JP2003068145A - Conductive fine particle and conductive connection structure - Google Patents

Conductive fine particle and conductive connection structure

Info

Publication number
JP2003068145A
JP2003068145A JP2001253089A JP2001253089A JP2003068145A JP 2003068145 A JP2003068145 A JP 2003068145A JP 2001253089 A JP2001253089 A JP 2001253089A JP 2001253089 A JP2001253089 A JP 2001253089A JP 2003068145 A JP2003068145 A JP 2003068145A
Authority
JP
Japan
Prior art keywords
layer
conductive
fine particles
fine particle
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001253089A
Other languages
Japanese (ja)
Inventor
Masami Okuda
正己 奥田
Nobuyuki Okinaga
信幸 沖永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001253089A priority Critical patent/JP2003068145A/en
Publication of JP2003068145A publication Critical patent/JP2003068145A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a conductive fine particle having so excellent elasticity as to prevent stress from being easily imposed on a jointing part when it is used for a conductive joint, capable of keeping the distance between facing boards or the like constant and capable of relaxing shearing stress due to displacement of a relative position between electrodes caused by thermal expansion and contraction of a board, an element or the like due to temperature variation by using a resin particle as a base material fine particle and by forming metal layers into a specific structure and provide a conductive connection structure using it. SOLUTION: This conductive fine particle is formed by covering the surface of the base material fine particle formed of a resin with four metal layers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気回路の2つ以
上の電極を接続するのに使用され、回路中にかかる力を
緩和することにより、接続信頼性を向上することができ
る導電性微粒子及びそれを用いてなる導電接続構造体に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for connecting two or more electrodes of an electric circuit, and is capable of improving connection reliability by relaxing the force applied in the circuit. And a conductive connection structure using the same.

【0002】[0002]

【従来の技術】従来、電子回路基板において、ICやL
SIを接続するためには、それぞれのピンをプリント基
板上にハンダ付けしていたが、この方法は、生産効率が
悪く、また、高密度化には適さないものであった。これ
らの課題を解決するために、ハンダを球状にした、いわ
ゆるハンダボールで基板と接続するBGA(ボールグリ
ッドアレイ)等の技術が開発されたが、この技術によれ
ば、チップ又は基板上に実装されたハンダボールを高温
で溶融しながら基板とチップとを接続することで、高生
産性と高接続信頼性とを両立した電子回路を構成でき
る。しかしながら、最近基板の多層化が進み、基板自体
の外環境変化による歪みや伸縮が発生し、結果としてこ
れらの力が基板間の接続部にかかることによる断線が発
生することが問題となっていた。また、多層化によっ
て、基板間の距離がほとんどとれなくなり、基板間の距
離を維持するために別途スペーサ等を置かなければなら
ず手間や費用がかかることが問題となっていた。
2. Description of the Related Art Conventionally, in electronic circuit boards, ICs and L
In order to connect SI, each pin was soldered on a printed circuit board, but this method had poor production efficiency and was not suitable for high density. In order to solve these problems, a technique such as BGA (ball grid array) in which solder is made spherical, which is connected to a substrate by a so-called solder ball has been developed. According to this technique, it is mounted on a chip or a substrate. By connecting the substrate and the chip while melting the solder ball produced at a high temperature, it is possible to configure an electronic circuit having both high productivity and high connection reliability. However, the multilayering of substrates has recently progressed, and distortion and expansion and contraction have occurred due to changes in the external environment of the substrates themselves, resulting in disconnection due to the application of these forces to the connecting portions between the substrates. . Further, due to the multi-layer structure, the distance between the substrates can hardly be taken, and a separate spacer or the like must be placed in order to maintain the distance between the substrates, which is troublesome and costly.

【0003】これらを解決する手段として、基板等の回
路に掛かる力の緩和については、基板接続部に樹脂等を
塗布して補強することが行われており、これは接続信頼
性の向上には一定の効果を示したが、手間がかかり、ま
た塗布工程が増えることにより費用が増大するという問
題があった。また、基板間の距離の維持については、銅
の周りにハンダをコーティングしたボールにより、ハン
ダのように溶融しない銅が支えとなり、基板間の距離を
維持することも可能であるが(特開平11−74311
号公報参照)、銅は高価であり、また、重量もあること
から安価・軽量な材料が求められていた。
As a means for solving these problems, in order to reduce the force applied to the circuit of the board or the like, a resin or the like is applied to the board connecting portion to reinforce it. This is to improve the connection reliability. Although a certain effect was exhibited, there was a problem that it took time and labor and the cost increased due to the increase of the coating process. As for maintaining the distance between the substrates, it is also possible to maintain the distance between the substrates by using a ball coated with solder around copper, which is supported by copper that does not melt like solder. -74311
Since the copper is expensive and has a heavy weight, an inexpensive and lightweight material has been demanded.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記に鑑
み、基板等の回路にかかる力を緩和して、基板間の距離
を一定に維持することにより、接続信頼性を担保するこ
とができる導電性微粒子及び導電接続構造体を提供する
ことを目的とする。
In view of the above, the present invention can secure connection reliability by relaxing the force applied to a circuit such as a board and maintaining a constant distance between the boards. An object is to provide a conductive fine particle and a conductive connection structure.

【0005】[0005]

【課題を解決するための手段】本発明は、樹脂からなる
基材微粒子の表面が4層の金属層に覆われてなる導電性
微粒子である。以下に本発明を詳述する。
The present invention is a conductive fine particle in which the surface of a base fine particle made of a resin is covered with four metal layers. The present invention is described in detail below.

【0006】本発明の導電性微粒子は、樹脂からなる基
材微粒子をコアとするものである。上記基材微粒子を構
成する樹脂としては特に限定されず、例えば、フェノー
ル樹脂、アミノ樹脂、アクリル樹脂、ポリエステル樹
脂、尿素樹脂、メラミン樹脂、アルキド樹脂、ポリイミ
ド樹脂、ウレタン樹脂、エポキシ樹脂等の架橋型又は非
架橋型合成樹脂;有機−無機ハイブリッド重合体等が挙
げられる。これらは単独で用いられてもよく、2種類以
上が併用されてもよい。
The conductive fine particles of the present invention have a core of base fine particles made of a resin. The resin constituting the base fine particles is not particularly limited, and examples thereof include phenol resin, amino resin, acrylic resin, polyester resin, urea resin, melamine resin, alkyd resin, polyimide resin, urethane resin, and epoxy resin. Or a non-crosslinking type synthetic resin; an organic-inorganic hybrid polymer and the like. These may be used alone or in combination of two or more.

【0007】上記基材微粒子の平均粒径は、1μm〜3
mmであることが好ましい。1μm未満であると、基板
の接合に用いた場合、基板同士が直接接触してショート
することがあり、3mmを超えると、微細ピッチの電極
を接合しにくくなることがある。
The average particle diameter of the base fine particles is 1 μm to 3 μm.
It is preferably mm. If it is less than 1 μm, when used for joining the substrates, the substrates may come into direct contact with each other to cause a short circuit. If it exceeds 3 mm, it may be difficult to join the electrodes having a fine pitch.

【0008】本発明の導電性微粒子は、基材微粒子の表
面が4層の金属層に覆われているものである。上記金属
層を構成する金属としては、例えば、金、銀、銅、白
金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、イン
ジウム、ニッケル、クロム、チタン、アンチモン、ビス
マス、ゲルマニウム、カドミウム、珪素、錫−鉛合金、
錫−銅合金、錫−銀合金等が挙げられ、なかでも、ニッ
ケル、銅、金、錫−鉛合金(ハンダ)、錫−銅合金、錫
−銀合金が好ましい。
In the conductive fine particles of the present invention, the surface of the base fine particles is covered with four metal layers. Examples of the metal forming the metal layer include gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium, silicon, Tin-lead alloy,
Examples thereof include a tin-copper alloy and a tin-silver alloy. Among them, nickel, copper, gold, tin-lead alloy (solder), tin-copper alloy, tin-silver alloy are preferable.

【0009】上記4層の金属層は、内層から順に、第1
層がニッケル層であり、第2層が銅層であり、第3層が
高温ハンダ層であり、第4層が共晶ハンダ層であること
が好ましい。第1層目のニッケル層は、その外側に形成
する銅めっき層のための下地となるもので、第2層目の
銅層は、導電性を確保するためのものであり、第3層目
の高温ハンダ層は高融点なのでリフロー時の熱では溶け
ず、第4層目の共晶ハンダ層の濡れ性を向上するための
ものであり、最外層である第4層目の共晶ハンダ層は高
温ハンダよりも融点が低くリフローにより基板との接合
を行うためのものである。
The above-mentioned four metal layers are arranged in order from the inner layer to the first layer.
Preferably, the layer is a nickel layer, the second layer is a copper layer, the third layer is a high temperature solder layer, and the fourth layer is a eutectic solder layer. The first nickel layer serves as a base for the copper plating layer formed on the outside thereof, and the second copper layer serves to ensure conductivity, and the third nickel layer Since the high temperature solder layer of No. 3 has a high melting point, it is not melted by the heat during reflow and is for improving the wettability of the fourth layer eutectic solder layer. Has a melting point lower than that of high-temperature solder and is used for joining to a substrate by reflow.

【0010】上記ニッケル層の厚みは、0.1〜1μm
であることが好ましい。この範囲外であると下地メッキ
層として好ましくない。上記銅層の厚みは、基材微粒子
の粒径の0.1〜5%であることが好ましい。5%を超
えると、導電性微粒子の柔軟性が失われ、基板にかかる
力を緩和する能力が悪化することがある。上記高温ハン
ダ層の厚みは、基材微粒子の粒径の0.1〜10%であ
ることが好ましい。0.1%未満であると、共晶ハンダ
の濡れ性向上の効果が少なく、10%を超えても、更に
濡れ性が向上することはない。上記共晶ハンダ層の厚み
は、基材微粒子の粒径の0.1〜10%であることが好
ましい。0.1%未満であると、基板接合が不完全とな
ることがあり、10%を超えると、他の端子とショート
することがある。
The thickness of the nickel layer is 0.1 to 1 μm.
Is preferred. If it is out of this range, it is not preferable as the base plating layer. The thickness of the copper layer is preferably 0.1 to 5% of the particle diameter of the base fine particles. If it exceeds 5%, the flexibility of the conductive fine particles may be lost, and the ability to relax the force applied to the substrate may deteriorate. The thickness of the high temperature solder layer is preferably 0.1 to 10% of the particle diameter of the base fine particles. If it is less than 0.1%, the effect of improving the wettability of the eutectic solder is small, and if it exceeds 10%, the wettability is not further improved. The thickness of the eutectic solder layer is preferably 0.1 to 10% of the particle diameter of the base fine particles. If it is less than 0.1%, the substrate bonding may be incomplete, and if it exceeds 10%, it may short-circuit with other terminals.

【0011】本発明の導電性微粒子の表面に金属層を形
成する方法としては特に限定されず、例えば、無電解メ
ッキによる方法、金属微粉を単独又はバインダーに混ぜ
合わせて得られるペーストを基材微粒子にコーティング
する方法;真空蒸着、イオンプレーティング、イオンス
パッタリング等の物理的蒸着方法等が挙げられる。
The method for forming the metal layer on the surface of the conductive fine particles of the present invention is not particularly limited. For example, a method by electroless plating, a paste obtained by mixing fine metal powder alone or with a binder is used as base fine particles. A physical vapor deposition method such as vacuum vapor deposition, ion plating, or ion sputtering.

【0012】本発明の導電性微粒子の粒径としては特に
限定されないが、1〜1000μmであることが好まし
い。1μm未満であると、金属層を形成する際に凝集し
やすく、単粒子としにくくなることがあり、1000μ
mを超えると、金属層がひび割れを起こして、基材微粒
子から剥離し易くなることがある。
The particle size of the conductive fine particles of the present invention is not particularly limited, but is preferably 1 to 1000 μm. If it is less than 1 μm, it may easily aggregate when forming the metal layer, and it may be difficult to form a single particle.
When it exceeds m, the metal layer may be cracked and may be easily separated from the base fine particles.

【0013】本発明の導電性微粒子は、基材微粒子とし
て樹脂粒子を用い、金属層を特定の構成とすることによ
り、弾力性に優れ、導電接合に使用された場合に接合部
分に応力が掛かりにくいうえ、対向する基板等の間隔を
一定に保持することができる。また、温度変化による基
板、素子等の熱膨張及び収縮による電極間の相対位置の
ズレによる剪断応力を緩和することができる。
The conductive fine particles of the present invention are excellent in elasticity by using resin particles as the base fine particles and having a specific structure of the metal layer, and stress is applied to the bonding portion when used for conductive bonding. In addition to being difficult, it is possible to keep the distance between the opposing substrates constant. Further, it is possible to relieve the shear stress due to the displacement of the relative position between the electrodes due to the thermal expansion and contraction of the substrate, the element and the like due to the temperature change.

【0014】本発明の導電性微粒子は、そのまま、又
は、マイクロ素子実装用の導電接着剤、異方性導電接着
剤、異方性導電シート等の導電材料として、基板・部品
間の接続に用いられる。
The conductive fine particles of the present invention are used as they are or as a conductive material such as a conductive adhesive for mounting micro devices, an anisotropic conductive adhesive, an anisotropic conductive sheet, etc., for connection between substrates and parts. To be

【0015】上記基板や部品を接合し、基板・部品間を
電気的に接続する方法としては、本発明の導電性微粒子
を用いて接合する方法であれば特に限定されず、例え
ば、以下のような方法等が挙げられる。 (1)基板上に形成された電極の上に本発明の導電性微
粒子を置き、加熱溶融することで電極上に固定する。そ
の後、もう一方の基板を電極が対向するように置き加熱
溶融することで両基板を接合する方法。 (2)表面に電極が形成された基板又は部品の上に、異
方性導電シートを載せた後、もう一方の基板又は部品を
電極面が対向するように置き、加熱、加圧して接合する
方法。 (3)異方性導電シートを用いる代わりに、スクリーン
印刷やディスペンサー等の手段で異方性導電接着剤を供
給し接合する方法。 (4)導電性微粒子を介して張り合わせた二つの電極部
の間隙に液状のバインダーを供給した後で硬化させて接
合する方法。
The method of joining the above-mentioned substrates and components and electrically connecting the substrates and components is not particularly limited as long as it is a method of joining using the conductive fine particles of the present invention. There are various methods. (1) The conductive fine particles of the present invention are placed on an electrode formed on a substrate and heated and melted to be fixed on the electrode. Then, the other substrate is placed so that the electrodes face each other, and the two substrates are joined by heating and melting. (2) After placing the anisotropic conductive sheet on the substrate or component having the electrodes formed on the surface, place the other substrate or component so that the electrode surfaces face each other, and heat and pressurize to join. Method. (3) Instead of using the anisotropic conductive sheet, a method such as screen printing or a dispenser is used to supply and bond the anisotropic conductive adhesive. (4) A method in which a liquid binder is supplied to a gap between two electrode portions bonded together via conductive fine particles, and then the liquid binder is cured to be bonded.

【0016】上記のようにして基板又は部品の接合体、
即ち、導電接続構造体を得ることができる。本発明の導
電性微粒子により接続されてなる導電接続構造体もま
た、本発明の1つである。
As described above, a joined body of substrates or parts,
That is, a conductive connection structure can be obtained. A conductive connection structure formed by connecting the conductive fine particles of the present invention is also one aspect of the present invention.

【0017】[0017]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0018】スチレンとジビニルベンゼンとを共重合さ
せて基材微粒子を作製した。この基材微粒子に導電下地
層としてニッケルめっき層を形成した。得られたニッケ
ルめっき微粒子30gをとり、バレルめっき装置を用い
てその表面に銅めっきを施した。更にその上に高温ハン
ダめっき、共晶ハンダめっきを行った。
Substrate fine particles were prepared by copolymerizing styrene and divinylbenzene. A nickel plating layer was formed as a conductive underlayer on the base fine particles. 30 g of the obtained nickel-plated fine particles were taken, and the surface thereof was copper-plated using a barrel plating device. Furthermore, high temperature solder plating and eutectic solder plating were performed on it.

【0019】めっきバレルとしては、径50mm、高さ
50mmの正五角柱状で、側面の1面のみに孔径20μ
mのメッシュのフィルタが取り付けられているものを用
いた。この装置を使い銅めっき液中で1時間通電し、め
っきバレルを正五角形の中心同士を通る軸を中心に50
rpmで回転し、銅めっきを行った。次に同様のめっき
バレルを用い高温ハンダ(10%Sn−90%Pb、溶
融温度275℃)めっき液中で1.5時間通電しながら
高温ハンダめっきし、その後、共晶ハンダ(60%Sn
−40%Pb、溶融温度183℃)めっき液中で1.5
時間通電しながら、共晶ハンダめっきを行った。
The plating barrel is a regular pentagonal column having a diameter of 50 mm and a height of 50 mm, and has a hole diameter of 20 μ on only one side surface.
A filter with a mesh of m was attached. Using this equipment, energize for 1 hour in the copper plating solution, and move the plating barrel 50 around the axis passing through the centers of regular pentagons.
It rotated at rpm and performed copper plating. Next, using the same plating barrel, high-temperature solder (10% Sn-90% Pb, melting temperature 275 ° C.) plating solution was subjected to high-temperature solder plating for 1.5 hours, and then eutectic solder (60% Sn).
-40% Pb, melting temperature 183 ° C) 1.5 in plating solution
Eutectic solder plating was performed while energizing for an hour.

【0020】このようにして得られた最外殻が共晶ハン
ダめっき層である導電性微粒子を顕微鏡で観察したとこ
ろ、全く凝集がなく、すべての粒子が単粒子として存在
していることが確認された。また、この導電性微粒子1
00個を測定した結果、平均粒径は769.7μmであ
った。
Observation of the conductive fine particles having the eutectic solder-plated layer as the outermost shell thus obtained showed no aggregation at all and confirmed that all the particles were present as single particles. Was done. In addition, the conductive fine particles 1
As a result of measuring 00 pieces, the average particle diameter was 769.7 μm.

【0021】また、得られた導電性微粒子の粒子切断面
を測定したところ、ニッケルめっき層の厚みは0.3μ
m、銅めっき層の厚みは6.0μm、高温ハンダめっき
層の厚みは、9.5μm、共晶ハンダめっき層の厚みは
10.8μmであった。
Further, when the particle cut surface of the obtained conductive fine particles was measured, the thickness of the nickel plating layer was 0.3 μm.
m, the thickness of the copper plating layer was 6.0 μm, the thickness of the high temperature solder plating layer was 9.5 μm, and the thickness of the eutectic solder plating layer was 10.8 μm.

【0022】このようにして得られた導電性微粒子をダ
ミーチップ上に計24個置き、これを赤外線リフロー装
置を用いて、220℃でプリント基板に接合した。この
ようにして作製したダミーチップを接合したプリント基
板を10枚用意した。これを−40〜+125℃(各3
0分サイクル)でプログラム運転する恒温槽に入れ、1
00サイクルごとに導電性微粒子の導通を調べ、700
サイクルまで試験を行ったが、導通不良は発生しなかっ
た。
A total of 24 conductive fine particles thus obtained were placed on a dummy chip and bonded to a printed board at 220 ° C. using an infrared reflow device. Ten printed boards to which the dummy chips thus produced were joined were prepared. This is -40 to +125 ℃ (each 3
Place in a constant temperature bath that operates in a program at 0 minute cycle)
Conduction of conductive fine particles was checked every 00 cycles, and 700
The test was conducted up to the cycle, but no conduction failure occurred.

【0023】[0023]

【発明の効果】本発明は、上述の構成よりなるので、基
板等の回路にかかる力を緩和して、基板間の距離を一定
に維持することにより、接続信頼性を担保することがで
きる導電性微粒子及び導電接続構造体を提供することが
できる。
EFFECTS OF THE INVENTION Since the present invention has the above-mentioned structure, the connection reliability can be ensured by alleviating the force applied to the circuit such as the substrate and keeping the distance between the substrates constant. Microparticles and a conductive connection structure can be provided.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 樹脂からなる基材微粒子の表面が4層の
金属層に覆われてなることを特徴とする導電性微粒子。
1. Conductive fine particles, characterized in that the surface of base fine particles made of resin is covered with four metal layers.
【請求項2】 金属層は、内層から順に、第1層がニッ
ケル層であり、第2層が銅層であり、第3層が高温ハン
ダ層であり、第4層が共晶ハンダ層であることを特徴と
する請求項1記載の導電性微粒子。
2. The metal layer comprises, in order from the inner layer, the first layer being a nickel layer, the second layer being a copper layer, the third layer being a high temperature solder layer, and the fourth layer being a eutectic solder layer. The conductive fine particles according to claim 1, wherein the conductive fine particles are present.
【請求項3】 請求項1又は2記載の導電性微粒子によ
り接続されてなることを特徴とする導電接続構造体。
3. A conductive connecting structure, which is connected by the conductive fine particles according to claim 1 or 2.
JP2001253089A 2001-08-23 2001-08-23 Conductive fine particle and conductive connection structure Withdrawn JP2003068145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001253089A JP2003068145A (en) 2001-08-23 2001-08-23 Conductive fine particle and conductive connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001253089A JP2003068145A (en) 2001-08-23 2001-08-23 Conductive fine particle and conductive connection structure

Publications (1)

Publication Number Publication Date
JP2003068145A true JP2003068145A (en) 2003-03-07

Family

ID=19081467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001253089A Withdrawn JP2003068145A (en) 2001-08-23 2001-08-23 Conductive fine particle and conductive connection structure

Country Status (1)

Country Link
JP (1) JP2003068145A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273401A (en) * 2003-03-12 2004-09-30 Matsushita Electric Ind Co Ltd Electrode connecting member, circuit module using it and manufacturing method therefor
WO2004105053A1 (en) * 2003-05-22 2004-12-02 Sharp Kabushiki Kaisha Conductive ball, method of forming electrode of electronic part, electronic part and electronic equipment
WO2006085481A1 (en) * 2005-02-09 2006-08-17 Sekisui Chemical Co., Ltd. Electrically conductive fine particles, anisotropic electrically conductive material, and electrically conductive connection method
WO2008132933A1 (en) * 2007-04-13 2008-11-06 Sekisui Chemical Co., Ltd. Electroconductive fine particles, anisotropic electroconductive material, and electroconductive connection structure
JP2009259801A (en) * 2008-03-19 2009-11-05 Sekisui Chem Co Ltd Conductive particulate and conductive connection structure
JP5580954B1 (en) * 2013-02-28 2014-08-27 積水化学工業株式会社 Conductive fine particles, anisotropic conductive material, and conductive connection structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273401A (en) * 2003-03-12 2004-09-30 Matsushita Electric Ind Co Ltd Electrode connecting member, circuit module using it and manufacturing method therefor
WO2004105053A1 (en) * 2003-05-22 2004-12-02 Sharp Kabushiki Kaisha Conductive ball, method of forming electrode of electronic part, electronic part and electronic equipment
WO2006085481A1 (en) * 2005-02-09 2006-08-17 Sekisui Chemical Co., Ltd. Electrically conductive fine particles, anisotropic electrically conductive material, and electrically conductive connection method
WO2008132933A1 (en) * 2007-04-13 2008-11-06 Sekisui Chemical Co., Ltd. Electroconductive fine particles, anisotropic electroconductive material, and electroconductive connection structure
JP2009259801A (en) * 2008-03-19 2009-11-05 Sekisui Chem Co Ltd Conductive particulate and conductive connection structure
JP5580954B1 (en) * 2013-02-28 2014-08-27 積水化学工業株式会社 Conductive fine particles, anisotropic conductive material, and conductive connection structure
WO2014133124A1 (en) * 2013-02-28 2014-09-04 積水化学工業株式会社 Electroconductive microparticles, anisotropic electroconductive material, and electroconductive connection structure
CN104937675A (en) * 2013-02-28 2015-09-23 积水化学工业株式会社 Electroconductive microparticles, anisotropic electroconductive material, and electroconductive connection structure
KR101561418B1 (en) 2013-02-28 2015-10-16 세키스이가가쿠 고교가부시키가이샤 Electroconductive microparticles, anisotropic electroconductive material, and electroconductive connection structure
US9478326B2 (en) 2013-02-28 2016-10-25 Sekisui Chemical Co., Ltd. Electroconductive microparticles, anisotropic electroconductive material, and electroconductive connection structure

Similar Documents

Publication Publication Date Title
US6270363B1 (en) Z-axis compressible polymer with fine metal matrix suspension
US6802446B2 (en) Conductive adhesive material with metallurgically-bonded conductive particles
US7902060B2 (en) Attachment using magnetic particle based solder composites
JP3420917B2 (en) Semiconductor device
JP2002151170A (en) Method for using conductive material
JPH08116169A (en) Assembly and method for connecting alloy solder
JPH11330126A (en) Solder structure part, electronic constituent component assembly and its manufacture
CN102208388A (en) Semiconductor device and semiconductor device manufacturing method
WO2006098196A1 (en) Package equipped with semiconductor chip and method for producing same
JP2002026070A (en) Semiconductor device and its manufacturing method
JP3475147B2 (en) Solder connection
US6984792B2 (en) Dielectric interposer for chip to substrate soldering
US20130088839A1 (en) Board module manufacturing method, board module, and board module assembly
JP2003068145A (en) Conductive fine particle and conductive connection structure
JP2004273401A (en) Electrode connecting member, circuit module using it and manufacturing method therefor
JP5699472B2 (en) Solder material, manufacturing method thereof, and manufacturing method of semiconductor device using the same
JP2000223514A (en) Bonding material and bumps
JPH09306231A (en) Conductive particulate and substrate
JPH10209591A (en) Wiring board
JPH0318041A (en) Electric junction part
JP2003068142A (en) Conductive fine particle and conductive connection structure
JP5438450B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2003068144A (en) Conductive fine particle and conductive connection structure
JP2003253465A (en) Conductive fine particle and conductive connecting structure
JP3544439B2 (en) Connection pins and board mounting method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051207

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060112