JP2003075523A - Pressing and connecting seal structure of high temperature and high pressure sample tube for measurement in strong magnetic field - Google Patents

Pressing and connecting seal structure of high temperature and high pressure sample tube for measurement in strong magnetic field

Info

Publication number
JP2003075523A
JP2003075523A JP2001271135A JP2001271135A JP2003075523A JP 2003075523 A JP2003075523 A JP 2003075523A JP 2001271135 A JP2001271135 A JP 2001271135A JP 2001271135 A JP2001271135 A JP 2001271135A JP 2003075523 A JP2003075523 A JP 2003075523A
Authority
JP
Japan
Prior art keywords
sample
linear expansion
cap nut
tube
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001271135A
Other languages
Japanese (ja)
Other versions
JP3584318B2 (en
Inventor
Okitsugu Kajimoto
興亜 梶本
Fujitsugu Amita
富士嗣 網田
Takashi Eguchi
剛史 江口
Takeyoshi Ikeda
武義 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Japan Science and Technology Agency
Original Assignee
Jeol Ltd
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Japan Science and Technology Corp filed Critical Jeol Ltd
Priority to JP2001271135A priority Critical patent/JP3584318B2/en
Publication of JP2003075523A publication Critical patent/JP2003075523A/en
Application granted granted Critical
Publication of JP3584318B2 publication Critical patent/JP3584318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gasket Seals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a connecting structure capable of stably pressing and sealing a non-magnetic sample tube and a supply tube for sample to be measured under strong magnetic field, high temperature and high pressure conditions. SOLUTION: This pressing and sealing connecting structure is characterized in that a liner expansion adjusting member 7 is interposed in a box nut.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被測定試料供給管
3から連続的またはバッチ的に供給される被測定試料
を、強磁場内に配置された前記被測定試料供給管に接続
する非磁性試料管5に供給し、高温、高圧条件下、また
は更に所望の供給速度条件下で測定し、その後、該非磁
性試料管5から測定後の試料を排出をする、バッチ型に
または完全流通型の測定装置において、該非磁性試料管
5と被測定試料供給管3とを押し付けてシールする連結
構造において、該被測定試料供給管3を非磁性試料管5
に押し付けシールする連結構造を工夫し、常温から高温
・高圧、例えば500℃で50MPaまでの温度圧力範
囲においても押し付けシール力を維持できる袋ナットを
用いた非磁性試料管5と被測定試料供給管3とを押し付
けシールして連結する構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-magnetic material for connecting a sample to be measured continuously or batchwise supplied from a sample to be measured supplying tube 3 to the sample to be measured supplying tube arranged in a strong magnetic field. It is supplied to the sample tube 5 and measured under high temperature and high pressure conditions or further under desired supply rate conditions, and then the sample after measurement is discharged from the non-magnetic sample tube 5, batch type or complete flow type. In the measuring device, in the connection structure in which the non-magnetic sample tube 5 and the measured sample supply tube 3 are pressed and sealed, the measured sample supply tube 3 is connected to the non-magnetic sample tube 5
The non-magnetic sample tube 5 and the sample supply tube to be measured using a cap nut that can maintain the pressing and sealing force even in the temperature and pressure range from room temperature to high temperature and high pressure, for example, 500 MPa to 50 MPa, by devising the connection structure for pressing and sealing against The present invention relates to a structure in which 3 and 3 are pressed and sealed for connection.

【0002】なお、例えば、完全流通型で測定する測定
装置においては、非磁性試料管の測定後の試料を排出す
る側にも同様の押し付けシールする連結構造が配設され
ているが、構造が供給側と同じであるから図面および本
明細書では、排出側を省略して説明した。従って、特許
請求の範囲に記載の押し付けシール連結構造には、非磁
性試料管5の両側に前記押し付けシール連結構造を設け
たものが含まれることは当然である。また、本明細書に
おいて、被測定試料(単に、試料と表現されている場合
もある。)とは、反応、精製、改質などの処理、分析ま
たはこれらを組合わせたものにおける超臨界または亜臨
界状態にある全ての流体を意味する。
Incidentally, for example, in a measuring apparatus for measuring by a complete flow type, a similar connecting structure for pressing and sealing is arranged on the side of a non-magnetic sample tube from which a sample after measurement is discharged, but the structure is Since it is the same as the supply side, the discharge side is omitted in the drawings and this specification. Therefore, it goes without saying that the pressing seal connecting structure described in the claims includes a structure in which the pressing seal connecting structure is provided on both sides of the non-magnetic sample tube 5. In addition, in the present specification, the sample to be measured (which may be simply referred to as a sample) means a treatment such as reaction, purification, reforming, analysis, or supercritical or subcritical in a combination thereof. It means all fluids in the critical state.

【0003】[0003]

【従来の技術】超臨界または亜臨界状態にある被測定試
料を、例えばNMR,ESRなどの強磁場下で測定する
技術は、反応機構、処理機構(例えば、分解、生成な
ど)の解明、特に新しい反応、処理現象などを解明する
有効な手段であることから、室温から高温・高圧の範囲
においても安定に使用できる測定装置の開発には大きな
期待が持たれている。更に、前記被測定試料の実験を水
の臨界点(374℃)以上の高温で行うことができるこ
とが望まれていたが、このような条件において前記実験
を行うためには、試料管にセラミックを使う必要がある
のに対し、被測定試料を前記試料管に圧力制御して供給
する部分(被測定試料供給管)には金属材料が使われて
いたため、次のような問題があった。
2. Description of the Related Art Techniques for measuring a sample to be measured in a supercritical or subcritical state under a strong magnetic field such as NMR and ESR are known for elucidating reaction mechanisms and processing mechanisms (for example, decomposition and formation), Since it is an effective means to elucidate new reactions and processing phenomena, there are great expectations for the development of measuring devices that can be used stably in the range of room temperature to high temperature and high pressure. Further, it has been desired that the experiment of the sample to be measured can be performed at a high temperature above the critical point of water (374 ° C.), but in order to perform the experiment under such a condition, a ceramic is used for the sample tube. While it is necessary to use it, a metal material is used in a portion (measurement sample supply pipe) for supplying the measurement sample to the sample tube under pressure control, which causes the following problems.

【0004】i、セラミック試料管と圧力制御側の金属
部分の線膨張率が大きく異なるため、それらをシールし
て接続するための高温高圧力で使える技術がなかった。 ii、そのため、完全とは言い難いが、樹脂製のパッキン
グを用いたシール連結構造、例えば、図3に示されてい
るように、強磁場(図示なし)内に配置される非磁性セ
ラミック製の試料管5を、通常金属製の被測定試料供給
管3と試料が漏れないように、袋ナット2に、試料管5
および被測定試料供給管3の両者の端部近傍の外周面と
袋ナット内面間においてO-リング8を装着し、押しつけ
ボルト1で内圧負荷時両者の連結が破れないように締付
けてお互いの位置が変動しないように固定する構造にな
っている。しかしながら、このシール連結構造には以下
の問題点があった。
Since the coefficient of linear expansion of the ceramic sample tube and the metal portion on the pressure control side are greatly different from each other, there has been no technique for sealing and connecting them at high temperature and high pressure. ii. Therefore, although it cannot be said to be perfect, a seal connecting structure using a resin packing, for example, a non-magnetic ceramic made to be placed in a strong magnetic field (not shown) as shown in FIG. Insert the sample tube 5 into the cap nut 2 so that the sample does not leak to the sample supply tube 3 to be measured, which is usually made of metal.
Also, install an O-ring 8 between the outer peripheral surface near both ends of the sample supply pipe 3 to be measured and the inner surface of the cap nut, and tighten the pressing bolt 1 so that the connection between the two does not break when the internal pressure is applied, and position them relative to each other. Is fixed so that it does not fluctuate. However, this seal connecting structure has the following problems.

【0005】パッキング材に高温に耐えうる材質を用い
ても370℃が限界であり、これ以上の温度での実験を
行うには測定部とシール部に温度差を作り、樹脂製シー
ルが高温に曝されるのを保護する方法が採られていた。
しかしこの方法ではシール部を確実にシール材の劣化温
度以下に保つための厳密な温度制御と温度勾配による熱
応力を考慮した構造設計が必要とされる。さらにこの方
法では試料管に温度差を作るために測定試料がこの温度
差の為に対流を生じたり、組成の不均一を生じるなどの
不都合な点があった。従って、従来の方法では試料の入
れ替えは可能であったが(非連続型)、温度勾配がある
試料管内を、試料を連続的に流しながら試料の変化を観
察することは全く不可能であった。
Even if a material that can withstand high temperature is used as the packing material, the limit is 370 ° C. To conduct an experiment at a temperature higher than this, a temperature difference is created between the measuring part and the seal part, and the resin seal becomes high temperature. Methods were used to protect against exposure.
However, this method requires strict temperature control to ensure that the temperature of the sealing portion is kept below the deterioration temperature of the sealing material, and structural design that takes into consideration the thermal stress due to the temperature gradient. Further, in this method, a temperature difference is created in the sample tube, so that the measurement sample causes convection due to this temperature difference, and the composition is nonuniform. Therefore, it was possible to replace the sample by the conventional method (discontinuous type), but it was completely impossible to observe the change of the sample while continuously flowing the sample in the sample tube having a temperature gradient. .

【0006】したがって、前記問題を解決するには、全
く新しい発想の下に、試料管5および被測定試料供給管
3の材質差に基づく線膨張係数差により発生する不都合
を取り除く工夫をしたシール連結構造を開発が必要であ
った。
Therefore, in order to solve the above-mentioned problem, a seal connection is devised based on a completely new idea to eliminate the inconvenience caused by the difference in linear expansion coefficient based on the material difference between the sample tube 5 and the sample supply tube 3 to be measured. The structure needed to be developed.

【0007】特に、本発明者等は、変化する状態または
反応進行の特定の時点での状態を、平均的な観察ではな
く、ある瞬間の状態として外部磁界内にある試料に観察
用の周波数範囲のパルスを所望の間隔で照射して観察す
る完全流通型測定法をすでに提案している(特願200
0−310360:平成12年10月11日)。前記提
案の測定を一定の高温高圧(500℃、50MPa)を
保ったまま連続に被測定試料を試料管に供給して行うこ
とができる装置ができれば画期的である。
In particular, the inventors of the present invention have found that the changing state or the state at a specific time point of the reaction progress is not observed as an average, but as a state at a certain moment in a frequency range for observation in a sample in an external magnetic field. We have already proposed a perfect flow-through measurement method that observes by irradiating the pulse of the pulse at a desired interval (Patent application 200
0-310360: October 11, 2000). It would be epoch-making if an apparatus capable of continuously supplying the sample to be measured to the sample tube while maintaining a constant high temperature and high pressure (500 ° C., 50 MPa) was proposed.

【0008】そこで、本発明者らは、本発明の開発途上
において、従来の袋ナット構造、例えば、本発明におけ
る、線膨張差調整部材(7)を除いた構造のシール連結
構造、すなわち、図4に示す、被測定試料供給管(3)
側の内面にねじが設けられ、非磁性試料管(5)側に押
し付けシール力を付与するように係合する管の内側に突
出した係合部が設けられた袋ナット部材(2)、該袋ナ
ット部材(2)のねじに係合するねじが外表面に切ら
れ、ねじ込みにより前記押し付けシール力を付与するボ
ルト部材(1)、前記ボルト部材(1)の先端部と係合
する袋ナット部材(2)の内面近くまで延びる被測定試
料供給管(3)の太径端部、非磁性試料管(5)の太径
端部、および、非磁性試料管(5)の太径端部と係合し
て非磁性試料管(5)と被測定試料供給管(3)との押
し付けシール力を支持するカラー部材(4)で構成され
ている押し付けシール連結構造を使用して実験した。そ
の中で、袋ナット(1,2および4)と非磁性試料管
(5)とが異なった線膨張係数(非磁性試料管の線膨張
係数は非常に小さい)を持つため、高温高圧の測定時の
押し付けシール力を充分に維持するには、常温における
押し付けシール連結構造の組立ての際、シール面に過剰
な圧力で押し付ける必要があり、この際不均一な圧力が
加わるという問題を生ずるので、高温時の前記線膨張係
数の差による不都合を取り除く工夫が必要があることを
見出した。
[0008] Therefore, the inventors of the present invention, in the process of developing the present invention, a conventional cap nut structure, for example, a seal connecting structure of the present invention excluding the linear expansion difference adjusting member (7), that is, Sample supply pipe for measurement (3) shown in FIG.
A cap nut member (2) provided with a screw on its inner surface on the side of the non-magnetic sample tube (5) and provided with an engaging portion protruding inward of the tube that engages so as to apply a sealing force to the non-magnetic sample tube (5), A screw that engages with the screw of the cap nut member (2) is cut on the outer surface, and a bolt member (1) that gives the pressing sealing force by screwing in, and a cap nut that engages with the tip of the bolt member (1). The large-diameter end of the sample supply pipe (3) to be measured, which extends close to the inner surface of the member (2), the large-diameter end of the nonmagnetic sample pipe (5), and the large-diameter end of the nonmagnetic sample pipe (5). Experiments were carried out using a press-seal coupling structure composed of a collar member (4) that engages with the non-magnetic sample tube (5) and supports the press-sealing force between the sample supply tube (3) to be measured. Among them, the cap nuts (1, 2 and 4) and the non-magnetic sample tube (5) have different linear expansion coefficients (the linear expansion coefficient of the non-magnetic sample tube is very small), so high temperature and high pressure measurement is possible. In order to sufficiently maintain the pressing and sealing force at the time, it is necessary to press the sealing surface with excessive pressure when assembling the pressing and sealing connection structure at room temperature, which causes a problem that uneven pressure is applied. It was found that it is necessary to devise a method for eliminating the inconvenience caused by the difference in the linear expansion coefficient at high temperature.

【0009】[0009]

【発明が解決しようとする課題】従って、本願発明の課
題は、前記従来技術などの問題を取り除いた、非磁性試
料管(5)と被測定試料供給管(3)、特に非磁性セラ
ミック製の試料管(5)と金属製の被測定試料供給管
(3)との押し付けシール連結構造を持った前記完全流
通型測定が可能な測定装置を提供することである。本発
明者等は、前記課題を解決するために、押し付けシール
連結構造を、連結構造を構成する袋ナットの構成、構成
部材の材質、更に、非磁性試料管(5)および被測定試
料供給管(3)の材質の組み合わせを含めて種々の試作
品を作成し検討した。そして、常温から高温、高圧の測
定条件において、どのようにすれば押し付けシール力を
安定に維持できるか、特に、前記本発明の開発途上にお
いて実験した袋ナット型連結構造においては組立て時に
強い締め付け力を必要とするためにシール面に過剰な圧
力や不均一な力が加わる問題、および前記過剰な圧力の
付与と熱サイクルにより発生するシール面の残留歪みの
問題を取り除くことができるかを鋭意検討した。
SUMMARY OF THE INVENTION Therefore, the object of the present invention is to remove the problems of the prior art and the like, the non-magnetic sample tube (5) and the sample supply tube (3) to be measured, especially the non-magnetic ceramic tube. It is an object of the present invention to provide a measuring device capable of performing the complete flow type measurement, which has a pressing seal connection structure of a sample tube (5) and a metal sample supply tube (3) to be measured. In order to solve the above-mentioned problems, the inventors of the present invention have provided a pressing seal connection structure, a configuration of a cap nut constituting the connection structure, materials of constituent members, a non-magnetic sample tube (5) and a sample supply tube to be measured. Various prototypes were created and examined, including the combination of materials in (3). Then, under normal-temperature to high-temperature and high-pressure measurement conditions, how can the pressing and sealing force be stably maintained, and particularly, in the cap nut type connection structure that was experimentally developed during the development of the present invention, a strong tightening force during assembly. To eliminate the problem of excessive pressure and non-uniform force being applied to the sealing surface, and the problem of residual strain on the sealing surface caused by the application of excessive pressure and thermal cycling. did.

【0010】その中で、本発明における基本技術とし
て、袋ナット構成部材の線膨張係数α tと非磁性セラミ
ック試料管構成部材の線膨張係数αcとの押し付けシー
ル連結構造部での線膨張差を補償する線膨張係数αs
寸法(長さ)を持つ部材、換言すれば非磁性試料管の線
膨張係数αcおよび袋ナット構成部材の線膨張係数αt
り大きい線膨張係数αsをもつ材質で作った、所望の寸
法の間挿部材を介して押し付けシール力付与する構造と
することにより、前記課題を解決できることを発見し
た。更に、非磁性セラミック試料管の材質およびガスケ
ット部材を工夫することにより、室温から高温・高圧の
範囲で安定に押し付けシール力を維持することができ、
実用性のある回数の利用が可能な押し付けシール連結構
造を実現し、前記本発明の課題を解決した。
Among them, the basic technique in the present invention is
And the linear expansion coefficient α of the cap nut component tAnd non-magnetic ceramic
Coefficient of linear expansion αcPressed sea with
Expansion coefficient α for compensating for the difference in linear expansion in the connection structuresWhen
A member with dimensions (length), in other words, a line of a non-magnetic sample tube
Expansion coefficient αcAnd coefficient of linear expansion of cap nut component αtYo
Larger coefficient of linear expansion αsMade of a material that has the desired dimensions
With a structure that presses and applies a sealing force through the insertion member
Found that the above problems can be solved by
It was In addition, the material and gasket of the non-magnetic ceramic sample tube
By devising a heating member
It is possible to maintain stable pressing force in the range,
Pressing seal connection structure that can be used for a practical number of times
And the problems of the present invention have been solved.

【0011】[0011]

【課題を解決するための手段】本発明は、強磁場内に配
置される線膨張係数αcの非磁性試料管(5)と該試料
管に被測定流体を供給する線膨張係数αtの被測定試料
供給管(3)を押し付けてシールする線膨張係数αt
袋ナット(1、2、4)を用いて押し付けシールする連
結構造において、高温時においても前記押し付けシール
力を維持し高温高圧力状態の流体の圧力シールをするた
めに袋ナット構成部材および試料供給管の線膨張係数よ
り大きな線膨張係数αsを持ち、かつ、高温時における
非磁性試料管(5)と袋ナットの線膨張差を補償する長
さの線膨張調整部材(7)を袋ナット内に介在させるこ
とを特徴する押し付けシール連結構造である。好ましく
は、袋ナットは袋ナット部材(2)、ボルト部材(1)
およびカラー部材(4)から構成されていることを特徴
とする前記押し付けシール連結構造である。更に好まし
くは、被測定試料供給管(3)および袋ナット構成部材
がチタン合金からなり、非磁性試料管(5)がZr
2、Si34、またはAl23焼結体、ならびにサフ
ァイヤー、石英からなり、そして熱膨張調整部材(7)
が非磁性ステンレスからなることを特徴とする前記押し
付けシール連結構造であり、一層好ましくは、非磁性試
料管(5)と該試料管に被測定流体を供給する被測定試
料供給管(3)の押し付け連結シールを非磁性ステンレ
スあるいは金のガスケット(6)を介して行うことを特
徴とする前記押し付けシール連結構造である。
The present invention relates to a non-magnetic sample tube (5) having a linear expansion coefficient α c arranged in a strong magnetic field and a linear expansion coefficient α t for supplying a fluid to be measured to the sample tube. In the connection structure in which the cap nuts (1, 2, 4) having the linear expansion coefficient α t for pressing and sealing the sample supply pipe (3) to be measured are used for sealing, the pressing sealing force is maintained even at high temperature and the high temperature is maintained. It has a linear expansion coefficient α s larger than the linear expansion coefficient of the cap nut constituent member and the sample supply pipe in order to perform pressure sealing of the fluid in a high pressure state, and the non-magnetic sample pipe (5) and the cap nut This is a pressing seal connection structure characterized in that a linear expansion adjusting member (7) having a length that compensates for a difference in linear expansion is interposed in the cap nut. Preferably, the cap nut is a cap nut member (2) and a bolt member (1).
And the pressing seal connecting structure, characterized in that it is composed of a collar member (4). More preferably, the sample supply pipe to be measured (3) and the cap nut constituent member are made of titanium alloy, and the non-magnetic sample pipe (5) is Zr.
O 2 , Si 3 N 4 , or Al 2 O 3 sintered body, as well as sapphire, quartz, and thermal expansion adjusting member (7)
Is made of non-magnetic stainless steel, and more preferably, the pressing seal connecting structure is more preferable. The pressing seal connecting structure is characterized in that the pressing connecting seal is performed via a non-magnetic stainless steel or gold gasket (6).

【0012】[0012]

【本発明の実施の態様】本発明をより詳細に説明する。 A.本発明の特徴を、図3に示す従来例と図4に示す本
発明の開発の途上で検討したシール連結構造、および本
発明の一態様を示す図1および2を参照しながら説明す
る(同じ部材には、同じ番号が付与されている)。先
ず、O−リング技術を使ったシール連結構造の不都合は
前記したとおりである。そこで、前記O−リングを用い
たシール連結構造の熱劣化の問題を取り除くために、本
発明者らが本発明の開発途上で検討した図4に記載の押
し付けシール連結構造と対比して、本発明の押し付けシ
ール連結構造の利点を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail. A. The features of the present invention will be described with reference to the conventional example shown in FIG. 3 and the seal connecting structure studied in the course of development of the present invention shown in FIG. 4, and FIGS. 1 and 2 showing one embodiment of the present invention (same as above. The members have the same number). First, the disadvantages of the seal connecting structure using the O-ring technology are as described above. Therefore, in order to eliminate the problem of thermal deterioration of the seal connecting structure using the O-ring, the present invention is compared with the pressing seal connecting structure shown in FIG. The advantages of the push seal connection structure of the invention will be described.

【0013】図面に記載のそれぞれのシール連結構造
は、非磁性試料管(5)の一方の端部の連結構造を被測
定試料供給管(3)側で代表させて示したものである。
該押し付けシール連結構造の袋ナットの構成は前記した
とおり袋ナット部材(2)、ボルト部材(1)およびカ
ラー部材(4)から構成されている。
The respective seal connecting structures shown in the drawings are representative of the connecting structure at one end of the non-magnetic sample tube (5) on the sample supplying tube (3) side to be measured.
As described above, the cap nut of the pressing seal connecting structure is composed of the cap nut member (2), the bolt member (1) and the collar member (4).

【0014】ところが、非磁性試料管(5)を構成する
材料はセラミックであり線膨張係数が比較的小さく、被
測定試料供給管(3)および押し付けシール袋ナット
(1、2、および4)を構成する材料はTi合金、例え
ばTi−6Al−4V、であるから線膨張係数が相対的
に大きく、高温および高圧で測定する際、両材料の線膨
張差により、室温での連結構造の組多立ての際の押し付
けシール力を維持できなくなるので、室温組み立て時に
シール力の低下を予測して高温時での圧力シールをする
ために過剰な圧力を加えて組み立てていた。そこで過剰
圧による亀裂の発生の問題を取り除こうと、金などの延
性、展性のあるガスケット(図示なし)を圧接面に介在
させたが、上記問題は解決できなという不都合があっ
た。
However, the material forming the non-magnetic sample tube (5) is ceramic, and the coefficient of linear expansion is relatively small. Therefore, the sample supply tube (3) to be measured and the pressing seal cap nuts (1, 2, and 4) are Since the constituent material is a Ti alloy, for example, Ti-6Al-4V, the linear expansion coefficient is relatively large, and when measuring at high temperature and high pressure, due to the difference in linear expansion between the two materials, there are many combinations of connection structures at room temperature. Since it is not possible to maintain the pressing sealing force at the time of standing, it was predicted that the sealing force would decrease during room temperature assembly, and excessive pressure was applied to perform pressure sealing at high temperatures. Therefore, in order to eliminate the problem of cracking due to excess pressure, a ductile and malleable gasket (not shown) such as gold is interposed in the pressure contact surface, but the above problem cannot be solved.

【0015】そこで、本発明では図1,2に示すよう
に、被測定試料供給管3および袋ナットの線膨張と非磁
性試料管5の熱膨張を調整する線膨張係数と長さを持つ
部材、換言すれば被測定試料供給管および袋ナット構成
材料より大きい線膨張係数(α s)をもつ材質の所望の
長さの線膨張調整部材(7)を袋ナット内に介在させる
ことにより前記従来のO−リングを用いたシールや図4
の押し付けシール連結構造の問題点を解決した。前記線
膨張係数と介在させる調整部材の長さを調整することに
より、非磁性試料管5と被測定試料供給管および袋ナッ
トの材質の違いによる前記線膨張差の問題を改善するこ
とができた。前記線膨張係数の時、調整部材の長さをL
とすると、L=C(αt−αc)/(α s−αt)、で表さ
れ、本実施例に於いてC=12として設計して本発明の
目的を達成することができた。
Therefore, in the present invention, as shown in FIGS.
In addition, linear expansion and non-magnetism of the sample supply pipe 3 to be measured and the cap nut
Has a linear expansion coefficient and length that adjust the thermal expansion of the flexible sample tube 5.
Members, in other words, sample supply pipe to be measured and cap nut configuration
Coefficient of linear expansion larger than that of the material (α s) Desired material
The linear expansion adjusting member (7) of length is interposed in the cap nut
As a result, the seal using the conventional O-ring or the seal shown in FIG.
Solved the problem of the pressing seal connecting structure. The line
To adjust the expansion coefficient and the length of the adjusting member to intervene
From the non-magnetic sample tube 5, the sample supply tube to be measured and the bag
The problem of linear expansion difference due to the difference in the material of the
I was able to. When the coefficient of linear expansion is the above, the length of the adjusting member is L
Then, L = C (αtc) / (Α st), Represented by
According to the present invention, C = 12 is designed in this embodiment.
I was able to achieve my purpose.

【0016】B.本発明の基本的な特徴は、A.で説明
したとおりであるが。非磁性試料管5を構成するセラミ
ック材料として、ZrO2またはSi34、特にSi3
4を用いることにより、繰り返し使用特性を向上できる
ことが分かった。 C.本発明の更なる特徴は、押し付けシール面にオース
テナイト系ステンレス鋼や展性・延性が十分な大きな金
をガスケットとしてシールすることであり、その結果室
温から高温の任意の圧力範囲での高温高圧シールの反復
使用特性を一層向上させることができた。
B. The basic features of the present invention are: As explained in. As a ceramic material forming the non-magnetic sample tube 5, ZrO 2 or Si 3 N 4 , especially Si 3 N
It was found that repeated use characteristics could be improved by using 4 . C. A further feature of the present invention is to seal austenitic stainless steel or large gold with sufficient malleability and ductility as a gasket on the pressing seal surface, and as a result, high temperature high pressure seal in any pressure range from room temperature to high temperature. It was possible to further improve the repeated use characteristics of.

【0017】ここで、本発明において試料管圧接結合構
造を形成するのに使用される材料の熱膨張率を表1に例
示する。
The coefficient of thermal expansion of the material used for forming the sample tube pressure-bonded joint structure in the present invention is exemplified in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【実施例】実施例1 図1に記載の構造の試料管圧接結合構造を採用して強磁
界内での完全流通型の測定装置を作り、最高の温度条件
600℃および最高圧60MPaの測定条件における、
また、500℃で50MPaまで室温から繰り返し5サ
イクルした場合の該圧接結合構造の安定性、リーク特性
などをチェックした。結果を表2に示す。
EXAMPLES Example 1 A sample tube pressure contact bonding structure having the structure shown in FIG. 1 was adopted to make a complete flow type measuring device in a strong magnetic field, and the maximum temperature condition was 600 ° C. and the maximum pressure condition was 60 MPa. In
Further, the stability, leak characteristics, etc. of the pressure-bonded structure after repeated 5 cycles from room temperature to 500 MPa at 50 MPa were checked. The results are shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】図2はガスケットを用いない押し付けシー
ル連結構造であり、シールは被測定試料供給管3の凹部
曲面と非磁性試料管5凸部曲面との線接触部分の押し付
け部により達成される。
FIG. 2 shows a pressing seal connecting structure without using a gasket, and the sealing is achieved by the pressing portion at the line contact portion between the concave curved surface of the sample supply pipe 3 to be measured and the convex curved surface of the non-magnetic sample pipe 5.

【0022】[0022]

【発明の効果】以上述べたように、本発明の非磁性試料
管(5)と被測定試料供給管(3)とを押し付けてシー
ルする連結構造、すなわち、袋ナットに線膨張調整部材
7を介在させた押し付けシール連結構造とすることによ
り、また、非磁性試料管(5)を構成するセラミック材
料、および被測定試料供給管(3)および袋ナットを構
成する合金材料の組み合わせにより、更にまた、ガスケ
ット材料として非磁性ステンレスあるいは金を用いるこ
とにより、強磁界内での測定に使用される完全流通型測
定装置の実用性を向上させることができた、という優れ
た効果がもたらされる。更に、このような押し付けシー
ル連結構造は、室温から高い温度までの範囲で利用され
る、異なった線膨張係数からなる部材の連結、例えば高
温の内部を観察するのぞき窓と被観察装置との連結など
にも応用可能である、という効果ももたらされる。
As described above, the non-magnetic sample tube (5) of the present invention and the sample supply tube (3) to be measured are pressed together for sealing, that is, the linear expansion adjusting member 7 is attached to the cap nut. With the interposition of a press-seal connection structure interposed, and also by the combination of the ceramic material that constitutes the non-magnetic sample tube (5) and the alloy material that constitutes the sample supply tube (3) to be measured and the cap nut, By using non-magnetic stainless steel or gold as the gasket material, it is possible to improve the practicality of the perfect flow type measuring apparatus used for measurement in a strong magnetic field. Further, such a pressing seal connection structure is used in the range from room temperature to high temperature, and the connection of members having different linear expansion coefficients, for example, the connection between the observation window for observing the inside of a high temperature and the observed device. The effect that it can be applied to etc. is also brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の押し付けシール連結構の一態様FIG. 1 is an embodiment of a pressing seal connecting structure of the present invention.

【図2】 本発明の押し付けシール連結構造の別の態様
(ガスケット無し)
FIG. 2 is another embodiment of the pressing seal connecting structure of the present invention (without a gasket)

【図3】 O−リングを用いたシール連結構造FIG. 3 is a seal connecting structure using an O-ring.

【図4】 開発途上で検討した押し付けシール連結構[Fig. 4] Pressing seal connection structure studied during development

【符号の説明】[Explanation of symbols]

1 ボルト部材 2 袋ナット部材 3 被測定試料
供給管 4 カラー部材 5 非磁性試料管 6 ガスケット 7 線膨張調整部材 8 O−リング
1 bolt member 2 cap nut member 3 sample supply pipe to be measured 4 collar member 5 non-magnetic sample pipe 6 gasket 7 linear expansion adjusting member 8 O-ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江口 剛史 東京都昭島市武蔵野三丁目1番2号日本電 子株式会社内 (72)発明者 池田 武義 東京都昭島市武蔵野三丁目1番2号日本電 子株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takeshi Eguchi             3-1-2 Musashino, Akishima-shi, Tokyo             Child Co., Ltd. (72) Inventor Takeyoshi Ikeda             3-1-2 Musashino, Akishima-shi, Tokyo             Child Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 強磁場内に配置される線膨張係数αc
非磁性試料管(5)と該試料管に被測定流体を供給する
線膨張係数αtの被測定試料供給管(3)とを押し付け
てシールする線膨張係数αtの袋ナット(1、2、4)
を用いて押し付けシールする連結構造において、高温時
においても前記押し付けシール力を維持し高温高圧力状
態の流体の圧力シールをするために袋ナット構成部材お
よび試料供給管の線膨張係数より大きな線膨張係数αs
を持ち、かつ、高温時における非磁性試料管(5)と袋
ナットの線膨張差を補償する長さの線膨張差調整部材
(7)を袋ナット内に介在させることを特徴する押し付
けシール連結構造。
1. A nonmagnetic sample tube (5) having a linear expansion coefficient α c arranged in a strong magnetic field and a sample supply tube (3) having a linear expansion coefficient α t for supplying a fluid to be measured to the sample tube. Cap nuts (1, 2, 4) with linear expansion coefficient α t that press and seal
In order to maintain the above-mentioned pressure-sealing force even at high temperatures and perform pressure sealing of fluid under high temperature and high pressure, the linear expansion larger than the linear expansion coefficient of the cap nut component and sample supply pipe Coefficient α s
And a press-fit seal connection characterized in that a linear expansion difference adjusting member (7) having a length and compensating for a linear expansion difference between the non-magnetic sample tube (5) and the cap nut at high temperature is interposed in the cap nut. Construction.
【請求項2】 袋ナットは袋ナット部材(2)、ボルト
部材(1)およびカラー部材(4)から構成されている
ことを特徴とする請求項1に記載の押し付けシール連結
構造。
2. The pressing seal coupling structure according to claim 1, wherein the cap nut is composed of a cap nut member (2), a bolt member (1) and a collar member (4).
【請求項3】 被測定試料供給管(3)および袋ナット
構成部材がチタン合金からなり、非磁性試料管(5)が
ZrO2、Si34、またはAl23焼結体、ならびに
サファイヤー、石英からなり、そして線膨張調整部材
(7)が非磁性ステンレスからなることを特徴とする請
求項1または2に記載の押し付けシール連結構造。
3. The sample supply pipe to be measured (3) and the cap nut constituent member are made of titanium alloy, and the non-magnetic sample pipe (5) is ZrO 2 , Si 3 N 4 , or Al 2 O 3 sintered body, and The pressing seal connecting structure according to claim 1 or 2, wherein sapphire is made of quartz, and the linear expansion adjusting member (7) is made of non-magnetic stainless steel.
【請求項4】 非磁性試料管(5)と該試料管に被測定
流体を供給する被測定試料供給管(3)の押し付け連結
シールを非磁性ステンレスあるいは金のガスケット
(6)を介して行うことを特徴とする請求項1、2また
は3に記載の押し付けシール連結構造。
4. The non-magnetic sample tube (5) and the sample supply tube (3) to be measured for supplying a fluid to be measured to the sample tube are pressed and connected by means of a nonmagnetic stainless steel or gold gasket (6). The pressing seal connecting structure according to claim 1, 2 or 3, wherein.
JP2001271135A 2001-09-07 2001-09-07 Press-fit connection seal structure of high-temperature high-pressure sample tube for measurement in strong magnetic field Expired - Fee Related JP3584318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001271135A JP3584318B2 (en) 2001-09-07 2001-09-07 Press-fit connection seal structure of high-temperature high-pressure sample tube for measurement in strong magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001271135A JP3584318B2 (en) 2001-09-07 2001-09-07 Press-fit connection seal structure of high-temperature high-pressure sample tube for measurement in strong magnetic field

Publications (2)

Publication Number Publication Date
JP2003075523A true JP2003075523A (en) 2003-03-12
JP3584318B2 JP3584318B2 (en) 2004-11-04

Family

ID=19096681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001271135A Expired - Fee Related JP3584318B2 (en) 2001-09-07 2001-09-07 Press-fit connection seal structure of high-temperature high-pressure sample tube for measurement in strong magnetic field

Country Status (1)

Country Link
JP (1) JP3584318B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022183A1 (en) * 2003-08-29 2005-03-10 Kyoto University Nmr probe for measuring high temperature
JP2011112530A (en) * 2009-11-27 2011-06-09 Tosoh Corp Seal material and flow cell with the same
WO2019048545A1 (en) * 2017-09-06 2019-03-14 Bundesrepublik Deutschland, Vertreten Durch Die Bundesministerin Für Wirtschaft Und Energie, Diese Vertreten Durch Den Präsidenten Der Bundesanstalt Für Materialforschung Und -Prüfung (Bam) Pressure-resistant, 3d printed nmr flow cell
DE102021209738B3 (en) 2021-09-03 2022-08-11 Bruker Switzerland Ag Coupling device for an NMR flow cell for alignment independent of the magnetic field and NMR spectrometer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022183A1 (en) * 2003-08-29 2005-03-10 Kyoto University Nmr probe for measuring high temperature
US7345484B2 (en) 2003-08-29 2008-03-18 Kyoto University NMR probe for high-temperature measurements
JP2011112530A (en) * 2009-11-27 2011-06-09 Tosoh Corp Seal material and flow cell with the same
WO2019048545A1 (en) * 2017-09-06 2019-03-14 Bundesrepublik Deutschland, Vertreten Durch Die Bundesministerin Für Wirtschaft Und Energie, Diese Vertreten Durch Den Präsidenten Der Bundesanstalt Für Materialforschung Und -Prüfung (Bam) Pressure-resistant, 3d printed nmr flow cell
DE102021209738B3 (en) 2021-09-03 2022-08-11 Bruker Switzerland Ag Coupling device for an NMR flow cell for alignment independent of the magnetic field and NMR spectrometer
EP4145164A1 (en) 2021-09-03 2023-03-08 Bruker Switzerland AG Coupling device for nmr flow cell for magnetic field independent alignment and nmr spectrometer
US11796444B2 (en) 2021-09-03 2023-10-24 Bruker Switzerland Ag Coupling device for an NMR flow cell

Also Published As

Publication number Publication date
JP3584318B2 (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP4817253B2 (en) Material testing equipment and material specimens
JP4556205B2 (en) Metal gasket
EP1971787B1 (en) Self locking tensioner
JP2007139192A (en) Seal assembly and seal assembly manufacturing and operating method
JP2003075523A (en) Pressing and connecting seal structure of high temperature and high pressure sample tube for measurement in strong magnetic field
KR101877596B1 (en) An apparatus and method for carrying out in a controlled atmosphere material fatigue tests in a high cycle regime with a controlled strain ratio
CN110286050A (en) A kind of slow tensile stress etching pilot system of full pipe sample high-temperature high pressure water of metal tube
JP7282793B2 (en) Zero dead volume fitting assembly
EP3542090B1 (en) A system for compression junction of thin-wall pipes
JP2002071067A (en) Clamp type joint and device for processing substrate
US2788994A (en) Pipe secured to plate with sealing means effective against high pressure and temperature change
JP4153403B2 (en) Self-tightening type sealing device and isotropic pressure pressurizing device
US20240158949A1 (en) Structures for communication, monitoring and control of corrosive process environments at high pressure and high temperature
KR20180088981A (en) Locking nut using shape memory alloys
JPH08312846A (en) Sealing retaining wall for pipe-shaped member, sealing method, fluid part with the retaining wall, and fluid device with the fluid part
WO2024102653A1 (en) Structures for communication, monitoring and control of corrosive process environments at high pressure and high temperature
JP2004301158A (en) Hollow metal o-ring
Singh et al. Study Of Diffusion Bonding Of WL10 To SS Joining With & Without Titanium Interlayer Using Thermo Mechanical Simulator
EP1329707A2 (en) Exchangeable process window
CN217614682U (en) Taut clamp of reation kettle
JP6118593B2 (en) Pressure-resistant reactor that can be opened and closed at both ends
JP2003106964A (en) Test piece fixing adapter for tension type material testing machine
JP2002317889A (en) Connecting body for stainless flange and quartz sleeve
JP2010243320A (en) Ultrasonic flaw detection method
JPS5933452B2 (en) Double pipe manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees