の合成を行った。このときの比表面
積、タップ密度および平均粒径を表2に示す。また、こ
のマンガン含有層状リチウム−遷移金属複合酸化物を正
極材料として実施例1と同様にしてコイン型非水電解質
二次電池を作製し、初期放電容量、25サイクル時の放
電容量およびレート特性の測定結果を表1に示す。
Comparative Example 12 The above nickel-manganese salt aqueous solution was mixed and stirred at a rate of 40 ml / min and ammonia at a rate of 4 ml / min so as to be rapidly uniform while maintaining the temperature at 30 ° C. The temperature in the tank is 30 ℃
The pH in the reaction tank was 12.2 ml / min with an average of 6 mol / L sodium hydroxide aqueous solution kept at 12.
Manganese-containing layered lithium-as in Example 1 except that stirring was carried out while supplying so as to maintain the range of 0 ± 0.2.
A transition metal composite oxide was synthesized. Table 2 shows the specific surface area, tap density and average particle size at this time. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, and the initial discharge capacity, discharge capacity at 25 cycles and rate characteristics were evaluated. The measurement results are shown in Table 1.

【0053】比較例13 上記ニッケル−マンガン塩水溶液を毎分2.5ml及び
アンモニアを毎分0.25mlの速度で、30℃に保ち
ながら速やかに均一になるよう混合撹拌した。槽内温度
を30℃に保ったまま6mol/Lの水酸化ナトリウム
水溶液を平均毎分1.55mlの速度で反応槽内のpH
が12.0±0.2の範囲で保持するように供給しつつ
撹拌した以外は、実施例1と同様にマンガン含有層状リ
チウム−遷移金属複合酸化物の合成を行った。このとき
の比表面積、タップ密度および平均粒径を表2に示す。
また、このマンガン含有層状リチウム−遷移金属複合酸
化物を正極材料として実施例1と同様にしてコイン型非
水電解質二次電池を作製し、初期放電容量、25サイク
ル時の放電容量およびレート特性の測定結果を表1に示
す。
Comparative Example 13 The above nickel-manganese salt aqueous solution was mixed and stirred at a rate of 2.5 ml / min and ammonia at a rate of 0.25 ml / min so as to be rapidly uniform while maintaining the temperature at 30 ° C. With the temperature inside the tank kept at 30 ° C., the pH in the reaction tank was 6 mol / L aqueous sodium hydroxide solution at an average rate of 1.55 ml / min.
Of the manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that the stirring was performed while supplying so as to maintain the ratio of 12.0 ± 0.2. Table 2 shows the specific surface area, tap density and average particle size at this time.
Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material, and the initial discharge capacity, discharge capacity at 25 cycles and rate characteristics were evaluated. The measurement results are shown in Table 1.

【0054】比較例14 槽内温度を20℃にした以外は、実施例1と同様にマン
ガン含有層状リチウム−遷移金属複合酸化物の合成を行
った。このときの比表面積、タップ密度および平均粒径
を表2に示す。また、このマンガン含有層状リチウム−
遷移金属複合酸化物を正極材料として実施例1と同様に
してコイン型非水電解質二次電池を作製し、初期放電容
量、25サイクル時の放電容量およびレート特性の測定
結果を表1に示す。
Comparative Example 14 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that the temperature in the bath was 20 ° C. Table 2 shows the specific surface area, tap density and average particle size at this time. In addition, this manganese-containing layered lithium-
A coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the transition metal composite oxide as a positive electrode material, and Table 1 shows the measurement results of the initial discharge capacity, the discharge capacity at 25 cycles, and the rate characteristics.

【0055】比較例15 槽内温度を60℃にした以外は、実施例1と同様にマン
ガン含有層状リチウム−遷移金属複合酸化物の合成を行
った。このときの比表面積、タップ密度および平均粒径
を表2に示す。また、このマンガン含有層状リチウム−
遷移金属複合酸化物を正極材料として実施例1と同様に
してコイン型非水電解質二次電池を作製し、初期放電容
量、25サイクル時の放電容量およびレート特性の測定
結果を表1に示す。
Comparative Example 15 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that the temperature inside the bath was set to 60 ° C. Table 2 shows the specific surface area, tap density and average particle size at this time. In addition, this manganese-containing layered lithium-
A coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the transition metal composite oxide as a positive electrode material, and Table 1 shows the measurement results of the initial discharge capacity, the discharge capacity at 25 cycles, and the rate characteristics.

【0056】比較例16 槽内に窒素ガスを吹き込まなかった以外は、実施例1と
同様にマンガン含有層状リチウム−遷移金属複合酸化物
の合成を行った。このときの比表面積、タップ密度およ
び平均粒径を表2に示す。また、このマンガン含有層状
リチウム−遷移金属複合酸化物を正極材料として実施例
1と同様にしてコイン型非水電解質二次電池を作製し、
初期放電容量、25サイクル時の放電容量およびレート
特性の測定結果を表1に示す。
Comparative Example 16 A manganese-containing layered lithium-transition metal composite oxide was synthesized in the same manner as in Example 1 except that nitrogen gas was not blown into the tank. Table 2 shows the specific surface area, tap density and average particle size at this time. A coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the manganese-containing layered lithium-transition metal composite oxide as a positive electrode material.
Table 1 shows the measurement results of the initial discharge capacity, the discharge capacity after 25 cycles, and the rate characteristics.

【0057】[0057]

【発明の効果】以上説明したように、本発明の製造方法
で得られたマンガン含有層状リチウム−遷移金属複合酸
化物を非水電解質二次電池用正極材料として用いること
によって、安全性に優れ、充填性が高く、サイクル後も
高い放電容量を維持したリチウムイオン二次電池とする
ことができる。
As described above, by using the manganese-containing layered lithium-transition metal composite oxide obtained by the production method of the present invention as a positive electrode material for a non-aqueous electrolyte secondary battery, excellent safety can be obtained. It is possible to obtain a lithium-ion secondary battery having a high filling property and maintaining a high discharge capacity even after cycling.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いた非水電解質二次電池を例示する
断面図
FIG. 1 is a cross-sectional view illustrating a non-aqueous electrolyte secondary battery used in the present invention.

【符号の説明】[Explanation of symbols]

1 正極ケース 2 封口板 3 集電体 4 金属リチウム負極 5 正極 6 セパレータ 7 ガスケット 1 Positive case 2 Seal plate 3 Current collector 4 Metal lithium negative electrode 5 Positive electrode 6 separator 7 gasket

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/40 H01M 10/40 Z Fターム(参考) 4G048 AA04 AB01 AB06 AC06 AD06 AE05 5H029 AJ03 AJ05 AJ12 AK03 AL12 AM03 AM04 AM05 AM07 BJ03 CJ02 CJ28 EJ04 EJ12 HJ02 HJ05 HJ07 HJ08 HJ14 5H050 AA07 AA08 AA15 BA15 BA16 CA09 CB12 GA02 GA27 HA02 HA05 HA07 HA08 HA14 HA20Front page continued (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 10/40 H01M 10/40 ZF term (reference) 4G048 AA04 AB01 AB06 AC06 AD06 AE05 5H029 AJ03 AJ05 AJ12 AK03 AL12 AM03 AM04 AM05 AM07 BJ03 CJ02 CJ28 EJ04 EJ12 HJ02 HJ05 HJ07 HJ08 HJ14 5H050 AA07 AA08 AA15 BA15 BA16 CA09 CB12 GA02 GA27 HA02 HA05 HA07 HA08 HA14 HA20

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】比表面積1m/g以下、タップ密度1.
6g/cm以上、平均粒径5〜50μmであり、マン
ガン含有量が全遷移元素に対して10〜60モル%であ
ることを特徴とするマンガン含有層状リチウム−遷移金
属複合酸化物。
1. A specific surface area of 1 m 2 / g or less and a tap density of 1.
A manganese-containing layered lithium-transition metal composite oxide, which has a mean particle size of 6 g / cm 3 or more, an average particle size of 5 to 50 μm, and a manganese content of 10 to 60 mol% with respect to all transition elements.
【請求項2】リチウムと全遷移金属のモル比が1.05
〜1.45であることを特徴とする請求項1記載のマン
ガン含有層状リチウム−遷移金属複合酸化物。
2. The molar ratio of lithium to all transition metals is 1.05.
It is -1.45, The manganese-containing layered lithium-transition metal composite oxide according to claim 1.
【請求項3】 請求項1に記載のマンガン含有層状リチ
ウム−遷移金属複合酸化物がリチウム原料とマンガン含
有遷移金属複合水酸化物とをリチウム/全遷移金属のモ
ル比が1.05〜1.45となるように混合し、最終温
度として750℃以上で焼成されることを特徴とするマ
ンガン含有層状リチウム−遷移金属複合酸化物の製造方
法。
3. The manganese-containing layered lithium-transition metal composite oxide according to claim 1, wherein the lithium raw material and the manganese-containing transition metal composite hydroxide have a lithium / total transition metal molar ratio of 1.05 to 1. A method for producing a manganese-containing layered lithium-transition metal composite oxide, which comprises mixing so as to be 45 and calcining at a final temperature of 750 ° C. or higher.
【請求項4】 マンガン含有層状リチウム−遷移金属複
合酸化物の原料であるマンガン含有遷移金属複合水酸化
物の合成工程が不活性ガス雰囲気下においてこのマンガ
ン含有層状リチウム−遷移金属複合酸化物中に含まれる
遷移金属元素塩の水溶液とアルカリ水溶液及びアンモニ
ウムイオンを含む水溶液を密閉された反応槽内に連続的
に供給し、成長した複合水酸化物を連続的に取り出され
ることを特徴とする請求項3に記載のマンガン含有層状
リチウム−遷移金属複合酸化物の製造方法
4. The manganese-containing layered lithium-transition metal composite oxide, which is a raw material of the manganese-containing layered lithium-transition metal composite oxide, is synthesized in the step of synthesizing the manganese-containing layered lithium-transition metal composite oxide under an inert gas atmosphere. An aqueous solution of a transition metal element salt, an aqueous alkali solution, and an aqueous solution containing ammonium ions contained therein are continuously supplied into a closed reaction tank, and the grown composite hydroxide is continuously taken out. The method for producing a layered lithium-transition metal composite oxide containing manganese according to Item 3.
【請求項5】 密閉された槽内溶液中の溶存酸素量が
0.5mg/L以下で合成されることを特徴とする請求
項4に記載のマンガン含有層状リチウム−遷移金属複合
酸化物の製造方法。
5. The method for producing a manganese-containing layered lithium-transition metal composite oxide according to claim 4, wherein the dissolved oxygen content in the closed bath solution is 0.5 mg / L or less. Method.
【請求項6】 槽内の平均滞留時間が3時間以上18時
間以下であり、槽内の反応温度が25℃以上55℃以下
で反応させることを特徴とする請求項4,5に記載のマ
ンガン含有層状リチウム−遷移金属複合酸化物の製造方
法。
6. The manganese according to claim 4, wherein the average residence time in the tank is 3 hours or more and 18 hours or less, and the reaction is performed at a reaction temperature in the tank of 25 ° C. or more and 55 ° C. or less. Method for producing contained layered lithium-transition metal composite oxide.
【請求項7】 請求項1、2に記載のマンガン含有層状
リチウム−遷移金属複合酸化物または、請求項3から6
のいずれかに記載の製造方法によって得られたマンガン
含有層状リチウム−遷移金属複合酸化物からなることを
特徴とする非水電解質二次電池用正極材料。
7. The manganese-containing layered lithium-transition metal composite oxide according to claim 1, or claim 3 to 6.
5. A positive electrode material for a non-aqueous electrolyte secondary battery, comprising a manganese-containing layered lithium-transition metal composite oxide obtained by the method according to any one of 1.
【請求項8】 請求項7に記載の非水電解質二次電池用
正極材料を用いた正極とリチウムを吸蔵、脱蔵できる負
極と非水電解質とから構成されることを特徴とする非水
電解質二次電池。
8. A non-aqueous electrolyte comprising a positive electrode using the positive electrode material for a non-aqueous electrolyte secondary battery according to claim 7, a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte. Secondary battery.
JP2002057053A 2001-06-29 2002-03-04 Manganese-containing layer lithium-transition metal compound oxide, and production method therefor Pending JP2003081639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002057053A JP2003081639A (en) 2001-06-29 2002-03-04 Manganese-containing layer lithium-transition metal compound oxide, and production method therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-197931 2001-06-29
JP2001197931 2001-06-29
JP2002057053A JP2003081639A (en) 2001-06-29 2002-03-04 Manganese-containing layer lithium-transition metal compound oxide, and production method therefor

Publications (1)

Publication Number Publication Date
JP2003081639A true JP2003081639A (en) 2003-03-19

Family

ID=26617827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002057053A Pending JP2003081639A (en) 2001-06-29 2002-03-04 Manganese-containing layer lithium-transition metal compound oxide, and production method therefor

Country Status (1)

Country Link
JP (1) JP2003081639A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089526A (en) * 2001-09-12 2003-03-28 Mitsubishi Chemicals Corp Lithium nickel manganese multiple oxide, positive electrode material for lithium secondary cell by using the same, positive electrode for lithium secondary cell, and lithium secondary cell
JP2003095659A (en) * 2001-09-25 2003-04-03 Mitsubishi Chemicals Corp Lithium transition metal complex oxide, positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and method of manufacturing lithium transition metal complex oxide
JP2003346798A (en) * 2002-05-24 2003-12-05 Nec Corp Secondary battery and battery pack using the same and method of use of secondary battery
JP2005302338A (en) * 2004-04-07 2005-10-27 Shin Kobe Electric Mach Co Ltd Lithium secondary battery and positive electrode material for lithium secondary battery
WO2007116971A1 (en) 2006-04-07 2007-10-18 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
WO2009031619A1 (en) 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation Lithium transition metal-type compound powder
US7648693B2 (en) 2005-04-13 2010-01-19 Lg Chem, Ltd. Ni-based lithium transition metal oxide
EP1624509A4 (en) * 2003-05-13 2010-03-24 Mitsubishi Chem Corp Layered lithium nickel composite oxide powder and process for producing the same
WO2011067937A1 (en) * 2009-12-02 2011-06-09 住友金属鉱山株式会社 Nickel complex hydroxide particles and nonaqueous electrolyte secondary battery
WO2011067935A1 (en) * 2009-12-02 2011-06-09 住友金属鉱山株式会社 Nickel-cobalt-manganese complex hydroxide particles and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
WO2013047569A1 (en) * 2011-09-29 2013-04-04 株式会社田中化学研究所 Lithium-rich lithium metal complex oxide
US8426066B2 (en) 2005-04-13 2013-04-23 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8450013B2 (en) 2005-04-13 2013-05-28 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8540961B2 (en) 2005-04-13 2013-09-24 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089526A (en) * 2001-09-12 2003-03-28 Mitsubishi Chemicals Corp Lithium nickel manganese multiple oxide, positive electrode material for lithium secondary cell by using the same, positive electrode for lithium secondary cell, and lithium secondary cell
JP2003095659A (en) * 2001-09-25 2003-04-03 Mitsubishi Chemicals Corp Lithium transition metal complex oxide, positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and method of manufacturing lithium transition metal complex oxide
JP2003346798A (en) * 2002-05-24 2003-12-05 Nec Corp Secondary battery and battery pack using the same and method of use of secondary battery
EP2485306A1 (en) * 2003-05-13 2012-08-08 Mitsubishi Chemical Corporation Layered lithium nickel composite oxide powder and process for producing the same
US7923147B2 (en) 2003-05-13 2011-04-12 Mitsubishi Chemical Corporation Layered lithium-nickel-based compound oxide powder and its prodution process
EP1624509A4 (en) * 2003-05-13 2010-03-24 Mitsubishi Chem Corp Layered lithium nickel composite oxide powder and process for producing the same
JP4534559B2 (en) * 2004-04-07 2010-09-01 新神戸電機株式会社 Lithium secondary battery and positive electrode material for lithium secondary battery
JP2005302338A (en) * 2004-04-07 2005-10-27 Shin Kobe Electric Mach Co Ltd Lithium secondary battery and positive electrode material for lithium secondary battery
US7648693B2 (en) 2005-04-13 2010-01-19 Lg Chem, Ltd. Ni-based lithium transition metal oxide
US8540961B2 (en) 2005-04-13 2013-09-24 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US7939203B2 (en) 2005-04-13 2011-05-10 Lg Chem, Ltd. Battery containing Ni-based lithium transition metal oxide
US7939049B2 (en) 2005-04-13 2011-05-10 Lg Chem, Ltd. Cathode material containing Ni-based lithium transition metal oxide
US7943111B2 (en) 2005-04-13 2011-05-17 Lg Chem, Ltd. Process of making cathode material containing Ni-based lithium transition metal oxide
US9590235B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9590243B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9416024B2 (en) 2005-04-13 2016-08-16 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US9412996B2 (en) 2005-04-13 2016-08-09 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8815204B2 (en) 2005-04-13 2014-08-26 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US8426066B2 (en) 2005-04-13 2013-04-23 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8795897B2 (en) 2005-04-13 2014-08-05 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8784770B2 (en) 2005-04-13 2014-07-22 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8574541B2 (en) 2005-04-13 2013-11-05 Lg Chem, Ltd. Process of making cathode material containing Ni-based lithium transition metal oxide
US8450013B2 (en) 2005-04-13 2013-05-28 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8535829B2 (en) 2006-04-07 2013-09-17 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
WO2007116971A1 (en) 2006-04-07 2007-10-18 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
EP2466671A2 (en) 2007-09-04 2012-06-20 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
WO2009031619A1 (en) 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation Lithium transition metal-type compound powder
US8962195B2 (en) 2007-09-04 2015-02-24 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
JP4941617B2 (en) * 2009-12-02 2012-05-30 住友金属鉱山株式会社 Nickel composite hydroxide particles and non-aqueous electrolyte secondary battery
US10516165B2 (en) 2009-12-02 2019-12-24 Sumitomo Metal Mining Co., Ltd. Nickel-cobalt-manganese complex hydroxide particles and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
JP2011116580A (en) * 2009-12-02 2011-06-16 Sumitomo Metal Mining Co Ltd Nickel-cobalt-manganese complex hydroxide particle and method of producing the same, positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same, and nonaqueous electrolyte secondary battery
WO2011067935A1 (en) * 2009-12-02 2011-06-09 住友金属鉱山株式会社 Nickel-cobalt-manganese complex hydroxide particles and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
WO2011067937A1 (en) * 2009-12-02 2011-06-09 住友金属鉱山株式会社 Nickel complex hydroxide particles and nonaqueous electrolyte secondary battery
US9954224B2 (en) 2009-12-02 2018-04-24 Sumitomo Metal Mining Co., Ltd. Nickel-cobalt-manganese complex hydroxide particles and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
US10490815B2 (en) 2009-12-02 2019-11-26 Sumitomo Metal Mining Co., Ltd. Nickel-cobalt-manganese complex hydroxide particles and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte second battery
US11394024B2 (en) 2009-12-02 2022-07-19 Sumitomo Metal Mining Co., Ltd. Nickel-cobalt-manganese complex hydroxide particles and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
JP2013075773A (en) * 2011-09-29 2013-04-25 Tanaka Chemical Corp Lithium-rich lithium metal complex oxide
WO2013047569A1 (en) * 2011-09-29 2013-04-04 株式会社田中化学研究所 Lithium-rich lithium metal complex oxide

Similar Documents

Publication Publication Date Title
EP1875537B1 (en) Method for preparing layered core-shell cathode active materials for lithium secondary batteries
CA2552375C (en) Electrode active material powder with size dependent composition and method to prepare the same
KR100738192B1 (en) Core-shell spinel cathode active materials for lithium secondary batteries, lithium secondary batteries using the same and Method for preparing thereof
JP4185191B2 (en) Method for producing spinel type lithium manganate
JP2001028265A (en) Positive electrode active material for lithium secondary battery and manufacture thereof
WO2012020769A1 (en) Method for producing nickel-containing complex compound
JP2012084257A (en) Complex oxide manufacturing method, lithium ion secondary battery cathode active material, and lithium ion secondary battery
JP2003081639A (en) Manganese-containing layer lithium-transition metal compound oxide, and production method therefor
JP6872816B2 (en) Nickel-manganese-based composite oxide and its manufacturing method
JP4785230B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
JP4274630B2 (en) Method for producing spinel type lithium manganate
JP3048352B1 (en) Method for producing lithium manganate
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JP2002308627A (en) Method of manufacturing spinel type lithium manganate
JP2003257429A (en) Preparation method of iron-containing olivin manganese lithium phosphate and battery using the same
JP4306868B2 (en) Method for producing spinel type lithium manganate
JP3499181B2 (en) Method for producing spinel type lithium manganate
JP4473362B2 (en) Method for producing spinel type lithium manganate
JP4806755B2 (en) Method for producing spinel type lithium manganate
JP3499180B2 (en) Method for producing spinel type lithium manganate
JP3387876B2 (en) Method for producing spinel type lithium manganate
JP2002308628A (en) Spinel type lithium manganate
JP3499179B2 (en) Method for producing spinel type lithium manganate
JPH0722020A (en) Manufacture of lithium-manganese composite oxide and application thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703