JP2003077460A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2003077460A
JP2003077460A JP2001269337A JP2001269337A JP2003077460A JP 2003077460 A JP2003077460 A JP 2003077460A JP 2001269337 A JP2001269337 A JP 2001269337A JP 2001269337 A JP2001269337 A JP 2001269337A JP 2003077460 A JP2003077460 A JP 2003077460A
Authority
JP
Japan
Prior art keywords
lithium
ray diffraction
peak intensity
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001269337A
Other languages
Japanese (ja)
Other versions
JP3529750B2 (en
Inventor
Yoshiyuki Isozaki
義之 五十崎
Shuji Yamada
修司 山田
Motoi Kanda
基 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001269337A priority Critical patent/JP3529750B2/en
Publication of JP2003077460A publication Critical patent/JP2003077460A/en
Application granted granted Critical
Publication of JP3529750B2 publication Critical patent/JP3529750B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery that is superior in safety which will not burst or catch fire even if there happens a short circuit internally. SOLUTION: The non-aqueous electrolyte secondary battery which has a negative electrode active material that stores and discharges lithium ions comprises a positive electrode active material that is mainly made of a lithium nickel cobaltate complex oxide made of Li1+z Ni1-x-y Cox My O2 , and contains further lithium niobate as expressed by Lia Nbb Oc . When the X-ray diffraction peak intensity of the lithium nickel cobaltate complex oxide of the positive electrode active material of the (003) face is called I(003) , the X-ray diffraction peak intensity of the (104) face as I(104) , and the maximum X-ray diffraction peak attributable to the above lithium niobate as INb , the peak intensity ratios of these satisfy the relations I(003) /I(104) >=1.6, and 0.01<=INb /I(003) <=0.03.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムニッケル
コバルト複合酸化物を正極に用いた非水電解質二次電池
に関し、特に安全性を改良した非水電解質二次電池に関
するものである。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery using a lithium nickel cobalt composite oxide as a positive electrode, and more particularly to a non-aqueous electrolyte secondary battery with improved safety.

【0002】[0002]

【従来の技術】近年、携帯電話やVTRなどの電子機器
の小型化と需要の増大に伴い、これら電子機器の電源で
ある二次電池に対する高容量化が要求されている。ま
た、自動車からの排ガスによる大気汚染が社会問題とな
っており、電気自動車用電源として軽量で高性能な二次
電池を用いることが期待されている。かかる二次電池と
しては、LiCoO正極を炭素負極と組み合わせた非
水電解質二次電池が開発され、現在多量に使用されてい
る。
2. Description of the Related Art In recent years, as electronic devices such as mobile phones and VTRs have been downsized and the demand has increased, it has been required to increase the capacity of secondary batteries which are the power sources of these electronic devices. Further, air pollution due to exhaust gas from automobiles has become a social problem, and it is expected to use lightweight and high-performance secondary batteries as a power source for electric vehicles. As such a secondary battery, a non-aqueous electrolyte secondary battery in which a LiCoO 2 positive electrode is combined with a carbon negative electrode has been developed and is currently used in large quantities.

【0003】しかしながら、前記二次電池の正極材料で
あるLiCoOは、Coを含むため高価であり、かつ
資源的にも制約があるため、代替材料としてLiNiO
やNiの一部をCoで置換したLiNi1−xCo
、あるいはLiMn 等といった金属酸化物系
化合物が提案され、研究が活発に行われている。特に、
前記Ni系の活物質を使用した正極は、従来の電極材料
であるCo系の正極を使用した場合と比較して、エネル
ギー密度を大きくすることが可能であり、電池の低コス
ト化を可能にする上に、容量特性が向上するという特長
を有している。しかしながら、充電状態のNi系正極活
物質は、Co系の活物質に比べて熱的に不安定であるた
め、電池が充電状態にある時に外部から圧力が加わった
り落下などによって内部短絡が起こると、短絡電流によ
るジュール発熱により電池温度が上昇し、続いて負極お
よび正極と電解液の反応が起こりさらに発熱して、正極
活物質そのものが分解する。この時、酸素発生を伴って
さらに発熱するため電解液の燃焼反応を引き起こし、つ
いには熱暴走(熱の発生およびガス放出)を起こして電
池が破裂したり発火したりする恐れがあった。
However, in the positive electrode material of the secondary battery
LiCoOTwoIs expensive because it contains Co, and
LiNiO as an alternative material due to resource constraints
TwoLiNi in which some of Ni and Ni were replaced by Co1-xCox
OTwo, Or LiMnTwoO FourSuch as metal oxides
Compounds have been proposed and actively researched. In particular,
The positive electrode using the Ni-based active material is a conventional electrode material.
Compared with the case of using a Co-based positive electrode
It is possible to increase the gee density and reduce the battery cost.
Features that improve the capacitance characteristics while enabling
have. However, the Ni-based positive electrode active in the charged state
The material is thermally unstable compared to Co-based active materials.
Therefore, external pressure was applied while the battery was in the charging state.
If an internal short circuit occurs due to
Battery temperature rises due to the Joule heat generation,
And the reaction between the positive electrode and the electrolytic solution occurs and heat is further generated.
The active material itself decomposes. At this time, with the generation of oxygen
Further heat generation causes the electrolyte to burn, which may
It causes heat runaway (heat generation and gas release)
The pond could burst or catch fire.

【0004】このような問題についての対策として、リ
チウムとニッケルを主成分とする複合酸化物において、
Niの一部をCoやMnで置換し、さらにAlやNbと
いった元素で置換したリチウムニッケルコバルト複合酸
化物を正極活物質として用いることによって、安全性に
優れた電池を実現できるとの提案がある(特開2000
−323143号公報参照)。この技術によれば、活物
質の導電性を低下させることにより、電池短絡時の短絡
電流が活物質粒子内を貫通することを防止し、短絡電流
のジュール発熱によって活物質自体が熱分解することを
回避し、活物質の分解が始まる温度、すなわち熱分解開
始温度が高温側に移行するものと考えられる。しかしな
がら、短絡電流が活物質粒子内を貫通しないとしても、
ジュール発熱は発生するため電池温度は上昇し、負極お
よび正極と電解液の反応が起こり、さらに発熱して、や
がて正極活物質そのものが分解する。その結果、電解液
の燃焼反応を引き起こし、ついには熱暴走に至る。この
現象は、電池を高容量化あるいは高エネルギー密度化し
たり、高出力化した場合においては、短絡によって大電
流が流れるため顕著となる。
As a measure against such a problem, in a composite oxide containing lithium and nickel as main components,
It has been proposed that a battery having excellent safety can be realized by using a lithium nickel cobalt composite oxide in which a part of Ni is replaced with Co or Mn and further replaced with an element such as Al or Nb as a positive electrode active material. (JP 2000
-323143). According to this technique, by reducing the conductivity of the active material, it is possible to prevent the short-circuit current at the time of battery short circuit from penetrating through the active material particles, and the active material itself is thermally decomposed by Joule heat generation of the short-circuit current. It is considered that the temperature at which decomposition of the active material starts, that is, the thermal decomposition start temperature shifts to the high temperature side. However, even if the short-circuit current does not penetrate through the active material particles,
Since Joule heat is generated, the battery temperature rises, a reaction between the negative electrode and the positive electrode and the electrolytic solution occurs, further heat is generated, and the positive electrode active material itself is decomposed eventually. As a result, a combustion reaction of the electrolytic solution is caused, which eventually leads to thermal runaway. This phenomenon becomes remarkable because a large current flows due to a short circuit when the battery has a high capacity, a high energy density, or a high output.

【0005】このように、従来公知の安全性を向上させ
る改良手段をもってしても、電池を高容量化あるいは高
エネルギー密度化したり、高出力化した場合において
は、電池での安全性を確保するのは困難であり、したが
って安全性が高い非水電解質二次電池は未だ実用化され
ていない現状である。
As described above, the safety of the battery is ensured even when the battery has a high capacity, a high energy density, or a high output even with the conventionally known means for improving safety. Therefore, it is the current situation that non-aqueous electrolyte secondary batteries with high safety have not yet been put into practical use.

【0006】[0006]

【発明が解決しようとする課題】以上に記載したよう
に、従来のリチウムニッケルコバルト複合酸化物を正極
に用いた非水電解質二次電池においては、充電状態の電
池で内部短絡が起こると、電池が破裂したり発火したり
する場合があり、安全性の向上が課題であった。本発明
は従来技術の前記課題を解決するためになされたもので
あり、リチウムニッケルコバルト複合酸化物を正極に用
いた非水電解質二次電池において、万が一内部短絡が生
じても破裂や発火に至らない安全性に優れた非水電解質
二次電池を提供しようとするものである。
As described above, in the non-aqueous electrolyte secondary battery using the conventional lithium nickel cobalt composite oxide for the positive electrode, when the internal short circuit occurs in the battery in the charged state, There is a possibility that the product may burst or catch fire, and improvement of safety was an issue. The present invention has been made to solve the above problems of the prior art, in a non-aqueous electrolyte secondary battery using a lithium nickel cobalt composite oxide in the positive electrode, even if an internal short circuit should occur burst or fire The present invention aims to provide a non-aqueous electrolyte secondary battery having excellent safety.

【0007】[0007]

【課題を解決するための手段】本発明は、LiNiO
のNiサイトの一部をCoで置換したLiNi0.8
0.2(以下、Ni・Co系正極材料と記す)を
基本組成とし、これにさらに異種元素を添加した種々の
Ni・Co系正極材料を試作し、検討を行った結果なさ
れたものであり、特にリチウムニッケルコバルト複合酸
化物を主成分とする正極活物質にニオブ酸リチウムを含
有させることにより前記課題を解決し、本発明を完成す
るに至ったものである。
The present invention is directed to LiNiO 2
LiNi 0.8 C in which part of the Ni site of
o 0.2 O 2 (hereinafter, referred to as Ni.Co-based positive electrode material) was used as a basic composition, and various Ni.Co-based positive electrode materials in which different elements were further added were prototyped and studied. In particular, the present invention has been completed and the present invention has been completed by incorporating lithium niobate into a positive electrode active material containing a lithium nickel cobalt composite oxide as a main component.

【0008】すなわち、本発明は、リチウムとニッケル
を主成分とする複合酸化物を正極活物質とする正極と、
リチウムイオンを吸蔵・放出することのできる物質を負
極活物質とする負極とを備えた非水電解質二次電池にお
いて、前記正極活物質が、一般式:Li1+zNi
1−x―yCo(但し、前記MはAl、M
n、Snから選ばれる少なくとも1種、前記x、y、z
は0<x≦0.3、0≦y≦0.1、0≦z≦0.02
である)からなるリチウムニッケルコバルト複合酸化物
を主成分とし、さらに、一般式:LiNb(但
し、前記a、b、cは正の整数であり、2.5≦a/b
≦5.5、c=a/2+b×5/2である)で表される
ニオブ酸リチウムを含むものであって、かかる正極活物
質のリチウムニッケルコバルト複合酸化物の(003)
面のX線回折ピーク強度をI(003)、(104)面
のX線回折ピーク強度をI(10 4)とし、また前記ニ
オブ酸リチウムに帰属する最大X線回折ピークをINb
とした時に、これらのピーク強度比が、I(003)
(104)≧1.6、かつ、0.01≦INb/I
(003)≦0.03であることを特徴とする非水電解
質二次電池である。
That is, the present invention is a positive electrode using a composite oxide containing lithium and nickel as main components as a positive electrode active material,
In a non-aqueous electrolyte secondary battery provided with a negative electrode that uses a substance capable of inserting and extracting lithium ions as a negative electrode active material, the positive electrode active material has a general formula: Li 1 + z Ni
1-x-y Co x M y O 2 ( where M may Al, M
n, Sn, at least one selected from the above x, y, z
Is 0 <x ≦ 0.3, 0 ≦ y ≦ 0.1, 0 ≦ z ≦ 0.02
Of Li a Nb b O c (wherein a, b and c are positive integers, and 2.5 ≦ a / b).
≦ 5.5, c = a / 2 + b × 5/2), and the lithium nickel cobalt composite oxide (003) of the positive electrode active material is contained.
The X-ray diffraction peak intensity of the plane I (003), (104) X-ray diffraction peak intensity of the plane and I (10 4), also the maximum X-ray diffraction peaks attributable to the lithium niobate I Nb
, The peak intensity ratio is I (003) /
I (104) ≧ 1.6 and 0.01 ≦ I Nb / I
(003) ≦ 0.03, which is a non-aqueous electrolyte secondary battery.

【0009】そして、前記本発明においては、前記正極
活物質を構成する前記一般式:Li Nbで表さ
れるニオブ酸リチウムにおいて、前記a/bの値を、4
≦a/b≦5とすることが好ましい。
In the present invention, the positive electrode
The above-mentioned general formula constituting the active material: Li aNbbOcRepresented by
In the case of lithium niobate, the value of a / b is 4
It is preferable that ≦ a / b ≦ 5.

【0010】また、前記本発明においては、前記正極活
物質の主成分である前記一般式:Li1+zNi
1−x―yCoで表されるリチウムニッケル
コバルト複合酸化物において、前記yの値を、0.03
≦y≦0.08とすることが好ましい。
Further, in the present invention, the above-mentioned general formula: Li 1 + z Ni, which is a main component of the positive electrode active material, is used.
In 1-x-y Co x lithium-nickel-cobalt composite oxide represented by M y O 2, the value of the y, 0.03
It is preferable that ≦ y ≦ 0.08.

【0011】すなわち、本発明の非水電解質二次電池
は、リチウムとニッケルを主成分とする複合酸化物を正
極活物質とする正極とリチウムイオンを吸蔵・放出する
ことのできる活物質を備えた負極とを備えた非水電解質
二次電池において、前記正極活物質が一般式:Li
1+zNi1−x―yCo(但し、前記Mは
Al、Mn、Snから選ばれる少なくとも1種、前記
x、y、zは0<x≦0.3、0≦y≦0.1、0≦z
≦0.02)からなるリチウムニッケルコバルト複合酸
化物を主成分とし、さらに、一般式:LiNb
(但し、前記a、b、cは正の整数であり、2.5≦a
/b≦5.5、c=a/2+b×5/2である)で表さ
れるニオブ酸リチウムを含むものであって、(003)
面のX線回折ピーク強度をI(003)、(104)面
のX線回折ピーク強度をI(104)、LiNb
またはLi10Nb10に帰属する最大X線回折
ピークをI Nbとした時に、ピーク強度比:I
(003)/I(104)≧1.6を満たし、かつ、
0.01≦INb/I(003)≦0.03の関係にあ
ることを特徴とするものであって、このような組成を有
するリチウム・ニッケル・コバルト・ニオブ複合酸化物
は、示差走査熱量測定装置(DSC)測定から得られた
熱分解時の発熱量が30J/g以下と小さく、熱安定性
に優れており、特に、ニッケルの一部をAl、Mn、S
nで置換したリチウムニッケルコバルト複合酸化物を主
成分とし、前記のようなニオブ酸リチウムを含むものは
熱分解開始温度が高い上に、発熱量も30J/gと小さ
く、熱安定性が特に優れているものである。したがっ
て、このような構成とする非水電解質二次電池では、万
が一電池が充電状態にある時に外部から圧力が加わった
り落下などによって内部短絡が起きても、電池が熱暴走
するには至らず、安全性に優れた非水電解質二次電池を
形成することが可能となる。
That is, the non-aqueous electrolyte secondary battery of the present invention
Is a composite oxide containing lithium and nickel as main components.
It absorbs and releases lithium ions and the positive electrode that is the polar active material.
Non-aqueous electrolyte provided with a negative electrode provided with an active material capable of forming
In the secondary battery, the positive electrode active material has the general formula: Li
1 + zNi1-xyCoxMyOTwo(However, M is
At least one selected from Al, Mn, and Sn, and
x, y, z are 0 <x ≦ 0.3, 0 ≦ y ≦ 0.1, 0 ≦ z
≦ 0.02) lithium nickel cobalt complex acid
And a general formula: LiaNbbOc
(However, a, b, and c are positive integers, and 2.5 ≦ a
/B≦5.5, c = a / 2 + b × 5/2)
(003) containing lithium niobate
X-ray diffraction peak intensity of the plane(003), (104) plane
X-ray diffraction peak intensity of(104), Li8NbTwoO
9Or Li10NbTwoO10X-ray diffraction attributed to
I peak NbAnd the peak intensity ratio: I
(003)/ I(104)Satisfies ≧ 1.6, and
0.01 ≦ INb/ I(003)In the relation of ≦ 0.03
And has such a composition.
Lithium-nickel-cobalt-niobium composite oxide
Was obtained from differential scanning calorimetry (DSC) measurements
Calorific value during thermal decomposition is as small as 30 J / g or less, thermal stability
Is excellent in the use of Al, Mn, S
Mainly composed of lithium nickel cobalt composite oxide substituted with n
As a component, those containing lithium niobate as described above
High thermal decomposition start temperature and small calorific value of 30 J / g
The heat stability is particularly excellent. According to
In a non-aqueous electrolyte secondary battery with such a configuration,
There was external pressure when the battery was in a charging state.
Even if an internal short circuit occurs due to a fall, etc., the battery will run out of heat
Non-aqueous electrolyte secondary battery with excellent safety
Can be formed.

【0012】本発明において、ニオブ酸リチウムを、一
般式:LiNb(但し、前記a、b、cは正の
整数であり、2.5≦a/b≦5.5、c=a/2+b
×5/2である)で表されるものを特に選択したのは、
このようなニオブ酸リチウムが、熱分解時の発熱を抑え
る効果が特に大きいからであり、またニオブ酸リチウム
であってもLiNbOでは発熱の抑制効果は小さく、
電池安全性の改良効果は認められなかったからである。
この理由についての詳細は不明であるが、Li Nb
10あるいはLi10Nb10のようなニオブ酸
リチウムが結晶構造を安定化する効果が特に大きいため
と考えている。
In the present invention, lithium niobate is used as
General formula: LiaNbbOc(However, the above a, b, c are positive
An integer, 2.5 ≦ a / b ≦ 5.5, c = a / 2 + b
X5 / 2) is particularly selected.
Such lithium niobate suppresses heat generation during thermal decomposition
The effect is particularly large, and also lithium niobate
Even LiNbOThreeThen the effect of suppressing heat generation is small,
This is because no improvement effect on battery safety was observed.
The details of this reason are unknown, but Li 8Nb9
O10Or Li10NbTwoO10Niobate like
Since lithium has a particularly large effect of stabilizing the crystal structure,
I believe.

【0013】また、ピーク強度比:INb/I
(003)を0.01≦INb/I(003 ≦0.0
3と規定したのは、次のような理由に基づいている。す
なわち、ピーク強度比:INb/I(003)が0.0
3よりも大きいと、放電容量が低下するため好ましくな
いし、また、0.01未満であると、本発明による安全
性改善の効果が発揮しないからである。ピーク強度比:
Nb/I(003)の好ましい範囲は、0.015以
上0.025未満である。
The peak intensity ratio: I Nb / I
(003) is 0.01 ≦ INb / I (003 ) ≦ 0.0
The reason for defining 3 is based on the following reasons. That is, the peak intensity ratio: I Nb / I (003) is 0.0
When it is larger than 3, the discharge capacity is lowered, which is not preferable, and when it is less than 0.01, the effect of improving safety according to the present invention is not exhibited. Peak intensity ratio:
The preferable range of I Nb / I (003) is 0.015 or more and less than 0.025.

【0014】また、ピーク強度比:I(003)/I
(104)を1.6以上と規定したのは、次のような理
由に基づいている。一般に、ピーク強度比:I
(003)/I (104)は、層状構造の発達の度合い
を示す指標として用いられる。層状構造が発達すれば、
放電容量が大きく、優れた活物質となる。この値は、I
(003 /I(104)≦2の範囲で大きければ大き
いほど良い。この値が小さい場合、層状構造の発達が不
充分で、リチウム層にNi2+が混入した、いわゆる岩
塩構造となりLiの出入りを阻害するため、放電容量は
低下してしまう。したがって、本発明では特にI
(003)/I(104)≧1.6で表されるリチウム
ニッケルコバルト複合酸化物を選択したものである。な
お、本発明は、I(003 /I(104)≧1.6
と、0.01≦INb/I(003)≦0.03を同時
に満たすものであり、いずれかがこの範囲外であっては
ならない。
The peak intensity ratio: I(003)/ I
(104)Is defined as 1.6 or more because
It is based on the reason. Generally, the peak intensity ratio: I
(003)/ I (104)Is the degree of development of the layered structure
It is used as an index indicating. If the layered structure develops,
It has a large discharge capacity and becomes an excellent active material. This value is I
(003 )/ I(104)Larger if less than 2
How good When this value is small, the development of layered structure is not good.
Sufficient Ni on the lithium layer2+So-called rock mixed with
The discharge capacity is
Will fall. Therefore, in the present invention, in particular
(003)/ I(104)Lithium represented by ≧ 1.6
The nickel-cobalt composite oxide is selected. Na
The present invention is based on I(003 )/ I(104)≧ 1.6
And 0.01 ≦ INb/ I(003)≤0.03 at the same time
And any one is outside this range
I won't.

【0015】[0015]

【発明の実施の形態】以下に本発明を実施の形態によっ
て詳細に説明する。本発明者らはリチウムニッケル系非
水電解質二次電池の安全性を向上させるために、LiN
iOのNiサイトの一部をCoで置換したLiNi
0.8Co .2(以下、Ni・Co系正極材料と
記す)を基本組成とし、これにさらに異種元素を添加し
た種種のNi・Co系正極材料を試作した。試作した材
料の熱安定性は、Li電位で4.4Vまで充電を行った
後、示差走査熱量測定(DSC)により調べた。また、
試作した材料を正極に用いて種種の電池を作製し、4.
4Vまで充電した後、電池の内部短絡を模擬した釘刺し
試験を行った。この結果と、示差走査熱量測定の結果を
対応させ、電池の安全性向上について検討を行った。そ
の結果、次のような知見が得られた。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to embodiments. In order to improve the safety of the lithium nickel based non-aqueous electrolyte secondary battery, the present inventors have
LiNi in which a part of the Ni site of iO 2 is replaced with Co
0.8 Co 0 . 2 O 2 (hereinafter, referred to as Ni / Co-based positive electrode material) was used as a basic composition, and various kinds of Ni / Co-based positive electrode materials were further prototyped by adding different elements to it. The thermal stability of the prototyped material was examined by differential scanning calorimetry (DSC) after charging to 4.4 V at the Li potential. Also,
3. Various types of batteries were manufactured using the prototyped material as the positive electrode.
After charging up to 4V, a nail penetration test was conducted to simulate an internal short circuit of the battery. By correlating this result with the result of differential scanning calorimetry, the improvement of battery safety was examined. As a result, the following findings were obtained.

【0016】まず、異種元素を添加する前のNi・Co
系正極材料は、DSCによる熱分解開始温度が189℃
(発熱ピーク温度:220℃)であった。設計定格容量
1850mAhの標準仕様電池(18650サイズ)に
おける釘刺し試験の結果、破裂・発火に至った。次に、
Ni・Co系正極材料のNiサイトの一部をさらにAl
で置換したLiNi0.72Co0.2Al0.08
は、DSCによる熱分解開始温度が228℃(発熱ピ
ーク温度:250℃)であり、Alで置換する前のNi
・Co系正極材料に比べ熱分解開始温度は高温側にシフ
トした。試作電池の釘刺し試験の結果は、破裂・発火に
至った電池の割合は50%であった。そこで次に、この
材料を用いて設計定格容量1700mAhの高出力仕様
電池(18650サイズ)を作製した。この電池におい
て釘刺し試験を行ったところ、発火率は100%であっ
た。さらに、設計定格容量15Ah(φ35mm×19
0mm)の大型電池の場合においても、釘刺し試験で同
様な結果が得られた。このことから、電池を高容量化し
たり高出力化した場合には、短絡により大電流が流れる
ため、材料の熱分解温度を向上させただけでは、安全性
を確保できないということが明らかになった。
First, Ni.Co before adding a different element
-Based positive electrode material has a thermal decomposition starting temperature of 189 ° C by DSC.
(Exothermic peak temperature: 220 ° C.). As a result of a nail piercing test on a standard specification battery (18650 size) having a design rated capacity of 1850 mAh, rupture / ignition resulted. next,
A portion of the Ni site of the Ni / Co-based positive electrode material is further Al
LiNi 0.72 Co 0.2 Al 0.08 O substituted with
No. 2 had a thermal decomposition initiation temperature by DSC of 228 ° C. (exothermic peak temperature: 250 ° C.) and had Ni before substitution with Al.
-The thermal decomposition start temperature shifted to the high temperature side compared to the Co-based positive electrode material. As a result of the nail penetration test of the prototype battery, the ratio of the batteries that ruptured and ignited was 50%. Then, next, using this material, a high-power specification battery (18650 size) having a design rated capacity of 1700 mAh was produced. When a nail penetration test was conducted on this battery, the ignition rate was 100%. Furthermore, design rated capacity 15Ah (φ35mm × 19
In the case of a large battery (0 mm), similar results were obtained in the nail penetration test. From this, it became clear that when a battery has a high capacity or a high output, a large current flows due to a short circuit, and therefore safety cannot be ensured simply by improving the thermal decomposition temperature of the material. .

【0017】そこで本願発明者らは、DSC測定から得
られた熱分解時の発熱量に注目して検討した結果、以下
のようなことがわかった。すなわち、前述のLiNi
0.72Co0.2Al0.08における熱分解開
始温度は228℃で、発熱量は約60J/gであった
が、このように熱分解開始温度が高い材料であっても、
発熱量が所定値よりも大きいものは電池を高容量化した
場合に、釘刺し試験において破裂・発火に至った。これ
に対し、熱分解開始温度が必ずしも高い材料ではなくて
も、熱分解時の発熱量が所定値よりも小さいものは、電
池を高容量化した場合に、釘刺し試験において破裂・発
火に至った電池の割合は低下した。さらに、熱分解開始
温度が高い材料で、熱分時の発熱量が所定値よりも小さ
いものは、釘刺し試験において破裂・発火に至った電池
の割合が大幅に低下するということが判明し、本発明を
完成したものである。
Then, the inventors of the present application have conducted a study by paying attention to the calorific value at the time of thermal decomposition obtained from the DSC measurement, and as a result, have found the following. That is, the above-mentioned LiNi
The thermal decomposition starting temperature of 0.72 Co 0.2 Al 0.08 O 2 was 228 ° C., and the calorific value was about 60 J / g. However, even for a material having such a high thermal decomposition starting temperature,
When the amount of heat generation was larger than the predetermined value, the battery had a high capacity, which resulted in rupture and ignition in the nail penetration test. On the other hand, even if the material does not necessarily have a high thermal decomposition start temperature, if the calorific value during thermal decomposition is smaller than the specified value, it will cause rupture or ignition in the nail penetration test when the battery capacity is increased. The percentage of batteries that fell was reduced. Furthermore, it was found that a material having a high thermal decomposition starting temperature and having a heat generation amount at the time of heat content smaller than a predetermined value significantly reduces the proportion of batteries that have ruptured or ignited in the nail penetration test, The present invention has been completed.

【0018】以上の知見によって完成された本発明につ
いて、以下、本発明の非水電解質二次電池の実施の形態
を図1から図3を参照として詳細に説明する。
With respect to the present invention completed based on the above findings, embodiments of the non-aqueous electrolyte secondary battery of the present invention will be described in detail below with reference to FIGS. 1 to 3.

【0019】(材料の熱安定性評価方法)材料の熱安定
性は、熱分解開始温度および発熱量を指標とし、示差走
査熱量測定装置(DSC)を用いて評価した。評価方法
を以下に説明する。正極活物質100重量部に、導電剤
(アセチレンブラック)6重量部と結着剤(PTFE)
3重量部を混合して電極を作製する。次に、Ar雰囲気
中で、参照極と対極がLi箔からなる三電極セルを組み
立て、1mA/cmの定電流で4.4Vまで充電を行
う。電解液にはエチレンカーボネート(EC)とエチル
メチルカーボネート(EMC)の混合溶媒(体積比1:
2)にLiPFを1mol/L溶解したものを使用す
る。充電正極をAr雰囲気中で取り出し、EMCで洗浄
後、1時間真空乾燥して電解液を除去し、Al製密封パ
ンに封入してDSC測定用試料とする。DSC測定で
は、Arを50ml/minの流量でフローしながら2
0℃から450℃まで5℃/minの昇温速度で測定を
行う。このようにして得られたDSC曲線の一例を図1
および図2に示す。熱分解開始温度は、図1に示すよう
に、正極の熱分解に伴う最初のピークから接線法により
求める。また、発熱量は、図2に示すように、このピー
クの積分値(斜線部の面積)である。
(Method for evaluating thermal stability of material) The thermal stability of the material was evaluated by using a differential scanning calorimeter (DSC) using the thermal decomposition initiation temperature and the calorific value as indexes. The evaluation method will be described below. 100 parts by weight of the positive electrode active material, 6 parts by weight of a conductive agent (acetylene black) and a binder (PTFE)
An electrode is prepared by mixing 3 parts by weight. Next, in an Ar atmosphere, a three-electrode cell in which the reference electrode and the counter electrode are made of Li foil is assembled and charged to 4.4 V with a constant current of 1 mA / cm 2 . For the electrolytic solution, a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (volume ratio 1:
The LiPF 6 in 2) to use a material obtained by dissolving 1 mol / L. The charged positive electrode is taken out in an Ar atmosphere, washed with EMC, vacuum-dried for 1 hour to remove the electrolytic solution, and sealed in an Al-made sealing pan to obtain a DSC measurement sample. In DSC measurement, while flowing Ar at a flow rate of 50 ml / min, 2
Measurement is performed from 0 ° C. to 450 ° C. at a heating rate of 5 ° C./min. An example of the DSC curve thus obtained is shown in FIG.
And shown in FIG. As shown in FIG. 1, the thermal decomposition start temperature is obtained by the tangent method from the first peak associated with the thermal decomposition of the positive electrode. Further, the heat generation amount is the integrated value of this peak (area of the shaded portion), as shown in FIG.

【0020】(電池の安全性評価方法−釘刺し試験−)
内部短絡を模擬した試験として釘刺し試験を行い、電池
安全性を評価した。この釘刺し試験の方法について以下
に説明する。まず、注液、封口した電池は24時間以内
に初充電を行う。初充電は、設計定格容量を1時間で放
電する電流値を1Cとし、0.3Cの電流値で4.2V
に達するまで充電した後、4.2Vの定電圧で保持し、
合計充電時間を8時間とする。放電は、充電終了後、3
0分間休止の後、0.2Cの定電流で電池電圧が2.7
Vになるまで行う。次に、0.5Cの電流値で4.2V
まで充電する定電流−定電圧充電(合計充電時間5時
間)を行い、0.5Cの定電流で電池電圧が2.7Vに
なるまで放電する充放電サイクルを5サイクル行う。こ
の充放電サイクルが終了した電池について、0.5Cの
電流値で4.4Vまで充電する定電流−定電圧充電を行
う。充電時間は5時間である。充電終了から試験実施ま
では長時間経過しないように留意し、概ね1時間以内に
試験を行う。釘は直径2.5mmのステンレス製で、釘
降下速度は110mm/secとする。釘刺し時の端子
電圧、表面温度をモニターする。
(Battery Safety Evaluation Method-Nail Penetration Test-)
As a test simulating an internal short circuit, a nail penetration test was performed to evaluate battery safety. The method of this nail penetration test will be described below. First, the battery that has been injected and sealed is initially charged within 24 hours. For the first charge, the current value for discharging the designed rated capacity in 1 hour is 1C, and the current value of 0.3C is 4.2V.
After charging until reaching to, hold at a constant voltage of 4.2V,
The total charging time is 8 hours. Discharge is 3 after charging is completed.
After resting for 0 minutes, the battery voltage was 2.7 at a constant current of 0.2C.
Perform until V is reached. Next, at a current value of 0.5C, 4.2V
A constant current-constant voltage charging (total charging time of 5 hours) is performed to charge up to 5 V, and a charge / discharge cycle of discharging at a constant current of 0.5 C until the battery voltage reaches 2.7 V is performed for 5 cycles. A constant current-constant voltage charge for charging up to 4.4 V at a current value of 0.5 C is performed on the battery that has completed this charge / discharge cycle. Charging time is 5 hours. Care should be taken not to pass a long time from the end of charging to the execution of the test, and the test should be performed within approximately one hour. The nail is made of stainless steel with a diameter of 2.5 mm, and the nail lowering speed is 110 mm / sec. Monitor the terminal voltage and surface temperature when nailing.

【0021】(本発明に係る非水電解質二次電池の形
態)次に、本発明に係る非水電解質二次電池(例えば円
筒型リチウムイオン二次電池)について図3を用いて説
明する。例えば、ニッケルめっき鉄からなる有底円筒状
の容器1は、底部に絶縁体2が配置されている。電極群
3は、前記容器1内に収納されている。前記電極群3
は、正極4、セパレータ5および負極6をこの順序で積
層した帯状物を前記負極6が外側に位置するように渦巻
き上に捲回した構造になっている。前記セパレータ5
は、例えば不織布、ポリプロピレン微多孔フィルム、ポ
リエチレン微多孔フィルム、ポリエチレン−ポリプロピ
レン微多孔積層フィルムから形成される。前記容器1内
には、電解液が収容されている。中央部に弁膜部7を備
えた安全弁8、前記安全弁8上に配置された帽子形状の
正極端子9は、前記容器1の上部開口部に絶縁ガスケッ
ト10を介してかしめ固定されている。なお、前記正極
端子9には、ガス抜き孔(図示しない)が開口されてい
る。正極リード11の一端は、前記正極4に、他端は前
記安全弁8にそれぞれ接続されており、電池内圧が上昇
した際に、前記弁膜部7が膨出変形することにより溶接
部が剥離して電流が遮断される。前記前記負極6は、負
極リード12を介して負極端子である前記容器1に接続
されている。
(Form of Non-Aqueous Electrolyte Secondary Battery According to the Present Invention) Next, a non-aqueous electrolyte secondary battery according to the present invention (for example, a cylindrical lithium ion secondary battery) will be described with reference to FIG. For example, a bottomed cylindrical container 1 made of nickel-plated iron has an insulator 2 arranged at the bottom. The electrode group 3 is housed in the container 1. The electrode group 3
Has a structure in which a band-shaped material in which the positive electrode 4, the separator 5, and the negative electrode 6 are laminated in this order is spirally wound so that the negative electrode 6 is located outside. The separator 5
Is formed of, for example, a non-woven fabric, a polypropylene microporous film, a polyethylene microporous film, or a polyethylene-polypropylene microporous laminated film. An electrolytic solution is contained in the container 1. A safety valve 8 having a valve membrane portion 7 in the central portion, and a hat-shaped positive electrode terminal 9 arranged on the safety valve 8 are caulked and fixed to an upper opening of the container 1 via an insulating gasket 10. A gas vent hole (not shown) is opened in the positive electrode terminal 9. One end of the positive electrode lead 11 is connected to the positive electrode 4 and the other end is connected to the safety valve 8, and when the internal pressure of the battery rises, the valve membrane portion 7 bulges and deforms, and the welded portion peels off. The current is cut off. The negative electrode 6 is connected to the container 1 serving as a negative electrode terminal via a negative electrode lead 12.

【0022】次に、前記正極4、前記負極6および電解
液を具体的に説明する。
Next, the positive electrode 4, the negative electrode 6 and the electrolytic solution will be specifically described.

【0023】a)正極4 前記正極4は、例えば正極活物質、導電剤および結着剤
を適当な溶媒に分散させて得られる正極材ペーストを集
電体の片側、もしくは両面に塗布することにより作製す
る。前記正極活物質としては、一般式:Li1+zNi
1−x―yCo (但し、前記MはAl、M
n、Snから選ばれる少なくとも1種、前記x、y、z
は0<x≦0.3、0≦y≦0.1、0≦z≦0.0
2)からなるリチウムニッケルコバルト複合酸化物を主
成分とし、さらに、一般式:LiNb(但し、
前記a、b、cは正の整数であり、2.5≦a/b≦
5.5、c=a/2+b×5/2である)で表されるニ
オブ酸リチウムを含むものであって、(003)面のX
線回折ピーク強度をI(003)、(104)面のX線
回折ピーク強度をI(104)、前記ニオブ酸リチウム
に帰属する最大X線回折ピークをINbとした時に、ピ
ーク強度比:I(003)/I(104)≧1.6を満
たし、かつ、0.01≦INb/I(003)≦0.0
3で表されるリチウム・ニッケル・コバルト・ニオブ複
合酸化物を用いることができる。具体的には(LiNi
0.76Co0.16Al0.08)+(Li
)、(LiNi0.7Co0.24Al
0.06)+(Li10Nb10)、(LiN
0.7Co0.2Mn0.1)+(LiNb
)、(LiNi0.67Co0.2Mn0.1Al
0.03)+(Li Nb)、(LiNi
0.8Co0.2)+(Li10Nb10)、
(LiNi0.75Co0.25)+(Li10
10)、(LiNi0.7Co0.3)+
(Li10Nb10)等を挙げることができる。
A) Positive electrode 4 The positive electrode 4 is, for example, a positive electrode active material, a conductive agent and a binder.
The positive electrode material paste obtained by dispersing
It is made by applying to one side or both sides of the electric body.
It The positive electrode active material has a general formula: Li1 + zNi
1-xyCo xMyOTwo(However, M is Al, M
n, Sn, at least one selected from the above x, y, z
Is 0 <x ≦ 0.3, 0 ≦ y ≦ 0.1, 0 ≦ z ≦ 0.0
Mainly composed of lithium nickel cobalt composite oxide consisting of 2)
As a component, further, the general formula: LiaNbbOc(However,
The a, b and c are positive integers, and 2.5 ≦ a / b ≦
5.5, c = a / 2 + b × 5/2)
X-rays of (003) plane containing lithium oblate
The line diffraction peak intensity is I(003), X-ray of (104) plane
The diffraction peak intensity is I(104), The lithium niobate
The maximum X-ray diffraction peak attributed toNbAnd when
Intensity ratio: I(003)/ I(104)Satisfies ≧ 1.6
And 0.01 ≦ INb/ I(003)≤0.0
Lithium-nickel-cobalt-niobium compound represented by 3
Compound oxides can be used. Specifically, (LiNi
0.76Co0.16Al0.08OTwo) + (Li8N
bTwoO9), (LiNi0.7Co0.24Al
0.06OTwo) + (Li10NbTwoO10), (LiN
i0.7Co0.2Mn0.1OTwo) + (Li8NbTwo
O9), (LiNi0.67Co0.2Mn0.1Al
0.03OTwo) + (Li 8NbTwoO9), (LiNi
0.8Co0.2OTwo) + (Li10NbTwoO10),
(LiNi0.75Co0.25OTwo) + (Li10N
bTwoO10), (LiNi0.7Co0.3OTwo) +
(Li10NbTwoO10) Etc. can be mentioned.

【0024】また、前記正極活物質としては、前記リチ
ウム・ニッケル・コバルト・ニオブ複合酸化物とLiC
oOとの混合物を用いることができる。前記導電剤と
しては、例えばアセチレンブラック、カーボンブラッ
ク、人工黒鉛、天然黒鉛等を用いることができる。前記
結着剤としては、例えばポリテトラフルオロエチレン
(PTFE)、ポリフッ化ビニリデン(PVdF)、P
VdFの水素もしくはフッ素のうち、少なくとも1つを
他の置換基で置換した変性PVdF、フッ化ビニリデン
−6フッ化プロピレンの共重合体、ポリフッ化ビニリデ
ン−テトラフルオロエチレン−6フッ化プロピレンの3
元共重合体等を用いることができる。前記結着剤を分散
させるための有機溶媒としては、N−メチル−2−ピロ
リドン(NMP)、ジメチルホルムアミド(DMF)等
が使用される。前記集電体としては、例えば厚さ10〜
25μmのアルミニウム箔、ステンレス箔、チタン箔等
を挙げることができる。前記正極活物質層の片面の厚さ
は、30〜100μmであることが好ましい。前記厚さ
がこの範囲であると、大電流放電特性が向上する。前記
厚さの好ましい範囲は、50μm〜65μmである。前
記正極4において、活物質層の圧延後の充填密度は2.
7g/cm以上が好ましい。更に好ましくは3.0g
/cm以上である。充填密度を3.0g/cm以上
とすると電池を高容量化することができる。ただし、充
填密度が高すぎると大電流放電特性が低下する恐れがあ
るため、充填密度の上限値は3.5g/cm以下であ
ることが好ましい。
The positive electrode active material includes the lithium-nickel-cobalt-niobium composite oxide and LiC.
Mixtures with oO 2 can be used. As the conductive agent, for example, acetylene black, carbon black, artificial graphite, natural graphite or the like can be used. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), P
Modified PVdF in which at least one of VdF hydrogen or fluorine is substituted with another substituent, a vinylidene fluoride-6-fluoropropylene copolymer, and polyvinylidene fluoride-tetrafluoroethylene-6-fluoropropylene 3
An original copolymer or the like can be used. As the organic solvent for dispersing the binder, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF) and the like are used. The current collector has a thickness of 10 to 10, for example.
Examples include 25 μm aluminum foil, stainless steel foil, titanium foil and the like. The thickness of one surface of the positive electrode active material layer is preferably 30 to 100 μm. When the thickness is in this range, the large current discharge characteristics are improved. The preferable range of the thickness is 50 μm to 65 μm. In the positive electrode 4, the packing density of the active material layer after rolling is 2.
It is preferably 7 g / cm 3 or more. More preferably 3.0 g
/ Cm 3 or more. When the packing density is 3.0 g / cm 3 or more, the capacity of the battery can be increased. However, if the packing density is too high, the high-current discharge characteristics may deteriorate, so the upper limit of the packing density is preferably 3.5 g / cm 3 or less.

【0025】b)負極6 前記負極6は、例えばリチウムイオンを吸蔵・放出する
炭素質物またはカルコゲン化合物を含むもの、軽金属等
からなる。中でもリチウムイオンを吸蔵・放出する炭素
質物またはカルコゲン化合物を含む負極は、前記二次電
池のサイクル寿命などの電池特性が向上するために好ま
しい。前記リチウムイオンを吸蔵・放出する炭素質物と
しては、例えばコークス、炭素繊維、熱分解気相炭素
物、黒鉛、樹脂焼成体、メソフェーズピッチ系炭素繊維
またはメソフェーズ球状カーボンの焼成体などを挙げる
ことができる。中でも、2500℃以上で黒鉛化したメ
ソフェーズピッチ系炭素繊維またはメソフェーズ球状カ
ーボンを用いると電極容量が高くなるため好ましい。前
記リチウムイオンを吸蔵・放出するカルコゲン化合物と
しては、二硫化チタン(TiS)、二硫化モリブデン
(MoS)、セレン化ニオブ(NbSe)などを挙
げることができる。このようなカルコゲン化合物を負極
に用いると、前記二次電池の電圧は降下するものの前記
負極の容量が増加するため、前記二次電池の容量が向上
される。更に、前記負極はリチウムイオンの拡散速度が
大きいため、前記二次電池の急速充放電性能が向上され
る。前記軽金属としては、アルミニウム、アルミニウム
合金、マグネシウム合金、リチウム金属、リチウム合金
などを挙げることができる。
B) Negative Electrode 6 The negative electrode 6 is made of, for example, a carbonaceous material that absorbs and releases lithium ions or a material containing a chalcogen compound, a light metal, or the like. Above all, a negative electrode containing a carbonaceous material or a chalcogen compound that occludes / releases lithium ions is preferable because battery characteristics such as cycle life of the secondary battery are improved. Examples of the carbonaceous material that absorbs and releases lithium ions include coke, carbon fiber, pyrolytic vapor-phase carbonaceous material, graphite, resin fired body, mesophase pitch carbon fiber or mesophase spherical carbon fired body. . Above all, it is preferable to use mesophase pitch carbon fiber or mesophase spherical carbon graphitized at 2500 ° C. or higher because the electrode capacity increases. Examples of the chalcogen compound that occludes and releases lithium ions include titanium disulfide (TiS 2 ), molybdenum disulfide (MoS 2 ), niobium selenide (NbSe 2 ), and the like. When such a chalcogen compound is used for the negative electrode, the voltage of the secondary battery drops, but the capacity of the negative electrode increases, so that the capacity of the secondary battery is improved. Furthermore, since the negative electrode has a high diffusion rate of lithium ions, the rapid charge / discharge performance of the secondary battery is improved. Examples of the light metal include aluminum, aluminum alloy, magnesium alloy, lithium metal, lithium alloy and the like.

【0026】前記負極(例えば炭素材からなる負極)
は、具体的には前記炭素材、導電剤および結着剤を適当
な溶媒に分散させて得られる負極材ペーストを集電体に
片側、もしくは両面に塗布することにより作製する。前
記結着剤としては、例えばポリテトラフルオロエチレン
(PTFE)、ポリフッ化ビニリデン(PVdF)、エ
チレン−プロピレン−ジエン共重合体(EPDM)、ス
チレン−ブタジエンゴム(SBR)等を用いることがで
きる。前記集電体としては、例えば銅箔、ニッケル箔等
を用いることができるが、電気化学的な安定性および捲
回時の柔軟性等を考慮すると、銅箔がもっとも好まし
い。このときの箔の厚さとしては、8μm以上15μm
以下であることが好ましい。前記負極活物質層の片面の
厚さは、30〜100μmであることが好ましい。前記
厚さがこの範囲であると、大電流放電特性が向上する。
前記厚さの好ましい範囲は、50μm〜65μmであ
る。
The negative electrode (for example, a negative electrode made of a carbon material)
Specifically, the negative electrode material paste obtained by dispersing the carbon material, the conductive agent and the binder in a suitable solvent is applied to the current collector on one side or both sides. As the binder, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR) or the like can be used. As the current collector, for example, a copper foil, a nickel foil, or the like can be used, but a copper foil is most preferable in consideration of electrochemical stability and flexibility during winding. At this time, the thickness of the foil is 8 μm or more and 15 μm
The following is preferable. The thickness of one surface of the negative electrode active material layer is preferably 30 to 100 μm. When the thickness is in this range, the large current discharge characteristics are improved.
The preferable range of the thickness is 50 μm to 65 μm.

【0027】前記負極6において、活物質層の圧延後の
充填密度は1.35g/cm以上が好ましい。更に好
ましくは1.4g/cm以上である。充填密度を1.
4g/cm以上とすると電池を高容量化することがで
きる。ただし、充填密度が高すぎると大電流放電特性が
低下する恐れがあるため、充填密度の上限値は1.5g
/cm以下であることが好ましい。
In the negative electrode 6, the packing density of the active material layer after rolling is preferably 1.35 g / cm 3 or more. More preferably, it is 1.4 g / cm 3 or more. The packing density is 1.
When the amount is 4 g / cm 3 or more, the capacity of the battery can be increased. However, if the packing density is too high, the high current discharge characteristics may deteriorate, so the upper limit of the packing density is 1.5 g.
/ Cm 3 or less is preferable.

【0028】c)電解液 前記電解液は非水溶媒に電解質を溶解した組成を有す
る。前記非水溶媒としては、例えばプロピレンカーボネ
ート(PC)、エチレンカーボネート(EC)などの環
状カーボネート、例えばジメチルカーボネート(DM
C)、メチルエチルカーボネート(MEC)、ジエチル
カーボネート(DEC)などの鎖状カーボネート、1,
2−ジメトキシエタン(DME)、ジエトキシエタン
(DEE)などの鎖状エーテル、テトラヒドロフラン
(THF)や2−メチルテトラヒドロフラン(2−Me
THF)などの環状エーテルやクラウンエーテル、γ−
ブチロラクトン(γ−BL)などの脂肪酸エステル、ア
セトニトリル(AN)などの窒素化合物、スルホラン
(SL)やジメチルスルホキシド(DMSO)などの硫
黄化合物などから選ばれる少なくとも1種を用いること
ができる。
C) Electrolyte Solution The electrolyte solution has a composition in which an electrolyte is dissolved in a non-aqueous solvent. Examples of the non-aqueous solvent include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), such as dimethyl carbonate (DM).
C), chain carbonates such as methyl ethyl carbonate (MEC), diethyl carbonate (DEC), 1,
Chain ethers such as 2-dimethoxyethane (DME) and diethoxyethane (DEE), tetrahydrofuran (THF) and 2-methyltetrahydrofuran (2-Me)
THF) and other cyclic ethers and crown ethers, γ-
At least one selected from fatty acid esters such as butyrolactone (γ-BL), nitrogen compounds such as acetonitrile (AN), and sulfur compounds such as sulfolane (SL) and dimethyl sulfoxide (DMSO) can be used.

【0029】中でも、EC、PC、γ−BLから選ばれ
る少なくとも1種からなるものや、EC、PC、γ−B
Lから選ばれる少なくとも1種とDMC、MEC、DE
C、DME、DEE、THF、2−MeTHF、ANか
ら選ばれる少なくとも1種とからなる混合溶媒を用いる
ことが望ましい。また、負極に前記リチウムイオンを吸
蔵・放出する炭素質物を含むものを用いる場合に、前記
負極を備えた二次電池のサイクル寿命を向上させる観点
から、ECとPCとγ−BL、ECとPCとMEC、E
CとPCとDEC、ECとPCとDEE、ECとAN、
ECとMEC、PCとDMC、PCとDEC、またはE
CとDECからなる混合溶媒を用いることが望ましい。
Among them, at least one selected from EC, PC and γ-BL, EC, PC and γ-B
At least one selected from L and DMC, MEC, DE
It is desirable to use a mixed solvent containing at least one selected from C, DME, DEE, THF, 2-MeTHF, and AN. Further, when a negative electrode containing a carbonaceous material that absorbs and releases the lithium ions is used, from the viewpoint of improving the cycle life of the secondary battery including the negative electrode, EC and PC and γ-BL, EC and PC And MEC, E
C and PC and DEC, EC and PC and DEE, EC and AN,
EC and MEC, PC and DMC, PC and DEC, or E
It is desirable to use a mixed solvent of C and DEC.

【0030】前記電解質としては、例えば過塩素酸リチ
ウム(LiClO)、六フッ化リン酸リチウム(Li
PF)、ホウフッ化リチウム(LiBF)、六フッ
化砒素リチウム(LiAsF)、トリフルオロメタス
ルホン酸リチウム(LiCF SO)、四塩化アルミ
ニウムリチウム(LiAlCl)、ビストリフルオロ
メチルスルホニルイミドリチウム[LiN(CFSO
]などのリチウム塩を挙げることができる。中で
もLiPF、LiBF、LiN(CFSO
を用いると、導電性や安全性が向上されるために好まし
い。前記電解質の前記非水溶媒に対する溶解量は、0.
5モル/L〜2.0モル/Lの範囲にすることが好まし
い。
Examples of the electrolyte include lithium perchlorate.
Um (LiClOFour), Lithium hexafluorophosphate (Li
PF6), Lithium borofluoride (LiBFFour), Six foot
Lithium arsenide (LiAsF6), Trifluorometas
Lithium Ruphonate (LiCF ThreeSOThree), Aluminum tetrachloride
Lithium lithium (LiAlClFour), Bistrifluoro
Methylsulfonylimide lithium [LiN (CFThreeSO
Two)Two] And other lithium salts can be mentioned. Inside
LiPF6, LiBFFour, LiN (CFThreeSOTwo)Two
Is preferred because it improves conductivity and safety.
Yes. The amount of the electrolyte dissolved in the non-aqueous solvent is 0.
It is preferably in the range of 5 mol / L to 2.0 mol / L.
Yes.

【0031】以上詳述したように、本発明に係る非水電
解質二次電池では、万が一電池が充電状態にある時に外
部から圧力が加わったり落下などによって内部短絡が起
きても、正極活物質の熱分解時の発熱量が小さく熱安定
性に優れるため、電池が熱暴走するには至らない。した
がって、安全性に優れた非水電解質二次電池を形成する
ことが可能となる。
As described in detail above, in the non-aqueous electrolyte secondary battery according to the present invention, even if internal short circuit occurs due to external pressure or drop when the battery is in a charged state, the positive electrode active material Since the amount of heat generated during thermal decomposition is small and the thermal stability is excellent, the battery does not run into thermal runaway. Therefore, it is possible to form a non-aqueous electrolyte secondary battery having excellent safety.

【0032】[0032]

【実施例】以下、本発明の試験例及び実施例についてよ
り具体的に説明する。
EXAMPLES The test examples and examples of the present invention will be described more specifically below.

【0033】(実施例1) <リチウム・ニッケル・コバルト・ニオブ複合酸化物の
合成>硝酸リチウム(LiNO)、硝酸ニッケル[N
i(NO・6HO]、硝酸コバルト[Co(N
・6HO]、硝酸アルミニウム[Al(NO
・9HO]を所定量秤量し、水に溶解して濃度
2mol/L溶液を作製した。続いてこの溶液に目的の
組成となるように五酸化ニオブ(Nb)を加えて
分散溶液を作製し、この分散溶液を噴霧乾燥して前駆体
を得た。次に、この前駆体を酸素雰囲気下460℃で1
0時間保持し、続いて850℃の温度で5時間焼成し
た。次に、この焼成物1molに対して0.1molの
水酸化リチウム1水和物(LiOH・HO)を加えて
十分に混合し、酸素雰囲気下460℃で10時間保持
し、続いて700℃の温度で5時間熱処理を行った。
(Example 1) <Synthesis of lithium-nickel-cobalt-niobium composite oxide> Lithium nitrate (LiNO 3 ), nickel nitrate [N
i (NO 3) 2 · 6H 2 O], cobalt nitrate [Co (N
O 3) 2 · 6H 2 O ], aluminum nitrate [Al (NO
3) 2 · 9H 2 O] were weighed in a predetermined amount to produce a concentration of 2 mol / L solution dissolved in water. Subsequently, niobium pentoxide (Nb 2 O 5 ) was added to this solution so as to have a desired composition to prepare a dispersion solution, and the dispersion solution was spray-dried to obtain a precursor. Next, this precursor was subjected to 1 at 460 ° C. in an oxygen atmosphere.
The temperature was maintained for 0 hour, and subsequently, firing was performed at a temperature of 850 ° C. for 5 hours. Next, 0.1 mol of lithium hydroxide monohydrate (LiOH.H 2 O) was added to 1 mol of the calcined product and sufficiently mixed, and the mixture was maintained at 460 ° C. for 10 hours in an oxygen atmosphere, and then 700 Heat treatment was carried out at a temperature of ° C for 5 hours.

【0034】<材料の特性評価>合成したリチウム・ニ
ッケル・コバルト・ニオブ複合酸化物について、粉末X
線回折測定を行った。X線源はCuKαで、出力は50
KV、300mAで行った。その結果、この焼成物はL
Nbを含む層状化合物であることが判明し
た。ICP発光分光法ならびに原子吸光法により組成分
析を行った結果、主成分はLiNi0.76Co
0.16Al0.08であることがわかった。ま
た、EPMA分析によりのNb分布を調べたところ、N
bは主に、一次粒子と一次粒子の粒界に存在することが
わかった。平均粒径は10μmであった。X線回折測定
の結果から、(003)面の回折ピーク強度と(10
4)面の回折ピーク強度とのピーク強度比:I
(003)/I(104)は1.65であった。また、
(003)面の回折ピーク強度とLiNbに帰
属する最大X線回折ピーク(2θ=23.8°)の強度
とのピーク強度比:INb/I(00 3)は、0.03
であった。
<Evaluation of material properties> Powder X of the synthesized lithium-nickel-cobalt-niobium composite oxide
A line diffraction measurement was performed. The X-ray source is CuKα and the output is 50
It was performed at KV and 300 mA. As a result, this fired product is L
It was found to be a layered compound containing i 8 Nb 2 O 9 . As a result of composition analysis by ICP emission spectroscopy and atomic absorption spectroscopy, the main component was LiNi 0.76 Co
It was found to be 0.16 Al 0.08 O 2 . In addition, when the Nb distribution was examined by EPMA analysis,
It was found that b mainly exists in the primary particles and the grain boundaries of the primary particles. The average particle size was 10 μm. From the result of the X-ray diffraction measurement, the diffraction peak intensity of the (003) plane and the (10
4) Peak intensity ratio to the diffraction peak intensity of the plane: I
(003) / I (104) was 1.65. Also,
(003) peak intensity ratio of the intensity of the diffraction peak intensity and the maximum X-ray diffraction peak attributed to Li 8 Nb 2 O 9 (2θ = 23.8 °) of: I Nb / I (00 3 ) is 0 .03
Met.

【0035】続いて、この材料の熱安定性を、前記の方
法に基づき示差走査熱量測定(DSC)を行って評価し
た。その結果、熱分解開始温度は202℃であり、発熱
量は19J/gであった。また、発熱ピーク温度は24
3℃であった。次に、この材料1g当たりの容量を測定
した。試料電極は、DSC測定で使用したものと同じも
のを用いた。これを1cm×1cmの大きさに切り出
し、Ar雰囲気中で、参照極と対極がLi箔からなる三
電極セルを組み立て、1mA/cm(0.1C相当)
の定電流で4.2Vに達するまで充電した後、4.2V
の定電圧で保持し、合計充電時間を20時間とした。電
解液にはエチレンカーボネート(EC)とエチルメチル
カーボネート(EMC)の混合溶媒(体積比1:2)に
LiPFを1mol/L溶解したものを使用した。放
電は、充電終了後、30分間休止の後、1mA/cm
の定電流で行い、放電終止電圧は3Vとした。その結
果、放電容量は175mAh/gであった。
Subsequently, the thermal stability of this material was evaluated by performing differential scanning calorimetry (DSC) based on the above method. As a result, the thermal decomposition starting temperature was 202 ° C., and the heat generation amount was 19 J / g. In addition, the exothermic peak temperature is 24
It was 3 ° C. Next, the capacity per 1 g of this material was measured. The same sample electrode as that used in the DSC measurement was used. This was cut out into a size of 1 cm × 1 cm, and a three-electrode cell in which the reference electrode and the counter electrode were made of Li foil was assembled in an Ar atmosphere, and 1 mA / cm 2 (equivalent to 0.1 C).
After charging to 4.2V with constant current of 4.2V, 4.2V
It was maintained at a constant voltage of, and the total charging time was 20 hours. As the electrolytic solution, a solution obtained by dissolving 1 mol / L of LiPF 6 in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (volume ratio 1: 2) was used. Discharge was 1 mA / cm 2 after 30 minutes of rest after charging.
The discharge end voltage was set to 3V. As a result, the discharge capacity was 175 mAh / g.

【0036】<正極の作製>ポリフッ化ビニリデンをN
−メチル−2−ピロリドンに溶解させた溶液に、前記リ
チウム・ニッケル・コバルト・ニオブ複合酸化物粉末
と、導電剤としてのアセチレンブラックおよびグラファ
イトを加えて撹拌混合し、前記リチウム・ニッケル・コ
バルト・ニオブ複合酸化物90重量%、アセチレンブラ
ック3重量%、グラファイト3重量%、ポリフッ化ビニ
リデン4重量%からなる正極合剤を調製した。この正極
合剤をアルミニウム箔(厚さ20μm)の両面に塗布
し、乾燥した後、ローラープレス機を用いて加圧成形す
ることにより厚さ140μmの正極を作製した。
<Preparation of Positive Electrode> Polyvinylidene fluoride was added to N
-To the solution dissolved in methyl-2-pyrrolidone, the lithium-nickel-cobalt-niobium complex oxide powder, acetylene black and graphite as a conductive agent are added and mixed by stirring to obtain the lithium-nickel-cobalt-niobium. A positive electrode mixture composed of 90% by weight of composite oxide, 3% by weight of acetylene black, 3% by weight of graphite and 4% by weight of polyvinylidene fluoride was prepared. This positive electrode mixture was applied to both sides of an aluminum foil (thickness 20 μm), dried, and then pressure-molded using a roller press machine to produce a positive electrode having a thickness of 140 μm.

【0037】<負極の作製>メソフェーズピッチを原料
としたメソフェーズピッチ炭素繊維をアルゴン雰囲気
下、1000℃で炭素化した後、平均繊維長30μm、
平均繊維径11μm、粒度1〜80μmで90体積%が
存在するように、かつ粒径0.5μm以下の粒子を少な
く(5%以下)なるように適度に粉砕した後、アルゴン
雰囲気下で3000℃にて黒鉛化することにより炭素質
物を作製した。ポリフッ化ビニリデンをN−メチル−2
−ピロリドンに溶解させた溶液に前記炭素質物と人造黒
鉛を加えて撹拌混合し、合剤組成が炭素質物86重量
%、人造黒鉛10重量%、ポリフッ化ビニリデン4重量
%からなる負極合剤を調製した。これを銅箔(厚さ12
μm)の両面に塗布し、乾燥した後、ローラープレス機
で加圧成形して負極を作製した。この際、成形後の正極
の設計容量に対する負極の設計容量の比(容量バラン
ス)が、1.05以上1.1以下になるように充填密度
と電極長さを調節した。
<Preparation of Negative Electrode> Mesophase pitch carbon fibers made from mesophase pitch as a raw material were carbonized at 1000 ° C. in an argon atmosphere, and then the average fiber length was 30 μm.
After appropriately pulverizing so that 90% by volume of the average fiber diameter is 11 μm, the particle size is 1 to 80 μm, and the number of particles having a particle size of 0.5 μm or less is small (5% or less), 3000 ° C. in an argon atmosphere. A carbonaceous material was produced by graphitizing with. Polyvinylidene fluoride with N-methyl-2
-Preparation of a negative electrode mixture composed of 86% by weight of carbonaceous material, 10% by weight of artificial graphite, and 4% by weight of polyvinylidene fluoride as a mixture composition by adding the carbonaceous material and artificial graphite to a solution dissolved in pyrrolidone and stirring and mixing. did. Copper foil (thickness 12
(μm) on both sides, dried and then pressure-molded with a roller press to prepare a negative electrode. At this time, the packing density and the electrode length were adjusted so that the ratio (capacity balance) of the design capacity of the negative electrode to the design capacity of the positive electrode after molding was 1.05 or more and 1.1 or less.

【0038】<電池の組立>前記正極および前記負極
に、それぞれアルミニウム製の正極リード、ニッケル製
の負極リードを溶接した後、前記正極、厚さ25μmの
微多孔性ポリエチレンフィルムからなるセパレータおよ
び前記負極をそれぞれこの順序で積層し、前記負極が外
側に位置するように渦巻き状に捲回して電極群を作製し
た。この電極群をニッケルめっきを施した鉄製の有底円
筒状容器内に収納し、前記負極リードを前記有底円筒状
容器の底部に、前記正極リードを前記有底円筒状容器の
開口部に配置した電流遮断機能を備えた安全弁にそれぞ
れ溶接した。つづいて、前記有底円筒状容器内に、エチ
レンカーボネート(EC)とメチルエチルカーボネート
(MEC)の混合溶媒(混合体積比1:2)に六フッ化
リン酸リチウム(LiPF)を1M溶解した非水電解
液を注液し、前記電極群に前記非水電解液十分に含浸さ
せた。そして、前記安全弁上に正極端子を配置した後、
かしめ固定した。以上のようにして、設計定格容量17
00mAhの円筒形リチウムイオン二次電池(1865
0サイズ)を組み立てた。
<Assembly of Battery> After welding a positive electrode lead made of aluminum and a negative electrode lead made of nickel to the positive electrode and the negative electrode, respectively, the positive electrode, a separator made of a microporous polyethylene film having a thickness of 25 μm, and the negative electrode. Were laminated in this order, and were spirally wound so that the negative electrode was located outside, to prepare an electrode group. The electrode group is housed in a nickel-plated bottomed cylindrical container made of iron, the negative electrode lead is arranged at the bottom of the bottomed cylindrical container, and the positive electrode lead is arranged at the opening of the bottomed cylindrical container. Welded to each safety valve with the current cutoff function. Subsequently, 1M of lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) (mixing volume ratio 1: 2) in the bottomed cylindrical container. A non-aqueous electrolytic solution was injected and the electrode group was sufficiently impregnated with the non-aqueous electrolytic solution. Then, after disposing the positive electrode terminal on the safety valve,
Fixed by crimping. As described above, the design rated capacity 17
00mAh cylindrical lithium-ion secondary battery (1865
0 size) was assembled.

【0039】(実施例2)実施例1と同様にして硝酸リ
チウム(LiNO)、硝酸ニッケル[Ni(NO
・6HO]、硝酸コバルト[Co(NO・6
O]、硝酸アルミニウム[Al(NO・9H
O]および五酸化ニオブ(Nb)からなる分散
溶液を作製し、この分散溶液を噴霧乾燥して前駆体を得
た。次に、この前駆体を酸素雰囲気下460℃で10時
間保持し、続いて850℃の温度で5時間焼成した。続
いて、この焼成物1molに対して0.05molの水
酸化リチウム1水和物(LiOH・HO)を加えて十
分に混合し、酸素雰囲気下460℃で10時間保持し、
続いて700℃の温度で5時間熱処理を行い、平均粒径
10μmのリチウム・ニッケル・コバルト・ニオブ複合
酸化物を得た。
(Embodiment 2) Lithium nitrate (LiNO 3 ) and nickel nitrate [Ni (NO 3 )]
2 · 6H 2 O], cobalt nitrate [Co (NO 3) 2 · 6
H 2 O], aluminum nitrate [Al (NO 3) 2 · 9H
2 O] and niobium pentoxide (Nb 2 O 5 ) were prepared, and the dispersion was spray-dried to obtain a precursor. Next, this precursor was kept under an oxygen atmosphere at 460 ° C. for 10 hours, and subsequently calcined at a temperature of 850 ° C. for 5 hours. Subsequently, 0.05 mol of lithium hydroxide monohydrate (LiOH.H 2 O) was added to 1 mol of the calcined product and sufficiently mixed, and the mixture was kept at 460 ° C. for 10 hours in an oxygen atmosphere,
Subsequently, heat treatment was performed at a temperature of 700 ° C. for 5 hours to obtain a lithium / nickel / cobalt / niobium composite oxide having an average particle diameter of 10 μm.

【0040】X線回折測定の結果、このリチウム・ニッ
ケル・コバルト・ニオブ複合酸化物は、LiNb
を含む層状化合物であることが判明した。ICP発光
分光法ならびに原子吸光法により組成分析を行った結
果、主成分はLiNi0.76Co0.16Al
0.08であることがわかった。(003)面のX
線回折ピーク強度と(104)面のX線回折ピーク強度
とのピーク強度比:I(003 /I(104)は1.
63であった。また、(003)面のX線回折ピーク強
度とLiNbに帰属する最大X線回折ピーク
(2θ=23.8°)強度とのピーク強度比:INb
(003)は0.025であった。また、熱分解開始
温度は204℃であり、発熱量は26J/gであった。
放電容量は173mAh/gであった。以下、前記実施
例1と同様にして、設計定格容量1700mAhの円筒
形リチウムイオン二次電池(18650サイズ)を組み
立てた。
As a result of X-ray diffraction measurement, this lithium-nickel-cobalt-niobium composite oxide was found to be Li 8 Nb 2 O.
It was found to be a layered compound containing 9 . As a result of composition analysis by ICP emission spectroscopy and atomic absorption spectroscopy, the main component was LiNi 0.76 Co 0.16 Al.
It was found to be 0.08 O 2 . X on the (003) plane
The peak intensity ratio of the line diffraction peak intensity and the X-ray diffraction peak intensity of the (104) plane: I (003 ) / I (104) is 1.
It was 63. Further, the peak intensity ratio of the X-ray diffraction peak intensity of the (003) plane to the maximum X-ray diffraction peak (2θ = 23.8 °) intensity belonging to Li 8 Nb 2 O 9 : I Nb /
I (003) was 0.025. Further, the thermal decomposition starting temperature was 204 ° C., and the calorific value was 26 J / g.
The discharge capacity was 173 mAh / g. Thereafter, in the same manner as in Example 1, a cylindrical lithium ion secondary battery (18650 size) having a design rated capacity of 1700 mAh was assembled.

【0041】(実施例3)実施例1と同様にして硝酸リ
チウム(LiNO)、硝酸ニッケル[Ni(NO
・6HO]、硝酸コバルト[Co(NO・6
O]、硝酸アルミニウム[Al(NO・9H
O]および五酸化ニオブ(Nb)からなる分散
溶液を作製し、この分散溶液を噴霧乾燥して前駆体を得
た。次に、この前駆体を酸素雰囲気下460℃で10時
間保持し、続いて850℃の温度で5時間焼成した。続
いて、この焼成物1molに対して0.03molの水
酸化リチウム1水和物(LiOH・HO)を加えて十
分に混合し、酸素雰囲気下460℃で10時間保持し、
続いて700℃の温度で5時間熱処理を行うことにより
平均粒径が10μmのリチウム・ニッケル・コバルト・
ニオブ複合酸化物を得た。
(Embodiment 3) Lithium nitrate (LiNO 3 ) and nickel nitrate [Ni (NO 3 ) were used in the same manner as in Embodiment 1.
2 · 6H 2 O], cobalt nitrate [Co (NO 3) 2 · 6
H 2 O], aluminum nitrate [Al (NO 3) 2 · 9H
2 O] and niobium pentoxide (Nb 2 O 5 ) were prepared, and the dispersion was spray-dried to obtain a precursor. Next, this precursor was kept under an oxygen atmosphere at 460 ° C. for 10 hours, and subsequently calcined at a temperature of 850 ° C. for 5 hours. Subsequently, 0.03 mol of lithium hydroxide monohydrate (LiOH.H 2 O) was added to 1 mol of the calcined product and sufficiently mixed, and the mixture was kept at 460 ° C. for 10 hours in an oxygen atmosphere,
Then, heat treatment is performed at a temperature of 700 ° C. for 5 hours to obtain lithium nickel nickel cobalt having an average particle diameter of 10 μm.
A niobium composite oxide was obtained.

【0042】X線回折測定の結果、このリチウム・ニッ
ケル・コバルト・ニオブ複合酸化物は、LiNb
を含む層状化合物であることが判明した。ICP発光
分光法ならびに原子吸光法により組成分析を行った結
果、主成分はLiNi0.76Co0.16Al
0.08であることがわかった。(003)面のX
線回折ピーク強度と(104)面のX線回折ピーク強度
とのピーク強度比:I(003 /I(104)は1.
6で、(003)面のX線回折ピーク強度とLiNb
に帰属する最大X線回折ピーク(2θ=23.8
°)強度とのピーク強度比:INb/I(003)
0.024であった。また、熱分解開始温度は203
℃、発熱量は30J/gであり、放電容量は170mA
h/gであった。以下、前記実施例1と同様にして、設
計定格容量1700mAhの円筒形リチウムイオン二次
電池(18650サイズ)を組み立てた。
As a result of X-ray diffraction measurement, this lithium nickel
Kell-cobalt-niobium composite oxide is Li8NbTwoO
9It was found to be a layered compound containing. ICP emission
The results of composition analysis by spectroscopy and atomic absorption
The main component is LiNi0.76Co0.16Al
0.08OTwoI found out. X on the (003) plane
Line diffraction peak intensity and (104) plane X-ray diffraction peak intensity
Peak intensity ratio with: I(003 )/ I(104)Is 1.
6, the X-ray diffraction peak intensity of the (003) plane and Li8Nb
TwoO9X-ray diffraction peak (2θ = 23.8)
°) Peak intensity ratio with intensity: INb/ I(003)Is
It was 0.024. The thermal decomposition start temperature is 203
C, calorific value is 30 J / g, discharge capacity is 170 mA
It was h / g. Hereinafter, in the same manner as in Example 1 described above,
Cylindrical lithium ion secondary with total rated capacity of 1700 mAh
A battery (18650 size) was assembled.

【0043】(実施例4)実施例1と同様な方法により
平均粒径が10μmのリチウム・ニッケル・コバルト・
ニオブ複合酸化物を得た。X線回折測定の結果、このリ
チウム・ニッケル・コバルト・ニオブ複合酸化物は、L
10Nb10を含む層状化合物であることが判明
した。ICP発光分光法ならびに原子吸光法により組成
分析を行った結果、主成分はLiNi0.7Co
0.24Al0.06であることがわかった。(0
03)面のX線回折ピーク強度と(104)面のX線回
折ピーク強度とのピーク強度比:I(003)/I
(104)は1.68で、(003)面のX線回折ピー
ク強度とLi10Nb10に帰属する最大X線回折
ピーク(2θ=22.2°)強度とのピーク強度比:I
Nb/I(003)は0.023であった。
Example 4 By the same method as in Example 1, lithium nickel nickel cobalt having an average particle size of 10 μm was used.
A niobium composite oxide was obtained. As a result of X-ray diffraction measurement, this lithium-nickel-cobalt-niobium composite oxide was found to have L
It was found to be a layered compound containing i 10 Nb 2 O 10 . As a result of composition analysis by ICP emission spectroscopy and atomic absorption spectroscopy, the main component was LiNi 0.7 Co
It was found to be 0.24 Al 0.06 O 2 . (0
Peak intensity ratio of X-ray diffraction peak intensity of (03) plane to X-ray diffraction peak intensity of (104) plane: I (003) / I
(104) is 1.68, and the peak intensity ratio between the X-ray diffraction peak intensity of the (003) plane and the maximum X-ray diffraction peak (2θ = 22.2 °) intensity belonging to Li 10 Nb 2 O 10 is: I
Nb / I (003) was 0.023.

【0044】また、熱分解開始温度は215℃、発熱量
は22J/gであった。また、発熱ピーク温度は227
℃で、放電容量は178mAh/gであった。以下、前
記実施例1と同様にして、設計定格容量1700mAh
の円筒形リチウムイオン二次電池(18650サイズ)
を組み立てた。
The thermal decomposition starting temperature was 215 ° C. and the calorific value was 22 J / g. Also, the exothermic peak temperature is 227
At ° C, the discharge capacity was 178 mAh / g. Hereinafter, in the same manner as in Example 1, the design rated capacity is 1700 mAh.
Cylindrical lithium ion secondary battery (18650 size)
Assembled.

【0045】(実施例5)Niの一部をCoとMnで置
換した水酸化ニッケル粉末[Ni0.7Co0. Mn
0.1(OH)]と水酸化リチウム1水和物(LiO
H・HO)とをLiとNiの原子比(Li/Ni)が
1.05になるように配合した。この混合物に五酸化ニ
オブ粉末(Nb)を加えて粉砕・混合した後、酸
素雰囲気下460℃で10時間保持し、続いて850℃
の温度で5時間焼成した。次に、この焼成物1molに
対して0.1molの水酸化リチウム1水和物(LiO
H・HO)を加えて十分に混合し、酸素雰囲気下46
0℃で10時間保持し、続いて700℃の温度で5時間
熱処理を行うことにより、平均粒径が7μmのリチウム
・ニッケル・コバルト・ニオブ複合酸化物を得た。この
リチウム・ニッケル・コバルト・ニオブ複合酸化物は、
LiNbを含む層状化合物であることが判明し
た。ICP発光分光法ならびに原子吸光法により組成分
析を行った結果、主成分はLiNi0.7Co0.2
0.1であることがわかった。(003)面のX
線回折ピーク強度と(104)面のX線回折ピーク強度
とのピーク強度比:I(003)/I(104)は1.
63であった。また、(003)面のX線回折ピーク強
度とLiNbに帰属する最大X線回折ピーク
(2θ=23.8°)強度とのピーク強度比:INb
(003)は0.025であった。また、熱分解開始
温度は213℃であり、発熱量は16J/gであった。
また、発熱ピーク温度は232℃で、放電容量は171
mAh/gであった。以下、前記実施例1と同様にし
て、設計定格容量1700mAhの円筒形リチウムイオ
ン二次電池(18650サイズ)を組み立てた。
(Example 5) Nickel hydroxide powder in which a part of Ni was replaced with Co and Mn [Ni 0.7 Co 0. 2 Mn
0.1 (OH) 2 ] and lithium hydroxide monohydrate (LiO
H · H 2 O) and the atomic ratio of Li and Ni (Li / Ni) were blended so that the 1.05. Niobium pentoxide powder (Nb 2 O 5 ) was added to this mixture, and the mixture was pulverized and mixed, and then held at 460 ° C. for 10 hours in an oxygen atmosphere, and then 850 ° C.
It baked at the temperature of 5 hours. Next, 0.1 mol of lithium hydroxide monohydrate (LiO
H · H 2 O) were mixed thoroughly by adding, under oxygen atmosphere 46
It was kept at 0 ° C. for 10 hours, and then heat-treated at a temperature of 700 ° C. for 5 hours to obtain a lithium / nickel / cobalt / niobium composite oxide having an average particle size of 7 μm. This lithium-nickel-cobalt-niobium composite oxide is
It was found to be a layered compound containing Li 8 Nb 2 O 9 . As a result of composition analysis by ICP emission spectroscopy and atomic absorption spectroscopy, the main component was LiNi 0.7 Co 0.2 M
It was found to be n 0.1 O 2 . X on the (003) plane
The peak intensity ratio of the line diffraction peak intensity to the X-ray diffraction peak intensity of the (104) plane: I (003) / I (104) is 1.
It was 63. Further, the peak intensity ratio of the X-ray diffraction peak intensity of the (003) plane to the maximum X-ray diffraction peak (2θ = 23.8 °) intensity belonging to Li 8 Nb 2 O 9 : I Nb /
I (003) was 0.025. Further, the thermal decomposition starting temperature was 213 ° C., and the calorific value was 16 J / g.
The exothermic peak temperature is 232 ° C. and the discharge capacity is 171.
It was mAh / g. Thereafter, in the same manner as in Example 1, a cylindrical lithium ion secondary battery (18650 size) having a design rated capacity of 1700 mAh was assembled.

【0046】(実施例6)Niの一部をCoで置換した
水酸化ニッケル粉末[Ni0.8Co0.2(O
H)]と水酸化リチウム1水和物(LiOH・H
O)と酸化錫(SnO)をLiとNiの原子比(L
i/Ni)が1.05になるように配合した。この混合
物に五酸化ニオブ粉末(Nb)を加えて粉砕・混
合した後、酸素雰囲気下460℃で10時間保持し、続
いて850℃の温度で5時間焼成した。次に、この焼成
物1molに対して0.1molの水酸化リチウム1水
和物(LiOH・HO)を加えて十分に混合し、酸素
雰囲気下460℃で10時間保持し、続いて700℃の
温度で5時間熱処理を行うことにより、平均粒径が7μ
mのリチウム・ニッケル・コバルト・ニオブ複合酸化物
を得た。X線回折測定の結果、このリチウム・ニッケル
・コバルト・ニオブ複合酸化物は、Li10Nb
10を含む層状化合物であることが判明した。ICP発
光分光法ならびに原子吸光法により組成分析を行った結
果、主成分はLiNi0.776Co0.194Sn
0.03であることがわかった。(003)面のX
線回折ピーク強度と(104)面のX線回折ピーク強度
とのピーク強度比:I(003)/I(104)は1.
77で、(003)面のX線回折ピーク強度とLi10
Nb10に帰属する最大X線回折ピーク(2θ=2
2.2°)強度とのピーク強度比:INb/I
(003)は0.023であった。
Example 6 Part of Ni was replaced with Co
Nickel hydroxide powder [Ni0.8Co0.2(O
H)Two] And lithium hydroxide monohydrate (LiOH.H
TwoO) and tin oxide (SnO)Two) Is the atomic ratio of Li and Ni (L
i / Ni) was 1.05. This mix
Niobium pentoxide powder (NbTwoO5) And crush / mix
After combining, hold at 460 ° C under oxygen atmosphere for 10 hours and continue.
And was baked at a temperature of 850 ° C. for 5 hours. Then this firing
0.1 mol of lithium hydroxide / water to 1 mol of the product
Japanese (LiOH ・ HTwoO) is added and mixed well, and oxygen is added.
Hold at 460 ° C for 10 hours in the atmosphere, then at 700 ° C
By heat treatment at temperature for 5 hours, the average particle size is 7μ
m lithium-nickel-cobalt-niobium composite oxide
Got As a result of X-ray diffraction measurement, this lithium nickel
・ Cobalt-niobium composite oxide is Li10NbTwoO
10It was found to be a layered compound containing. From ICP
Composition analysis was performed by optical spectroscopy and atomic absorption spectroscopy.
The main component is LiNi0.776Co0.194Sn
0.03OTwoI found out. X on the (003) plane
Line diffraction peak intensity and (104) plane X-ray diffraction peak intensity
Peak intensity ratio with: I(003)/ I(104)Is 1.
77, the X-ray diffraction peak intensity of the (003) plane and Li10
NbTwoO10Maximum X-ray diffraction peak (2θ = 2
2.2 °) intensity to peak intensity ratio: INb/ I
(003)Was 0.023.

【0047】また、熱分解開始温度は207℃であり、
発熱量は14J/gであった。発熱ピーク温度は229
℃で、放電容量は174mAh/gであった。以下、前
記実施例1と同様にして、設計定格容量1700mAh
の円筒形リチウムイオン二次電池(18650サイズ)
を組み立てた。
The thermal decomposition starting temperature is 207 ° C.,
The calorific value was 14 J / g. Exothermic peak temperature is 229
At ° C, the discharge capacity was 174 mAh / g. Hereinafter, in the same manner as in Example 1, the design rated capacity is 1700 mAh.
Cylindrical lithium ion secondary battery (18650 size)
Assembled.

【0048】(実施例7)Niの一部をCoで置換した
水酸化ニッケル粉末[Ni0.8Co0.2(O
H)]と水酸化リチウム1水和物(LiOH・H
O)とをLiとNiの原子比(Li/Ni)が1.0
5になるように配合した。この混合物に五酸化ニオブ粉
末(Nb)を加えて粉砕・混合した後、酸素雰囲
気下460℃で10時間保持し、続いて850℃の温度
で5時間焼成した。次に、この焼成物1molに対して
0.1molの水酸化リチウム1水和物(LiOH・H
O)を加えて十分に混合し、酸素雰囲気下460℃で
10時間保持し、続いて700℃の温度で5時間熱処理
を行うことにより、平均粒径が7μmのリチウム・ニッ
ケル・コバルト・ニオブ複合酸化物を得た。
Example 7 Nickel hydroxide powder in which a part of Ni was replaced by Co [Ni 0.8 Co 0.2 (O
H) 2 ] and lithium hydroxide monohydrate (LiOH.H
2 O) and the atomic ratio of Li and Ni (Li / Ni) is 1.0
It was blended so as to be 5. Niobium pentoxide powder (Nb 2 O 5 ) was added to this mixture, and the mixture was pulverized and mixed, held at 460 ° C. for 10 hours in an oxygen atmosphere, and subsequently fired at 850 ° C. for 5 hours. Next, 0.1 mol of lithium hydroxide monohydrate (LiOH.H
2 O) and mixed well, and kept at 460 ° C. in an oxygen atmosphere for 10 hours, and then heat-treated at 700 ° C. for 5 hours to obtain lithium nickel nickel cobalt niobium having an average particle size of 7 μm. A composite oxide was obtained.

【0049】X線回折測定の結果、このリチウム・ニッ
ケル・コバルト・ニオブ複合酸化物は、Li10Nb
10を含む層状化合物であることが判明した。ICP
発光分光法ならびに原子吸光法により組成分析を行った
結果、主成分はLiNi0. Co0.2であるこ
とがわかった。(003)面のX線回折ピーク強度と
(104)面のX線回折ピーク強度とのピーク強度比:
(003)/I(10 4)は1.82で、(003)
面のX線回折ピーク強度とLi10Nb10に帰属
する最大X線回折ピーク(2θ=22.2°)強度との
ピーク強度比:I Nb/I(003)は0.018であ
った。また、熱分解開始温度は185℃であり、発熱量
は14J/gであった。また、発熱ピーク温度は213
℃で、放電容量は172mAh/gであった。以下実施
例1と同様にして設計定格容量1700mAhの円筒形
リチウムイオン二次電池(18650サイズ)を組み立
てた。
As a result of the X-ray diffraction measurement, this lithium nickel
Kell-cobalt-niobium composite oxide is Li10NbTwo
O10It was found to be a layered compound containing. ICP
Composition analysis was performed by emission spectroscopy and atomic absorption spectroscopy
As a result, the main component is LiNi0. 8Co0.2OTwoIt is
I understood. X-ray diffraction peak intensity of (003) plane
Peak intensity ratio to the X-ray diffraction peak intensity of the (104) plane:
I(003)/ I(10 4)Is 1.82, and (003)
Plane X-ray diffraction peak intensity and Li10NbTwoO10Belonging to
With the maximum X-ray diffraction peak (2θ = 22.2 °) intensity
Peak intensity ratio: I Nb/ I(003)Is 0.018
It was. Moreover, the thermal decomposition starting temperature is 185 ° C.
Was 14 J / g. The exothermic peak temperature is 213
At ° C, the discharge capacity was 172 mAh / g. Implemented below
Cylindrical shape with a design rated capacity of 1700 mAh in the same manner as in Example 1.
Assembled lithium-ion secondary battery (18650 size)
I was

【0050】(実施例8)Niの一部をCoで置換した
水酸化ニッケル粉末[Ni0.75Co0.25(O
H)]を用い、実施例6と同様な方法により平均粒径
が7μmのリチウム・ニッケル・コバルト・ニオブ複合
酸化物を得た。X線回折測定の結果、このリチウム・ニ
ッケル・コバルト・ニオブ複合酸化物は、Li10Nb
10を含む層状化合物であることがわかった。IC
P発光分光法ならびに原子吸光法により組成分析を行っ
た結果、主成分はLiNi0. 75Co0.25
あることがわかった。(003)面のX線回折ピーク強
度と(104)面のX線回折ピーク強度とのピーク強度
比:I(003)/I 104)は1.88で、(00
3)面のX線回折ピーク強度とLi10Nb 10
帰属する最大X線回折ピーク(2θ=22.2°)強度
とのピーク強度比:INb/I(003)は0.01で
あった。また、熱分解開始温度は199℃であり、発熱
量は15J/gであった。また、発熱ピーク温度は22
1℃で、放電容量は165mAh/gであった。以下、
前記実施例1と同様にして、設計定格容量1700mA
hの円筒形リチウムイオン二次電池(18650サイ
ズ)を組み立てた。
Example 8 Part of Ni was replaced with Co
Nickel hydroxide powder [Ni0.75Co0.25(O
H)Two] In the same manner as in Example 6
7μm lithium-nickel-cobalt-niobium composite
An oxide was obtained. As a result of X-ray diffraction measurement, this lithium
The nickel-cobalt-niobium composite oxide is Li10Nb
TwoO10It was found to be a layered compound containing. IC
Composition analysis by P emission spectroscopy and atomic absorption method
As a result, the main component is LiNi0. 75Co0.25OTwoso
I knew it was. X-ray diffraction peak intensity of (003) plane
Degree and peak intensity of X-ray diffraction peak intensity of (104) plane
Ratio: I(003)/ I( 104)Is 1.88 and (00
3) X-ray diffraction peak intensity of surface and Li10NbTwoO 10To
Maximum X-ray diffraction peak (2θ = 22.2 °) intensity assigned
Peak intensity ratio with: INb/ I(003)Is 0.01
there were. Moreover, the thermal decomposition starting temperature is 199 ° C.
The amount was 15 J / g. In addition, the exothermic peak temperature is 22
At 1 ° C., the discharge capacity was 165 mAh / g. Less than,
Same as in Example 1 above, design rated capacity 1700 mA
h Cylindrical lithium ion secondary battery (18650 size
)) Was assembled.

【0051】(実施例9)Niの一部をCoで置換した
水酸化ニッケル粉末[Ni0.8Co0.2(O
H)]と水酸化リチウム1水和物(LiOH・H
O)とをLiとNiの原子比(Li/Ni)が1.1
になるように配合した。この混合物に五酸化ニオブ粉末
(Nb)を加えて粉砕・混合した後、酸素雰囲気
下460℃で10時間保持し、続いて850℃の温度で
5時間焼成した。次に、この焼成物1molに対して
0.1molの水酸化リチウム1水和物(LiOH・H
O)を加えて十分に混合し、酸素雰囲気下460℃で
10時間保持し、続いて700℃の温度で10時間熱処
理を行うことにより、平均粒径が7μmのリチウム・ニ
ッケル・コバルト・ニオブ複合酸化物を得た。X線回折
測定の結果、このリチウム・ニッケル・コバルト・ニオ
ブ複合酸化物は、Li10Nb10を含む層状化合
物であることが判明した。ICP発光分光法ならびに原
子吸光法により組成分析を行った結果、主成分はLi
1.02Ni0.8Co0.2であることがわかっ
た。(003)面のX線回折ピーク強度と(104)面
のX線回折ピーク強度とのピーク強度比:I(003)
/I(104)は1.85で、(003)面のX線回折
ピーク強度とLi10Nb 10に帰属する最大X線
回折ピーク(2θ=22.2°)強度とのピーク強度
比:INb/I(003)は0.015であった。ま
た、熱分解開始温度は188℃であり、発熱量は17J
/gであった。また、発熱ピーク温度は212℃で、放
電容量は180mAh/gであった。以下実施例1と同
様にして設計定格容量1700mAhの円筒形リチウム
イオン二次電池(18650サイズ)を組み立てた。
Example 9 Part of Ni was replaced with Co
Nickel hydroxide powder [Ni0.8Co0.2(O
H)Two] And lithium hydroxide monohydrate (LiOH.H
TwoO) and the atomic ratio of Li and Ni (Li / Ni) is 1.1.
It was blended so that Niobium pentoxide powder in this mixture
(NbTwoO5) Is added, crushed and mixed, and then oxygen atmosphere is added.
Hold at 460 ° C for 10 hours, then at 850 ° C
It was baked for 5 hours. Next, for 1 mol of this baked product
0.1 mol of lithium hydroxide monohydrate (LiOH.H
TwoO) was added and mixed well, and the mixture was mixed in an oxygen atmosphere at 460 ° C.
Hold for 10 hours, then heat at 700 ° C for 10 hours.
The average particle size is 7 μm
A nickel-cobalt-niobium composite oxide was obtained. X-ray diffraction
As a result of the measurement, this lithium nickel nickel cobalt niobium
The complex oxide is Li10NbTwoO10Layered compound containing
It turned out to be a thing. ICP emission spectroscopy and original
As a result of composition analysis by the spectrophotometry, the main component is Li
1.02Ni0.8Co0.2OTwoFound out
It was X-ray diffraction peak intensity of (003) plane and (104) plane
Peak intensity ratio to the X-ray diffraction peak intensity of: I(003)
/ I(104)Is 1.85, X-ray diffraction of (003) plane
Peak intensity and Li10Nb TwoO10X-rays belonging to
Peak intensity with diffraction peak (2θ = 22.2 °) intensity
Ratio: INb/ I(003)Was 0.015. Well
Also, the thermal decomposition starting temperature is 188 ° C and the calorific value is 17 J
/ G. The exothermic peak temperature is 212 ° C,
The electric capacity was 180 mAh / g. Same as Example 1 below
Cylindrical lithium with a design rated capacity of 1700 mAh
An ion secondary battery (18650 size) was assembled.

【0052】(実施例10)Niの一部をCoとAlで
置換した水酸化ニッケル粉末[Ni0.77Co .2
Al0.03(OH)]と水酸化リチウム1水和物
(LiOH・HO)とをLi/(Ni+Co+Al)
が1.1になるように配合した。この混合物に五酸化ニ
オブ粉末(Nb)を加えて粉砕・混合した後、酸
素雰囲気下460℃で10時間保持し、続いて850℃
の温度で5時間焼成した。次に、この焼成物1molに
対して0.1molの水酸化リチウム1水和物(LiO
H・HO)を加えて十分に混合し、酸素雰囲気下46
0℃で10時間保持し、続いて700℃の温度で10時
間熱処理を行うことにより、平均粒径が7μmのリチウ
ム・ニッケル・コバルト・ニオブ複合酸化物を得た。
(Example 10) Nickel hydroxide powder obtained by substituting a part of Ni with Co and Al [Ni 0.77 Co 0 . Two
Al 0.03 (OH) 2 ] and lithium hydroxide monohydrate (LiOH.H 2 O) are Li / (Ni + Co + Al)
Was 1.1. Niobium pentoxide powder (Nb 2 O 5 ) was added to this mixture, and the mixture was pulverized and mixed, and then held at 460 ° C. for 10 hours in an oxygen atmosphere, and then 850 ° C.
It baked at the temperature of 5 hours. Next, 0.1 mol of lithium hydroxide monohydrate (LiO
H · H 2 O) were mixed thoroughly by adding, under oxygen atmosphere 46
The mixture was kept at 0 ° C. for 10 hours and then heat-treated at a temperature of 700 ° C. for 10 hours to obtain a lithium / nickel / cobalt / niobium composite oxide having an average particle size of 7 μm.

【0053】X線回折測定の結果、このリチウム・ニッ
ケル・コバルト・ニオブ複合酸化物は、Li10Nb
10を含む層状化合物であることが判明した。ICP
発光分光法ならびに原子吸光法により組成分析を行った
結果、主成分はLi1.02Ni0.77Co0.2
0.03であることがわかった。(003)面の
X線回折ピーク強度と(104)面のX線回折ピーク強
度とのピーク強度比:I(003)/I(104)
1.79で、(003)面のX線回折ピーク強度とLi
10Nb10に帰属する最大X線回折ピーク(2θ
=22.2°)強度とのピーク強度比:INb/I
(003)は0.02であった。また、熱分解開始温度
は210℃であり、発熱量は20J/gであった。ま
た、発熱ピーク温度は225℃で、放電容量は178m
Ah/gであった。以下実施例1と同様にして設計定格
容量1700mAhの円筒形リチウムイオン二次電池
(18650サイズ)を組み立てた。
As a result of X-ray diffraction measurement, this lithium-nickel-cobalt-niobium composite oxide was found to be Li 10 Nb 2
It was found to be a layered compound containing O 10 . ICP
As a result of composition analysis by an emission spectroscopy method and an atomic absorption method, the main component was Li 1.02 Ni 0.77 Co 0.2 A.
It was found to be 0.03 O 2 . The peak intensity ratio between the X-ray diffraction peak intensity of the (003) plane and the X-ray diffraction peak intensity of the (104) plane: I (003) / I (104) is 1.79, and the X-ray diffraction of the (003) plane is Peak intensity and Li
The maximum X-ray diffraction peak (2θ) belonging to 10 Nb 2 O 10
= 22.2 °) and peak intensity ratio with intensity: I Nb / I
(003) was 0.02. Further, the thermal decomposition starting temperature was 210 ° C., and the calorific value was 20 J / g. Also, the exothermic peak temperature is 225 ° C and the discharge capacity is 178 m.
It was Ah / g. Thereafter, in the same manner as in Example 1, a cylindrical lithium ion secondary battery (18650 size) having a designed rated capacity of 1700 mAh was assembled.

【0054】(実施例11)Niの一部をCoとAlで
置換した水酸化ニッケル粉末[Ni0.77Co .2
Al0.03(OH)]と水酸化リチウム1水和物
(LiOH・HO)とをLi/(Ni+Co+Al)
が1.05になるように配合した。この混合物に五酸化
ニオブ粉末(Nb)を加えて粉砕・混合した後、
酸素雰囲気下460℃で10時間保持し、続いて850
℃の温度で5時間焼成した。次に、この焼成物1mol
に対して0.05molの水酸化リチウム1水和物(L
iOH・HO)を加えて十分に混合し、酸素雰囲気下
460℃で10時間保持し、続いて675℃の温度で1
0時間熱処理を行うことにより、平均粒径が7μmのリ
チウム・ニッケル・コバルト・ニオブ複合酸化物を得
た。X線回折測定の結果、このリチウム・ニッケル・コ
バルト・ニオブ複合酸化物は、LiNbOを含む層
状化合物であることが判明した。ICP発光分光法なら
びに原子吸光法により組成分析を行った結果、主成分は
LiNi0.77Co0.2Al0.03であるこ
とがわかった。(003)面のX線回折ピーク強度と
(104)面のX線回折ピーク強度とのピーク強度比:
(003)/I(104)は1.71で、(003)
面のX線回折ピーク強度とLiNbO に帰属する最
大X線回折ピーク(2θ=14.8°)強度とのピーク
強度比:INb/I(003)は0.021であった。
また、熱分解開始温度は211℃であり、発熱量は30
J/gであった。また、発熱ピーク温度は225℃で、
放電容量は171mAh/gであった。以下実施例1と
同様にして設計定格容量1700mAhの円筒形リチウ
ムイオン二次電池(18650サイズ)を組み立てた。
(Embodiment 11) A part of Ni is replaced with Co and Al.
Replaced nickel hydroxide powder [Ni0.77Co0 . Two
Al0.03(OH)Two] And lithium hydroxide monohydrate
(LiOH / HTwoO) and Li / (Ni + Co + Al)
Was 1.05. Pentoxide on this mixture
Niobium powder (NbTwoO5) Is added and crushed and mixed,
Hold at 460 ° C for 10 hours in oxygen atmosphere, then 850
It was baked at a temperature of ° C for 5 hours. Next, 1 mol of this baked product
0.05 mol of lithium hydroxide monohydrate (L
iOH / HTwoO) is added and mixed well, and in an oxygen atmosphere
Hold at 460 ° C for 10 hours, then at 675 ° C for 1 hour
By performing heat treatment for 0 hours, the average particle size is 7 μm
Obtained complex oxide of titanium, nickel, cobalt and niobium
It was As a result of X-ray diffraction measurement, this lithium nickel nickel
Baltic niobium composite oxide is LiThreeNbOFourLayer containing
It was found to be a compound. ICP emission spectroscopy
As a result of composition analysis by the
LiNi0.77Co0.2Al0.03OTwoIt is
I understood. X-ray diffraction peak intensity of (003) plane
Peak intensity ratio to the X-ray diffraction peak intensity of the (104) plane:
I(003)/ I(104)Is 1.71, which is (003)
Plane X-ray diffraction peak intensity and LiThreeNbO FourBelonging to
Peak with large X-ray diffraction peak (2θ = 14.8 °) intensity
Strength ratio: INb/ I(003)Was 0.021.
Further, the thermal decomposition starting temperature is 211 ° C, and the calorific value is 30
It was J / g. The exothermic peak temperature is 225 ° C,
The discharge capacity was 171 mAh / g. Example 1 below
Similarly, a cylindrical lithium battery with a design rated capacity of 1700 mAh
A mu-ion secondary battery (18650 size) was assembled.

【0055】(比較例1)Niの一部をCoで置換した
水酸化ニッケル粉末[Ni0.8Co0.2(O
H)]と水酸化リチウム1水和物(LiOH・H
O)とをLiとNiの原子比(Li/Ni)が1.0
5になるように配合した。この混合物を酸素雰囲気下4
60℃で10時間保持し、続いて700℃の温度で10
時間焼成した。X線回折測定の結果、この焼成物は単一
相であることが判った。また、(003)面のX線回折
ピーク強度と(104)面のX線回折ピーク強度とのピ
ーク強度比:I (003)/I(104)は1.93で
あった。このようにして、平均粒径7μmのリチウム・
ニッケル・コバルト酸化物:LiNi0.8Co0.2
を得た。この材料について示差走査熱量測定(DS
C)を行い、材料の熱安定性を評価した。その結果、熱
分解開始温度は189℃であり、発熱量は60J/gで
あった。また、放電容量は193mAh/gであった。
以下、前記実施例1と同様にして、設計定格容量170
0mAhの円筒形リチウムイオン二次電池(18650
サイズ)を組み立てた。
(Comparative Example 1) Part of Ni was replaced with Co.
Nickel hydroxide powder [Ni0.8Co0.2(O
H)Two] And lithium hydroxide monohydrate (LiOH.H
TwoO) and Li and Ni atomic ratio (Li / Ni) is 1.0
It was blended so as to be 5. This mixture is placed under an oxygen atmosphere 4
Hold at 60 ° C for 10 hours, then at 700 ° C for 10 hours.
Burned for hours. As a result of X-ray diffraction measurement, this fired product was single
It turned out to be a phase. In addition, X-ray diffraction of the (003) plane
The peak intensity and the X-ray diffraction peak intensity of the (104) plane
Intensity ratio: I (003)/ I(104)Is 1.93
there were. In this way, lithium with an average particle size of 7 μm
Nickel / Cobalt oxide: LiNi0.8Co0.2
OTwoGot Differential scanning calorimetry (DS
C) was performed to evaluate the thermal stability of the material. As a result, heat
The decomposition initiation temperature is 189 ° C and the calorific value is 60 J / g.
there were. The discharge capacity was 193 mAh / g.
Hereinafter, in the same manner as in Example 1, the design rated capacity 170
0 mAh cylindrical lithium-ion secondary battery (18650
Size) assembled.

【0056】(比較例2)硝酸リチウム(LiN
)、硝酸ニッケル[Ni(NO・6H
O]、硝酸コバルト[Co(NO・6H
O]、硝酸アルミニウム[Al(NO・9H
O]を所定量秤量し、水に溶解して濃度2mol/L溶
液を作製した。この溶液を実施例1と同様に噴霧乾燥し
て前駆体を得た。この前駆体を酸素雰囲気下460℃で
10時間保持し、続いて750℃の温度で5時間焼成し
た。X線回折測定の結果、この焼成物は単一相であるこ
とが判った。また、(003)面のX線回折ピーク強度
と(104)面のX線回折ピーク強度とのピーク強度
比:I(003)/I(104)は1.76であった。
このようにして、平均粒径が10μmのリチウム・ニッ
ケル・コバルト・アルミニウム複合酸化物:LiNi
0.72Co0.2Al0.08を得た。この材料
の熱分解開始温度は228℃であり、発熱量は61J/
gであった。発熱ピーク温度は250℃であった。ま
た、放電容量は168mAh/gであった。以下、前記
実施例1と同様にして、設計定格容量1700mAhの
円筒形リチウムイオン二次電池(18650サイズ)を
組み立てた。
Comparative Example 2 Lithium Nitrate (LiN
O 3), nickel nitrate [Ni (NO 3) 2 · 6H
2 O], cobalt nitrate [Co (NO 3) 2 · 6H
2 O], aluminum nitrate [Al (NO 3) 2 · 9H 2
O] was weighed in a predetermined amount and dissolved in water to prepare a solution having a concentration of 2 mol / L. This solution was spray-dried in the same manner as in Example 1 to obtain a precursor. This precursor was kept under an oxygen atmosphere at 460 ° C. for 10 hours, and subsequently calcined at a temperature of 750 ° C. for 5 hours. As a result of X-ray diffraction measurement, it was found that this fired product had a single phase. The peak intensity ratio of the X-ray diffraction peak intensity of the (003) plane to the X-ray diffraction peak intensity of the (104) plane: I (003) / I (104) was 1.76.
Thus, lithium-nickel-cobalt-aluminum composite oxide having an average particle size of 10 μm: LiNi
0.72 Co 0.2 Al 0.08 O 2 was obtained. The thermal decomposition starting temperature of this material is 228 ° C, and the calorific value is 61 J /
It was g. The exothermic peak temperature was 250 ° C. The discharge capacity was 168 mAh / g. Thereafter, in the same manner as in Example 1, a cylindrical lithium ion secondary battery (18650 size) having a design rated capacity of 1700 mAh was assembled.

【0057】(比較例3)Niの一部をCoとAlで置
換した水酸化ニッケル粉末[Ni0.77Co .2
0.03(OH)]と水酸化リチウム1水和物(L
iOH・HO)とをLi/(Ni+Co+Al)が
1.03になるように配合し、1t/cmで加圧して
成形体を得た。この成形体を酸素雰囲気下700℃で1
0時間焼成した。次に、この焼成物に五酸化ニオブ粉末
(Nb)を加えて粉砕・混合した後、硝酸リチウ
ム(LiNO)溶液中に分散させ、分散液を噴霧乾燥
して前駆体を作製した。これを酸素雰囲気下800℃で
2時間焼成し、粉砕機(高速回転型ピンミル)を用いて
解砕した。X線回折測定の結果、この焼成物は単一相で
あることがわかった。また、ICP発光分光法ならびに
原子吸光法により組成分析を行った結果、Li1.02
Ni0.76Co0.2Al0.03Nb0.0
であることが判明した。また、(003)面のX線回折
ピーク強度と(104)面のX線回折ピーク強度とのピ
ーク強度比:I(003)/I(104)は1.58で
あった。この材料の熱分解開始温度は215℃であり、
発熱量は47J/gであった。また、発熱ピーク温度は
230℃で、放電容量は185mAh/gであった。平
均粒径は10μmであった。以下、前記実施例1と同様
にして設計定格容量1700mAhの円筒形リチウムイ
オン二次電池(18650サイズ)を組み立てた。
(Comparative Example 3) Nickel hydroxide powder in which a part of Ni was replaced with Co and Al [Ni 0.77 Co 0 . 2 A
l 0.03 (OH) 2 ] and lithium hydroxide monohydrate (L
iOH.H 2 O) was blended so that Li / (Ni + Co + Al) was 1.03, and the mixture was pressed at 1 t / cm 2 to obtain a molded body. This molded body was subjected to 1
It was baked for 0 hours. Next, niobium pentoxide powder (Nb 2 O 5 ) was added to this fired product, which was pulverized and mixed, and then dispersed in a lithium nitrate (LiNO 3 ) solution, and the dispersion liquid was spray-dried to prepare a precursor. . This was fired in an oxygen atmosphere at 800 ° C. for 2 hours and crushed using a crusher (high-speed rotary pin mill). As a result of X-ray diffraction measurement, it was found that this fired product had a single phase. In addition, as a result of composition analysis by ICP emission spectroscopy and atomic absorption spectroscopy, it was found that Li 1.02
Ni 0.76 Co 0.2 Al 0.03 Nb 0.0 1 O 2
It turned out to be The peak intensity ratio of the X-ray diffraction peak intensity of the (003) plane to the X-ray diffraction peak intensity of the (104) plane: I (003) / I (104) was 1.58. The thermal decomposition initiation temperature of this material is 215 ° C,
The calorific value was 47 J / g. The exothermic peak temperature was 230 ° C. and the discharge capacity was 185 mAh / g. The average particle size was 10 μm. Thereafter, a cylindrical lithium ion secondary battery (18650 size) having a designed rated capacity of 1700 mAh was assembled in the same manner as in Example 1.

【0058】(比較例4)実施例1と同様にして硝酸リ
チウム(LiNO)、硝酸ニッケル[Ni(NO
・6HO]、硝酸コバルト[Co(NO・6
O]、硝酸アルミニウム[Al(NO・9H
O]および五酸化ニオブ(Nb)からなる分散
溶液を作製した。この分散溶液を実施例1と同様に噴霧
乾燥して前駆体を得た。この前駆体を酸素雰囲気下46
0℃で10時間保持し、続いて850℃の温度で5時間
焼成した。X線回折測定の結果、この焼成物はLiNb
を含む層状化合物であることが判明した。ICP発
光分光法ならびに原子吸光法により組成分析を行った結
果、主成分はLiNi0.72Co0.2Al0.0
であることがわかった。また、(003)面のX線
回折ピーク強度と(104)面のX線回折ピーク強度と
のピーク強度比:I(003)/I(104)は1.4
2で、(003)面のX線回折ピーク強度とLiNbO
に帰属する最大X線回折ピーク(2θ=23.7°)
強度とのピーク強度比:INb/I(0 03)は0.0
31であった。また、この材料の熱分解開始温度は22
2℃であり、発熱量は51J/gであった。発熱ピーク
温度は240℃であった。また、放電容量は148mA
h/gと低かった。平均粒径は9μmであった。以下、
前記実施例1と同様にして高出力仕様の円筒形リチウム
イオン二次電池(18650サイズ)を組み立てた。設
計定格容量は、1450mAhであった。
(Comparative Example 4) Lithium nitrate (LiNO 3 ) and nickel nitrate [Ni (NO 3 )] were used in the same manner as in Example 1.
2 · 6H 2 O], cobalt nitrate [Co (NO 3) 2 · 6
H 2 O], aluminum nitrate [Al (NO 3) 2 · 9H
2 O] and a niobium pentoxide (Nb 2 O 5 ) dispersion solution was prepared. This dispersion solution was spray dried in the same manner as in Example 1 to obtain a precursor. This precursor is placed in an oxygen atmosphere 46
The temperature was maintained at 0 ° C. for 10 hours, and subsequently, firing was performed at a temperature of 850 ° C. for 5 hours. As a result of X-ray diffraction measurement, this fired product was LiNb.
It was found to be a layered compound containing O 3 . As a result of compositional analysis by ICP emission spectroscopy and atomic absorption spectroscopy, the main component was LiNi 0.72 Co 0.2 Al 0.0 8
It was found to be O 2 . The peak intensity ratio of the X-ray diffraction peak intensity of the (003) plane to the X-ray diffraction peak intensity of the (104) plane: I (003) / I (104) is 1.4.
2, the X-ray diffraction peak intensity of the (003) plane and LiNbO
Maximum X-ray diffraction peak attributed to 3 (2θ = 23.7 °)
Peak intensity ratio to intensity: INb / I ( 003) is 0.0
It was 31. The thermal decomposition starting temperature of this material is 22
The temperature was 2 ° C. and the calorific value was 51 J / g. The exothermic peak temperature was 240 ° C. The discharge capacity is 148 mA.
It was as low as h / g. The average particle size was 9 μm. Less than,
A cylindrical lithium-ion secondary battery (18650 size) with high output specifications was assembled in the same manner as in Example 1. The design rated capacity was 1450 mAh.

【0059】(比較例5)Niの一部をCoで置換した
水酸化ニッケル粉末[Ni0.8Co0.2(O
H)]と水酸化リチウム1水和物(LiOH・H
O)とをLiとNiの原子比(Li/Ni)が1.0
5になるように配合した。この混合物に五酸化ニオブ粉
末(Nb)を加えて粉砕・混合した後、酸素雰囲
気下460℃で10時間保持し、続いて850℃の温度
で5時間焼成した。これを解砕してX線回折測定を行っ
たところ、この焼成物はLiNbOを含む層状化合物
であることがわかった。ICP発光分光法ならびに原子
吸光法により組成分析を行った結果、主成分はLiNi
0.8Co0.2であった。また、(003)面の
X線回折ピーク強度と(104)面のX線回折ピーク強
度とのピーク強度比:I(003 /I(104)
1.35で、(003)面のX線回折ピーク強度とLi
NbOに帰属する最大X線回折ピーク(2θ=23.
7°)強度とのピーク強度比:INb/I(003)
0.033であった。この材料の熱分解開始温度は18
7℃であり、発熱量は55J/gであった。また、放電
容量は157mAh/gであった。平均粒径は11μm
であった。以下、前記実施例1と同様にして、高出力仕
様の円筒形リチウムイオン二次電池(18650サイ
ズ)を組み立てた。設計定格容量は、1500mAhで
あった。
(Comparative Example 5) Nickel hydroxide powder in which a part of Ni was replaced by Co [Ni 0.8 Co 0.2 (O
H) 2 ] and lithium hydroxide monohydrate (LiOH.H
2 O) and the atomic ratio of Li and Ni (Li / Ni) is 1.0
It was blended so as to be 5. Niobium pentoxide powder (Nb 2 O 5 ) was added to this mixture, and the mixture was pulverized and mixed, held at 460 ° C. for 10 hours in an oxygen atmosphere, and subsequently fired at 850 ° C. for 5 hours. When this was crushed and subjected to X-ray diffraction measurement, it was found that this fired product was a layered compound containing LiNbO 3 . As a result of composition analysis by ICP emission spectroscopy and atomic absorption spectroscopy, the main component was LiNi.
It was 0.8 Co 0.2 O 2 . Further, the peak intensity ratio of the X-ray diffraction peak intensity of the (003) plane to the X-ray diffraction peak intensity of the (104) plane: I (003 ) / I (104) is 1.35, and the X-ray diffraction of the (003) plane is X. Line diffraction peak intensity and Li
Maximum X-ray diffraction peaks (2 [Theta] = 23 attributable to NbO 3.
(7 °) intensity and peak intensity ratio: INB / I (003) was 0.033. The thermal decomposition initiation temperature of this material is 18
The temperature was 7 ° C. and the calorific value was 55 J / g. The discharge capacity was 157 mAh / g. Average particle size is 11 μm
Met. Thereafter, a cylindrical lithium ion secondary battery (18650 size) with high output specifications was assembled in the same manner as in Example 1 above. The design rated capacity was 1500 mAh.

【0060】(比較例6)Niの一部をCoで置換した
水酸化ニッケル粉末[Ni0.75Co0.25(O
H)]と水酸化リチウム1水和物(LiOH・H
O)とをLiとNiの原子比(Li/Ni)が1.0
5になるように配合した。この混合物に五酸化ニオブ粉
末(Nb)を加えて粉砕・混合した後、酸素雰囲
気下460℃で10時間保持し、続いて850℃の温度
で5時間焼成した。これを解砕してX線回折測定を行っ
たところ、この焼成物はLiNbOを含む層状化合物
であることがわかった。ICP発光分光法ならびに原子
吸光法により組成分析を行った結果、主成分はLiNi
0.75Co0.25であった。また、(003)
面のX線回折ピーク強度と(104)面のX線回折ピー
ク強度とのピーク強度比:I (003)/I(104)
は1.51で、(003)面のX線回折ピーク強度とL
iNbOに帰属する最大X線回折ピーク(2θ=2
3.7°)強度とのピーク強度比:INb/I
(003)は0.027であった。この材料の熱分解開
始温度は205℃であり、発熱量は52J/gであっ
た。また、放電容量は139mAh/gと低かった。平
均粒径は10μmであった。以下、前記実施例1と同様
にして、高出力仕様の円筒形リチウムイオン二次電池
(18650サイズ)を組み立てた。設計定格容量は、
1400mAhであった。
(Comparative Example 6) Part of Ni was replaced with Co.
Nickel hydroxide powder [Ni0.75Co0.25(O
H)Two] And lithium hydroxide monohydrate (LiOH.H
TwoO) and Li and Ni atomic ratio (Li / Ni) is 1.0
It was blended so as to be 5. Niobium pentoxide powder in this mixture
End (NbTwoO5) Is added, crushed and mixed, and then in an oxygen atmosphere.
Hold at 460 ° C under air for 10 hours, then 850 ° C
It was baked for 5 hours. This is crushed and X-ray diffraction measurement is performed.
The fired product was LiNbOThreeLayered compound containing
I found out. ICP emission spectroscopy and atoms
As a result of composition analysis by absorption spectroscopy, the main component is LiNi
0.75Co0.25OTwoMet. Also, (003)
X-ray diffraction peak intensity of plane and X-ray diffraction peak of (104) plane
Peak intensity ratio with the intensity: I (003)/ I(104)
Is 1.51, and the X-ray diffraction peak intensity of the (003) plane and L
iNbOThreeMaximum X-ray diffraction peak (2θ = 2
3.7 °) intensity to peak intensity ratio: INb/ I
(003)Was 0.027. Thermal decomposition of this material
The initial temperature was 205 ° C and the calorific value was 52 J / g.
It was The discharge capacity was low at 139 mAh / g. flat
The average particle size was 10 μm. Hereinafter, the same as in the first embodiment
And high-power specification cylindrical lithium-ion secondary battery
(18650 size) was assembled. Design rated capacity is
It was 1400 mAh.

【0061】(比較例7)Niの一部をCoで置換した
水酸化ニッケル粉末[Ni0.8Co0.2(O
H)]と水酸化リチウム1水和物(LiOH・H
O)とをLiとNiの原子比(Li/Ni)が1.0
5になるように配合した。この混合物に五酸化ニオブ粉
末(Nb)を加えて粉砕・混合した後、酸素雰囲
気下460℃で10時間保持し、続いて850℃の温度
で5時間焼成した。次に、この焼成物1molに対して
0.05molの水酸化リチウム1水和物(LiOH・
O)を加えて十分に混合し、酸素雰囲気下675℃
の温度で10時間熱処理を行うことにより、平均粒径が
7μmのリチウム・ニッケル・コバルト・ニオブ複合酸
化物を得た。X線回折測定の結果、このリチウム・ニッ
ケル・コバルト・ニオブ複合酸化物は、LiNbO
を含む層状化合物であることが判明した。ICP発光分
光法ならびに原子吸光法により組成分析を行った結果、
主成分はLiNi0.8Co 0.2であることがわ
かった。(003)面のX線回折ピーク強度と(10
4)面のX線回折ピーク強度とのピーク強度比:I
(003)/I(104)は1.76で、(003)面
のX線回折ピーク強度とLiNbOに帰属する最大
X線回折ピーク(2θ=14.8°)強度とのピーク強
度比:INb/I(0 03)は0.009であった。ま
た、熱分解開始温度は185℃であり、発熱量は46J
/gであった。また、発熱ピーク温度は212℃で、放
電容量は178mAh/gであった。以下実施例1と同
様にして設計定格容量1700mAhの円筒形リチウム
イオン二次電池(18650サイズ)を組み立てた。
(Comparative Example 7) Part of Ni was replaced with Co.
Nickel hydroxide powder [Ni0.8Co0.2(O
H)Two] And lithium hydroxide monohydrate (LiOH.H
TwoO) and Li and Ni atomic ratio (Li / Ni) is 1.0
It was blended so as to be 5. Niobium pentoxide powder in this mixture
End (NbTwoO5) Is added, crushed and mixed, and then in an oxygen atmosphere.
Hold at 460 ° C under air for 10 hours, then 850 ° C
It was baked for 5 hours. Next, for 1 mol of this baked product
0.05 mol of lithium hydroxide monohydrate (LiOH.
HTwoO) is added and mixed thoroughly, and the mixture is mixed in an oxygen atmosphere at 675 ° C.
By performing heat treatment at the temperature of 10 hours,
7μm lithium-nickel-cobalt-niobium complex acid
The compound was obtained. As a result of X-ray diffraction measurement, this lithium nickel
Kell-cobalt-niobium composite oxide is LiThreeNbOFour
It was found to be a layered compound containing. ICP emission
As a result of composition analysis by light method and atomic absorption method,
Main component is LiNi0.8Co 0.2OTwoThat is
won. X-ray diffraction peak intensity of (003) plane and (10
4) Peak intensity ratio to X-ray diffraction peak intensity of plane: I
(003)/ I(104)Is 1.76, the (003) plane
X-ray diffraction peak intensity and LiThreeNbOFourMaximum belonging to
Peak intensity with X-ray diffraction peak (2θ = 14.8 °) intensity
Degree ratio: INb/ I(0 03)Was 0.009. Well
Also, the thermal decomposition starting temperature is 185 ° C and the calorific value is 46J.
/ G. The exothermic peak temperature is 212 ° C,
The electric capacity was 178 mAh / g. Same as Example 1 below
Cylindrical lithium with a design rated capacity of 1700 mAh
An ion secondary battery (18650 size) was assembled.

【0062】(比較例8)五酸化ニオブ(Nb
の添加量を実施例1〜実施例3の2倍量(重量比)とし
たこと以外は、実施例3と同様にして平均粒径が10μ
mのリチウム・ニッケル・コバルト・ニオブ複合酸化物
を得た。X線回折測定の結果、このリチウム・ニッケル
・コバルト・ニオブ複合酸化物は、LiNb
含む層状化合物であることが判明した。ICP発光分光
法ならびに原子吸光法により組成分析を行った結果、主
成分はLiNi0.76Co0.16Al0.08
であることがわかった。(003)面のX線回折ピーク
強度と(104)面のX線回折ピーク強度とのピーク強
度比:I(003)/I(104)は1.56で、(0
03)面のX線回折ピーク強度とLiNb に帰
属する最大X線回折ピーク(2θ=23.8°)強度と
のピーク強度比:INb/I(003)は0.031で
あった。また、熱分解開始温度は202℃、発熱量は1
4J/gであった。また、放電容量は151mAh/g
と低かった。以下、前記実施例1と同様にして、高出力
仕様の円筒形リチウムイオン二次電池(18650サイ
ズ)を組み立てた。設計定格容量は、1500mAhで
あった。
(Comparative Example 8) Niobium pentoxide (NbTwoO5)
The amount added is twice as much as those in Examples 1 to 3 (weight ratio).
The average particle size is 10 μm in the same manner as in Example 3 except that
m lithium-nickel-cobalt-niobium composite oxide
Got As a result of X-ray diffraction measurement, this lithium nickel
・ Cobalt-niobium composite oxide is Li8NbTwoO9To
It was found to be a layered compound containing. ICP emission spectroscopy
As a result of composition analysis by the
The component is LiNi0.76Co0.16Al0.08OTwo
I found out. X-ray diffraction peak of (003) plane
Intensity and peak intensity of (104) plane X-ray diffraction peak intensity
Degree ratio: I(003)/ I(104)Is 1.56, and (0
03) plane X-ray diffraction peak intensity and Li8Nb TwoO9Return to
The maximum X-ray diffraction peak (2θ = 23.8 °) intensity that belongs to
Peak intensity ratio: INb/ I(003)Is 0.031
there were. Also, the thermal decomposition start temperature is 202 ° C and the calorific value is 1
It was 4 J / g. The discharge capacity is 151 mAh / g
Was low. Hereinafter, in the same manner as in Example 1, high output
Specifications Cylindrical lithium ion secondary battery (18650 size
)) Was assembled. Design rated capacity is 1500mAh
there were.

【0063】以上のようにして得られた実施例1〜実施
例11、及び比較例1〜比較例8のリチウム二次電池を
所定個数用意し、容量確認試験を実施した。容量確認試
験は、充電は20℃において、設計定格容量を1時間で
放電する時の電流値を1Cとした時に、0.3Cの電流
値で4.2Vに達するまで充電した後、4.2Vまでの
定電圧で保持し、合計充電時間を8時間とした。放電
は、0.2Cの定電流で行い、放電終止電圧は2.7V
とした。充電、放電の後の休止時間はそれぞれ30分と
した。その結果、実施例1〜実施例11、および比較例
1〜比較例8の放電容量は、いずれも設計定格容量通り
の値が得られた。次に、実施例1〜実施例11、および
比較例1〜比較例8の各電池について、出力特性を評価
した。この出力特性を規定する方法として、ここでは2
つの電流値で放電した際に得られる各放電容量の比で規
定する方法を採用した。すなわち、0.2Cで放電した
時の放電容量(0.2C)、5Cで放電した時の放電容
量(5C)をそれぞれ測定し、2つの放電容量の比であ
る放電容量(5C)/放電容量(0.2C)の値を大電
流放電容量比とした。その結果、実施例1〜実施例1
1、及び比較例1〜比較例8の大電流放電容量比は、い
ずれも90%以上であり、出力特性に優れることが確認
できた。
A predetermined number of lithium secondary batteries of Examples 1 to 11 and Comparative Examples 1 to 8 obtained as described above were prepared and a capacity confirmation test was carried out. In the capacity confirmation test, charging was performed at 20 ° C., and when the designed rated capacity was set to 1 C and the current value was 1 C, the current was 0.3 C and the value was 4.2 V after charging until it reached 4.2 V. Was held at a constant voltage up to and the total charging time was 8 hours. Discharge is performed with a constant current of 0.2C, and the discharge end voltage is 2.7V.
And The rest time after charging and discharging was 30 minutes each. As a result, the discharge capacities of Examples 1 to 11 and Comparative Examples 1 to 8 were all in accordance with the design rated capacity. Next, the output characteristics of the batteries of Examples 1 to 11 and Comparative Examples 1 to 8 were evaluated. As a method for defining this output characteristic, 2 here is used.
The method specified by the ratio of each discharge capacity obtained when discharging at one current value was adopted. That is, the discharge capacity (0.2C) when discharged at 0.2C and the discharge capacity (5C) when discharged at 5C were measured, and the discharge capacity (5C) / discharge capacity, which is the ratio of the two discharge capacities, was measured. The value of (0.2 C) was defined as the large current discharge capacity ratio. As a result, Example 1 to Example 1
The large current discharge capacity ratios of 1 and Comparative Examples 1 to 8 were all 90% or more, and it was confirmed that the output characteristics were excellent.

【0064】次に、電池の内部短絡を模擬し、前述した
方法に基づいて4.4V充電した状態で釘刺し試験を実
施した。その結果が表1である。評価ランクとして、試
験用サンプルを各実施例共に100個作製し、過充電試
験の結果、安全弁が正常に作動して破裂や発火に至らな
かった電池の100個に対する割合で表し、Aランクは
100%〜98%以上、Bランクは98%未満、80%
以上、Cランクは80%未満とした。下記表1から明ら
かなように、実施例1〜実施例11の電池では、破裂や
発火に至った電池は皆無であった。一方、比較例1から
比較例7の電池では、破裂や発火に至ったものが多数見
られた。また、比較例8の電池では、破裂や発火に至っ
たものは見られなかったが、電池の正極活物質単位質量
あたりの放電容量(すなわち、正極活物質単位重量あた
りの放電容量)が低下してしまった。
Next, an internal short circuit of the battery was simulated, and a nail penetration test was carried out in the state of being charged at 4.4 V based on the method described above. The results are shown in Table 1. As an evaluation rank, 100 test samples were produced in each of the examples, and as a result of an overcharge test, the safety valve was operated normally and expressed as a ratio to 100 batteries that did not rupture or ignite, and the A rank was 100. % -98% or more, B rank is less than 98%, 80%
As described above, the C rank is less than 80%. As is clear from Table 1 below, none of the batteries of Examples 1 to 11 caused rupture or ignition. On the other hand, in the batteries of Comparative Example 1 to Comparative Example 7, many cells that ruptured or ignited were found. In addition, in the battery of Comparative Example 8, no rupture or ignition was observed, but the discharge capacity per unit mass of the positive electrode active material of the battery (that is, the discharge capacity per unit weight of the positive electrode active material) decreased. I got it.

【0065】[0065]

【表1】 [Table 1]

【0066】(比較例9〜比較例11)ニッケルコバル
ト複合酸化物として、表2に示す物質を用いたこと以外
は、実施例1と同様にして電池を作製した。これらの電
池について放電容量及び安全性試験を実施例1と同様に
して測定した。その結果を表2に併記する。表2の結果
から明らかなように、ニッケルコバルト複合酸化物とし
て、本発明の組成範囲を異なる範囲の物質を用いた比較
例9においては、安全性試験において本発明の電池より
劣るものであった。また、比較例10及び比較例11に
おいては、放電容量において本発明の電池より劣るもの
であった。
(Comparative Examples 9 to 11) Batteries were prepared in the same manner as in Example 1 except that the materials shown in Table 2 were used as the nickel-cobalt composite oxide. The discharge capacity and the safety test of these batteries were measured in the same manner as in Example 1. The results are also shown in Table 2. As is clear from the results in Table 2, in Comparative Example 9 in which the composition range of the present invention was different as the nickel-cobalt composite oxide, the safety test was inferior to the battery of the present invention. . Further, in Comparative Examples 10 and 11, the discharge capacity was inferior to the battery of the present invention.

【0067】[0067]

【表2】 [Table 2]

【0068】以上詳述したように本発明の非水電解質二
次電池は、万が一電池が充電状態にある時に外部から圧
力が加わったり落下などによって内部短絡が起きても、
正極活物質の熱分解時の発熱量が小さく熱安定性に優れ
るため、電池が熱暴走するには至らず安全性に優れた電
池である。したがって、本発明の非水電解質二次電池
は、電動工具、コードレスクリーナなどの電源としては
勿論のこと、電気自動車用の電源としても有用である。
As described in detail above, in the non-aqueous electrolyte secondary battery of the present invention, even if internal short circuit occurs due to external pressure or drop when the battery is in a charged state,
Since the amount of heat generated during the thermal decomposition of the positive electrode active material is small and the thermal stability is excellent, the battery does not cause thermal runaway and is a battery with excellent safety. Therefore, the non-aqueous electrolyte secondary battery of the present invention is useful not only as a power source for electric tools, cordless cleaners, etc., but also as a power source for electric vehicles.

【0069】[0069]

【発明の効果】本発明の非水電解質二次電池では、正極
活物質の熱分解時の発熱量が小さく熱安定性に優れるた
め、安全性に優れた非水電解質二次電池を形成すること
が可能となる。
INDUSTRIAL APPLICABILITY In the non-aqueous electrolyte secondary battery of the present invention, since the amount of heat generated during the thermal decomposition of the positive electrode active material is small and the thermal stability is excellent, a non-aqueous electrolyte secondary battery excellent in safety is formed. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱分解開始温度を示す図FIG. 1 is a diagram showing a thermal decomposition start temperature.

【図2】発熱量を示す図FIG. 2 is a diagram showing a calorific value.

【図3】本発明に係る非水電解質二次電池の一例を示す
FIG. 3 is a diagram showing an example of a non-aqueous electrolyte secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・電池容器 2・・・絶縁体 3・・・電極群 4・・・正極 5・・・セパレータ 6・・・負極 7・・・弁膜部 8・・・安全弁 9・・・正極端子 10・・・ガスケット 11・・・正極リード 12・・・負極リード 1-Battery container 2 ... Insulator 3 ... Electrode group 4 ... Positive electrode 5 ... Separator 6 ... Negative electrode 7 ... valve membrane 8 ... Safety valve 9 ... Positive terminal 10 ... Gasket 11 ... Positive electrode lead 12 ... Negative electrode lead

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神田 基 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 5H029 AJ12 AK03 AK18 AL04 AL06 AM02 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ17 HJ02 HJ13 5H050 AA15 AA16 BA17 CA07 CA08 CA09 CA29 CB05 CB07 CB08 CB09 DA02 FA19 HA13    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Motoko Kanda             1st Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa             Inside the Toshiba Research and Development Center F term (reference) 5H029 AJ12 AK03 AK18 AL04 AL06                       AM02 AM03 AM04 AM05 AM07                       BJ02 BJ14 DJ17 HJ02 HJ13                 5H050 AA15 AA16 BA17 CA07 CA08                       CA09 CA29 CB05 CB07 CB08                       CB09 DA02 FA19 HA13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】リチウムとニッケルを主成分とする複合酸
化物を正極活物質とする正極と、リチウムイオンを吸蔵
・放出することのできる物質を負極活物質とする負極と
を備えた非水電解質二次電池において、前記正極活物質
が、一般式:Li1+zNi1−x―yCo
(但し、前記MはAl、Mn、Snから選ばれる少なく
とも1種、前記x、y、zは0<x≦0.3、0≦y≦
0.1、0≦z≦0.02である)からなるリチウムニ
ッケルコバルト複合酸化物を主成分とし、さらに、一般
式:LiNb(但し、前記a、b、cは正の整
数であり、2.5≦a/b≦5.5、c=a/2+b×
5/2である)で表されるニオブ酸リチウムを含むもの
であって、かかる正極活物質のリチウムニッケルコバル
ト複合酸化物の(003)面のX線回折ピーク強度をI
(003)、(104)面のX線回折ピーク強度をI
(10 4)とし、また前記ニオブ酸リチウムに帰属する
最大X線回折ピークをINbとした時に、これらのピー
ク強度比が、I(003)/I(104)≧1.6、か
つ、0.01≦INb/I(003)≦0.03の関係
にあることを特徴とする非水電解質二次電池。
1. A non-aqueous electrolyte comprising a positive electrode having a composite oxide containing lithium and nickel as main components as a positive electrode active material, and a negative electrode having a negative electrode active material capable of inserting and extracting lithium ions. in the secondary battery, the positive electrode active material, the general formula: Li 1 + z Ni 1- x-y Co x M y O 2
(However, M is at least one selected from Al, Mn, and Sn, and x, y, and z are 0 <x ≦ 0.3, 0 ≦ y ≦.
0.1, 0 ≦ z ≦ 0.02) as a main component, and a general formula: Li a Nb b O c (where a, b and c are positive) It is an integer, 2.5 ≦ a / b ≦ 5.5, c = a / 2 + b ×
5/2), and the X-ray diffraction peak intensity of the (003) plane of the lithium nickel cobalt composite oxide of the positive electrode active material is I
The X-ray diffraction peak intensities of the (003) and (104) planes are I
(10 4), and also when the maximum X-ray diffraction peaks attributable to the lithium niobate was I Nb, the ratio of these peak intensity, I (003) / I ( 104) ≧ 1.6 and, 0 A non-aqueous electrolyte secondary battery having a relationship of 0.01 ≦ I Nb / I (003) ≦ 0.03.
【請求項2】前記a/bの値が、4≦a/b≦5である
ことを特徴とする請求項1記載の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the value of a / b is 4 ≦ a / b ≦ 5.
【請求項3】前記yの値が、0.03≦y≦0.08で
あることを特徴とする請求項1または請求項2記載の非
水電解質二次電池。
3. The nonaqueous electrolyte secondary battery according to claim 1, wherein the value of y is 0.03 ≦ y ≦ 0.08.
JP2001269337A 2001-09-05 2001-09-05 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3529750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001269337A JP3529750B2 (en) 2001-09-05 2001-09-05 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001269337A JP3529750B2 (en) 2001-09-05 2001-09-05 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003077460A true JP2003077460A (en) 2003-03-14
JP3529750B2 JP3529750B2 (en) 2004-05-24

Family

ID=19095177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001269337A Expired - Fee Related JP3529750B2 (en) 2001-09-05 2001-09-05 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3529750B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172113A (en) * 2002-11-06 2004-06-17 Toshiba Corp Nonaqueous electrolyte secondary battery
WO2006068143A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte
WO2007052440A1 (en) * 2005-11-02 2007-05-10 Toyo Tanso Co., Ltd. Lithium ion rechargeable battery
WO2007072596A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JPWO2007072595A1 (en) * 2005-12-20 2009-05-28 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2010009967A (en) * 2008-06-27 2010-01-14 Panasonic Corp Non-aqueous electrolyte secondary battery
US8187748B2 (en) 2004-12-24 2012-05-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP5236940B2 (en) * 2005-12-20 2013-07-17 パナソニック株式会社 Nonaqueous electrolyte secondary battery
WO2014156153A1 (en) * 2013-03-27 2014-10-02 株式会社Gsユアサ Active material for nonaqueous electrolyte electricity storage elements
WO2015012284A1 (en) 2013-07-24 2015-01-29 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte rechargeable battery, manufacturing method for same, and nonaqueous electrolyte rechargeable battery
JP2015053167A (en) * 2013-09-06 2015-03-19 日産自動車株式会社 Device and method for controlling secondary battery
JP2015072801A (en) * 2013-10-03 2015-04-16 住友金属鉱山株式会社 Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2015072800A (en) * 2013-10-03 2015-04-16 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use thereof
WO2018043669A1 (en) * 2016-08-31 2018-03-08 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
US10109849B2 (en) 2012-06-06 2018-10-23 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide, cathode active material for non-aqueous electrolyte secondary battery, and methods for producing these
WO2021192966A1 (en) * 2020-03-24 2021-09-30 三井金属鉱業株式会社 Active material, electrode mixture containing said active material, and battery
JP2022537889A (en) * 2019-05-21 2022-08-31 ナノ ワン マテリアルズ コーポレーション Stabilized high-nickel NMC cathode materials for improved battery performance

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599050B2 (en) * 2002-11-06 2010-12-15 株式会社東芝 Nonaqueous electrolyte secondary battery
JP2004172113A (en) * 2002-11-06 2004-06-17 Toshiba Corp Nonaqueous electrolyte secondary battery
WO2006068143A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte
US8951674B2 (en) 2004-12-24 2015-02-10 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
US8187748B2 (en) 2004-12-24 2012-05-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
US7687202B2 (en) 2004-12-24 2010-03-30 Panasonic Corporation Non-aqueous electrolyte secondary battery
WO2007052440A1 (en) * 2005-11-02 2007-05-10 Toyo Tanso Co., Ltd. Lithium ion rechargeable battery
JP2007128719A (en) * 2005-11-02 2007-05-24 Toyo Tanso Kk Lithium ion secondary battery
US8057935B2 (en) 2005-11-02 2011-11-15 Toyo Tanso Co., Ltd. Lithium ion rechargeable battery
JPWO2007072595A1 (en) * 2005-12-20 2009-05-28 パナソニック株式会社 Nonaqueous electrolyte secondary battery
WO2007072595A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2007072596A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP5236940B2 (en) * 2005-12-20 2013-07-17 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP5236880B2 (en) * 2005-12-20 2013-07-17 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2010009967A (en) * 2008-06-27 2010-01-14 Panasonic Corp Non-aqueous electrolyte secondary battery
US10109849B2 (en) 2012-06-06 2018-10-23 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide, cathode active material for non-aqueous electrolyte secondary battery, and methods for producing these
WO2014156153A1 (en) * 2013-03-27 2014-10-02 株式会社Gsユアサ Active material for nonaqueous electrolyte electricity storage elements
CN105122515A (en) * 2013-03-27 2015-12-02 株式会社杰士汤浅国际 Active material for nonaqueous electrolyte electricity storage elements
JPWO2014156153A1 (en) * 2013-03-27 2017-02-16 株式会社Gsユアサ Active material for nonaqueous electrolyte storage element
US9692043B2 (en) 2013-03-27 2017-06-27 Tokyo University Of Science Educational Foundation Administrative Organization Active material for nonaqueous electrolyte energy storage device
WO2015012284A1 (en) 2013-07-24 2015-01-29 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte rechargeable battery, manufacturing method for same, and nonaqueous electrolyte rechargeable battery
US9786913B2 (en) 2013-07-24 2017-10-10 Sumitomo Metal Mining Co., Ltd. Cathode active material for non-aqueous electrolyte rechargeable battery and manufacturing method for same, and non-aqueous electrolyte rechargeable battery
KR20160037947A (en) 2013-07-24 2016-04-06 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for nonaqueous electrolyte rechargeable battery, manufacturing method for same, and nonaqueous electrolyte rechargeable battery
JP2015053167A (en) * 2013-09-06 2015-03-19 日産自動車株式会社 Device and method for controlling secondary battery
JP2015072801A (en) * 2013-10-03 2015-04-16 住友金属鉱山株式会社 Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2015072800A (en) * 2013-10-03 2015-04-16 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use thereof
WO2018043669A1 (en) * 2016-08-31 2018-03-08 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
KR20190040293A (en) * 2016-08-31 2019-04-17 스미토모 긴조쿠 고잔 가부시키가이샤 POSITIVE ACTIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, PROCESS FOR PRODUCING THE SAME, AND NON-
CN109891642A (en) * 2016-08-31 2019-06-14 住友金属矿山株式会社 Non-aqueous electrolyte secondary battery positive active material and its manufacturing method and non-aqueous electrolyte secondary battery
JPWO2018043669A1 (en) * 2016-08-31 2019-06-24 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US11165062B2 (en) 2016-08-31 2021-11-02 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
JP7070418B2 (en) 2016-08-31 2022-05-18 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
KR102446217B1 (en) * 2016-08-31 2022-09-22 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP2022537889A (en) * 2019-05-21 2022-08-31 ナノ ワン マテリアルズ コーポレーション Stabilized high-nickel NMC cathode materials for improved battery performance
JP7295275B2 (en) 2019-05-21 2023-06-20 ナノ ワン マテリアルズ コーポレーション Stabilized high-nickel NMC cathode materials for improved battery performance
WO2021192966A1 (en) * 2020-03-24 2021-09-30 三井金属鉱業株式会社 Active material, electrode mixture containing said active material, and battery

Also Published As

Publication number Publication date
JP3529750B2 (en) 2004-05-24

Similar Documents

Publication Publication Date Title
JP5325888B2 (en) Electrode active material, electrode for non-aqueous secondary battery and non-aqueous secondary battery
US6872491B2 (en) Positive electrode active material and lithium ion secondary battery
JP3529750B2 (en) Non-aqueous electrolyte secondary battery
JP2011187435A (en) Nonaqueous electrolyte secondary battery
KR102220490B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2007200865A (en) Nonaqueous electrolyte secondary battery
JP4882220B2 (en) Secondary battery
JP2011070789A (en) Nonaqueous electrolyte secondary battery
JP2001243943A (en) Non-aqueous electrolyte secondary battery
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
JP5030559B2 (en) Nonaqueous electrolyte secondary battery
JP3533893B2 (en) Non-aqueous electrolyte secondary battery
JP2002270181A (en) Non-aqueous electrolyte battery
JP3887317B2 (en) Nonaqueous electrolyte secondary battery
JP3530174B2 (en) Positive electrode active material and lithium ion secondary battery
JP2001283845A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2001210325A (en) Nonaqueous electrolytic solution secondary battery
JP2008016316A (en) Nonaqueous electrolyte secondary battery
JP2001185143A (en) Secondary battery using non-aqueous electrolyte and its battery pack
JP4795509B2 (en) Non-aqueous electrolyte battery
JP4222292B2 (en) Secondary battery
JP2002216759A (en) Lithium ion secondary battery
JP2002298915A (en) Nonaqueous electrolyte secondary battery
JP3394020B2 (en) Lithium ion secondary battery
JP2003077478A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040225

R151 Written notification of patent or utility model registration

Ref document number: 3529750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees