JP2003066075A - Conductive material measuring device and measuring method - Google Patents

Conductive material measuring device and measuring method

Info

Publication number
JP2003066075A
JP2003066075A JP2001256429A JP2001256429A JP2003066075A JP 2003066075 A JP2003066075 A JP 2003066075A JP 2001256429 A JP2001256429 A JP 2001256429A JP 2001256429 A JP2001256429 A JP 2001256429A JP 2003066075 A JP2003066075 A JP 2003066075A
Authority
JP
Japan
Prior art keywords
electrode
conductive
layer
voltage
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001256429A
Other languages
Japanese (ja)
Inventor
Yoshihiro Oshima
宜浩 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001256429A priority Critical patent/JP2003066075A/en
Publication of JP2003066075A publication Critical patent/JP2003066075A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To visualize the in-plane resistance value of a conductive material such as sheet-like conductive rubber by use of an electrochromic device (ECD). SOLUTION: In this conductive material measuring device and measuring method, a transparent conductive film 1 and a cathodic electrochromic (EC) layer 2 at least on the upper side of the ECD 12 are patterned in a lattice shape to form two or more matrix cells 13, the conductive rubber 8 that is a measuring body is placed on the resulting transparent conductive film 1, a metal electrode 9 is further placed on the conductive rubber 8 with pressure. A voltage is applied between the second transparent conductive film 5 of the ECD 12 and the metal electrode 9 to visualize the matrix cells 13 to a color density according to resistance value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はエレクトロクロミズ
ム(Electrochromism:EC現象)を用
いて、導電性ゴム等の導電性物質の面内の抵抗値のバラ
ツキを可視化することで、導電性物質の導電性分布を色
の濃度差で表示させる様にした導電性物質測定装置及び
その測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses electrochromism (EC phenomenon) to visualize the variation in the in-plane resistance value of a conductive substance such as a conductive rubber, thereby making the conductivity of the conductive substance. The present invention relates to an electroconductive substance measuring device and a measuring method thereof, in which a distribution is displayed by a color density difference.

【0002】[0002]

【従来の技術】従来から、エレクトロクロミック・デバ
イス(ElectrochromicDevice:以
下ECDと記す)として、外部からの電圧印加によっ
て、可逆的に色調の変化する素子が知られている。この
様なECDは視角依存性が無い点で主に車のルームミラ
ー、電気ブラインド、表示素子、着消色状態を2値対応
させたメモリ素子として応用されている。
2. Description of the Related Art Conventionally, as an electrochromic device (Electrochromic Device: hereinafter referred to as ECD), an element whose color tone is reversibly changed by applying a voltage from the outside has been known. Such an ECD is mainly applied as a vehicle rearview mirror, an electric blind, a display element, and a memory element in which two color-changing color states are associated with each other because it has no viewing angle dependency.

【0003】上述のEC現象はECDに電圧を印加する
ことにより酸化、還元反応が発生して着色・消色をする
現象の総称であり、一般的に基板上に図4の動作原理図
の様に透明電極5/アノーデックエレクトロクロミック
層(アノーデックEC層)4/イオン注入層3/カソー
デックエレクトロクロミック層(カソーデックEC層)
2/透明電極(あるいは金属電極)6という構成を取
る。
The above-mentioned EC phenomenon is a general term for a phenomenon in which coloring and decoloring are caused by the oxidation and reduction reactions caused by applying a voltage to the ECD, and generally, the operation principle diagram of FIG. Transparent electrode 5 / Anodec electrochromic layer (Anodec EC layer) 4 / Ion injection layer 3 / Casodec electrochromic layer (Casodec EC layer)
2 / Transparent electrode (or metal electrode) 6 is adopted.

【0004】上述の構成ではアノーデックEC層5側に
陽極電圧/カソーデックEC層2側に陰極電圧を印加し
た際に例えばタングステブロンズ(HWO3 )の青色の
着色を示し、逆電圧を印加した際に透明状態になる。こ
の着色は印加電圧の大きさと印加時間に依存して着色が
濃くなったり薄くなったりする事が特徴で、また回路を
開放状態にすることでその着色状態が保存される事がで
きる。
In the above-mentioned structure, when an anode voltage is applied to the anodec EC layer 5 side / a cathode voltage is applied to the cathodic EC layer 2 side, for example, a blue coloration of Tungsten bronze (HWO 3 ) is exhibited, and when a reverse voltage is applied. It becomes transparent. This coloring is characterized in that the coloring becomes darker or lighter depending on the magnitude of the applied voltage and the application time, and the colored state can be preserved by opening the circuit.

【0005】アノーデックEC層4としては一般的に酸
化イリジウムや酸化ニッケル(NiO)、イオン注入層
3としては酸化タンタル、酸化アンチモン、カソーデッ
クEC層2としては酸化タングステン(WO3 )、酸化
チタン、酸化モリブデン等が、また透明電極材料として
はITO(酸化インジウムに酸化スズを添加したもの)
が用いられる。
Generally, the anodic EC layer 4 is iridium oxide or nickel oxide (NiO), the ion-implanted layer 3 is tantalum oxide or antimony oxide, and the cathodic EC layer 2 is tungsten oxide (WO 3 ), titanium oxide or oxide. Molybdenum, etc., and ITO as the transparent electrode material (indium oxide with tin oxide added)
Is used.

【0006】ECDでは図4(A)の動作原理図に示す
様に、カソーデックEC層2に電圧源11から1V〜
1.5Vの陰電圧をアノーデックEC層5に陽電圧を印
加すると、イオン注入層3側からWO2 のカソーデック
EC層2へH+ イオンがアノーデックEC層4側から電
子が注入されて、HWO3 のタングステンブロンズが生
成され、WO3 は無色透明であるからこの反応によって
青色の着色が生じる。即ち反応式は となる。
In the ECD, as shown in the principle of operation of FIG.
When a negative voltage of 1.5V is applied to the anodec EC layer 5, H + ions are injected from the ion implantation layer 3 side to the cathode ray EC layer 2 of WO 2 and electrons are injected from the anodec EC layer 4 side, and HWO 3 This reaction produces a blue tint because WO 3 is colorless and transparent. That is, the reaction formula is Becomes

【0007】一方、図4(B)の様に電圧を逆にすれば
アノーデックEC層4側で酸化反応が起こり の反応を起こすことで透明のWO3 に戻される。この場
合、色の濃度は印加時間と印加電圧に依存している。
On the other hand, when the voltage is reversed as shown in FIG. 4B, an oxidation reaction occurs on the side of the anodic EC layer 4. By causing the reaction of, it is returned to transparent WO 3 . In this case, the color density depends on the application time and the applied voltage.

【0008】一方、天然ゴムやクロロプレンゴム等にカ
ーボンブラック等の導電性微粉末を混入して作成された
導電性ゴム等がディスプレイ兼用キーボードやキーボー
ドスイッチ等に多用されている。
On the other hand, conductive rubber or the like prepared by mixing conductive fine powder such as carbon black into natural rubber or chloroprene rubber is often used for a display-use keyboard, keyboard switch and the like.

【0009】この様な、導電性ゴム板を成形する過程で
は導電性の微粉末をゴム中に分散させた場合の品質を評
価する時に、導電性微粉末材料の分散による電気抵抗の
板面内のバラツキを測定することが必要となる。
In the process of molding the conductive rubber plate, the quality of the conductive fine powder dispersed in the rubber is evaluated. It is necessary to measure the variation of.

【0010】一般に、導電性ゴムの体積固有抵抗は10
3 〜107 Ωcm程度のものが利用されているが接触抵
抗等は数十Ω〜数百Ωしかないため接続回路とのインピ
ーダンスマッチング等が問題になり、導電性ゴムの面内
での正確な電気抵抗の分布が必要であった。
Generally, the volume resistivity of conductive rubber is 10
Although 3 to 10 7 Ωcm or so is used, the contact resistance is only tens to hundreds of Ω, so impedance matching with the connecting circuit becomes a problem, and accurate in-plane measurement of the conductive rubber is required. A distribution of electrical resistance was needed.

【0011】従来はこの測定は電圧を印加できる端子を
2つ設け、この端子間に導電性ゴムをはさみそのポイン
トの抵抗値を測定していた。
Conventionally, in this measurement, two terminals to which a voltage can be applied are provided, and a conductive rubber is sandwiched between these terminals to measure the resistance value at that point.

【0012】[0012]

【発明が解決しようとする課題】従来の導電性ゴム等で
の導電性微粉末の混入状態を計測するために2電極間の
抵抗値を測定しているのでは広い面積を有する導電性ゴ
ムシート等の面内の分布測定に於いて、その測定しよう
とする測定ポイントを順次、ずらしながら測定を行なう
必要があり、キーボード用の導電性ゴムシート等では少
なくともキーの配置される位置の数だけ測定を行なわな
くてはならない課題を有していた。
The resistance value between two electrodes is measured in order to measure the mixed state of the conductive fine powder in the conventional conductive rubber or the like. When measuring the distribution in a plane such as, it is necessary to perform the measurement while sequentially shifting the measurement points to be measured, and for conductive rubber sheets for keyboards, measure at least the number of positions where keys are arranged. Had a task that had to be done.

【0013】本発明は叙上の課題を解消するために成さ
れたもので、発明が解決しようとする課題は、従来から
利用されているECDを用いて導電性ゴム(以下、導電
性物質:CMと記す)面内の抵抗値のバラツキを可視化
して簡単に測定可能なCM測定装置及びCM測定方法を
提供しようとするものである。
The present invention has been made to solve the above problems, and the problem to be solved by the present invention is to use conductive rubber (hereinafter, conductive material: It is intended to provide a CM measuring device and a CM measuring method capable of easily measuring a variation in in-plane resistance value by visualizing.

【0014】[0014]

【課題を解決するための手段】請求項1に係わる本発明
は少なくとも第1の電極1とカソーデックエレクトロク
ロミック層2を格子状にパターニングしたECDの第1
の電極1上に導電性物質を含有する被測定体8を載置
し、被測定体8上に載置した金属電極9とECDの第2
の電極6間に電圧を印加し、被測定体8の導電分布をパ
ターニング化させて成ることを特徴とするCM測定装置
としたものである。
The present invention according to claim 1 relates to a first ECD in which at least a first electrode 1 and a cathode-ray electrochromic layer 2 are patterned in a lattice pattern.
The measured object 8 containing a conductive substance is placed on the electrode 1 of the above, and the metal electrode 9 placed on the measured object 8 and the second ECD
This is a CM measuring device characterized in that a voltage is applied between the electrodes 6 to pattern the conductive distribution of the object 8 to be measured.

【0015】請求項2に係わる本発明はECDの第1の
電極1とカソーデックEC層2及びアノーデックEC層
4並びにイオン注入層3を格子状にパターニングして成
ることを特徴とする請求項1記載のCM測定装置とした
ものである。
The present invention according to claim 2 is characterized in that the first electrode 1 of the ECD, the cathodic EC layer 2, the anodic EC layer 4 and the ion implantation layer 3 are patterned in a lattice pattern. CM measuring device.

【0016】請求項3に係わる本発明は格子状にパター
ニングされた格子間の隙間をセラミック或は樹脂等の絶
縁物7で充填させて成ることを特徴とする請求項1又は
請求項2記載のCM測定装置としたものである。
The present invention according to claim 3 is characterized in that the gaps between the grids patterned in a grid pattern are filled with an insulating material 7 such as ceramic or resin. This is a CM measuring device.

【0017】請求項4に係わる本発明はCM8が導電性
ゴム、導電性樹脂、金属板に導電ペイント、導電塗料、
導電性粘着剤等を塗布した導電体であることを特徴とす
る請求項1乃至請求項3記載のいづれか1項記載のCM
測定装置としたものである。
In the present invention according to claim 4, CM8 is conductive rubber, conductive resin, conductive paint, conductive paint on a metal plate,
The CM according to any one of claims 1 to 3, which is a conductor coated with a conductive adhesive or the like.
This is a measuring device.

【0018】請求項5に係わる本発明は少なくとも第1
の電極1とカソーデックEC層2を格子状にパターニン
グしたECDの第1の電極1上に導電性物質を含有する
被測定体8を載置するプロセスと、被測定体8上に全面
に亘って金属電極9を載置して押圧させるプロセスと、
金属電極9とECDの第2の電極5間に電圧を印加する
プロセスとにより、被測定体8の導電性分布をECDの
格子状のパターン毎の色濃度パターンを表示させて成る
ことを特徴とするCM測定方法としたものである。
The present invention according to claim 5 is at least a first aspect.
Process of placing the measured object 8 containing the conductive substance on the first electrode 1 of the ECD in which the electrode 1 and the cathodic EC layer 2 are patterned in a grid pattern, and the entire surface of the measured object 8 on the measured object 8. A process of placing and pressing the metal electrode 9,
A process for applying a voltage between the metal electrode 9 and the second electrode 5 of the ECD is used to display the conductivity distribution of the DUT 8 by displaying a color density pattern for each grid pattern of the ECD. This is the CM measuring method.

【0019】斯かる、本発明によれば短時間且つ簡便に
導電性物質の面内の抵抗値のバラツキ分布を視覚的に視
ることが出来、且つ、その分布状態を保持させることが
出来、且つ、消色することが可能で繰返し使用可能なC
M測定装置及びその測定方法が得られる。
According to the present invention, the in-plane distribution of resistance values of the conductive material can be visually visually observed in a short time and easily, and the distribution state can be maintained. C that can be erased and can be used repeatedly
An M measuring device and its measuring method are obtained.

【0020】[0020]

【発明の実施の形態】以下、本発明の導電性物質測定装
置及びその測定方法の1形態例を図1(A)(B)及び
図2(A)(B)を用いて詳記する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, one embodiment of a conductive substance measuring apparatus and a measuring method thereof according to the present invention will be described in detail with reference to FIGS. 1 (A) and (B) and FIGS. 2 (A) and 2 (B).

【0021】図1(A)は本発明の導電性物質測定装置
及びその測定方法に用いるエレクトロクロミックデバイ
ス(ECD)の要部の斜視図、図1(B)は図1(A)
のA−A′矢視図を示す側断面図、図2(A)は本発明
の導電性物質測定方法を説明するための要部側断面図、
図2(B)は被測定体の抵抗分布を可視化した模式図で
ある。
FIG. 1 (A) is a perspective view of a main part of an electrochromic device (ECD) used in the conductive substance measuring apparatus and its measuring method of the present invention, and FIG. 1 (B) is FIG. 1 (A).
2A is a side sectional view showing an AA ′ arrow view, FIG. 2A is a side sectional view of a main part for explaining the conductive substance measuring method of the present invention,
FIG. 2B is a schematic diagram in which the resistance distribution of the measured object is visualized.

【0022】先ず、図1(A)及び図1(B)によっ
て、本発明の測定装置に用いられるECD12を説明す
る。
First, the ECD 12 used in the measuring apparatus of the present invention will be described with reference to FIGS. 1 (A) and 1 (B).

【0023】図1(A)(B)に於いて、硝子板或は合
成樹脂フィルム等の透明基板6上にITO等の下側の第
2の透明導電膜5を形成し、その上にアノーデックEC
層4、イオン注入層3、カソーデックEC層2、上側の
第1の透明導電膜1が形成されている。
1A and 1B, a lower second transparent conductive film 5 such as ITO is formed on a transparent substrate 6 such as a glass plate or a synthetic resin film, and an anodec is formed on the second transparent conductive film 5. EC
The layer 4, the ion-implanted layer 3, the cathodic EC layer 2, and the upper first transparent conductive film 1 are formed.

【0024】ここで、図1(A)(B)に示すように、
第1の透明導電膜1、カソーデックEC層2、イオン注
入層3、アノーデックEC層4は格子状にパターニング
されて複数のマトリックス素子13が形成されている。
Here, as shown in FIGS. 1 (A) and 1 (B),
The first transparent conductive film 1, the cathodic EC layer 2, the ion implantation layer 3, and the anodic EC layer 4 are patterned in a lattice pattern to form a plurality of matrix elements 13.

【0025】又、格子状にパターニングされた格子間即
ち、マトリックスセルとの隙間には図1(A)には示さ
れていないが図1(B)の様に必要に応じてSiO2
SiN等の絶縁体7を充填させる様に成されている。ま
た第2の透明導電膜5は外部に電極を取り出せる構造と
成され、絶縁体7は後述するCMである被測定体8が第
2の透明導電膜5に直接接触する事を防止している。
[0025] Further, between the grid pattern patterned grating i.e., SiO 2 optionally as a Although not shown in FIG. 1 (A) in the gap between the matrix cell FIG. 1 (B), the
It is configured to be filled with an insulator 7 such as SiN. The second transparent conductive film 5 has a structure in which an electrode can be taken out to the outside, and the insulator 7 prevents the measured object 8 which is a CM described later from directly contacting the second transparent conductive film 5. .

【0026】上述のECD12の動作を図2(A)
(B)を用いて説明する。図2(A)は図1(A)
(B)に示したECD12を簡略化して示している。
The operation of the ECD 12 described above is shown in FIG.
An explanation will be given using (B). 2 (A) is shown in FIG. 1 (A).
The ECD 12 shown in (B) is shown in a simplified manner.

【0027】図1(A)(B)で示したECD12の第
1の透明導電膜、即ち第1の電極1上に被測定体である
導電性ゴム(CM)を押圧載置させる。
On the first transparent conductive film of the ECD 12 shown in FIGS. 1A and 1B, that is, the first electrode 1, a conductive rubber (CM) as a measured object is placed under pressure.

【0028】次にCM8の上に金属箔或は金属板等の金
属電極9を押圧する様に載置させ、この金属電極9とE
CD12の第2の透明導電膜5間に電圧源11から電圧
を印加する。電圧源11によって陰電圧を金属電極9側
に陽電圧を第2の透明導電膜5側に印加することでEC
D12は図4(A)で説明した反応式に基づいて格子状
のマトリックスセル13は着色される。
Next, a metal electrode 9 such as a metal foil or a metal plate is placed on the CM 8 so as to press the metal electrode 9 and the metal electrode 9 together.
A voltage is applied from the voltage source 11 between the second transparent conductive film 5 of the CD 12. By applying a negative voltage to the metal electrode 9 side and a positive voltage to the second transparent conductive film 5 side by the voltage source 11, EC
In D12, the lattice-shaped matrix cell 13 is colored based on the reaction formula described in FIG.

【0029】この際印加する電圧はCM8の抵抗値の仕
様により可変する必要があり、ECD12のマトリック
スセル13に最大1.5V程度が掛かるように見積もっ
ておく。(これはECD12を破壊しないためであ
る。)電圧を印加すると、CM8の面内の抵抗値のバラ
ツキに応じて電圧降下が起こり、マトリックスセル13
に印加される電圧値が変化する。電圧印加後に被測定体
8を取り除けば第1の透明導電膜1側の各マトリックス
セル13は図2(B)のようにマトリックスセル13毎
に着色状態が異なる状態で色が保持される。図2(B)
では右上部分と左下部分の着色が濃いため、この部分の
抵抗値は低く(すなわちECD12のマトリックス素体
12に高電圧が印加されている。)その他の部分の抵抗
値が高くなっている事が分かる。
The voltage applied at this time must be varied according to the resistance value specification of CM8, and it is estimated that the matrix cell 13 of the ECD 12 will have a maximum of about 1.5V. (This is because the ECD 12 is not destroyed.) When a voltage is applied, a voltage drop occurs according to the variation of the resistance value in the plane of the CM 8, and the matrix cell 13
The voltage value applied to is changed. If the measured object 8 is removed after the voltage is applied, each matrix cell 13 on the side of the first transparent conductive film 1 retains its color in a state in which the coloring state is different for each matrix cell 13 as shown in FIG. 2B. Figure 2 (B)
However, since the upper right portion and the lower left portion are deeply colored, the resistance value of this portion is low (that is, a high voltage is applied to the matrix element body 12 of the ECD 12) and the resistance values of other portions are high. I understand.

【0030】このようにCM8の抵抗値の分布を可視的
に表示する事が出来る。また、電圧の印加を逆にする事
でこの現象は可逆的な変化が起こり透明になるため、繰
り返し使用する事が可能となる。一般的にECD12の
寿命は105 回程度と言われているためこの程度の繰り
返し測定は可能と言える。さらに印加電圧、印加時間と
透過率変化の相関を求め、色見本等を用意する事である
程度定量的に抵抗値を算出することも可能となる。本発
明の薄膜はCVD(化学気相成長法)あるいはスパッ
タ、蒸着等のPVD(物理気相成長法)にて成膜を行う
事ができる。また、マトリックス素子13の大きさに関
しては、CM8の抵抗値の内面の分散の程度に応じて適
当にマスクパターンを決めれば良いが3〜5mm□程度
のマスクパターン、パターン間の距離は1mm〜2mm
程度の物で十分である。
As described above, the distribution of the resistance value of the CM 8 can be visually displayed. Also, by reversing the application of voltage, this phenomenon undergoes a reversible change and becomes transparent, so that it can be used repeatedly. It is generally said that the life of the ECD12 is about 10 5 times, so it can be said that repeated measurement of this level is possible. Further, it is possible to calculate the resistance value to some extent quantitatively by obtaining the correlation between the applied voltage and the applied time and the change in transmittance and preparing a color sample or the like. The thin film of the present invention can be formed by CVD (chemical vapor deposition) or PVD (physical vapor deposition) such as sputtering or vapor deposition. Regarding the size of the matrix element 13, the mask pattern may be appropriately determined according to the degree of dispersion of the resistance value of the CM 8 on the inner surface, but the mask pattern is about 3 to 5 mm □, and the distance between the patterns is 1 mm to 2 mm.
Something is enough.

【0031】上述では被測定体8としての導電性物質
(CM)を弾性ゴムとして説明したが、これらCM8は
適当な樹脂を媒体とし、その中に銅や炭素等の微粒粉末
を混入した導電性樹脂や適当な溶媒に銀、銅、或は炭素
等の微粒粉末を混入した導電ペイントや導電性粘着剤等
を導電体に塗布した導電物質であってもよい。
In the above description, the conductive substance (CM) as the object to be measured 8 has been described as an elastic rubber, but these CM8 are made of a suitable resin as a medium, and a conductive material in which fine particle powder such as copper or carbon is mixed. It may be a conductive substance in which a resin or a suitable solvent is mixed with fine powder of silver, copper, carbon or the like and a conductive paint or a conductive adhesive is applied to the conductor.

【0032】次に本発明の他の形態例を図3(A)
(B)を用いて説明する図3(A)(B)は図1(A)
(B)に対応して、図1(A)(B)との違いは格子状
にパターニングされるマトリックスセル13が第1の透
明導電膜1及びカソーデックEC層2より構成されてい
る点である。他は全く図1(A)(B)と同一であるの
で対応部分には同一符号を付して重複説明は省略する。
次に図3(A)(B)に示すECD12の実施例を以下
に説明する。
Next, another embodiment of the present invention is shown in FIG.
3A and 3B described with reference to FIG. 3B are shown in FIG.
Corresponding to (B), the difference from FIGS. 1 (A) and (B) is that the matrix cell 13 patterned in a lattice pattern is composed of a first transparent conductive film 1 and a cathode-ray EC layer 2. . Since the other parts are exactly the same as those in FIGS. 1A and 1B, the corresponding parts are designated by the same reference numerals, and the duplicate description will be omitted.
Next, an embodiment of the ECD 12 shown in FIGS. 3A and 3B will be described below.

【0033】図3(A)(B)において透明基板6とし
てはアクリル系樹脂の塗布されたPET剤を用い、その
上に第2の透明導電膜5としてITOをスパッタリング
にて形成する。厚さは200nm〜500nm程度が望
ましい。また同じくスパッタリングを用い、アノーデッ
クEC層5としてNiO膜を堆積する。この際のスパッ
タリングターゲットとしてはNi金属を用い、酸素とア
ルゴンの混合ガスによる反応性スパッタにて堆積を行
う。同じくイオン注入層4に関しても酸化タンタル等の
水酸化物も同様の方法で形成する。
In FIGS. 3A and 3B, a PET material coated with an acrylic resin is used as the transparent substrate 6, and ITO is formed as a second transparent conductive film 5 thereon by sputtering. The thickness is preferably about 200 nm to 500 nm. Similarly, a NiO film is deposited as the anodic EC layer 5 by using sputtering. Ni metal is used as a sputtering target at this time, and deposition is performed by reactive sputtering using a mixed gas of oxygen and argon. Similarly, with respect to the ion-implanted layer 4, a hydroxide such as tantalum oxide is also formed by the same method.

【0034】上部に形成されるカソーデックEC層2に
関しては電界エッチング加工等でパターニングされたS
US板をマスクとして用い、同じくスパッタ法にて形成
を行う。上部の第1の電極となる第1の透明導電膜1も
同じくマスクパターンによるスパッタによりITO膜あ
るいは金属膜を製膜する。この際、マスクパターンは、
電流のリークを避ける為、数%マスク開口部面積を小さ
くしておく事が望ましい。最後にカソーデック層2を形
成した場合と同じマスクを用いて上部にレジストを塗布
する。その後、絶縁膜7をスパッタあるいは塗布等のプ
ロセスにより堆積を行い、レジストを除去する事により
図3(A)(B)に示す形態を完成させることが出来
る。
As for the cathodic EC layer 2 formed on the upper portion, S patterned by electric field etching or the like is used.
Using the US plate as a mask, formation is also performed by the sputtering method. The ITO film or the metal film is also formed on the first transparent conductive film 1 to be the first electrode on the upper side by sputtering with a mask pattern. At this time, the mask pattern is
To avoid current leakage, it is desirable to reduce the mask opening area by several percent. Finally, a resist is applied on the upper portion using the same mask as when the cathodic layer 2 is formed. After that, the insulating film 7 is deposited by a process such as sputtering or coating, and the resist is removed, whereby the configuration shown in FIGS. 3A and 3B can be completed.

【0035】[0035]

【発明の効果】本発明の導電性物質測定装置及び導電性
物質測定方法によればエレクトロクロミズム機能を利用
して簡単な構成で導電性ゴム等の抵抗値のバラツキ状態
を可視化出来、抵抗測定プロセスを簡略及び短時間内に
行うことが可能となる。
According to the conductive substance measuring apparatus and the conductive substance measuring method of the present invention, the variation state of the resistance value of the conductive rubber or the like can be visualized with a simple structure by utilizing the electrochromism function, and the resistance measuring process. Can be performed in a simple manner and in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の導電性物質測定装置に用いるエレクト
ロクロミックデバイスの1形態例を示す模式的斜視図及
びA−A′断面矢視図である。
FIG. 1 is a schematic perspective view and an AA ′ cross-sectional arrow view showing one embodiment of an electrochromic device used in a conductive substance measuring apparatus of the present invention.

【図2】本発明の導電性物質測定方法を説明する要部の
側断面図及び導電性ゴムの抵抗値分布を可視化した模式
図である。
FIG. 2 is a side cross-sectional view of a main part for explaining the conductive substance measuring method of the present invention and a schematic diagram in which a resistance value distribution of a conductive rubber is visualized.

【図3】本発明の導電性物質測定装置に用いるエレクト
ロクロミックデバイスの他の形態例を示す斜視図及びA
−A′断面矢視図である。
FIG. 3 is a perspective view showing another embodiment of the electrochromic device used in the electroconductive substance measuring apparatus of the present invention and FIG.
FIG. 6 is a sectional view taken along the line A-A '.

【図4】エレクトロクロミズムを説明するための動作原
理説明図である。
FIG. 4 is an explanatory diagram of an operation principle for explaining electrochromism.

【符号の説明】[Explanation of symbols]

1‥‥第1の透明導電膜、2‥‥カソーデックエレクト
ロクロミック層(カソーデックEC層)、3‥‥イオン
注入層、4‥‥アノーデックエレクトロクロミック層
(アノーデックEC層)、5‥‥第2の透明導電膜、6
‥‥透明基板、7‥‥絶縁体、9‥‥金属電極、11‥
‥電圧源、12‥‥エレクトロクロミックデバイス(E
CD)、13‥‥マトリックスセル
1 ... First transparent conductive film, 2 ... Casodec electrochromic layer (Casodec EC layer), 3 ... Ion injection layer, 4 ... Anodec electrochromic layer (Anodec EC layer), 5 ... Second Transparent conductive film, 6
Transparent substrate, 7 Insulator, 9 Metal electrode, 11
Voltage source, 12 Electrochromic device (E
CD), 13 ... Matrix cell

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも第1の電極とカソーデックエ
レクトロクロミック層を格子状にパターニングしたエレ
クトロクロミックデバイスの該第1の電極上に導電性物
質を含有する被測定体を載置し、該被測定体上に載置し
た金属電極と該エレクトロクロミックデバイスの第2の
電極間に電圧を印加し、該被測定体の導電分布をパター
ニング化させて成ることを特徴とする導電性物質測定装
置。
1. An object to be measured containing a conductive substance is placed on the first electrode of an electrochromic device in which at least a first electrode and a cathodic electrochromic layer are patterned in a grid pattern, and the object to be measured is placed. A conductive substance measuring device, characterized in that a voltage is applied between a metal electrode placed on a body and a second electrode of the electrochromic device to pattern the conductivity distribution of the body to be measured.
【請求項2】 前記エレクトロクロミックデバイスの第
1の電極とカソーデックエレクトロクロミック層及びア
ノーデックエレクトロクロミック層並びにイオン注入層
を格子状にパターニングして成ることを特徴とする請求
項1記載の導電性物質測定装置。
2. The conductive material according to claim 1, wherein the first electrode of the electrochromic device, the cathodic electrochromic layer, the anodic electrochromic layer, and the ion implantation layer are patterned in a lattice pattern. Material measuring device.
【請求項3】 前記格子状にパターニングされた格子間
の隙間をセラミック或は樹脂等の絶縁物で充填させて成
ることを特徴とする請求項1又は請求項2記載の導電性
物質測定装置。
3. The conductive substance measuring apparatus according to claim 1, wherein the gaps between the lattices patterned in the lattice shape are filled with an insulating material such as ceramic or resin.
【請求項4】 前記導電性物質が導電性ゴム、導電性樹
脂、金属板に導電ペイント、導電塗料、導電性粘着剤等
を塗布した導電体であることを特徴とする請求項1乃至
請求項3記載のいづれか1項記載の導電性物質測定装
置。
4. The electrically conductive material is an electrically conductive rubber, an electrically conductive resin, or an electric conductor obtained by applying an electrically conductive paint, an electrically conductive paint, an electrically conductive adhesive or the like to a metal plate. 3. The conductive substance measuring device according to any one of 3 above.
【請求項5】 少なくとも第1の電極とカソーデックエ
レクトロクロミック層を格子状にパターニングしたエレ
クトロクロミックデバイスの該第1の電極上に導電性物
質を含有する被測定体を載置するプロセスと、 上記被測定体上に全面に亘って金属電極を載置して押圧
させるプロセスと、 上記金属電極と上記エレクトロクロミックデバイスの第
2の電極間に電圧を印加するプロセスとにより、 上記被測定体の導電性分布を上記エレクトロクロミック
デバイスの上記格子状のパターン毎に色濃度パターンを
表示させて成ることを特徴とする導電性物質測定方法。
5. A process of placing an object to be measured containing a conductive material on the first electrode of an electrochromic device in which at least a first electrode and a cathodic electrochromic layer are patterned in a grid pattern, By the process of placing and pressing the metal electrode over the entire surface of the object to be measured and applying a voltage between the metal electrode and the second electrode of the electrochromic device, the conductivity of the object to be measured is reduced. A method for measuring a conductive substance, characterized in that a color density pattern is displayed for each of the grid-like patterns of the electrochromic device.
JP2001256429A 2001-08-27 2001-08-27 Conductive material measuring device and measuring method Pending JP2003066075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001256429A JP2003066075A (en) 2001-08-27 2001-08-27 Conductive material measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001256429A JP2003066075A (en) 2001-08-27 2001-08-27 Conductive material measuring device and measuring method

Publications (1)

Publication Number Publication Date
JP2003066075A true JP2003066075A (en) 2003-03-05

Family

ID=19084243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001256429A Pending JP2003066075A (en) 2001-08-27 2001-08-27 Conductive material measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP2003066075A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101480950B1 (en) * 2013-12-26 2015-01-14 전자부품연구원 Cell-structured electrochromic device and method of manufacturing the same
CN104483550A (en) * 2014-11-05 2015-04-01 南京华印半导体有限公司 Method used for measuring resistance values of printed metal electrode
WO2021136124A1 (en) * 2020-01-03 2021-07-08 深圳市光羿科技有限公司 Electrochromic device and manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101480950B1 (en) * 2013-12-26 2015-01-14 전자부품연구원 Cell-structured electrochromic device and method of manufacturing the same
CN104483550A (en) * 2014-11-05 2015-04-01 南京华印半导体有限公司 Method used for measuring resistance values of printed metal electrode
CN104483550B (en) * 2014-11-05 2017-06-16 南京华印半导体有限公司 A kind of method for measuring type metal electrode resistance
WO2021136124A1 (en) * 2020-01-03 2021-07-08 深圳市光羿科技有限公司 Electrochromic device and manufacturing method
EP4060402A4 (en) * 2020-01-03 2023-12-20 Shenzhen Guangyi Tech Co., Ltd. Electrochromic device and manufacturing method

Similar Documents

Publication Publication Date Title
Ender et al. Analysis of three-electrode setups for AC-impedance measurements on lithium-ion cells by FEM simulations
TWI290009B (en) Electrochromic display device
CA1288155C (en) Electrochromic window with metal grid counter electrode
KR100193298B1 (en) Electrochromic system
EP2720121B1 (en) Conductive substrate and electronic device comprising same
JPH06506305A (en) Electrophoretic display panel with semiconductor-coated electrodes
CA1143336A (en) Display cell electrode with insulating support and two-layer oxide structure
KR20120091408A (en) Touch screen sensor
JP2001210223A (en) Electron emission device of three pole structure
CN1347505A (en) Pass/fail battery indicator
US6232782B1 (en) On cell circumferential battery indicator
WO2018163881A1 (en) Electrode for biological information measurement and method for producing electrode for biological information measurement
CA1256186A (en) Low voltage solid-state lateral coloration electrochromic device
JP3041822B2 (en) Electrochromic device and method of use
JP2003066075A (en) Conductive material measuring device and measuring method
JPS6223293B2 (en)
WO2007001155A1 (en) Conductive panel structure and manufacturing method thereof
CN1239916C (en) Gauge effect battery tester
Goux et al. Bipolar switching characteristics and scalability in NiO layers made by thermal oxidation of Ni
US4150879A (en) Solid dry electrochromic display
Kaneko et al. Effects of transparent electrode resistance on the performance characteristics of electrochemichromic cells
WO2003001194A1 (en) Extracellular recording electrode
US4508430A (en) Electrochromic display cell I
CN111432571A (en) Blackening method of conductive substrate, conductive substrate and electronic equipment
GB1591234A (en) Solid dry electrochromic display