JP2003075311A - Preparation method and preparation device for sample for transmission type electron microscope observation - Google Patents

Preparation method and preparation device for sample for transmission type electron microscope observation

Info

Publication number
JP2003075311A
JP2003075311A JP2001265538A JP2001265538A JP2003075311A JP 2003075311 A JP2003075311 A JP 2003075311A JP 2001265538 A JP2001265538 A JP 2001265538A JP 2001265538 A JP2001265538 A JP 2001265538A JP 2003075311 A JP2003075311 A JP 2003075311A
Authority
JP
Japan
Prior art keywords
observation
sample
electron microscope
thin film
transmission electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001265538A
Other languages
Japanese (ja)
Inventor
Yoshifumi Hata
良文 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001265538A priority Critical patent/JP2003075311A/en
Publication of JP2003075311A publication Critical patent/JP2003075311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To clear an observation image of a sample for transmission type electron microscope observation at a specific position to be observed by the transmission type electron microscope. SOLUTION: A region including an observation position 2 on a semiconductor substrate is so formed into a flake 3 by removing the semiconductor substrate surface layer around the observation position 2 by a converged ion beam method that it can be taken out by a needlepoint of a manipulation device. Next, the flake 3 is taken out by the needlepoint of the manipulation device and moved onto an organic thin film 5 of a Cu mesh 4. Then, by using an ultraviolet ray 6 having energy capable of removing the thin film 5 of the Cu mesh 4 without influencing the flake 3, the thin film 5 of the Cu mesh 4 in contact with the flake 3 is removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、透過型電子顕微鏡
用試料の作製方法および作製装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing a sample for a transmission electron microscope.

【0002】[0002]

【従来の技術】加速電圧が100kV〜400kVであ
る汎用の透過型電子顕微鏡を用いて、微細な形状が観察
できる試料膜厚は約0.2μm以下である。このような
薄膜試料の作製が透過型電子顕微鏡観察では非常に重要
である。
2. Description of the Related Art A sample film thickness with which a fine shape can be observed using a general-purpose transmission electron microscope having an accelerating voltage of 100 kV to 400 kV is about 0.2 μm or less. The preparation of such a thin film sample is very important for observation with a transmission electron microscope.

【0003】一方、半導体分野においては電気的不良部
などの特定箇所の微細形状を観察する必要があり、種々
の試料作製方法が使用されている。その代表的なものと
して集束イオンビーム法とマニピュレーションを利用し
た試料作製方法がある。
On the other hand, in the semiconductor field, it is necessary to observe the fine shape of a specific portion such as an electrically defective portion, and various sample preparation methods are used. Typical examples are a focused ion beam method and a sample preparation method using manipulation.

【0004】ここでは、数10KeVに加速されたGa
イオンビームを微小に絞り、数10nmの分解能で微細
加工ができる集束イオンビームと、数100倍の光学顕
微鏡観察下において鋭利なガラス棒の先で10μm程度
の細かな物体の移動操作が可能なマニピュレーション装
置とを利用した試料作製手順を説明する。
Here, Ga is accelerated to several tens KeV.
A focused ion beam that can finely process an ion beam with a resolution of several tens of nanometers, and a manipulation that can move a fine object of about 10 μm with a sharp glass rod tip under observation with an optical microscope of several hundred times. A sample preparation procedure using the apparatus will be described.

【0005】図8は、試料である半導体基板上の観察箇
所を取り出すために、集束イオンビーム法で加工した加
工形状を、図9は、透過型電子顕微鏡用の観察試料をC
uメッシュ上の有機薄膜上に載せた断面形状を、それぞ
れ示した図である。
FIG. 8 shows a processed shape processed by a focused ion beam method in order to take out an observation portion on a semiconductor substrate as a sample, and FIG. 9 shows an observation sample for a transmission electron microscope as C.
It is the figure which showed each cross-sectional shape mounted on the organic thin film on u mesh.

【0006】図8は、半導体基板1、透過型電子顕微鏡
を用いて観察する特定箇所2および集束イオンビーム法
で加工した加工薄片3を示し、図9は、上記特定箇所
2、上記加工薄片3、Cuメッシュ4およびCuメッシ
ュ4上の有機薄膜5を示している。
FIG. 8 shows a semiconductor substrate 1, a specific portion 2 observed using a transmission electron microscope, and a processed thin piece 3 processed by the focused ion beam method. FIG. 9 shows the specific portion 2 and the processed thin piece 3. , Cu mesh 4 and the organic thin film 5 on the Cu mesh 4 are shown.

【0007】まず、図8に示すように、透過型電子顕微
鏡で観察したい特定箇所2を含む領域を残すように、そ
の周辺の半導体基板1領域を、集束イオンビーム法を用
いて除去し、加工薄片3を形成する。ここで、除去する
半導体基板1領域は、マニピュレーション装置の針先を
当てることができる程度の領域とする。また、本実施形
態では、加工薄片3の膜厚は0.2μm、幅約10μ
m、高さ約5μmとした。
First, as shown in FIG. 8, the peripheral region of the semiconductor substrate 1 is removed by a focused ion beam method so as to leave a region including a specific portion 2 to be observed with a transmission electron microscope, and processed. A thin piece 3 is formed. Here, the region of the semiconductor substrate 1 to be removed is a region to which the needle tip of the manipulation device can be applied. Further, in the present embodiment, the processed thin piece 3 has a film thickness of 0.2 μm and a width of about 10 μm.
m and height about 5 μm.

【0008】次に、この加工薄片3をマニピュレーショ
ン装置の針先にて取り出し、Cuメッシュ4に張られた
有機薄膜5上に載せる。
Next, the processed thin piece 3 is taken out by the needle tip of the manipulation device and placed on the organic thin film 5 stretched on the Cu mesh 4.

【0009】加工薄片3をマイクログリッドの有機薄膜
5上に載せた断面形状は、図9に示すとおりであり、こ
れを透過型電子顕微鏡で観察する。ここで、マイクログ
リッドの有機薄膜の膜厚はおよそ0.3〜2μmであ
る。
The cross-sectional shape of the processed thin piece 3 placed on the organic thin film 5 of the micro grid is as shown in FIG. 9, and this is observed with a transmission electron microscope. Here, the film thickness of the organic thin film of the microgrid is about 0.3 to 2 μm.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、従来の
試料作製方法では、集束イオンビーム法で加工した試料
薄片をCuメッシュ上の有機薄膜上に載せて透過型電子
顕微鏡観察するため、観察部の試料膜厚が、集束イオン
ビームで加工した薄片の膜厚とCuメッシュ上の有機薄
膜の膜厚との和となり、厚膜化することによって、透過
型電子顕微鏡観察像が不鮮明になるという問題があっ
た。
However, in the conventional sample preparation method, the sample thin piece processed by the focused ion beam method is placed on the organic thin film on the Cu mesh and is observed by the transmission electron microscope. The film thickness is the sum of the film thickness of the thin piece processed by the focused ion beam and the film thickness of the organic thin film on the Cu mesh, and there is a problem that the transmission electron microscope observation image becomes unclear by increasing the film thickness. It was

【0011】本発明の目的は、上記課題を解決するもの
であり、透過型電子顕微鏡で観察したい特定箇所の透過
型電子顕微鏡観察用試料の観察像を鮮明にすることがで
きる、試料作製方法および試料作製装置を提供すること
にある。
An object of the present invention is to solve the above-mentioned problems, and to provide a sample preparation method and a sample preparation method which can make clear an observation image of a sample for observation with a transmission electron microscope at a specific portion to be observed with a transmission electron microscope. It is to provide a sample preparation device.

【0012】[0012]

【課題を解決するための手段】本発明の目的を達成する
ために、本発明の透過型電子顕微鏡観察用試料の作製方
法は、半導体基板上の観察箇所を含む領域を、マニピュ
レーション装置の針先で取り出せるように、観察箇所周
辺の半導体基板表面層を集束イオンビーム法によって除
去して薄片化する工程と、薄片をマニピュレーション装
置の針先で取り出し、Cuメッシュの有機薄膜上に移す
工程と、薄片に影響を与えることなくCuメッシュの有
機薄膜を除去することができるエネルギーの紫外線光を
用いて、薄片が接しているCuメッシュの有機薄膜を除
去する工程とを有する。
In order to achieve the object of the present invention, a method for producing a sample for observation with a transmission electron microscope according to the present invention includes a region including an observation point on a semiconductor substrate, a needle tip of a manipulation device. So that the thin film can be taken out with a focused ion beam method to remove the semiconductor substrate surface layer around the observation area by a focused ion beam method, the process of taking out the thin film with a needle tip of a manipulation device and transferring it onto an organic thin film of Cu mesh, and the thin film. And the step of removing the Cu mesh organic thin film with which the flakes are in contact, using ultraviolet light of energy capable of removing the Cu mesh organic thin film without affecting the above.

【0013】また、本発明の透過型電子顕微鏡観察用試
料の作製方法において、紫外線光として波長150nm
から270nmの範囲の光を用いることが好ましい。
Further, in the method for producing a sample for observation with a transmission electron microscope of the present invention, the wavelength of the ultraviolet light is 150 nm.
It is preferable to use light in the range from 1 to 270 nm.

【0014】また、本発明の透過型電子顕微鏡観察用試
料の作製方法において、薄片をCuメッシュの有機薄膜
上に移す工程の後、有機薄膜を除去する領域を指定し、
指定領域以外に紫外線光を照射するとともに原料ガスを
供給して指定領域以外に金属膜を成膜する工程と、金属
膜を成膜する工程の後、指定領域に紫外線光を照射して
有機薄膜を除去する工程とを有することが好ましい。
Further, in the method for producing a sample for observation with a transmission electron microscope of the present invention, after the step of transferring the thin piece onto the Cu mesh organic thin film, a region for removing the organic thin film is designated,
After the step of irradiating ultraviolet light to a region other than the designated region and supplying the source gas to form a metal film in the region other than the designated region, and after the step of depositing the metal film, irradiate the designated region with ultraviolet light to form an organic thin film And a step of removing

【0015】また、本発明の透過型電子顕微鏡観察用試
料の作製方法において、原料ガスとしてモリブデンヘキ
サカーボニル(Mo(CO)6)またはタングステンヘキサ
カーボニル(W(CO6))を使用し、紫外線光の励起光源
としてArFエキシマレーザ(波長193nm)またはK
rFエキシマレーザ(波長248nm)を用いることが好
ましい。
In the method for preparing a sample for observation with a transmission electron microscope according to the present invention, molybdenum hexacarbonyl (Mo (CO) 6 ) or tungsten hexacarbonyl (W (CO 6 )) is used as a source gas, and ultraviolet light is used. As an excitation light source for ArF excimer laser (wavelength 193 nm) or K
It is preferable to use an rF excimer laser (wavelength 248 nm).

【0016】また、本発明の透過型電子顕微鏡観察用試
料の作製装置は、Cuメッシュを取り付けた透過型電子
顕微鏡観察用試料ホルダがセットされ、光学顕微鏡下で
移動できる試料保持部と、Cuメッシュ上の試料を拡大
観察する光学顕微鏡部と、金属膜を堆積し、有機薄膜を
除去する紫外線光の励起光源と、指定領域に紫外線光を
照射するためのマスク機能と、金属膜を堆積するための
原料ガスを供給するガス銃とを備え、指定領域以外に紫
外線光を照射すると共に原料ガスを供給して金属膜を堆
積する手段と、指定領域に紫外線光を照射して有機薄膜
を除去する手段とを有する。
Further, the apparatus for preparing a sample for transmission electron microscope observation of the present invention is provided with a sample holder for transmission electron microscope observation to which a Cu mesh is attached, and a sample holder which can be moved under an optical microscope, and a Cu mesh. An optical microscope section for magnifying and observing the sample above, an excitation light source for ultraviolet light that deposits a metal film and removes the organic thin film, a mask function for irradiating a specified area with ultraviolet light, and for depositing a metal film A means for irradiating ultraviolet rays to a region other than the designated region and supplying the source gas to deposit a metal film, and irradiating the designated region with ultraviolet light to remove the organic thin film. And means.

【0017】このような構成とすることにより、透過型
電子顕微鏡で観察したい特定箇所の透過型電子顕微鏡観
察用試料観察像を鮮明にすることができる。
With such a structure, it is possible to make a sample observation image for transmission electron microscope observation of a specific portion desired to be observed with the transmission electron microscope clear.

【0018】[0018]

【発明の実施の形態】(第1の実施形態)本発明の第1
の実施形態に係る透過型電子顕微鏡観察用試料の作製方
法を、図1および図2に示す。
(First Embodiment) First Embodiment of the Present Invention
1 and 2 show a method for producing a sample for transmission electron microscope observation according to the embodiment of FIG.

【0019】図1および図2は、従来と同じ構成である
透過型電子顕微鏡を用いて観察する特定箇所2、集束イ
オンビーム法で加工した加工薄片3、Cuメッシュ4お
よびCuメッシュ4上の有機薄膜5と、本実施形態特有
の紫外線光6、紫外線光で設けられた開口部7を示して
いる。
FIGS. 1 and 2 show a specific portion 2 to be observed using a transmission electron microscope having the same structure as the conventional one, a processed thin piece 3 processed by the focused ion beam method, a Cu mesh 4 and an organic material on the Cu mesh 4. The thin film 5, the ultraviolet light 6 peculiar to this embodiment, and the opening 7 provided by the ultraviolet light are shown.

【0020】ここで、観察箇所2を含む加工薄片3を半
導体基板1から切り出す加工、加工薄片3を半導体基板
1から取り出し、Cuメッシュ4上の有機薄膜5上に載
せる方法に関しては従来と同様である。
Here, the processing of cutting out the processed thin piece 3 including the observation portion 2 from the semiconductor substrate 1, the method of taking out the processed thin piece 3 from the semiconductor substrate 1 and mounting it on the organic thin film 5 on the Cu mesh 4 is the same as the conventional method. is there.

【0021】次に、図1に示すように、紫外線光6を用
いて有機薄膜5を除去する。本実施形態では波長266
nmの紫外線光を用いている。波長266nmの紫外線
光では、有機薄膜を構成するC−C,C−H結合を解離
でき、有機薄膜が除去できる。この過程でSi等で構成
されている観察試料に影響は与えない。
Next, as shown in FIG. 1, the organic thin film 5 is removed using ultraviolet light 6. In this embodiment, the wavelength is 266.
UV light of nm is used. With the ultraviolet light having a wavelength of 266 nm, the C—C and C—H bonds constituting the organic thin film can be dissociated, and the organic thin film can be removed. This process does not affect the observation sample made of Si or the like.

【0022】有機薄膜を除去する領域は光路上に設けら
れているスリットで設定する。本実施形態では紫外線光
6は5μm×5μmの大きさとしている。これによって
観察箇所2を支持している膜厚0.5〜2μmの有機薄
膜の5μm×5μm部分を除去する。
The area where the organic thin film is removed is set by a slit provided on the optical path. In this embodiment, the ultraviolet light 6 has a size of 5 μm × 5 μm. As a result, the 5 μm × 5 μm portion of the organic thin film having a film thickness of 0.5 to 2 μm supporting the observation site 2 is removed.

【0023】図2に、このようにして作製された試料の
断面構造を示す。観察箇所2部分の有機薄膜5が除去さ
れ、開口部7が設けられている。この部分では観察箇所
2の観察試料膜厚が薄くなっている。
FIG. 2 shows the cross-sectional structure of the sample thus produced. The organic thin film 5 in the observation portion 2 part is removed, and the opening 7 is provided. In this portion, the film thickness of the observation sample at the observation point 2 is thin.

【0024】このようにして、観察部分の試料膜厚を透
過型電子顕微鏡観察用試料の膜厚のみとすることができ
るので、明瞭な透過型電子顕微鏡観察が可能となる。
In this way, since the sample film thickness of the observation portion can be made only the film thickness of the sample for observation with the transmission electron microscope, clear transmission electron microscope observation becomes possible.

【0025】(第2の実施形態)上記第1の実施形態で
説明した透過型電子顕微鏡観察用試料の作製方法によっ
て、透過型電子顕微鏡で観察する部分の試料膜厚が薄く
でき、明瞭な透過型電子顕微鏡観察が可能となる。しか
し、有機薄膜に開口部があると透過型電子顕微鏡観察の
際に電子線照射による熱などの影響によって有機薄膜の
穴が拡大するという問題が生じる場合がある。
(Second Embodiment) By the method of preparing a sample for observation with a transmission electron microscope described in the first embodiment, the sample film thickness of the portion observed with the transmission electron microscope can be made thin, resulting in clear transmission. Type electron microscope observation becomes possible. However, if the organic thin film has an opening, there may be a problem that the hole of the organic thin film expands due to the influence of heat due to electron beam irradiation during observation with a transmission electron microscope.

【0026】そこで、この問題を解決するために有機薄
膜の開口部周辺を金属膜で補強した透過型電子顕微鏡観
察用試料の作製方法を説明する。
Therefore, in order to solve this problem, a method for producing a sample for transmission electron microscope observation in which the periphery of the opening of the organic thin film is reinforced with a metal film will be described.

【0027】図3乃至図6が第2の実施形態を説明する
図である。図3乃至図6は、第1の実施形態と同様の構
成以外に、本実施形態特有の構成として、有機薄膜を除
去する領域8、薄膜を堆積するための原料ガス9、原料
ガスを供給するガス銃10、金属膜11を示している。
FIGS. 3 to 6 are views for explaining the second embodiment. 3 to 6 show a region peculiar to the present embodiment, a region 8 for removing an organic thin film, a raw material gas 9 for depositing a thin film, and a raw material gas, in addition to the structure similar to that of the first embodiment. The gas gun 10 and the metal film 11 are shown.

【0028】図3に示すように、Cuメッシュ4上の有
機薄膜5を除去する領域8を指定する。次に、この領域
8をマスクして紫外線光6を照射すると同時に金属膜を
堆積するための原料ガス9をガス銃10から照射する。
As shown in FIG. 3, a region 8 on the Cu mesh 4 where the organic thin film 5 is to be removed is designated. Next, the region 8 is masked and the ultraviolet light 6 is irradiated, and at the same time, the source gas 9 for depositing the metal film is irradiated from the gas gun 10.

【0029】このようにして、図4に示すように、有機
薄膜5を除去する部分以外に金属膜11を堆積する。本
実施形態では波長266nmの紫外線光を、原料ガスと
してモリブデンヘキサカーボニル(Mo(CO)6)を用
い、膜厚約0.3μmの金属膜を堆積した。
In this manner, as shown in FIG. 4, the metal film 11 is deposited on the portion other than the portion where the organic thin film 5 is removed. In this embodiment, ultraviolet light having a wavelength of 266 nm is used as a source gas of molybdenum hexacarbonyl (Mo (CO) 6 ) to deposit a metal film having a thickness of about 0.3 μm.

【0030】次に、図5に示すように、領域8に紫外線
光6を照射し、図6に示すように、金属膜11で被われ
ていない部分の有機薄膜を除去して、有機薄膜の開口部
7を設ける。
Next, as shown in FIG. 5, the region 8 is irradiated with ultraviolet light 6, and as shown in FIG. 6, the portion of the organic thin film not covered with the metal film 11 is removed to remove the organic thin film. The opening 7 is provided.

【0031】本実施形態では、有機薄膜の開口部周辺を
金属膜で補強しているので、透過型電子顕微鏡観察時に
有機薄膜の開口部が拡大することなく、より明瞭な透過
型電子顕微鏡観察を可能とすることができる。
In this embodiment, since the periphery of the opening of the organic thin film is reinforced with the metal film, the opening of the organic thin film does not expand during observation with the transmission electron microscope, and a clearer transmission electron microscope observation is possible. It can be possible.

【0032】(第3の実施形態)本実施形態では、上記
第2の実施形態を実現するための透過型電子顕微鏡観察
用試料の作製装置について説明する。
(Third Embodiment) In this embodiment, an apparatus for producing a sample for observation with a transmission electron microscope for realizing the second embodiment will be described.

【0033】本発明の透過型電子顕微鏡観察用試料の作
製装置の構成図を図7に示す。
FIG. 7 shows a block diagram of the apparatus for producing a sample for observation with a transmission electron microscope according to the present invention.

【0034】図7は、Cuメッシュをセットした透過型
電子顕微鏡観察用試料ホルダを取り付ける試料保持部1
2、光学顕微鏡13で拡大観察するための可視光源14
と像観察用TVカメラ20、有機薄膜の除去および金属
膜を堆積するための紫外光源15と可視光と紫外線光を
切替える光路切替器16、金属膜の原料となるガスを照
射するガス銃17、紫外線光の照射領域を設定するマス
ク18、これらを制御するための制御用コンピュータ1
9を示す。
FIG. 7 shows a sample holder 1 for mounting a transmission electron microscope observation sample holder on which a Cu mesh is set.
2. Visible light source 14 for magnifying observation with the optical microscope 13.
An image observation TV camera 20, an ultraviolet light source 15 for removing an organic thin film and depositing a metal film, an optical path switcher 16 for switching between visible light and ultraviolet light, a gas gun 17 for irradiating a gas as a raw material of a metal film, Mask 18 for setting the irradiation area of ultraviolet light, control computer 1 for controlling these
9 is shown.

【0035】以下、本装置により試料処理順を説明す
る。
The order of sample processing by this apparatus will be described below.

【0036】まず、Cuメッシュをセットした透過型電
子顕微鏡観察用試料ホルダを試料保持部12に取り付け
る。ここで、試料は試料保持部12の移動機能によって
移動できる。次に、試料は可視光源14を用いた光学顕
微鏡13のTVカメラ20で拡大観察でき、有機薄膜を
除去する部分を観察領域に移動する。次に、有機薄膜を
除去する領域を指定する。ここで、光を照射する領域は
マスク18で設定できる。次に、上記で指定した領域外
に紫外線光を照射すると同時にガス銃17から原料ガス
を供給し金属膜を堆積する。次に、指定領域に紫外線光
を照射して、有機薄膜を除去する。以上の操作は制御用
コンピュータ19上で制御する。
First, a transmission electron microscope observation sample holder having a Cu mesh set thereon is attached to the sample holder 12. Here, the sample can be moved by the moving function of the sample holder 12. Next, the sample can be magnified and observed with the TV camera 20 of the optical microscope 13 using the visible light source 14, and the portion where the organic thin film is removed is moved to the observation region. Next, the area | region which removes an organic thin film is designated. Here, the region to be irradiated with light can be set by the mask 18. Next, the source gas is supplied from the gas gun 17 at the same time when the ultraviolet light is irradiated to the outside of the area specified above, and the metal film is deposited. Then, the designated area is irradiated with ultraviolet light to remove the organic thin film. The above operation is controlled by the control computer 19.

【0037】以上のように、本発明の透過型電子顕微鏡
観察用試料の作製装置により、明瞭な透過型電子顕微鏡
観察できる観察試料を容易に作製することができる。
As described above, with the apparatus for preparing a sample for observation with a transmission electron microscope of the present invention, an observation sample with which a clear transmission electron microscope can be observed can be easily prepared.

【0038】[0038]

【発明の効果】以上のように、本発明の透過型電子顕微
鏡観察用試料の作製方法および作製装置によって、特定
箇所の透過型電子顕微鏡観察用試料観察像を鮮明にする
ことが出来る。
As described above, with the method and apparatus for producing a sample for observation with a transmission electron microscope according to the present invention, it is possible to make a specimen observation image for observation with a transmission electron microscope at a specific location clear.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態に係る透過型電子顕微
鏡観察用試料の作製方法を示す模式図
FIG. 1 is a schematic diagram showing a method for producing a transmission electron microscope observation sample according to a first embodiment of the present invention.

【図2】本発明の第1の実施形態に係る透過型電子顕微
鏡観察用試料の断面を示す図
FIG. 2 is a view showing a cross section of a sample for observation with a transmission electron microscope according to the first embodiment of the present invention.

【図3】本発明の第2の実施形態に係る透過型電子顕微
鏡観察用試料の作製方法を示す模式図
FIG. 3 is a schematic diagram showing a method for producing a transmission electron microscope observation sample according to a second embodiment of the present invention.

【図4】本発明の第2の実施形態に係る透過型電子顕微
鏡観察用試料の作製方法を示す模式図
FIG. 4 is a schematic diagram showing a method for producing a transmission electron microscope observation sample according to a second embodiment of the present invention.

【図5】本発明の第2の実施形態に係る透過型電子顕微
鏡観察用試料の作製方法を示す模式図
FIG. 5 is a schematic diagram showing a method for producing a transmission electron microscope observation sample according to a second embodiment of the present invention.

【図6】本発明の第2の実施形態に係る透過型電子顕微
鏡観察用試料の断面を示す図
FIG. 6 is a view showing a cross section of a sample for observation with a transmission electron microscope according to a second embodiment of the present invention.

【図7】本発明の第3の実施形態に係る透過型電子顕微
鏡観察用試料の作製装置を示す構成図
FIG. 7 is a configuration diagram showing an apparatus for producing a sample for observation with a transmission electron microscope according to a third embodiment of the present invention.

【図8】従来の透過型電子顕微鏡観察用試料の作製方法
を示す模式図
FIG. 8 is a schematic diagram showing a conventional method for preparing a sample for observation with a transmission electron microscope.

【図9】従来の透過型電子顕微鏡観察用試料の断面を示
す図
FIG. 9 is a view showing a cross section of a conventional transmission electron microscope observation sample.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 観察箇所 3 加工薄片 4 Cuメッシュ 5 Cuメッシュ上の有機薄膜 6 紫外線光 7 開口部 8 有機薄膜を除去する設定領域 9 原料ガス 10 ガス銃 11 金属膜 1 Semiconductor substrate 2 observation points 3 processed flakes 4 Cu mesh 5 Organic thin film on Cu mesh 6 UV light 7 openings 8 Setting area to remove organic thin film 9 Raw material gas 10 gas guns 11 Metal film

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G001 AA03 BA11 CA03 GA01 GA06 HA09 HA13 LA11 MA05 RA02 RA10 2G052 AA13 AC28 AD32 AD52 EC17 EC18 ED10 FD06 GA34 JA09 JA11 5C001 AA01 CC01    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2G001 AA03 BA11 CA03 GA01 GA06                       HA09 HA13 LA11 MA05 RA02                       RA10                 2G052 AA13 AC28 AD32 AD52 EC17                       EC18 ED10 FD06 GA34 JA09                       JA11                 5C001 AA01 CC01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上の観察箇所を含む領域を、
マニピュレーション装置の針先で取り出せるように、前
記観察箇所周辺の前記半導体基板表面層を集束イオンビ
ーム法によって除去して薄片化する工程と、前記薄片を
前記マニピュレーション装置の針先で取り出し、Cuメ
ッシュの有機薄膜上に移す工程と、前記薄片に影響を与
えることなく前記Cuメッシュの有機薄膜を除去するこ
とができるエネルギーの紫外線光を用いて、前記薄片が
接している前記Cuメッシュの有機薄膜を除去する工程
とを有することを特徴とする透過型電子顕微鏡観察用試
料の作製方法。
1. A region including an observation point on a semiconductor substrate
A step of removing the semiconductor substrate surface layer around the observation site by a focused ion beam method to make thin pieces so that the thin pieces can be taken out by the needle tip of the manipulation device, and the thin pieces are taken out by the needle tip of the manipulation device to form a Cu mesh. The step of transferring onto the organic thin film, and removing the organic thin film of the Cu mesh with which the thin piece is in contact by using the ultraviolet light of energy capable of removing the organic thin film of the Cu mesh without affecting the thin piece The method for producing a sample for observation with a transmission electron microscope, comprising:
【請求項2】 紫外線光として波長150nmから27
0nmの範囲の光を用いることを特徴とする請求項1に
記載の透過型電子顕微鏡観察用試料の作製方法。
2. A wavelength of 150 nm to 27 as ultraviolet light.
The method for producing a sample for observation with a transmission electron microscope according to claim 1, wherein light in the range of 0 nm is used.
【請求項3】 薄片をCuメッシュの有機薄膜上に移す
工程の後、有機薄膜を除去する領域を指定し、前記指定
領域以外に紫外線光を照射するとともに原料ガスを供給
して前記指定領域以外に金属膜を成膜する工程と、前記
金属膜を成膜する工程の後、前記指定領域に紫外線光を
照射して前記有機薄膜を除去する工程とを有することを
特徴とする請求項1に記載の透過型電子顕微鏡観察用試
料の作製方法。
3. After the step of transferring the thin piece onto the Cu mesh organic thin film, a region where the organic thin film is to be removed is designated, and a region other than the designated region is irradiated with ultraviolet light and a source gas is supplied to cause the region other than the designated region. 2. The method according to claim 1, further comprising a step of forming a metal film on the substrate, and a step of irradiating the designated region with ultraviolet light to remove the organic thin film after the step of forming the metal film. A method for producing a sample for observation with a transmission electron microscope as described above.
【請求項4】 原料ガスとしてモリブデンヘキサカーボ
ニル(Mo(CO)6)またはタングステンヘキサカーボニ
ル(W(CO6))を使用し、紫外線光の励起光源としてA
rFエキシマレーザ(波長193nm)またはKrFエキ
シマレーザ(波長248nm)を用いることを特徴とする
請求項3に記載の透過型電子顕微鏡観察用試料の作製方
法。
4. A molybdenum hexacarbonyl (Mo (CO) 6 ) or tungsten hexacarbonyl (W (CO 6 )) is used as a source gas, and A is used as an excitation light source for ultraviolet light.
The method for producing a sample for observation with a transmission electron microscope according to claim 3, wherein an rF excimer laser (wavelength 193 nm) or a KrF excimer laser (wavelength 248 nm) is used.
【請求項5】 Cuメッシュを取り付けた透過型電子顕
微鏡観察用試料ホルダがセットされ、光学顕微鏡下で移
動できる試料保持部と、Cuメッシュ上の試料を拡大観
察する光学顕微鏡部と、金属膜を堆積し、有機薄膜を除
去する紫外線光の励起光源と、指定領域に前記紫外線光
を照射するためのマスク機能と、前記金属膜を堆積する
ための原料ガスを供給するガス銃とを備え、前記指定領
域以外に前記紫外線光を照射すると共に前記原料ガスを
供給して前記金属膜を堆積する手段と、前記指定領域に
前記紫外線光を照射して前記有機薄膜を除去する手段と
を有することを特徴とする透過型電子顕微鏡観察用試料
の作製装置。
5. A transmission electron microscope observation sample holder to which a Cu mesh is attached is set, and a sample holding section that can be moved under an optical microscope, an optical microscope section for magnifying and observing a sample on the Cu mesh, and a metal film are provided. An ultraviolet light excitation light source for depositing and removing an organic thin film, a mask function for irradiating the ultraviolet light to a designated region, and a gas gun for supplying a raw material gas for depositing the metal film are provided. It has means for irradiating the ultraviolet light to a region other than the designated region and supplying the source gas to deposit the metal film, and means for irradiating the designated region with the ultraviolet light to remove the organic thin film. A device for producing a characteristic sample for transmission electron microscope observation.
JP2001265538A 2001-09-03 2001-09-03 Preparation method and preparation device for sample for transmission type electron microscope observation Pending JP2003075311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001265538A JP2003075311A (en) 2001-09-03 2001-09-03 Preparation method and preparation device for sample for transmission type electron microscope observation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001265538A JP2003075311A (en) 2001-09-03 2001-09-03 Preparation method and preparation device for sample for transmission type electron microscope observation

Publications (1)

Publication Number Publication Date
JP2003075311A true JP2003075311A (en) 2003-03-12

Family

ID=19091991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001265538A Pending JP2003075311A (en) 2001-09-03 2001-09-03 Preparation method and preparation device for sample for transmission type electron microscope observation

Country Status (1)

Country Link
JP (1) JP2003075311A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191156A (en) * 2007-02-05 2008-08-21 Fei Co Method for thinning sample, and sample carrier therefor
CN103822963A (en) * 2014-03-19 2014-05-28 哈尔滨工业大学 Method for identifying whether organic matters are utilized by ANAMMOX (anaerobic ammonium oxidation) bacteria in ANAMMOX reactor sludge
CN105486553A (en) * 2014-09-01 2016-04-13 力晶科技股份有限公司 Preparation method of transmission electron microscope test piece

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191156A (en) * 2007-02-05 2008-08-21 Fei Co Method for thinning sample, and sample carrier therefor
CN103822963A (en) * 2014-03-19 2014-05-28 哈尔滨工业大学 Method for identifying whether organic matters are utilized by ANAMMOX (anaerobic ammonium oxidation) bacteria in ANAMMOX reactor sludge
CN105486553A (en) * 2014-09-01 2016-04-13 力晶科技股份有限公司 Preparation method of transmission electron microscope test piece

Similar Documents

Publication Publication Date Title
US5035787A (en) Method for repairing semiconductor masks and reticles
TWI336277B (en) Laser processing device, laser processing head and laser processing method
US4503329A (en) Ion beam processing apparatus and method of correcting mask defects
KR100799014B1 (en) Method and apparatus for manufacturing ultra fine three-dimensional structure
JPS59168652A (en) Method and apparatus for correcting element
JP2005015922A (en) Proximity deposition method and system therefor
USRE33193E (en) Ion beam processing apparatus and method of correcting mask defects
US5165954A (en) Method for repairing semiconductor masks & reticles
DE102012109961B4 (en) Focused ion beam device
US8815474B2 (en) Photomask defect correcting method and device
EP0216750B1 (en) Ion beam apparatus and process for realizing modifications, especially corrections, on substrates, using an ion beam apparatus
JP2003075311A (en) Preparation method and preparation device for sample for transmission type electron microscope observation
JP2843249B2 (en) Method and apparatus for manufacturing a device
JPH11218473A (en) Method and device for preparing sample for section transmission electron microscope
JPS60100421A (en) Ion beam device
JP2987417B2 (en) In-situ preparation and observation method of thin film sample for transmission electron microscope and its apparatus
JP3531323B2 (en) Ion beam processing method and apparatus
JPH01503580A (en) Mask repair using an optimized focused ion beam device
EP0571727A1 (en) Apparatus and method for focussed ion beam deposition by controlling beam parameters
Wagner et al. Focused ion beam repair of lithographic masks
JPH09186138A (en) Ion beam processing apparatus
JP7214262B2 (en) Charged particle beam device, sample processing method
JP3908530B2 (en) Photomask white defect correction method
JPH01124857A (en) Ion beam processing device
JPH03122643A (en) Ion beam working method