JP2003069091A - Ceramic substrate for thermoelectric exchange module - Google Patents

Ceramic substrate for thermoelectric exchange module

Info

Publication number
JP2003069091A
JP2003069091A JP2001257611A JP2001257611A JP2003069091A JP 2003069091 A JP2003069091 A JP 2003069091A JP 2001257611 A JP2001257611 A JP 2001257611A JP 2001257611 A JP2001257611 A JP 2001257611A JP 2003069091 A JP2003069091 A JP 2003069091A
Authority
JP
Japan
Prior art keywords
ceramic substrate
layer
thermoelectric
exchange module
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001257611A
Other languages
Japanese (ja)
Other versions
JP4313964B2 (en
Inventor
Yoshihiro Ushio
義弘 潮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001257611A priority Critical patent/JP4313964B2/en
Publication of JP2003069091A publication Critical patent/JP2003069091A/en
Application granted granted Critical
Publication of JP4313964B2 publication Critical patent/JP4313964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic substrate for thermoelectric exchange module that can efficiently transfer the heat generated from a heat generating body, such as an optical semiconductor element, etc., to the outside by relieving thermal stresses generated by the difference in thermal expansion between the electrodes and thermoelectric elements of the ceramic substrate by sufficiently absorbing the thermal stresses. SOLUTION: On one main surface of this ceramic substrate 1 for thermoelectric exchange module, a plurality of electrodes 2 on the top faces of which the thermoelectric elements 3 are mounted and fixed are independently formed. Each electrode 2 is constituted by laminating a copper layer 2b having an upper surface roughened to have an arithmetic mean surface roughness of 4-85 μm and a curved surface all around from the outer peripheral edge of the upper surface to the side face upon the flat-surface section of each metallized layer 2a having the flat-surface section of 5-40 μm in thickness at the central part and an outer peripheral edge depressed to a mountain foot-like shape all around.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光通信分野等に使
用される半導体レーザ(LD),フォトダイオード(P
D)等の光半導体素子を作動時に冷却するための熱電交
換モジュール用セラミック基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser (LD) and a photodiode (P) used in the field of optical communication and the like.
The present invention relates to a ceramic substrate for a thermoelectric exchange module for cooling an optical semiconductor element such as D) during operation.

【0002】[0002]

【従来の技術】従来の光通信分野等に使用されるLD,
PD等の光半導体素子を作動時に冷却するための熱電交
換モジュールは、光半導体素子の作動時に発する熱を外
部へ伝えることにより、光半導体素子を常に一定の温度
に保持する熱電冷却装置として機能する。この熱電交換
モジュール、即ち熱電冷却装置は、セラミック基板の主
面においてp型とn型の熱電素子を電気的に直列または
並列に接続して一体構造とした状態で、ペルチェ効果を
利用して高温端の電極および低温端の電極に印加した電
圧に依存して温度差を生じさせることにより一端を冷却
するものである。
2. Description of the Related Art LDs used in conventional optical communication fields,
A thermoelectric exchange module for cooling an opto-semiconductor element such as a PD operates as a thermoelectric cooling device that always keeps the opto-semiconductor element at a constant temperature by transmitting heat generated when the opto-semiconductor element is actuated to the outside. . This thermoelectric exchange module, that is, a thermoelectric cooling device, utilizes a Peltier effect to increase the temperature at a high temperature in a state in which p-type and n-type thermoelectric elements are electrically connected in series or in parallel on the main surface of a ceramic substrate. One end is cooled by producing a temperature difference depending on the voltage applied to the end electrode and the low temperature end electrode.

【0003】そして、従来の熱電交換モジュール用セラ
ミック基板は、図3に電極周辺部の断面図を示すよう
に、アルミナ(Al23)セラミックスや窒化アルミニ
ウム(AlN)セラミックス等のセラミック基板101
の一方の主面に、複数の電極となる銅(Cu)層102
bが被着されている。このCu層102bは、セラミッ
ク基板101の一方の主面全面に無電解メッキによるC
u層を被着させた後、Cu層102bを形成しない部位
にメッキレジストを施し、さらに電解メッキによるCu
層をメッキレジストの高さよりも低い位置まで被着さ
せ、その後メッキレジストを剥離するとともにメッキレ
ジスト直下の無電解メッキによるCu層をエッチング等
により除去することにより、それぞれ独立した(電気的
に絶縁された)複数の電極となる。
A conventional ceramic substrate for a thermoelectric exchange module has a ceramic substrate 101 made of alumina (Al 2 O 3 ) ceramics, aluminum nitride (AlN) ceramics or the like, as shown in the sectional view of the electrode peripheral portion in FIG.
A copper (Cu) layer 102 serving as a plurality of electrodes on one main surface of
b is applied. The Cu layer 102b is formed by electroless plating of C on the entire one main surface of the ceramic substrate 101.
After depositing the u layer, a plating resist is applied to a portion where the Cu layer 102b is not formed, and then Cu is formed by electrolytic plating.
The layers are deposited to a position lower than the height of the plating resist, and then the plating resist is peeled off and the Cu layer formed by electroless plating directly below the plating resist is removed by etching or the like. It has multiple electrodes.

【0004】さらに、Cu層102bの上面の平坦部に
ニッケル(Ni)メッキ層と金(Au)メッキ層を順に
被着させ、錫(Sn)−銀(Ag)系,Sn−アンチモ
ン(Sb)系,Sn−ビスマス(Bi)系,Sn−鉛
(Pb)系等の半田を介して、p型,n型の熱電素子1
03を固着することにより、製品としての熱電交換モジ
ュールが作製される。
Further, a nickel (Ni) plating layer and a gold (Au) plating layer are sequentially deposited on the flat portion of the upper surface of the Cu layer 102b, and tin (Sn) -silver (Ag) system and Sn-antimony (Sb) are deposited. System, Sn-bismuth (Bi) system, Sn-lead (Pb) system or the like via a p-type or n-type thermoelectric element 1
By fixing 03, a thermoelectric exchange module as a product is manufactured.

【0005】上記の熱電交換モジュールにより、光半導
体素子等の発熱体が作動時に発する熱は、熱電素子10
3からCu層102b、セラミック基板101を介して
外部へ効率良く伝えられる。
With the thermoelectric exchange module described above, the heat generated by a heating element such as an optical semiconductor element during operation is generated by the thermoelectric element 10
3 is efficiently transmitted to the outside through the Cu layer 102b and the ceramic substrate 101.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、発熱体
の作動時における熱量が非常に大きいため、より大きな
電流を流してペルチェ効果をさらに発揮させなければな
らない場合、従来の技術では、2つの大きな問題点があ
る。
However, when the amount of heat during operation of the heating element is so large that a larger current must be passed to further exert the Peltier effect, the conventional technique has two major problems. There is a point.

【0007】まず第1に、セラミック基板101がより
高温となりセラミック基板101とCu層102bとの
熱膨張差による熱応力がより大きくなり、Cu層102
bの外周端のセラミック基板101と接合されている部
位を起点として、それらの間で剥がれが発生することが
ある。そのため、発熱体が作動時に発する熱が、Cu層
102bからセラミック基板101に効率良く伝わら
ず、その結果、発熱体が作動時に発する熱が外部に効率
良く伝達し難くなり発熱体の作動性が劣化するという問
題があった。
First, the temperature of the ceramic substrate 101 becomes higher, and the thermal stress due to the difference in thermal expansion between the ceramic substrate 101 and the Cu layer 102b becomes larger.
Starting from a portion of the outer peripheral end of b that is joined to the ceramic substrate 101, peeling may occur between them. Therefore, the heat generated when the heating element operates is not efficiently transferred from the Cu layer 102b to the ceramic substrate 101, and as a result, the heat generated when the heating element operates is difficult to efficiently transmit to the outside, and the operability of the heating element deteriorates. There was a problem of doing.

【0008】そこで、図4(a)に電極部の拡大断面図
を示すように、セラミック基板101の一方の主面に、
モリブデン(Mo),マンガン(Mn),タングステン
(W)等の粉末に有機溶剤,溶媒を添加混合して得た金
属ペーストをスクリーン印刷法により印刷塗布し焼結す
ることによりメタライズ層102aを形成し、このメタ
ライズ層102aをセラミック基板101とCu層10
2bとの強固な接合媒体として機能させる構成もある。
なお、この場合、メタライズ層102aとCu層102
bとで電極102が構成される。
Therefore, as shown in the enlarged cross-sectional view of the electrode portion in FIG. 4A, one main surface of the ceramic substrate 101 is
A metallized layer 102a is formed by printing and applying a metal paste obtained by adding and mixing an organic solvent and a solvent to powders of molybdenum (Mo), manganese (Mn), tungsten (W), etc. by screen printing and sintering. The metallized layer 102a is used as the ceramic substrate 101 and the Cu layer 10.
There is also a configuration in which it functions as a strong joining medium with 2b.
In this case, the metallized layer 102a and the Cu layer 102
The electrode 102 is constituted by b.

【0009】しかしながら、図4(b)に図4(a)の
要部拡大断面図を示すように、メタライズ層102aの
外周端の形状は、その厚さ,印刷塗布条件,焼結等の製
造条件によって、セラミック基板101と電極102と
の熱膨張差による熱応力を、メタライズ層102aの外
周端が十分に吸収し緩和させることが困難な形状とな
る。即ち、従来、メタライズ層102aの外周端は外側
に向かって凸の曲面、またはセラミック基板101に対
してほぼ垂直な面となっており、図3の場合よりもセラ
ミック基板101と電極102との接合強度は向上する
が、熱応力が発生した際に吸収し緩和させ難い。つま
り、メタライズ層102aの外周端の接合部がセラミッ
ク基板101に対してほぼ垂直になっているため、セラ
ミック基板101と電極102との間で発生した面方向
の熱応力によって、メタライズ層102aの外周端が剥
離し易くなっていると考えられる。
However, as shown in FIG. 4 (b), which is an enlarged cross-sectional view of the main part of FIG. 4 (a), the outer peripheral edge of the metallized layer 102a is shaped such that its thickness, print coating conditions, sintering, etc. Depending on the conditions, the thermal stress due to the difference in thermal expansion between the ceramic substrate 101 and the electrode 102 is sufficiently absorbed by the outer peripheral end of the metallized layer 102a and is difficult to relax. That is, conventionally, the outer peripheral edge of the metallized layer 102a is a curved surface that is convex outward, or a surface that is substantially perpendicular to the ceramic substrate 101, and the ceramic substrate 101 and the electrode 102 are bonded to each other more than in the case of FIG. Strength is improved, but it is difficult to absorb and relax when thermal stress occurs. That is, since the joint portion at the outer peripheral end of the metallized layer 102a is substantially perpendicular to the ceramic substrate 101, the thermal stress in the surface direction generated between the ceramic substrate 101 and the electrode 102 causes the outer periphery of the metallized layer 102a. It is considered that the edges are easily peeled off.

【0010】第2に、セラミック基板101がより高温
になるに伴い、電極102の一部を構成するCu層10
2bもより高温となる。そのため、Cu層102bと熱
電素子103との熱膨張差による熱応力がより大きく成
り、Cu層102bと熱電素子103とが接合されてい
る部位を起点として、それらの間で剥がれが発生するこ
とがある。そのため、発熱体が作動時に発する熱が、熱
電素子103からCu層102bに効率良く伝わらず、
その結果、発熱体が作動時に発する熱が外部に効率良く
伝達し難くなり発熱体の作動性が劣化するという問題が
あった。
Second, as the temperature of the ceramic substrate 101 becomes higher, the Cu layer 10 forming a part of the electrode 102 is formed.
2b also becomes hotter. Therefore, the thermal stress due to the difference in thermal expansion between the Cu layer 102b and the thermoelectric element 103 becomes larger, and peeling may occur between the Cu layer 102b and the thermoelectric element 103, starting from the joint. is there. Therefore, the heat generated when the heating element operates does not efficiently transfer from the thermoelectric element 103 to the Cu layer 102b,
As a result, there is a problem that it is difficult to efficiently transfer the heat generated by the heating element to the outside, and the operability of the heating element deteriorates.

【0011】上記のように、セラミック基板101と電
極102との間で発生した熱応力、および電極102と
熱電素子103との間で発生した熱応力により、それぞ
れセラミック基板101とメタライズ層102aとの間
の剥がれや、Cu層102bと熱電素子103との間の
剥がれが発生し、発熱体が作動時に発する熱を外部に効
率良く伝達し難くなり、発熱体の作動性が劣化するとい
う問題があった。
As described above, due to the thermal stress generated between the ceramic substrate 101 and the electrode 102 and the thermal stress generated between the electrode 102 and the thermoelectric element 103, the ceramic substrate 101 and the metallized layer 102a are respectively formed. There is a problem in that peeling occurs between the Cu layer 102b and the thermoelectric element 103, and it becomes difficult to efficiently transfer the heat generated by the heating element to the outside, and the operability of the heating element deteriorates. It was

【0012】従って、本発明は上記問題点に鑑み完成さ
れたものであり、その目的は、セラミック基板と電極と
の熱膨張差により発生する熱応力、および電極と熱電素
子との熱膨張差により発生する熱応力を十分に吸収し緩
和させることにより、光半導体素子等の発熱体から発す
る熱を外部に効率良く伝達させ得る熱電交換モジュール
用セラミック基板を提供することにある。
Therefore, the present invention has been completed in view of the above problems, and an object of the present invention is to provide a thermal stress generated by a difference in thermal expansion between a ceramic substrate and an electrode and a thermal expansion difference between an electrode and a thermoelectric element. It is an object of the present invention to provide a ceramic substrate for a thermoelectric exchange module which can efficiently transfer heat generated from a heating element such as an optical semiconductor element to the outside by sufficiently absorbing and relaxing the generated thermal stress.

【0013】[0013]

【課題を解決するための手段】本発明の熱電交換モジュ
ール用セラミック基板は、セラミック基板の一方の主面
に、上面に熱電素子が載置固定される電極がそれぞれ独
立して複数形成された熱電交換モジュール用セラミック
基板において、前記電極は、中央部が厚さ5〜40μm
の平坦面部であり外周端が全周にわたってくぼんだ曲面
から成る裾野状とされたメタライズ層の前記平坦面部上
に、上面の算術平均粗さが4〜85μmであり、かつ前
記上面の外周端から側面にかけて全周にわたってなだら
かな曲面とされている銅層が積層されて成ることを特徴
とする。
A ceramic substrate for a thermoelectric exchange module according to the present invention has a thermoelectric element in which a plurality of electrodes on which thermoelectric elements are mounted and fixed are independently formed on one main surface of the ceramic substrate. In the exchange module ceramic substrate, the central portion of the electrode has a thickness of 5 to 40 μm.
On the flat surface portion of the metallized layer which is a flat surface portion and has a skirt-shaped outer peripheral edge formed of a curved surface all around, the arithmetic average roughness of the upper surface is 4 to 85 μm, and from the outer peripheral edge of the upper surface. It is characterized in that it is formed by laminating a copper layer having a gentle curved surface all around the side surface.

【0014】本発明は、上記の構成により、セラミック
基板と電極との熱膨張差により発生する熱応力、および
Cu層と熱電素子との熱膨張差により発生する熱応力を
十分に吸収し緩和させて、電極や熱電素子の剥がれを防
ぐことができる。その結果、光半導体素子等の発熱体か
ら発する熱を外部に効率良く伝達できる。
According to the present invention, with the above structure, the thermal stress generated by the difference in thermal expansion between the ceramic substrate and the electrode and the thermal stress generated by the difference in thermal expansion between the Cu layer and the thermoelectric element are sufficiently absorbed and relaxed. As a result, peeling of the electrodes and thermoelectric elements can be prevented. As a result, the heat generated from the heating element such as the optical semiconductor element can be efficiently transmitted to the outside.

【0015】本発明において、好ましくは、前記メタラ
イズ層の裾野状部の幅が5〜70μmであることを特徴
とする。
In the present invention, preferably, the width of the bottom portion of the metallized layer is 5 to 70 μm.

【0016】本発明は、上記の構成により、セラミック
基板と電極との熱膨張差により発生する熱応力を、より
十分に吸収緩和させ得、電極の剥がれを防ぐ効果がさら
に向上する。
According to the present invention, with the above structure, the thermal stress generated by the difference in thermal expansion between the ceramic substrate and the electrode can be absorbed and relaxed more sufficiently, and the effect of preventing the electrode from peeling is further improved.

【0017】[0017]

【発明の実施の形態】本発明の熱電交換モジュール用セ
ラミック基板を以下に詳細に説明する。図1および図2
は、本発明の熱電交換モジュール用セラミック基板につ
いて実施の形態の一例を示すものであり、図1は熱電交
換モジュール用セラミック基板の電極周辺部の断面図、
図2は図1の要部拡大断面図を示す。
BEST MODE FOR CARRYING OUT THE INVENTION The ceramic substrate for a thermoelectric exchange module of the present invention will be described in detail below. 1 and 2
1 shows an example of an embodiment of a ceramic substrate for a thermoelectric exchange module of the present invention. FIG. 1 is a sectional view of an electrode peripheral portion of the ceramic substrate for a thermoelectric exchange module,
FIG. 2 shows an enlarged cross-sectional view of the main part of FIG.

【0018】図1において、1はセラミック基板、2は
メタライズ層2aと銅層2bとから成る電極、3は熱電
素子であり、これらセラミック基板1,電極2,熱電素
子3とで、光半導体素子等の発熱体が作動時に発する熱
を外部に効率良く伝える熱電交換モジュールが構成され
る。また、本発明の熱電交換モジュール用セラミック基
板は、セラミック基板1と電極2とにより構成される。
In FIG. 1, 1 is a ceramic substrate, 2 is an electrode composed of a metallized layer 2a and a copper layer 2b, 3 is a thermoelectric element, and these ceramic substrate 1, electrode 2 and thermoelectric element 3 are optical semiconductor elements. The thermoelectric exchange module is configured to efficiently transfer the heat generated by the heating element such as the like to the outside. The ceramic substrate for thermoelectric exchange module of the present invention is composed of the ceramic substrate 1 and the electrode 2.

【0019】セラミック基板1は、アルミナ(Al
23)セラミックスや窒化アルミニウム(AlN)セラ
ミックス等のセラミックスから成り、その作製方法は、
原料粉末に適当な有機バインダや溶剤等を添加混合しペ
ースト状と成すとともに、このペーストをドクターブレ
ード法やカレンダーロール法によってセラミックグリー
ンシートと成し、しかる後セラミックグリーンシートに
適当な打ち抜き加工を施し、これを約1600℃の高温
で焼結する方法である。
The ceramic substrate 1 is made of alumina (Al
2 O 3 ) ceramics, aluminum nitride (AlN) ceramics, and other ceramics.
A suitable organic binder, solvent, etc. are added to the raw material powder and mixed to form a paste, and this paste is formed into a ceramic green sheet by the doctor blade method or calendar roll method, and then the ceramic green sheet is appropriately punched. This is a method of sintering this at a high temperature of about 1600 ° C.

【0020】セラミック基板1の一方の主面には、ペル
チェ効果を利用してセラミック基板1を高温側または低
温側にするための、電圧印加用の複数の電極2が形成さ
れる。これらの電極2はそれぞれ独立しており、電極2
は、中央部が厚さ5〜40μmの平坦面部であり外周端
が全周にわたってくぼんだ曲面から成る裾野状とされた
メタライズ層2aの平坦面部上に、上面の算術平均粗さ
が4〜85μmであり、かつ上面の外周端から側面にか
けて全周にわたってなだらかな曲面とされているCu層
2bが積層されて成る。このような電極2は、例えば以
下の工程[1]〜[4]のようにして作製される。
A plurality of electrodes 2 for voltage application are formed on one main surface of the ceramic substrate 1 to bring the ceramic substrate 1 to the high temperature side or the low temperature side by utilizing the Peltier effect. These electrodes 2 are independent of each other.
Is a flat surface portion having a thickness of 5 to 40 μm in the central portion and a skirt-shaped metallized layer 2a formed of a curved surface whose outer peripheral edge is indented all around, and the arithmetic average roughness of the upper surface is 4 to 85 μm. In addition, the Cu layer 2b having a smooth curved surface is laminated over the entire circumference from the outer peripheral edge of the upper surface to the side surface. Such an electrode 2 is manufactured, for example, by the following steps [1] to [4].

【0021】[1]セラミック基板1の一方の主面に、
メタライズ層2aと成るW,Mo,Mn等の粉末に有機
溶剤,溶媒を添加混合して得た金属ペーストを、予め従
来周知のスクリーン印刷法により5〜40μmの厚さで
全面に印刷塗布し、約1300℃の高温で焼結する。
[1] On one main surface of the ceramic substrate 1,
A metal paste obtained by adding and mixing an organic solvent and a solvent to powders of W, Mo, Mn, etc., which will be the metallized layer 2a, is printed and applied in advance to a thickness of 5 to 40 μm by a conventionally known screen printing method, Sinter at a high temperature of about 1300 ° C.

【0022】[2]焼結した金属ペーストの上面に、C
u層2bを形成しない部位にメッキレジストを約300
μm程度の厚さで施した後、電解Cuメッキをメッキレ
ジストの高さ(厚さ)よりも低い位置まで被着させ、そ
の後メッキレジストを剥離する。この工程により、全面
がメタライズ層2aから成る上面に、複数の独立したC
u層2bが形成されることとなる。
[2] On the upper surface of the sintered metal paste, C
Approximately 300 plating resist is applied to the area where the u layer 2b is not formed.
After applying a thickness of about μm, electrolytic Cu plating is applied to a position lower than the height (thickness) of the plating resist, and then the plating resist is peeled off. By this step, a plurality of independent C's are formed on the upper surface entirely formed of the metallized layer 2a.
The u layer 2b is formed.

【0023】[3]複数の独立したCu層2bの周縁下
端の周辺部のみにメタライズ層2aが残存するように、
即ちCu層2bが互いに電気的に絶縁されるように、お
よびCu層2bの上面の算術平均粗さが4〜85μmと
なるように、さらに熱電素子3が載置固定される上面の
平坦面部の外周側の外周端が全周にわたってなだらかな
曲面となるように、それぞれのCu層2b間のメタライ
ズ層2aとCu層2b上面と外周端周辺部とをブラスト
研磨する。ブラスト研磨は、ブラスト材がAl 23,S
iC等のセラミック粉から成り、その粒径は約25μm
程度、ノズル距離100mm,噴射圧力0.3MPa
(メガパスカル),噴射量160g/分,ノズル移動速
度50mm/秒の条件により吹き付けることにより行わ
れる。
[3] Under the periphery of a plurality of independent Cu layers 2b
So that the metallized layer 2a remains only in the peripheral portion of the edge,
That is, the Cu layer 2b should be electrically insulated from each other.
And the arithmetic average roughness of the upper surface of the Cu layer 2b is 4 to 85 μm.
So that the thermoelectric element 3 is placed and fixed on the upper surface.
The outer peripheral edge on the outer peripheral side of the flat surface is gentle over the entire circumference
The metal layers between the Cu layers 2b should be curved to form curved surfaces.
Blasting the upper surfaces of the copper layer 2a, the Cu layer 2b, and the periphery of the outer peripheral edge.
Grind. For blast polishing, the blast material is Al 2O3, S
It is made of ceramic powder such as iC and has a particle size of about 25 μm.
Degree, nozzle distance 100mm, injection pressure 0.3MPa
(Megapascal), injection amount 160g / min, nozzle moving speed
Performed by spraying under conditions of 50 mm / sec.
Be done.

【0024】[4]その後、水洗によりブラスト材を洗
浄し乾燥する。
[4] After that, the blast material is washed with water and dried.

【0025】電極2のメタライズ層2aは、その外周端
が全周にわたってくぼんだ曲面から成る裾野状とされて
いるため、即ち、メタライズ層2aの外周端が外側に向
かって凸もしくはセラミック基板1に対してほぼ垂直な
面とはならないため、ペルチェ効果によりセラミック基
板1が高温となっても、セラミック基板1とCu層2b
との間の熱膨張差により発生した熱応力を十分に吸収し
緩和させ得る。そのため、セラミック基板1とメタライ
ズ層2aとの間で剥がれが発生しない。その結果、発熱
体が作動時に発する熱を外部に効率良く伝達し、発熱体
の作動性を非常に良好なものとし得る。
The metallized layer 2a of the electrode 2 has a skirt shape in which the outer peripheral edge is formed of a curved surface which is concave over the entire circumference, that is, the outer peripheral edge of the metallized layer 2a is convex outward or is formed on the ceramic substrate 1. Since the surface is not substantially vertical to the ceramic substrate 1, even if the temperature of the ceramic substrate 1 becomes high due to the Peltier effect, the ceramic substrate 1 and the Cu layer 2b
The thermal stress generated by the difference in thermal expansion between and can be sufficiently absorbed and relaxed. Therefore, peeling does not occur between the ceramic substrate 1 and the metallized layer 2a. As a result, the heat generated by the heating element can be efficiently transmitted to the outside, and the operability of the heating element can be made very good.

【0026】なお、メタライズ層2aの中央部の厚さが
5μm未満の場合、厚さが非常に薄いため、メタライズ
層2aの外周端をくぼんだ曲面から成る裾野状とするこ
とが困難であり、また焼結後にメタライズ層2a中にボ
イド(空孔)等が発生しセラミック基板1との接合強度
を十分なものとし難いという問題点がある。一方、40
μmを超える場合、熱電交換モジュールの高さが高くな
り、近時の熱電交換モジュールの小型軽量化といった動
向から外れる。また、この場合、熱伝導率がそれほど高
くないメタライズ層2aの厚さを厚くすることとなるた
め、発熱体の作動時における熱の伝達性が低下するとい
う問題点がある。
When the central portion of the metallized layer 2a has a thickness of less than 5 μm, the metallized layer 2a is so thin that it is difficult to form the outer peripheral edge of the metallized layer 2a into a skirt shape having a concave surface. Further, there is a problem that voids (holes) are generated in the metallized layer 2a after sintering and it is difficult to make the bonding strength with the ceramic substrate 1 sufficient. On the other hand, 40
When the thickness exceeds μm, the height of the thermoelectric exchange module becomes high, which deviates from the recent trend toward smaller and lighter thermoelectric exchange modules. Further, in this case, since the metallized layer 2a having a not so high thermal conductivity is thickened, there is a problem that the heat transfer property during the operation of the heating element is lowered.

【0027】また、電極2は、Cu層2bの高さが5〜
300μm程度の場合に十分に熱応力を吸収し緩和させ
る機能を発揮できる。5μm未満では、熱伝導性の低下
や電気抵抗の上昇により、大きな電流を流すことが困難
になる。一方、300μmを超えると、セラミック基板
1とCu層2bとの間に発生する熱膨張差による熱応力
をメタライズ層2aが十分に吸収し緩和させ難くなる。
In the electrode 2, the height of the Cu layer 2b is 5 to 5.
When the thickness is about 300 μm, the function of sufficiently absorbing and relaxing the thermal stress can be exhibited. If the thickness is less than 5 μm, it becomes difficult to flow a large current due to a decrease in thermal conductivity and an increase in electric resistance. On the other hand, when the thickness exceeds 300 μm, the metallized layer 2a does not sufficiently absorb and relax the thermal stress due to the difference in thermal expansion between the ceramic substrate 1 and the Cu layer 2b.

【0028】また、上記ブラスト研磨により、メタライ
ズ層2aの裾野状部の幅を5〜70μmとすることがよ
く、その場合、セラミック基板1とCu層2bとの間の
熱膨張差により発生した熱応力を、より十分に吸収し緩
和させ得る。裾野状部の幅が5μm未満の場合、大きな
電流を流すために、熱伝導性の向上や電気抵抗の低下を
目的として、特にCu層2bの高さを300〜500μ
m程度とした際、熱応力を十分に吸収し緩和させること
が困難となる。
Further, the width of the skirt portion of the metallized layer 2a is preferably set to 5 to 70 μm by the blast polishing, and in this case, the heat generated by the difference in thermal expansion between the ceramic substrate 1 and the Cu layer 2b is used. The stress can be absorbed and relaxed more sufficiently. When the width of the skirt portion is less than 5 μm, in order to flow a large current, the height of the Cu layer 2b is set to 300 to 500 μm for the purpose of improving thermal conductivity and lowering electrical resistance.
When it is set to about m, it becomes difficult to absorb and relax the thermal stress sufficiently.

【0029】一方、メタライズ層2aの裾野状部の幅が
70μmを超えると、近接する電極2との電気的な絶縁
を十分なものとできないといった問題点が発生する。即
ち、電気的な絶縁を十分なものとするために各々の電極
2の間隔を大きくすると、近時の熱電交換モジュールの
小型軽量化といった動向から外れる。従って、特にCu
層2bの高さを300〜500μm程度まで高くする場
合、裾野状部の幅を5〜70μm程度としておくことが
良い。
On the other hand, if the width of the skirt portion of the metallized layer 2a exceeds 70 μm, there arises a problem that the electrical insulation from the adjacent electrode 2 cannot be made sufficient. That is, if the distance between the electrodes 2 is increased in order to obtain sufficient electric insulation, the trend of downsizing and weight saving of the thermoelectric exchange module in recent years is deviated. Therefore, especially Cu
When increasing the height of the layer 2b to about 300 to 500 μm, it is preferable to set the width of the skirt portion to about 5 to 70 μm.

【0030】また、電極2間の間隔は0.1〜2mmが
よく、0.1mm未満では間隔が狭すぎるため、メタラ
イズ層2a同士が接触し電気的に接続されてしまう場合
がある。一方、2mmを超えると、熱電交換モジュール
が大型化する。
The distance between the electrodes 2 is preferably 0.1 to 2 mm. If the distance is less than 0.1 mm, the distance is too small, and the metallized layers 2a may come into contact with each other to be electrically connected. On the other hand, when it exceeds 2 mm, the thermoelectric exchange module becomes large.

【0031】また、Cu層2bは、ブラスト研磨によ
り、Cu層2bの上面の算出平均粗さが4〜85μmに
形成される。このときCu層2bの上面の算出平均粗さ
が4μm未満では、Cu層2b上面の状態がなめらか過
ぎて、Cu層2bと熱電素子3とを接合する際の半田が
流れすぎることになる。そのため、両者を接合する半田
の端部の形状が凹んだ円弧状等のくぼんだ曲面状のメニ
スカス形状となり難いため、Cu層2bと熱電素子3と
の間に発生する熱応力によって剥がれが発生し易くな
る。
The Cu layer 2b is formed by blasting so that the calculated average roughness of the upper surface of the Cu layer 2b is 4 to 85 μm. At this time, if the calculated average roughness of the upper surface of the Cu layer 2b is less than 4 μm, the state of the upper surface of the Cu layer 2b will be too smooth, and the solder at the time of joining the Cu layer 2b and the thermoelectric element 3 will flow too much. Therefore, since it is difficult for the end portion of the solder that joins them to have a concave meniscus shape such as a concave arc shape, peeling occurs due to the thermal stress generated between the Cu layer 2b and the thermoelectric element 3. It will be easier.

【0032】一方、Cu層2bの上面の算出平均粗さが
85μmを超えると、Cu層2b上面の凹凸が大き過ぎ
て、熱電素子3を接合するための半田の内部やCu層2
bと熱電素子3との界面にボイド(空孔)が発生しやす
くなる。その結果、Cu層2bと熱電素子3とを半田接
合し熱電交換モジュールとした後、発熱体を作動させた
際の熱が熱電素子3からCu層2bにかけて効率良く伝
わらないため、発熱体の作動性が低下し熱交換モジュー
ルの性能が確保され難くなる。
On the other hand, when the calculated average roughness of the upper surface of the Cu layer 2b exceeds 85 μm, the unevenness on the upper surface of the Cu layer 2b is too large and the inside of the solder for joining the thermoelectric element 3 and the Cu layer 2 are too large.
Voids (holes) are likely to occur at the interface between b and the thermoelectric element 3. As a result, after the Cu layer 2b and the thermoelectric element 3 are soldered to each other to form a thermoelectric exchange module, the heat generated when the heating element is operated is not efficiently transferred from the thermoelectric element 3 to the Cu layer 2b. Performance deteriorates, and it becomes difficult to ensure the performance of the heat exchange module.

【0033】また、Cu層2bは、ブラスト研磨によ
り、熱電素子3が載置固定される上面の中央部より外周
側には、外周端から側面にかけて全周にわたってなだら
かな曲面とされた曲面状部2b−Aが形成される。曲面
状部2b−Aは、熱膨張係数が約17ppm/℃(×1
-6/℃)のCu層2bと熱膨張係数が約19ppm/
℃の熱電素子3とを半田接合し熱電交換モジュールとし
た後、発熱体を作動させた際の熱による熱膨張差により
発生する熱応力による剥がれを有効に防止する機能を有
する。
Further, the Cu layer 2b is formed by blasting into a curved surface portion which has a gentle curved surface over the entire circumference from the outer peripheral edge to the side surface on the outer peripheral side from the central portion of the upper surface on which the thermoelectric element 3 is mounted and fixed. 2b-A is formed. The curved portion 2b-A has a thermal expansion coefficient of about 17 ppm / ° C. (× 1
Cu layer 2b and the coefficient of thermal expansion of 0 -6 / ° C.) of about 19 ppm /
It has a function of effectively preventing peeling due to thermal stress generated due to a difference in thermal expansion due to heat when the heating element is operated after soldering the thermoelectric element 3 having a temperature of 3 ° C. to form a thermoelectric exchange module.

【0034】Cu層2bと熱電素子3とを接合する半田
は、熱電素子3の下端側面から曲面状部2b−Aの上側
周辺部にかけて、適度なボリュームから成るとともに全
周にわたって凹んだ円弧状等のくぼんだ曲面から成るメ
ニスカスを形成し、かつ曲面状部2b−Aの下側周辺部
を全周にわたって囲むように接合される。このことか
ら、半田のメニスカスがCu層2bと熱電素子3との間
に発生する熱応力を十分に吸収し緩和させ得るととも
に、曲面状部2b−Aの下側周辺部を囲む半田がCu層
2bと熱電素子3との間に発生する熱応力を十分に抑制
させ得る。
The solder for joining the Cu layer 2b and the thermoelectric element 3 has an appropriate volume from the lower end side surface of the thermoelectric element 3 to the upper peripheral portion of the curved surface portion 2b-A, and has an arc shape which is recessed all around. A meniscus having a concave curved surface is formed and the lower peripheral portion of the curved surface portion 2b-A is joined so as to surround the entire circumference. From this, the meniscus of the solder can sufficiently absorb and relax the thermal stress generated between the Cu layer 2b and the thermoelectric element 3, and the solder surrounding the lower peripheral portion of the curved surface portion 2b-A is the Cu layer. Thermal stress generated between 2b and the thermoelectric element 3 can be sufficiently suppressed.

【0035】また、曲面状部2b−Aの曲率半径は5〜
100μmであることが好ましく、5μm未満の場合、
熱電素子3の側面下端から曲面状部2b−Aにかけて接
合される半田は、全周にわたって凹んだ円弧状等のくぼ
んだ曲面から成るメニスカス形状となり難くなる。その
ため、Cu層2bと熱電素子3との間に発生する熱応力
を十分に吸収し緩和させ難い。100μmを超えると、
曲面状部2b−Aの下側周辺部を全周にわたって囲むよ
うに半田が形成されない場合がある。そのため、Cu層
2bと熱電素子3との間に発生する熱応力を十分に抑制
させ難い。
The radius of curvature of the curved portion 2b-A is 5 to 5.
100 μm is preferable, and when less than 5 μm,
The solder joined from the lower end of the side surface of the thermoelectric element 3 to the curved surface portion 2b-A is unlikely to have a meniscus shape having a concave curved surface such as an arc shape recessed over the entire circumference. Therefore, it is difficult to sufficiently absorb and relax the thermal stress generated between the Cu layer 2b and the thermoelectric element 3. If it exceeds 100 μm,
The solder may not be formed so as to surround the lower peripheral portion of the curved surface portion 2b-A over the entire circumference. Therefore, it is difficult to sufficiently suppress the thermal stress generated between the Cu layer 2b and the thermoelectric element 3.

【0036】このようなメタライズ層2a,Cu層2b
から成る電極2の上面には、酸化防止および半田接合性
を向上させるためにNiメッキ層,Auメッキ層が順次
被着されているのがよく、Sn−Ag系,Sn−Sb
系,Sn−Bi系,Sn−Pb系等の半田を介して、p
型,n型の熱電素子3が固着される。熱電素子3として
は、Bi2Te3,PbTe等の金属間化合物や、Si−
Ge系合金、Bi−Te系合金等を用いる。また、熱電
素子3と電極2との接合を強固なものとするために、熱
電素子3の表面にNiメッキ層,Snメッキ層,半田メ
ッキ層等を被着させておいても良い。
Such metallized layer 2a and Cu layer 2b
It is preferable that a Ni plating layer and an Au plating layer are sequentially deposited on the upper surface of the electrode 2 made of, for the purpose of preventing oxidation and improving solder jointability. Sn-Ag system, Sn-Sb
Via a solder such as Sn, Bi, Sn-Pb, etc.
Type and n-type thermoelectric elements 3 are fixed. As the thermoelectric element 3, an intermetallic compound such as Bi 2 Te 3 or PbTe or Si-
A Ge-based alloy, a Bi-Te-based alloy, or the like is used. Further, in order to strengthen the bond between the thermoelectric element 3 and the electrode 2, a Ni plating layer, a Sn plating layer, a solder plating layer or the like may be adhered to the surface of the thermoelectric element 3.

【0037】さらに、熱電素子3の下面側のセラミック
基板1が高温端の場合、熱電素子3の上面側に電極の形
成されたセラミック基板1を低温端として接合すること
により、外部の発熱体の作動時に発する熱を低温端のセ
ラミック基板1から熱電素子3を介して高温端のセラミ
ック基板1、そして外部へと効率良く伝えることのでき
る熱電交換モジュールが作製できる。
Further, when the ceramic substrate 1 on the lower surface side of the thermoelectric element 3 has a high temperature end, the ceramic substrate 1 having electrodes formed on the upper surface side of the thermoelectric element 3 is bonded as a low temperature end, so that the external heating element A thermoelectric exchange module capable of efficiently transmitting heat generated during operation from the ceramic substrate 1 at the low temperature end to the ceramic substrate 1 at the high temperature end via the thermoelectric element 3 and to the outside can be manufactured.

【0038】本発明の熱電交換モジュール用セラミック
基板において、具体的には、図4に示した従来例のメタ
ライズ層102bの垂直上方への引っ張り強度(ピール
強度)は約4.9N/cm2であったのに対して、本発
明のメタライズ層2bの垂直上方への引っ張り強度は約
14.7N/cm2と非常に大きいものであった。
In the ceramic substrate for a thermoelectric exchange module of the present invention, specifically, the conventional metallization layer 102b shown in FIG. 4 has a vertical tensile strength (peel strength) of about 4.9 N / cm 2 . On the other hand, the tensile strength of the metallized layer 2b of the present invention in the vertically upward direction was very large, about 14.7 N / cm 2 .

【0039】また、本発明の小型軽量の熱電交換モジュ
ールは、その上面に非常に発熱量の大きい発熱体を載置
固定し作動させた場合でも、本発明の電極を有する熱電
交換モジュール用セラミック基板により、発熱体から発
せられる熱を低温端のセラミック基板から熱電素子、電
極、セラミック基板を介して外部に効率良く放散し得る
信頼性の非常に高いものとなる。
Further, the small and lightweight thermoelectric exchange module of the present invention has the ceramic substrate for a thermoelectric exchange module having the electrode of the present invention even when a heating element having a very large calorific value is mounted and fixed on the upper surface of the heating element. As a result, the heat generated from the heating element can be efficiently dissipated from the ceramic substrate at the low temperature end to the outside through the thermoelectric element, the electrode, and the ceramic substrate, which is highly reliable.

【0040】なお、本発明は上記実施の形態に限定され
るものではなく、本発明の要旨を逸脱しない範囲内にお
いて種々の変更を施すことは何等差し支えない。
The present invention is not limited to the above embodiment, and various modifications may be made without departing from the scope of the present invention.

【0041】[0041]

【発明の効果】本発明は、熱電交換モジュール用セラミ
ック基板の電極は、中央部が厚さ5〜40μmの平坦面
部であり外周端が全周にわたってくぼんだ曲面から成る
裾野状とされたメタライズ層の平坦面部上に、上面の算
術平均粗さが4〜85μmであり、かつ上面の外周端か
ら側面にかけて全周にわたってなだらかな曲面とされて
いる銅層が積層されて成ることにより、メタライズ層の
熱電素子に対する接合強度が大幅に増大し、セラミック
基板の電極と熱電素子の熱膨張差により発生する熱応力
を十分に吸収し緩和し得る。その結果、熱サイクルによ
り電極の剥離等が発生することが殆どなくなるととも
に、銅層と熱電素子とを接合する半田のメニスカスが銅
層と熱電素子との間に発生する熱応力を十分に吸収し緩
和させ得、かつ曲面状部の下側周辺部を囲む半田が銅層
と熱電素子との間に発生する熱応力を十分に抑制させ得
る。従って、熱電交換モジュールの上面に載置固定され
た発熱体の発する熱量が非常に大きい場合であっても、
セラミック基板と電極との熱膨張差により発生する熱応
力や、電極と熱電素子との熱膨張差により発生する熱応
力を十分に吸収し緩和できる。そのため、発熱体の発す
る熱を外部に効率良く伝達させ、発熱体の作動性を非常
に良好なものとできる。
According to the present invention, an electrode of a ceramic substrate for a thermoelectric exchange module has a metallized layer in the form of a skirt formed of a flat surface portion having a thickness of 5 to 40 μm at its central portion and an indented curved surface at its outer peripheral edge. Of the metallized layer by laminating a copper layer having an arithmetic average roughness of 4 to 85 μm on the flat surface of and having a smooth curved surface from the outer peripheral edge to the side surface of the upper surface. The bonding strength with respect to the thermoelectric element is significantly increased, and the thermal stress generated by the difference in thermal expansion between the electrode of the ceramic substrate and the thermoelectric element can be sufficiently absorbed and relaxed. As a result, the peeling of the electrodes due to the thermal cycle hardly occurs, and the meniscus of the solder that joins the copper layer and the thermoelectric element sufficiently absorbs the thermal stress generated between the copper layer and the thermoelectric element. The solder that surrounds the lower peripheral portion of the curved surface portion can be relaxed, and the thermal stress generated between the copper layer and the thermoelectric element can be sufficiently suppressed. Therefore, even when the amount of heat generated by the heating element mounted and fixed on the upper surface of the thermoelectric exchange module is very large,
The thermal stress generated by the difference in thermal expansion between the ceramic substrate and the electrode and the thermal stress generated by the difference in thermal expansion between the electrode and the thermoelectric element can be sufficiently absorbed and relaxed. Therefore, the heat generated by the heating element can be efficiently transmitted to the outside, and the operability of the heating element can be made very good.

【0042】また本発明は、好ましくはメタライズ層の
裾野状部の幅を5〜70μmとすることにより、セラミ
ック基板と電極との熱膨張差により発生する熱応力を、
より十分に吸収し緩和し得る。また、例えば、大電流を
流してペルチェ効果をさらに発揮させるために、熱伝導
性の向上や電気抵抗の低下を目的として、銅層を300
〜500μm程度まで厚くした場合であっても、セラミ
ック基板と電極との熱膨張差により発生する熱応力を十
分に吸収し緩和することができる。その結果、発熱体の
発する熱を外部に効率良く伝達させ、発熱体の作動性を
非常に良好なものとできる。
Further, according to the present invention, preferably, the width of the skirt portion of the metallized layer is set to 5 to 70 μm so that the thermal stress generated by the difference in thermal expansion between the ceramic substrate and the electrode is reduced.
Can absorb and relax more fully. Further, for example, in order to further exert a Peltier effect by passing a large current, a copper layer of 300 is formed for the purpose of improving thermal conductivity and lowering electrical resistance.
Even when the thickness is increased to about 500 μm, the thermal stress generated by the difference in thermal expansion between the ceramic substrate and the electrodes can be sufficiently absorbed and relaxed. As a result, the heat generated by the heating element can be efficiently transmitted to the outside, and the operability of the heating element can be made very good.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱電交換モジュール用セラミック基板
について実施の形態の一例を示す電極周辺部の断面図で
ある。
FIG. 1 is a cross-sectional view of an electrode peripheral portion showing an example of an embodiment of a ceramic substrate for a thermoelectric exchange module of the present invention.

【図2】図1の熱電交換モジュール用セラミック基板の
電極の要部拡大断面図である。
FIG. 2 is an enlarged cross-sectional view of a main part of an electrode of the ceramic substrate for thermoelectric exchange module of FIG.

【図3】従来の熱電交換モジュール用セラミック基板の
電極周辺部の断面図である。
FIG. 3 is a sectional view of an electrode peripheral portion of a conventional ceramic substrate for a thermoelectric exchange module.

【図4】(a)は図3の電極周辺部の拡大断面図であ
り、(b)は(a)の電極の要部拡大断面図である。
4A is an enlarged cross-sectional view of a peripheral portion of the electrode of FIG. 3, and FIG. 4B is an enlarged cross-sectional view of a main part of the electrode of FIG.

【符号の説明】[Explanation of symbols]

1:セラミック基板 2:電極 2a:メタライズ層 2b:銅層 2b−A:曲面状部 3:熱電素子 1: Ceramic substrate 2: Electrode 2a: Metallized layer 2b: Copper layer 2b-A: curved portion 3: Thermoelectric element

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミック基板の一方の主面に、上面に
熱電素子が載置固定される電極がそれぞれ独立して複数
形成された熱電交換モジュール用セラミック基板におい
て、前記電極は、中央部が厚さ5〜40μmの平坦面部
であり外周端が全周にわたってくぼんだ曲面から成る裾
野状とされたメタライズ層の前記平坦面部上に、上面の
算術平均粗さが4〜85μmであり、かつ前記上面の外
周端から側面にかけて全周にわたってなだらかな曲面と
されている銅層が積層されて成ることを特徴とする熱電
交換モジュール用セラミック基板。
1. A ceramic substrate for a thermoelectric exchange module, wherein a plurality of electrodes on which thermoelectric elements are mounted and fixed are independently formed on one main surface of a ceramic substrate, wherein the central portion of the electrode is thick. On the flat surface portion of the metallized layer which is a flat surface portion having a size of 5 to 40 μm and whose outer peripheral edge is a concave curved surface over the entire circumference, the arithmetic average roughness of the upper surface is 4 to 85 μm, and the upper surface. A ceramic substrate for a thermoelectric exchange module, characterized in that it is formed by laminating copper layers having a gentle curved surface over the entire circumference from the outer peripheral edge to the side surface.
【請求項2】 前記メタライズ層の裾野状部の幅が5〜
70μmであることを特徴とする請求項1記載の熱電交
換モジュール用セラミック基板。
2. The width of the bottom portion of the metallized layer is 5 to 5.
It is 70 micrometers, The ceramic substrate for thermoelectric exchange modules of Claim 1 characterized by the above-mentioned.
JP2001257611A 2001-08-28 2001-08-28 Ceramic substrate for thermoelectric exchange module Expired - Fee Related JP4313964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001257611A JP4313964B2 (en) 2001-08-28 2001-08-28 Ceramic substrate for thermoelectric exchange module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001257611A JP4313964B2 (en) 2001-08-28 2001-08-28 Ceramic substrate for thermoelectric exchange module

Publications (2)

Publication Number Publication Date
JP2003069091A true JP2003069091A (en) 2003-03-07
JP4313964B2 JP4313964B2 (en) 2009-08-12

Family

ID=19085245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001257611A Expired - Fee Related JP4313964B2 (en) 2001-08-28 2001-08-28 Ceramic substrate for thermoelectric exchange module

Country Status (1)

Country Link
JP (1) JP4313964B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204550A (en) * 2016-05-11 2017-11-16 積水化学工業株式会社 Thermoelectric conversion material, thermoelectric conversion element and method of manufacturing thermoelectric conversion element
JP2022119182A (en) * 2021-02-03 2022-08-16 三菱マテリアル株式会社 Thermoelectric conversion module, and, manufacturing method for thermoelectric conversion module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204550A (en) * 2016-05-11 2017-11-16 積水化学工業株式会社 Thermoelectric conversion material, thermoelectric conversion element and method of manufacturing thermoelectric conversion element
JP2022119182A (en) * 2021-02-03 2022-08-16 三菱マテリアル株式会社 Thermoelectric conversion module, and, manufacturing method for thermoelectric conversion module
JP7248091B2 (en) 2021-02-03 2023-03-29 三菱マテリアル株式会社 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module

Also Published As

Publication number Publication date
JP4313964B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP4969589B2 (en) Peltier element purification process and Peltier element
WO2018131144A1 (en) Semiconductor device and method for manufacturing same
CN107393882B (en) Silicon carbide device encapsulating structure and manufacturing method based on three layers of DBC substrate
JPH06342940A (en) Thermoelectric generator and manufacture thereof
JP3566670B2 (en) Ceramic substrate for thermoelectric exchange module
JP2003017759A (en) Ceramic substrate for thermo-electric conversion module
JP2003069091A (en) Ceramic substrate for thermoelectric exchange module
JP3798973B2 (en) Ceramic substrate for thermoelectric exchange module
JP2005340559A (en) Ceramic substrate for thermoelectric exchange module
JP2004063794A (en) Ceramic substrate for thermoelectric exchange module
JP2005340565A (en) Ceramic substrate for thermoelectric exchange module
JP3619393B2 (en) Optical semiconductor element storage package
JP2004259770A (en) Ceramic substrate for thermoelectric exchange module
JP3810276B2 (en) Optical semiconductor element storage package
JP2004140250A (en) Ceramic substrate for thermoelectric exchanging module
JP3840132B2 (en) Peltier device mounting circuit board
TWI296839B (en) A package structure with enhancing layer and manufaturing the same
JP3556567B2 (en) Electronic component storage package
JP2004296901A (en) Thermoelectric module
JP3407536B2 (en) Nitride semiconductor device
JP2005243739A (en) Package for accommodating electronic component, and electronic equipment
JP4328197B2 (en) Electronic component storage package and electronic device
JP2004281930A (en) Method for producing thermoelectric conversion element
JP5383151B2 (en) Electronic component mounting board
WO2020158808A1 (en) Substrate for mounting electronic component, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees