JP2003066450A - Liquid crystal element and optical attenuator - Google Patents

Liquid crystal element and optical attenuator

Info

Publication number
JP2003066450A
JP2003066450A JP2001256301A JP2001256301A JP2003066450A JP 2003066450 A JP2003066450 A JP 2003066450A JP 2001256301 A JP2001256301 A JP 2001256301A JP 2001256301 A JP2001256301 A JP 2001256301A JP 2003066450 A JP2003066450 A JP 2003066450A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
polarized light
voltage
linearly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001256301A
Other languages
Japanese (ja)
Other versions
JP5150992B2 (en
Inventor
Yoshiharu Oi
好晴 大井
Masao Ozeki
正雄 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001256301A priority Critical patent/JP5150992B2/en
Priority to EP02760728A priority patent/EP1420275B1/en
Priority to PCT/JP2002/008517 priority patent/WO2003019247A1/en
Publication of JP2003066450A publication Critical patent/JP2003066450A/en
Priority to US10/784,714 priority patent/US7079202B2/en
Priority to US11/313,694 priority patent/US7764354B2/en
Application granted granted Critical
Publication of JP5150992B2 publication Critical patent/JP5150992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a voltage-variable optical attenuator from which a stable and high optical quenching ratio can be obtained. SOLUTION: This liquid crystal element 100 consists of a liquid crystal cell 110 and a phase plate 120. The cell 110 is formed so that a liquid crystal layer 1 is interposed between translucent substrates 5, 6 provided with transparent electrodes 3, 4 respectively and has the retardation value changing from R1 to R2 with respect to the linear polarized light of λ wavelength which is made incident to the cell 110 and passes through the cell 110 when the voltage of V1 to V2 (V1 ≠V2 ) is applied between the electrodes 3 and 4. The retardation value R of the plate 120 is Rv satisfying R1 >=Rv >=R2 and satisfies R+Rv =λ with respect to the linear polarized light of λ wavelength. This optical attenuator is obtained by preparing the element 100 and furthermore arranging a polarizer on the light entering side or the light exiting side of the element 100.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液晶素子および光
減衰器に関し、特に光通信に用いる液晶素子および光減
衰器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal element and an optical attenuator, and more particularly to a liquid crystal element and an optical attenuator used for optical communication.

【0002】[0002]

【従来の技術】液晶を用いた従来の光減衰器の一例を図
6に示す。透明電極3、4が形成された透光性基板5と
6との間に液晶分子の配向方向が基板面に平行で、X軸
方向と45°の角度をなす方向に揃ったネマティック液
晶の液晶層1が基板の周縁に設けられたシール材8の内
部に狭持された液晶セル110と、その光出射面側にX
軸方向に偏光方向を有する直線偏光のみを透過する偏光
子12とを配置した構成となっている。
2. Description of the Related Art FIG. 6 shows an example of a conventional optical attenuator using liquid crystal. Liquid crystal of nematic liquid crystal in which the alignment direction of the liquid crystal molecules is parallel to the substrate surface between the transparent substrates 5 and 6 on which the transparent electrodes 3 and 4 are formed, and which is aligned in a direction forming an angle of 45 ° with the X-axis direction. The liquid crystal cell 110 in which the layer 1 is sandwiched inside the sealing material 8 provided on the periphery of the substrate, and X is provided on the light emitting surface side thereof.
A polarizer 12 that transmits only linearly polarized light having a polarization direction in the axial direction is arranged.

【0003】ここで、透明電極3と4とに矩形波出力の
交流電源9を接続し、この電源による電圧非印加時に、
波長λでY軸方向に偏光方向を有する直線偏光に対する
液晶セル110のリタデーション値がほぼλ/2となる
よう液晶層1の厚さdlcが設定されている。ここで、
液晶層1のリタデーション値をほぼλ/2としているの
は、電圧非印加時に光減衰器の挿入損失を最小とするた
め、およびλ/2板として機能させるためである。
Here, an AC power source 9 having a rectangular wave output is connected to the transparent electrodes 3 and 4, and when no voltage is applied by this power source,
The thickness dlc of the liquid crystal layer 1 is set so that the retardation value of the liquid crystal cell 110 for linearly polarized light having a polarization direction in the Y-axis direction at the wavelength λ is approximately λ / 2. here,
The reason why the retardation value of the liquid crystal layer 1 is approximately λ / 2 is to minimize the insertion loss of the optical attenuator when no voltage is applied and to function as a λ / 2 plate.

【0004】この光減衰器において、透明電極間への電
圧非印加時に液晶層を透過したY軸方向に偏光した直線
偏光は、X軸方向に偏光方向を有する直線偏光となって
偏光子を透過する。電圧を印加するとき、印加電圧の増
加に伴い液晶層の厚さ方向に、すなわち基板に垂直にな
るように液晶分子の配向方向が傾く。それに伴い液晶層
のリタデーション値が減少し、液晶セル110を透過し
た光は楕円偏光となり、その結果、偏光子の透過光量が
印加電圧の増加に伴い単調に減少するため、電圧可変型
の光減衰器となる。
In this optical attenuator, the linearly polarized light which is transmitted through the liquid crystal layer and which is polarized in the Y-axis direction when no voltage is applied between the transparent electrodes becomes linearly polarized light having a polarization direction in the X-axis direction and is transmitted through the polarizer. To do. When a voltage is applied, as the applied voltage increases, the alignment direction of the liquid crystal molecules tilts in the thickness direction of the liquid crystal layer, that is, perpendicular to the substrate. Along with this, the retardation value of the liquid crystal layer decreases, and the light transmitted through the liquid crystal cell 110 becomes elliptically polarized light. As a result, the amount of light transmitted by the polarizer monotonically decreases with an increase in applied voltage. Become a vessel.

【0005】[0005]

【発明が解決しようとする課題】入射光の波長λが例え
ば1.3〜1.6μmの領域にある光通信用の、液晶素
子を用いた光減衰器では、液晶セルのリタデーション値
をλ/2とするためには可視波長領域の光減衰器に比べ
て、液晶層を厚くする必要がある。その結果、電圧振幅
10V以上の交流電圧を印加しても、液晶層の厚さ方向
に液晶分子の配向方向が充分揃わないので液晶セルのリ
タデーション値がゼロとならないため、偏光子を透過す
る偏光成分が存在し、消光比の高い光減衰器が得られな
い問題があった。
In an optical attenuator using a liquid crystal element for optical communication in which the wavelength λ of incident light is in the range of 1.3 to 1.6 μm, for example, the retardation value of the liquid crystal cell is λ / In order to obtain 2, it is necessary to make the liquid crystal layer thicker than the optical attenuator in the visible wavelength region. As a result, even if an AC voltage with a voltage amplitude of 10 V or more is applied, the alignment direction of the liquid crystal molecules is not sufficiently aligned in the thickness direction of the liquid crystal layer, and the retardation value of the liquid crystal cell does not become zero. There is a problem that an optical attenuator having a high extinction ratio cannot be obtained due to the presence of the component.

【0006】本発明は、上述の実情に鑑み高い消光比が
安定して実現できる、液晶素子およびそれを用いた光減
衰器を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a liquid crystal element and an optical attenuator using the same, which can stably realize a high extinction ratio in view of the above situation.

【0007】[0007]

【課題を解決するための手段】本発明は、電極付き透光
性基板間に液晶層が狭持された液晶セルであり、かつ電
極間に印加する電圧をVからV(V≠V)まで
変化させたとき、液晶セルへ入射され透過される波長λ
の直線偏光に対するリタデーション値がRからR
(R>R>0)まで変化する液晶セルと、波長λ
の直線偏光に対するリタデーション値RがR≧R
の関係にあるRと、R+R=m×λ(m:整
数)の関係を満たす位相板と、を備えることを特徴とす
る液晶素子を提供する。
The present invention is a liquid crystal cell in which a liquid crystal layer is sandwiched between transparent substrates with electrodes, and the voltage applied between the electrodes is from V 1 to V 2 (V 1 ≠ V 2 ) the wavelength λ that is incident on and transmitted through the liquid crystal cell when changed to V 2 )
Retardation values for linearly polarized light of R 1 to R
2 (R 1 > R 2 > 0) and a wavelength λ
Has a retardation value R for linearly polarized light of R 1 ≧ R v
There is provided a liquid crystal element comprising: R v having a relationship of R 2 ; and a phase plate satisfying a relationship of R + R v = m × λ (m: integer).

【0008】また、上記の液晶素子の光入射側または光
出射側の少なくとも一方の側に偏光子がさらに配置さ
れ、液晶層への印加電圧の増加に伴い出射光強度が減少
することを特徴とする光減衰器を提供する。
Further, a polarizer is further disposed on at least one of the light incident side and the light emitting side of the liquid crystal element, and the intensity of emitted light decreases as the voltage applied to the liquid crystal layer increases. An optical attenuator is provided.

【0009】[0009]

【発明の実施の形態】本発明の液晶素子は、次の構成を
有する液晶素子である。すなわち、液晶素子は、電極付
き透光性基板間に液晶層が狭持された液晶セルを備え、
その液晶セルは電極間にVからV(V≠V)ま
での電圧が印加されたとき、液晶セルへ入射され透過さ
れる波長λの直線偏光に対するリタデーション値がR
からR (R>R>0)まで変化するものである。
さらに、液晶素子は、波長λの直線偏光に対するリタデ
ーション値Rが、R≧R≧Rの関係にあるR
R+R=m×λ(m:整数)の関係を満たす位相板を
備えている。
BEST MODE FOR CARRYING OUT THE INVENTION The liquid crystal element of the present invention has the following constitution.
It is a liquid crystal element which has. That is, the liquid crystal element has electrodes.
A liquid crystal cell in which a liquid crystal layer is sandwiched between transparent substrates,
The liquid crystal cell has V1To VTwo(V1≠ VTwo)
When a voltage is applied to the liquid crystal cell,
The retardation value for linearly polarized light of wavelength λ is R1
To R Two(R1> RTwo> 0).
Furthermore, the liquid crystal element has a retardation for linearly polarized light of wavelength λ.
The solution value R is R1≧ Rv≧ RTwoR in the relationshipvWhen
R + Rv= M × λ (m: integer)
I have it.

【0010】本発明の液晶素子を、このように構成する
ことにより、液晶素子は低電圧で高い消光比を得ること
ができる。以下、図面を参照しながら、本発明の液晶素
子を詳細に説明する。
By configuring the liquid crystal element of the present invention in this way, the liquid crystal element can obtain a high extinction ratio at a low voltage. Hereinafter, the liquid crystal device of the present invention will be described in detail with reference to the drawings.

【0011】図1は本発明の液晶素子の構成例を示す側
面図である。透光性基板5と6の片面にそれぞれ透明電
極3と4が形成され、さらにその上に同一方向に配向処
理された配向膜(図示せず)が形成されて、シール材8
を用いてセル化される。さらに、セル内に常光屈折率n
(LC)および異常光屈折率n(LC)(n(L
C)<n(LC))のネマティック液晶が注入されて
液晶層1とされ、基板と平行に液晶分子の配向方向の揃
った液晶セル110が得られる。
FIG. 1 is a side view showing a structural example of a liquid crystal element of the present invention. The transparent electrodes 3 and 4 are formed on one surface of the translucent substrates 5 and 6, respectively, and an alignment film (not shown) subjected to an alignment treatment in the same direction is formed on the transparent electrodes 3 and 4, and the sealing material 8 is formed.
Are made into cells. In addition, the ordinary refractive index n
o (LC) and extraordinary refractive index n e (LC) (n o (L
A nematic liquid crystal of C) <n e (LC) is injected to form the liquid crystal layer 1, and a liquid crystal cell 110 in which the alignment directions of liquid crystal molecules are aligned parallel to the substrate is obtained.

【0012】また、透光性基板6と7の対向するそれぞ
れの面に配向膜用の溶液を塗布した後、塗布膜に同一方
向の配向処理を施し配向膜(図示せず)とし、図示しな
いシール材を用いてセル化する。さらに、セル内に液晶
モノマーの溶液を注入し、セル内で基板と平行に液晶分
子の配向方向の揃った液晶モノマー層を形成する。この
液晶モノマー層に紫外線を照射し固化して、液晶分子の
配向方向が固定された高分子液晶層2を形成して位相板
120を得る。これにより液晶セル110と位相板12
0とが積層された液晶素子100が得られる。
Further, after applying a solution for an alignment film to the respective surfaces of the transparent substrates 6 and 7 which face each other, the coating film is subjected to alignment treatment in the same direction to form an alignment film (not shown), which is not shown. Create cells using a sealant. Further, a liquid crystal monomer solution is injected into the cell to form a liquid crystal monomer layer in which the alignment directions of liquid crystal molecules are aligned parallel to the substrate in the cell. The liquid crystal monomer layer is irradiated with ultraviolet rays and solidified to form the polymer liquid crystal layer 2 in which the alignment direction of the liquid crystal molecules is fixed to obtain the phase plate 120. Accordingly, the liquid crystal cell 110 and the phase plate 12
A liquid crystal element 100 in which 0 and 0 are stacked is obtained.

【0013】このとき、ネマティック液晶からなる液晶
層1の遅相軸方向(異常光屈折率n (LC)を与える
方向)は図1および図2において入射光の偏光方向であ
るY軸方向に対して45度方向とする。また、常光屈折
率n(PLC)と異常光屈折率n(PLC)(n
(PLC)<n(PLC))の高分子液晶層2からな
る位相板の進相軸方向(常光屈折率n(PLC)方
向)が液晶層1の遅相軸方向と角度θをなすように形成
されている。なお、本発明で記載するリタデーション値
は、液晶層1の進相軸方向の偏光に対する光路長と、液
晶層1の遅相軸方向の偏光に対する光路長との差を示
し、負のリタデーション値も存在する。
At this time, a liquid crystal composed of a nematic liquid crystal
Slow axis direction of layer 1 (refractive index of extraordinary light n eGive (LC)
Direction) is the polarization direction of the incident light in FIGS.
45 ° to the Y-axis direction. Ordinary refraction
Rate no(PLC) and extraordinary light refractive index ne(PLC) (no
(PLC) <ne(PLC)) polymer liquid crystal layer 2
Direction of the phase axis of the phase plate (the ordinary refractive index no(PLC)
Direction) forms an angle θ with the slow axis direction of the liquid crystal layer 1.
Has been done. The retardation value described in the present invention
Is the optical path length for polarized light in the fast axis direction of the liquid crystal layer 1 and
Shows the difference from the optical path length for polarized light in the slow axis direction of crystal layer 1.
However, there is also a negative retardation value.

【0014】ここで、位相板の進相軸方向と液晶層1の
遅相軸方向とのなす角度θを45度以内とすることが好
ましい。角度θを45度以内とすることにより位相板の
リタデーション値Rは電圧印可時に存在するリタデーシ
ョン値Rを相殺する負の値となるが、45度を越える
とRは正の値となりRを相殺することが困難となる。
Here, it is preferable that the angle θ formed by the fast axis direction of the phase plate and the slow axis direction of the liquid crystal layer 1 is within 45 degrees. By setting the angle θ within 45 degrees, the retardation value R of the phase plate becomes a negative value that cancels out the retardation value R v existing when a voltage is applied, but when it exceeds 45 degrees, R becomes a positive value and R v becomes It will be difficult to offset.

【0015】通常は高分子液晶層2の進相軸方向が液晶
層1の遅相軸方向と同じ(θ=0)とする。すなわち、
高分子液晶層2の進相軸方向が、入射光の偏光方向に対
して45度の角をなす。
Usually, the fast axis direction of the polymer liquid crystal layer 2 is the same as the slow axis direction of the liquid crystal layer 1 (θ = 0). That is,
The fast axis direction of the polymer liquid crystal layer 2 forms an angle of 45 degrees with the polarization direction of incident light.

【0016】ここで、波長λでY軸方向に偏光方向を有
する直線偏光の入射光に対して、交流電源9からの電圧
非印加時に液晶セル110のリタデーション値がほぼλ
/2となるように、液晶層1の厚さd(LC)を0.5
λ/Δn(LC)とする。ここでΔn(LC)=n
(LC)−n(LC)である。
Here, the retardation value of the liquid crystal cell 110 is approximately λ when a voltage is not applied from the AC power source 9 with respect to the incident light of linear polarization having the polarization direction in the Y-axis direction at the wavelength λ.
The thickness d (LC) of the liquid crystal layer 1 is set to 0.5 so that
Let λ / Δn (LC). Where Δn (LC) = n
a e (LC) -n o (LC ).

【0017】このようにして得られた液晶セル110の
透明電極3と4に交流電源9から電圧振幅Vの矩形波の
交流電圧を印加したとき、液晶セル110のリタデーシ
ョン値は減少するがゼロでない有限の値Rとなる。電
圧振幅Vの印加電圧で液晶素子のリタデーション値をゼ
ロとするためには、このようなリタデーション値R
相殺するように位相板120のリタデーション値R(=
−R)を調整すればよい。すなわち、高分子液晶層2
の進相軸方向が液晶層1の遅相軸方向と一致する場合
は、高分子液晶層2の厚さd(PLC)をR/Δn
(PLC)とすればよい。ここで、Δn(PLC)=n
(PLC)−n(PLC)である。一致しない場合
は実効的な△n(PLC)が小さな値となるため、dが
厚くなる。
When a rectangular wave AC voltage having a voltage amplitude V is applied from the AC power supply 9 to the transparent electrodes 3 and 4 of the liquid crystal cell 110 thus obtained, the retardation value of the liquid crystal cell 110 decreases but is not zero. It is a finite value R v . In order to make the retardation value of the liquid crystal element zero by the applied voltage of the voltage amplitude V, the retardation value R (= of the phase plate 120 is set so as to cancel the retardation value R v.
-R v) may be adjusted. That is, the polymer liquid crystal layer 2
When the fast axis direction of the liquid crystal layer 1 coincides with the slow axis direction of the liquid crystal layer 1, the thickness d (PLC) of the polymer liquid crystal layer 2 is set to R v / Δn.
(PLC) may be used. Here, Δn (PLC) = n
a e (PLC) -n o (PLC ). If they do not match, the effective Δn (PLC) becomes a small value, and d becomes thick.

【0018】リタデーション値Rが大きな場合、電圧
非印加時の液晶素子のリタデーション値がλ/2よりR
だけ小さな値となるため、その減少分Rを考慮して
あらかじめ液晶セル110のリタデーション値がλ/2
+Rとなるようにしてもよい。
When the retardation value R v is large, the retardation value of the liquid crystal element when no voltage is applied is R from λ / 2.
Since the value becomes smaller by v , the retardation value of the liquid crystal cell 110 is previously set to λ / 2 in consideration of the decrease R v.
It may be + R v .

【0019】このようにして得られた液晶素子100に
波長λでY軸方向に偏光方向を有する直線偏光が入射
し、液晶素子100の光出射側にX軸方向に偏光方向を
有する直線偏光のみを透過する偏光子を配置して光減衰
器する。これにより、電圧非印加時にはほとんどの光が
透過し、電圧印加時(印加電圧V)には偏光子によって
光が遮断され、このため、偏光子の消光比に相当する高
い消光比を有する光減衰器が実現でき、好ましい。
The linearly polarized light having the polarization direction in the Y-axis direction at the wavelength λ enters the liquid crystal element 100 thus obtained, and only the linearly polarized light having the polarization direction in the X-axis direction is incident on the light exit side of the liquid crystal element 100. An optical attenuator is provided by arranging a polarizer that transmits light. As a result, most of the light is transmitted when no voltage is applied, and the light is blocked by the polarizer when a voltage is applied (applied voltage V). Therefore, optical attenuation having a high extinction ratio corresponding to the extinction ratio of the polarizer is achieved. Can be realized, which is preferable.

【0020】上記の説明では、液晶素子のリタデーショ
ン値が、印加電圧ゼロのときはほぼλ/2であり、また
印加電圧Vのときはゼロとなる場合について説明した
が、リタデーション値がλ/2およびゼロとは異なる構
成でもよい。
In the above description, the retardation value of the liquid crystal element is approximately λ / 2 when the applied voltage is zero and is zero when the applied voltage is V, but the retardation value is λ / 2. And may be different from zero.

【0021】液晶セル110への印加電圧の範囲がV
からV(V≠V)までであって、このときリタデ
−ション値はRからRまで変化する。上記の電圧範
囲内の特定の電圧Vで高い消光比の光減衰器を得るため
に、電圧Vで発生する液晶セル110のリタデ−ション
値Rと位相板120のリタデーション値Rとが、波長
λの同じ直線偏光の入射光に対して、R+R=m×λ
/2(m:整数)の関係を満たせばよい。ここでR
は、R≧R≧Rの関係を満たす。
The range of voltage applied to the liquid crystal cell 110 is V 1
To V 2 (V 1 ≠ V 2 ), at which time the retardation value changes from R 1 to R 2 . In order to obtain an optical attenuator having a high extinction ratio at a specific voltage V within the above voltage range, the retardation value R v of the liquid crystal cell 110 generated at the voltage V and the retardation value R of the phase plate 120 are the wavelengths. For incident light of the same linear polarization of λ, R + R v = m × λ
It suffices to satisfy the relationship of / 2 (m: integer). Where R
v satisfies the relationship of R 1 ≧ R v ≧ R 2 .

【0022】ここで、mが奇数の場合は偏光子における
透過直線偏光の偏光方向を液晶素子における入射直線偏
光の偏光方向と直交するように配置し、mが偶数の場合
は偏光子における透過直線偏光の偏光方向を液晶素子に
おける入射直線偏光の偏光方向と一致させれば、V
らVまでの範囲にある印加電圧Vで透過光量が最小と
なるため、高い消光比の光減衰器が実現する。R+R
の絶対値が小さいほど消光比の波長依存性が少ないた
め、通常m=0が好ましいが、m=±1または±2とし
てもよい。
Here, when m is an odd number, the polarization direction of the transmitted linearly polarized light in the polarizer is arranged so as to be orthogonal to the polarization direction of the incident linearly polarized light in the liquid crystal element, and when m is an even number, the transmission linearly polarized light in the polarizer is set. If the polarization direction of the polarized light is made to coincide with the polarization direction of the incident linearly polarized light in the liquid crystal element, the amount of transmitted light becomes the minimum at an applied voltage V in the range from V 1 to V 2, so that an optical attenuator with a high extinction ratio can To be realized. R + R v
Since the smaller the absolute value of is, the smaller the wavelength dependence of the extinction ratio is, m = 0 is usually preferable, but m = ± 1 or ± 2 may be set.

【0023】したがって、液晶素子に用いられる液晶は
ネマティック液晶であり、電圧非印加時の液晶分子の配
向方向が透光性基板間で一定方向に揃った平行配向であ
り、また位相板はR+R=0の関係を満たし、かつ進
相軸方向が液晶層の遅相軸方向に対して45°以内の角
度をなす液晶素子とすることが好ましい。
Therefore, the liquid crystal used in the liquid crystal element is a nematic liquid crystal, and the alignment direction of the liquid crystal molecules when no voltage is applied is a parallel alignment in which the transparent substrates are aligned in a fixed direction, and the phase plate is R + R v. It is preferable that the liquid crystal element satisfy the relationship of = 0 and the fast axis direction forms an angle within 45 ° with the slow axis direction of the liquid crystal layer.

【0024】また、図1では液晶層1と高分子液晶層2
との間に透光性基板6が介在しているが、透光性基板6
を用いないで透光性基板7上の高分子液晶層2に透明電
極4および配向膜を形成し、セル化後に液晶層を作製し
てもよい。
Further, in FIG. 1, the liquid crystal layer 1 and the polymer liquid crystal layer 2 are shown.
The transparent substrate 6 is interposed between the transparent substrate 6 and the transparent substrate 6.
Alternatively, the transparent electrode 4 and the alignment film may be formed on the polymer liquid crystal layer 2 on the translucent substrate 7 without using, and the liquid crystal layer may be formed after the cell formation.

【0025】図1では高分子液晶からなる位相板の構成
例を示したが、水晶などの複屈折結晶からなる位相板を
用いてもよい。その場合、図1の高分子液晶層2および
透光性基板6と7の代わりに透明電極4の形成された水
晶波長板を液晶セルの透光性基板6として用いることが
でき、液晶素子を小型化できる。また、図1では液晶セ
ルの電極として透明電極3と4を用いた構成を示した
が、一方の電極を金やアルミニウムなどの光反射性電極
とした反射型液晶セルとしてもよい。この場合、液晶層
を光が往復するため透過型に比べて液晶層の厚さを半分
にできるので、低駆動電圧化および高速応答化につなが
る。
Although FIG. 1 shows a structural example of a phase plate made of polymer liquid crystal, a phase plate made of a birefringent crystal such as quartz may be used. In that case, instead of the polymer liquid crystal layer 2 and the transparent substrates 6 and 7 of FIG. 1, a crystal wave plate having a transparent electrode 4 formed thereon can be used as a transparent substrate 6 of a liquid crystal cell, and a liquid crystal element is formed. Can be miniaturized. Further, FIG. 1 shows a configuration in which the transparent electrodes 3 and 4 are used as the electrodes of the liquid crystal cell, but one of the electrodes may be a reflective liquid crystal cell using a light-reflecting electrode such as gold or aluminum. In this case, since the light travels back and forth through the liquid crystal layer, the thickness of the liquid crystal layer can be halved as compared with the transmissive type, which leads to lower driving voltage and faster response.

【0026】使用される液晶はネマティック液晶に限定
されず、強誘電体液晶、反強誘電体液晶などでもよい。
また、液晶分子の配向も平行配向以外にねじれ配向、垂
直配向、ハイブリッド配向などでもよい。電圧印加に応
じて液晶層のリタデーション値が変化する液晶材料であ
ればよいし、また配向性の液晶であればよい。これらの
液晶の中で、ネマティック液晶を用いることは安定した
液晶配向が得られるため好ましい。
The liquid crystal used is not limited to nematic liquid crystal, but may be ferroelectric liquid crystal, antiferroelectric liquid crystal or the like.
Further, the alignment of liquid crystal molecules may be twisted alignment, vertical alignment, hybrid alignment, etc. other than parallel alignment. Any liquid crystal material can be used as long as the retardation value of the liquid crystal layer changes in response to voltage application, and liquid crystal with orientation can be used. Among these liquid crystals, it is preferable to use a nematic liquid crystal because a stable liquid crystal alignment can be obtained.

【0027】偏光子としては、特定の偏光方向を有する
直線偏光を透過しそれに直交する偏光方向を有する直線
偏光を吸収する、例えば金属微粒子をガラス中に分散さ
せた偏光性ガラスなどがある。しかし、液晶素子と一体
化して偏光性ガラスを用いる場合光吸収に伴い液晶素子
の温度が上昇し、光減衰率が変化する問題があった。
Examples of the polarizer include a polarizing glass which transmits linearly polarized light having a specific polarization direction and absorbs linearly polarized light having a polarization direction orthogonal thereto, for example, polarizing glass in which fine metal particles are dispersed in glass. However, when the polarizing glass is used integrally with the liquid crystal element, there is a problem that the temperature of the liquid crystal element rises due to light absorption and the light attenuation rate changes.

【0028】上記の光吸収に伴う温度変化を低減するた
め、偏光回折型の偏光子を用いることが好ましい。本発
明の光減衰器に用いられる偏光回折型の偏光子200の
構成例を図3に示す。透光性基板12上に形成された常
光屈折率n(PLC)と異常光屈折率n(PLC)
(n(PLC)<n(PLC))の高分子液晶層1
0を、フォトエッチングの技術により断面形状が矩形状
の回折格子に加工する。そして、格子の凹部に常光屈折
率n(PLC)とほぼ等しい屈折率nの均質屈折率
透明材料11を充填して透光性基板12と13とで挟み
偏光回折型の偏光子200を形成する。
In order to reduce the temperature change due to the above light absorption, it is preferable to use a polarization diffraction type polarizer. FIG. 3 shows a configuration example of the polarization diffraction type polarizer 200 used in the optical attenuator of the present invention. Ordinary light refractive index n o (PLC) and extraordinary light refractive index n e (PLC) formed on the transparent substrate 12.
Polymer liquid crystal layer 1 of (n o (PLC) <n e (PLC))
0 is processed into a diffraction grating having a rectangular cross section by a photo-etching technique. Then, the concave portion of the grating is filled with a homogeneous refractive index transparent material 11 having a refractive index n s that is substantially equal to the ordinary light refractive index n o (PLC) and sandwiched between the transparent substrates 12 and 13 to form a polarization diffraction type polarizer 200. Form.

【0029】上記の偏光回折型の偏光子に入射する常光
偏光は回折されることなく透直進過し、異常光偏光は回
折される。したがって、光出射側にレンズなどの集光素
子を設けると、直進透過光は一つの集光点に集光し回折
光は別の集光点に集光するため、透過光と回折光とを空
間的に分離できる。したがって、直進透過光のみ取り出
せば高い消光比の偏光子となる。
The ordinary light polarization incident on the above-mentioned polarization diffraction type polarizer goes straight through without being diffracted, and the extraordinary light polarization is diffracted. Therefore, if a light-collecting element such as a lens is provided on the light exit side, the straight transmitted light is condensed at one condensing point and the diffracted light is condensed at another condensing point. Can be spatially separated. Therefore, if only the straight transmitted light is taken out, a polarizer having a high extinction ratio can be obtained.

【0030】したがって、偏光子は、第1の直線偏光の
入射光を直進透過し、第1の直線偏光の偏光方向と直交
する偏光方向を有する第2の直線偏光を回折する偏光回
折型の偏光子である上記の光減衰器とすることが好まし
い。
Therefore, the polarizer linearly transmits the incident light of the first linearly polarized light, and diffracts the second linearly polarized light having a polarization direction orthogonal to the polarization direction of the first linearly polarized light, which is a polarization diffraction type polarization. The above-mentioned optical attenuator which is a child is preferable.

【0031】上記の偏光回折型の偏光子200を液晶素
子100と一体化した本発明の光減衰器300の構成例
を図4に示す。ここでは液晶素子100に直線偏光が入
射する光出射側に偏光回折型の偏光子200が配置され
た例を示すが、入射光のうち特定偏光方向の直線偏光成
分のみを液晶素子100に入射する場合は、光入射側に
も偏光回折型の偏光子を配置すればよい。
FIG. 4 shows a structural example of the optical attenuator 300 of the present invention in which the above-mentioned polarization diffraction type polarizer 200 is integrated with the liquid crystal element 100. Here, an example in which a polarization diffraction type polarizer 200 is arranged on the light exit side where linearly polarized light is incident on the liquid crystal element 100 is shown. However, only the linearly polarized light component of a specific polarization direction of incident light is incident on the liquid crystal element 100. In this case, a polarization diffraction type polarizer may be arranged also on the light incident side.

【0032】このように、液晶素子の光入射側または光
出射側の少なくとも一方の側に偏光回折型の偏光子を配
置して、一体に構成することにより素子の小型化および
安定した性能が得られるため好ましい。
As described above, by arranging the polarization diffraction type polarizer on at least one of the light incident side and the light emitting side of the liquid crystal element and integrally forming them, the element can be downsized and stable performance can be obtained. It is preferable because it is possible.

【0033】[0033]

【実施例】本例の液晶素子100について、図1を用い
て説明する。常光屈折率n(LC)=1.50および
異常光屈折率n(LC)=1.66のネマティック液
晶を、透明電極3、4が片面に形成された透光性基板
5、6に挟持し、液晶層1の厚さd(LC)を5μmと
した液晶セル110を作製した。液晶層1の遅相軸方向
は、図2に示すY軸方向に対して45度で基板に対して
平行とした。
EXAMPLE A liquid crystal element 100 of this example will be described with reference to FIG. A nematic liquid crystal having an ordinary light refractive index n o (LC) = 1.50 and an extraordinary light refractive index n e (LC) = 1.66 is applied to the translucent substrates 5 and 6 having the transparent electrodes 3 and 4 formed on one surface. A liquid crystal cell 110 was produced in which the liquid crystal layer 1 was sandwiched and the thickness d (LC) of the liquid crystal layer 1 was 5 μm. The slow axis direction of the liquid crystal layer 1 was 45 degrees with respect to the Y-axis direction shown in FIG. 2 and was parallel to the substrate.

【0034】透明電極3、4に電圧を印加しない状態で
は、波長1.55μmの光に対する液晶セル110のリ
タデーション値は0.8μm(R)であり、Y軸方向
に偏光方向を有する直線偏光が、液晶セル110に入射
し出射したとき直線偏光の偏光方向はX軸方向となっ
た。また、電圧振幅5Vの矩形波の交流電圧を印加した
状態では、液晶セル110のリタデーション値R
0.128μm(R)であった。
When no voltage is applied to the transparent electrodes 3 and 4, the retardation value of the liquid crystal cell 110 for light having a wavelength of 1.55 μm is 0.8 μm (R 1 ), and linearly polarized light having a polarization direction in the Y-axis direction. However, the polarization direction of the linearly polarized light was the X-axis direction when entering and exiting the liquid crystal cell 110. Further, the retardation value R v of the liquid crystal cell 110 was 0.128 μm (R 2 ) when a rectangular wave AC voltage having a voltage amplitude of 5 V was applied.

【0035】さらに、透光性基板6、7に挟持されてい
る高分子液晶層2は、常光屈折率n (PLC)=1.
55および異常光屈折率n(PLC)=1.59で厚
さd(PLC)を3.2μmとし、位相板120を構成
し、この位相板120と液晶セル110によって液晶素
子100を作製した。ここで、位相板120の進相軸方
向を液晶層1の遅相軸方向と一致させると、すなわちθ
=0とすると、高分子液晶層2からなる位相板120の
リタデーション値Rは−0.128μmとなるため、印
加電圧5Vでの液晶層1に存在するリタデーション値
0.128μmを相殺した。すなわちm×λ=0でm=
0に対応する。
Further, it is sandwiched between the transparent substrates 6 and 7.
The polymer liquid crystal layer 2 having a normal refractive index n o(PLC) = 1.
55 and extraordinary light refractive index ne(PLC) = 1.59 and thick
The phase plate 120 is configured by setting the height d (PLC) to 3.2 μm.
The phase plate 120 and the liquid crystal cell 110 are used to
A child 100 was produced. Here, the fast axis of the phase plate 120
If the direction is aligned with the slow axis direction of the liquid crystal layer 1, that is, θ
= 0, the phase plate 120 composed of the polymer liquid crystal layer 2
Since the retardation value R is -0.128 μm,
Retardation value existing in the liquid crystal layer 1 at an applied voltage of 5V
0.128 μm was offset. That is, m × λ = 0 and m =
Corresponds to 0.

【0036】さらに、図3に示すように、常光屈折率n
(PLC)=1.55および異常光屈折率n(PL
C)=1.70で厚さ5.2μmの高分子液晶を用いて
格子ピッチ10μmの回折格子10を作製した。その
後、屈折率1.55の均質屈折率透明材料11で格子の
凹部を埋め、これらをガラス基板からなる透光性基板1
2、13で狭持して偏光回折型の偏光子200を作製し
た。次に、図4に示すように、偏光子200を液晶素子
100の光出射面側に接着固定して電圧可変型の光減衰
器300とした。ここで、偏光子200の回折光の偏光
方向をY軸方向としている。
Further, as shown in FIG. 3, the ordinary refractive index n
o (PLC) = 1.55 and extraordinary light refractive index n e (PL
A diffraction grating 10 having a grating pitch of 10 μm was manufactured using a polymer liquid crystal having a thickness of 5.2 μm with C) = 1.70. After that, the concave portions of the grating are filled with the transparent material 11 having a uniform refractive index of 1.55, and these are filled with the transparent substrate 1 made of a glass substrate.
A polarizing diffraction type polarizer 200 was produced by sandwiching the polarizing element 200 with the polarizing element 200. Next, as shown in FIG. 4, the polarizer 200 was adhesively fixed to the light emitting surface side of the liquid crystal element 100 to obtain a voltage variable type optical attenuator 300. Here, the polarization direction of the diffracted light of the polarizer 200 is the Y-axis direction.

【0037】このようにして作製した光減衰器300
に、波長1.55μmでY軸方向に偏光方向を有する直
線偏光の平行光を入射し、出射光を集光レンズにより光
ファイバーに集光した。
Optical attenuator 300 manufactured in this way
Then, linearly polarized parallel light having a wavelength of 1.55 μm and a polarization direction in the Y-axis direction was made incident, and the emitted light was condensed on an optical fiber by a condenser lens.

【0038】光減衰器の液晶層への印加電圧振幅を0か
ら5Vまで変化させたとき、光ファイバー伝送後の光強
度I(V)における光強度比I(V)/I(0)で規定
される消光比の変化の一例を図5の○で示す。図5で
は、縦軸の数値が小さいほど(下に行くほど)、消光比
が大きい。また、比較例として、位相板のない従来構成
の光減衰器とした場合の消光比の変化を□で示した。
When the amplitude of the voltage applied to the liquid crystal layer of the optical attenuator is changed from 0 to 5 V, it is defined by the light intensity ratio I (V) / I (0) in the light intensity I (V) after the optical fiber transmission. An example of the change in extinction ratio is shown by a circle in FIG. In FIG. 5, the smaller the numerical value on the vertical axis (lower), the larger the extinction ratio. As a comparative example, the change in extinction ratio in the case of a conventional optical attenuator without a phase plate is shown by □.

【0039】位相板を用いない従来構成の液晶素子では
最大−12dBの消光比であったが、位相板を用いた本
例の構成では−40dBの高い消光比が得られた。
The maximum extinction ratio of -12 dB was obtained in the conventional liquid crystal device without the phase plate, but a high extinction ratio of -40 dB was obtained in the structure of this example using the phase plate.

【0040】[0040]

【発明の効果】以上説明したように、本発明の液晶素子
を用いることにより、印加電圧の増加とともに緩やかに
出射光量が減少し、5V程度の低電圧でも高い消光比を
有する電圧可変型の光減衰器が実現できる。
As described above, by using the liquid crystal element of the present invention, the amount of emitted light gradually decreases with an increase in the applied voltage, and the voltage variable type light having a high extinction ratio even at a low voltage of about 5V is obtained. Attenuator can be realized.

【0041】さらに、光吸収のほとんどない偏光回折型
の偏光子を液晶素子と一体化した本発明の光減衰器では
高強度の光が入射しても液晶層の温度上昇が少ないた
め、安定した消光比が得られる。
Further, in the optical attenuator of the present invention in which a polarization diffraction type polarizer which hardly absorbs light is integrated with a liquid crystal element, the temperature rise of the liquid crystal layer is small even when high intensity light is incident, so that it is stable. An extinction ratio is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液晶素子の構成例を示す側面図。FIG. 1 is a side view showing a configuration example of a liquid crystal element of the present invention.

【図2】本発明の液晶素子の遅相軸方向と位相板の進相
軸方向との関係を示す平面図。
FIG. 2 is a plan view showing the relationship between the slow axis direction of the liquid crystal element of the present invention and the fast axis direction of the phase plate.

【図3】本発明の光減衰器に用いられる偏光回折型の偏
光子の構成例を示す側面図。
FIG. 3 is a side view showing a configuration example of a polarization diffraction type polarizer used in the optical attenuator of the present invention.

【図4】本発明の液晶素子に偏光回折型の偏光子が一体
化された光減衰器の構成例を示す側面図。
FIG. 4 is a side view showing a configuration example of an optical attenuator in which a polarization diffraction type polarizer is integrated with the liquid crystal element of the present invention.

【図5】本発明の光減衰器と従来の光減衰器において、
液晶セル印加電圧に対する消光比の関係を示すグラフ。
FIG. 5 shows an optical attenuator of the present invention and a conventional optical attenuator,
The graph which shows the relationship of the extinction ratio with respect to the liquid crystal cell applied voltage.

【図6】従来の光減衰器の構成例を示す側面図。FIG. 6 is a side view showing a configuration example of a conventional optical attenuator.

【符号の説明】[Explanation of symbols]

1:液晶層 2:高分子液晶層 3、4:透明電極 5、6、7、12、13:透光性基板 8:シール材 9:交流電源 10:偏光性回折格子 11:均質屈折率透明材料 12:偏光子 100:液晶素子 110:液晶セル 120:位相板 200:偏光回折型の偏光子 300:光減衰器 1: Liquid crystal layer 2: Polymer liquid crystal layer 3,4: Transparent electrode 5, 6, 7, 12, 13: translucent substrate 8: Seal material 9: AC power supply 10: Polarizing diffraction grating 11: Transparent material with homogeneous refractive index 12: Polarizer 100: Liquid crystal element 110: Liquid crystal cell 120: Phase plate 200: Polarization diffraction type polarizer 300: Optical attenuator

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H049 BA02 BA06 BA42 BA45 BB03 BC22 2H079 AA02 AA12 BA01 CA04 DA08 EB17 HA13 KA08 KA17 2H088 EA32 EA44 HA15 KA07 MA02 MA20 2H091 FA08X FA08Z FA11X FA11Z FD06 FD10 GA03 GA06 HA07 LA17 MA10    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2H049 BA02 BA06 BA42 BA45 BB03                       BC22                 2H079 AA02 AA12 BA01 CA04 DA08                       EB17 HA13 KA08 KA17                 2H088 EA32 EA44 HA15 KA07 MA02                       MA20                 2H091 FA08X FA08Z FA11X FA11Z                       FD06 FD10 GA03 GA06 HA07                       LA17 MA10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電極付き透光性基板間に液晶層が狭持され
た液晶セルであり、かつ電極間に印加する電圧をV
らV(V≠V)まで変化させたとき、液晶セルへ
入射され透過される波長λの直線偏光に対するリタデー
ション値がRからR(R >R>0)まで変化す
る液晶セルと、 波長λの直線偏光に対するリタデーション値RがR
≧Rの関係にあるRと、R+R=m×λ
(m:整数)の関係を満たす位相板と、 を備えることを特徴とする液晶素子。
1. A liquid crystal layer is sandwiched between transparent substrates with electrodes.
Liquid crystal cell, and the voltage applied between the electrodes is V1Or
Et VTwo(V1≠ VTwo) To the liquid crystal cell
Ritaday for linearly polarized light of wavelength λ that is incident and transmitted
Value is R1To RTwo(R 1> RTwoChange to> 0)
Liquid crystal cell, Retardation value R for linearly polarized light of wavelength λ is R1
Rv≧ RTwoR in the relationshipvAnd R + Rv= M × λ
A phase plate satisfying the relationship of (m: integer), A liquid crystal element comprising:
【請求項2】前記液晶素子に用いられる液晶はネマティ
ック液晶であり、電圧非印加時の液晶分子の配向方向が
透光性基板間で一定方向に揃った平行配向であり、また
前記位相板はR+R=0の関係を満たし、かつ進相軸
方向が液晶層の遅相軸方向に対して45°以内の角度を
なす請求項1記載の液晶素子。
2. The liquid crystal used in the liquid crystal element is a nematic liquid crystal, and the alignment direction of liquid crystal molecules when no voltage is applied is a parallel alignment in which the transparent substrates are aligned in a fixed direction, and the phase plate is The liquid crystal element according to claim 1, wherein the relationship of R + R v = 0 is satisfied, and the fast axis direction forms an angle within 45 ° with the slow axis direction of the liquid crystal layer.
【請求項3】請求項1または2記載の液晶素子の光入射
側または光出射側の少なくとも一方の側に偏光子がさら
に配置され、液晶層への印加電圧の増加に伴い出射光強
度が減少することを特徴とする光減衰器。
3. A polarizer is further disposed on at least one of the light incident side and the light emitting side of the liquid crystal element according to claim 1, and the intensity of emitted light decreases as the voltage applied to the liquid crystal layer increases. An optical attenuator characterized by:
【請求項4】前記偏光子は、第1の直線偏光を直進透過
し、第1の直線偏光の偏光方向と直交する偏光方向を有
する第2の直線偏光を回折する偏光回折型の偏光子であ
る請求項3記載の光減衰器。
4. The polarization diffractive polarizer, wherein the polarizer linearly transmits the first linearly polarized light and diffracts a second linearly polarized light having a polarization direction orthogonal to the polarization direction of the first linearly polarized light. An optical attenuator according to claim 3.
JP2001256301A 2001-08-24 2001-08-27 Liquid crystal device and optical attenuator Expired - Fee Related JP5150992B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001256301A JP5150992B2 (en) 2001-08-27 2001-08-27 Liquid crystal device and optical attenuator
EP02760728A EP1420275B1 (en) 2001-08-24 2002-08-23 Isolator and optical attenuator
PCT/JP2002/008517 WO2003019247A1 (en) 2001-08-24 2002-08-23 Multi-layer diffraction type polarizer and liquid crystal element
US10/784,714 US7079202B2 (en) 2001-08-24 2004-02-24 Multi-layer diffraction type polarizer and liquid crystal element
US11/313,694 US7764354B2 (en) 2001-08-24 2005-12-22 Multi-layer diffraction type polarizer and liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001256301A JP5150992B2 (en) 2001-08-27 2001-08-27 Liquid crystal device and optical attenuator

Publications (2)

Publication Number Publication Date
JP2003066450A true JP2003066450A (en) 2003-03-05
JP5150992B2 JP5150992B2 (en) 2013-02-27

Family

ID=19084130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001256301A Expired - Fee Related JP5150992B2 (en) 2001-08-24 2001-08-27 Liquid crystal device and optical attenuator

Country Status (1)

Country Link
JP (1) JP5150992B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003295152A (en) * 2002-04-04 2003-10-15 Citizen Watch Co Ltd Liquid crystal optical switch
JP2006154492A (en) * 2004-11-30 2006-06-15 Asahi Glass Co Ltd Liquid crystal element and optical attenuator
JP2007225905A (en) * 2006-02-23 2007-09-06 Asahi Glass Co Ltd Optical isolator and bidirectional optical transmitting/receiving apparatus
JP2007333945A (en) * 2006-06-14 2007-12-27 Asahi Glass Co Ltd Liquid crystal element, light source device and optical head device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333617A (en) * 1994-06-03 1995-12-22 Toshiba Corp Liquid crystal display element
JPH0933917A (en) * 1995-07-19 1997-02-07 Casio Comput Co Ltd Color liquid crystal display element
JP2000330114A (en) * 1999-05-24 2000-11-30 Victor Co Of Japan Ltd Direct view display
JP2001125143A (en) * 1999-10-28 2001-05-11 Sharp Corp Reflection type liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333617A (en) * 1994-06-03 1995-12-22 Toshiba Corp Liquid crystal display element
JPH0933917A (en) * 1995-07-19 1997-02-07 Casio Comput Co Ltd Color liquid crystal display element
JP2000330114A (en) * 1999-05-24 2000-11-30 Victor Co Of Japan Ltd Direct view display
JP2001125143A (en) * 1999-10-28 2001-05-11 Sharp Corp Reflection type liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003295152A (en) * 2002-04-04 2003-10-15 Citizen Watch Co Ltd Liquid crystal optical switch
JP2006154492A (en) * 2004-11-30 2006-06-15 Asahi Glass Co Ltd Liquid crystal element and optical attenuator
JP2007225905A (en) * 2006-02-23 2007-09-06 Asahi Glass Co Ltd Optical isolator and bidirectional optical transmitting/receiving apparatus
JP2007333945A (en) * 2006-06-14 2007-12-27 Asahi Glass Co Ltd Liquid crystal element, light source device and optical head device

Also Published As

Publication number Publication date
JP5150992B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
US7079202B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
KR101098202B1 (en) Polarized diffractive filter and layered polarized diffractive filter
US20200089078A1 (en) Compact liquid crystal beam steering devices including multiple polarization gratings
KR100724905B1 (en) Optical film, polarizer and display device
JP2009294604A (en) Optical modulation liquid crystal element and variable optical attenuator
JP4792679B2 (en) Isolator and variable voltage attenuator
JP4106981B2 (en) Optical attenuator
JPH0534656A (en) Focal length variable liquid crystal lens
KR100284647B1 (en) Nematic liquid crystal Fabry-Perot wavelength tunable filter device
JP2005003758A (en) Reflective optical modulator and variable optical attenuator
JP5150992B2 (en) Liquid crystal device and optical attenuator
US8107152B2 (en) Electro-optical tunable birefringent filter
KR940006340B1 (en) Linear polarizer
JPH06301006A (en) Color liquid crystal display device
JP2803181B2 (en) Birefringent diffraction grating polarizer
JPH05297339A (en) Liquid crystal light refracting element
JPH04140714A (en) Variable wavelength filter module
JP2004325790A (en) Optical modulation element and optical attenuator
JP4168767B2 (en) Liquid crystal device and optical attenuator
JP2004347784A (en) Reflection type optical element
JPS61203402A (en) Functional optical element
JPH11125801A (en) Wavelength selection filter
JPH04240804A (en) Polarizing element
JP2006154492A (en) Liquid crystal element and optical attenuator
JPS587118A (en) Spatial filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080616

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5150992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees