JP2003065081A - Control method and estimation method for gas turbine inlet temperature - Google Patents

Control method and estimation method for gas turbine inlet temperature

Info

Publication number
JP2003065081A
JP2003065081A JP2001254677A JP2001254677A JP2003065081A JP 2003065081 A JP2003065081 A JP 2003065081A JP 2001254677 A JP2001254677 A JP 2001254677A JP 2001254677 A JP2001254677 A JP 2001254677A JP 2003065081 A JP2003065081 A JP 2003065081A
Authority
JP
Japan
Prior art keywords
temperature
turbine
exhaust gas
compressor
inlet temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001254677A
Other languages
Japanese (ja)
Other versions
JP2003065081A5 (en
JP4773646B2 (en
Inventor
Yoichi Iwasaki
洋一 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001254677A priority Critical patent/JP4773646B2/en
Publication of JP2003065081A publication Critical patent/JP2003065081A/en
Publication of JP2003065081A5 publication Critical patent/JP2003065081A5/ja
Application granted granted Critical
Publication of JP4773646B2 publication Critical patent/JP4773646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve accuracy of estimation and control of turbine inlet temperature. SOLUTION: Turbine exhaust gas temperature-compressor outlet pressure/ atmospheric pressure characteristic for setting inlet temperature of a turbine 3 in a gas turbine at the predetermined value is set by using intake temperature of a compressor 1 of the gas turbine as a parameter. On the basis of a deviation between actual exhaust gas temperature and exhaust gas temperature on the turbine exhaust gas temperature-compressor outlet pressure/atmospheric pressure characteristic during operation corresponding to an outlet pressure of the compressor 1, the inlet temperature of the gas turbine is controlled and estimated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンにお
けるタービンの入口温度の制御方法および推定方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling and estimating a turbine inlet temperature in a gas turbine.

【0002】[0002]

【従来の技術】ガスタービンを良好に運転しかつその寿
命を長く維持するためには、タービンの入口温度を監視
して、この入口温度を適正な値に維持する必要がある。
そこで、従来においては、上記タービンの入口温度を所
定値に設定するためのタービン排ガス温度−圧縮機出口
圧力特性を、前記ガスタービンの圧縮機の吸気温度をパ
ラメータとして設定しておき、圧縮機の出口圧力に対応
する前記特性上の排ガス温度と実排ガス温度との偏差が
なくなるようにガスタービンの燃焼器を制御するととも
に、上記偏差に基づいてタービンの入口温度を推定して
いた。
2. Description of the Prior Art In order to operate a gas turbine well and to maintain its long life, it is necessary to monitor the inlet temperature of the turbine and maintain the inlet temperature at an appropriate value.
Therefore, conventionally, the turbine exhaust gas temperature-compressor outlet pressure characteristic for setting the inlet temperature of the turbine to a predetermined value is set with the intake air temperature of the compressor of the gas turbine as a parameter, and The combustor of the gas turbine is controlled so as to eliminate the deviation between the exhaust gas temperature and the actual exhaust gas temperature corresponding to the outlet pressure, and the turbine inlet temperature is estimated based on the deviation.

【0003】例として、タービン入口温度の制御につい
て図2を参照して説明する。図中の一点鎖線がタービン
の入口温度を1450℃に設定するための排ガス温度−
圧縮機出口圧力特性である。従来は、圧縮機の出口圧力
P1に対応する該特性上の排ガス温度と実排ガス温度と
の偏差ΔT℃’がなくなるようにガスタービンの燃焼器
を制御していた。
As an example, the control of the turbine inlet temperature will be described with reference to FIG. The alternate long and short dash line in the figure indicates the exhaust gas temperature for setting the turbine inlet temperature to 1450 ° C.
It is a compressor outlet pressure characteristic. Conventionally, the combustor of the gas turbine has been controlled so as to eliminate the deviation ΔT ° 'between the exhaust gas temperature and the actual exhaust gas temperature on the characteristic corresponding to the outlet pressure P1 of the compressor.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記特性に
は、大気圧やガスタービンの圧縮機の吸気温度等の環境
要因が加味されていない。このため、特に圧力比の高い
ガスタービンにおいては、上記特性に基づいてタービン
入口温度を精度良く制御し推定することが困難になる。
However, environmental characteristics such as atmospheric pressure and intake temperature of the compressor of the gas turbine are not taken into consideration in the above characteristics. Therefore, particularly in a gas turbine having a high pressure ratio, it becomes difficult to accurately control and estimate the turbine inlet temperature based on the above characteristics.

【0005】本発明の課題は、このような状況に鑑み、
タービン入口温度の制御および推定精度を向上すること
ができるガスタービン入口温度の推定方法および制御方
法を提供することにある。
In view of such a situation, an object of the present invention is to
An object of the present invention is to provide a gas turbine inlet temperature estimation method and control method capable of improving control and estimation accuracy of the turbine inlet temperature.

【0006】[0006]

【課題を解決するための手段】本発明に係るガスタービ
ン入口温度の制御方法は、ガスタービンにおけるタービ
ンの入口温度を所定値に設定するためのタービン排ガス
温度−圧縮機出口圧力/大気圧力特性を、前記ガスター
ビンの圧縮機の吸気温度をパラメータとして設定するス
テップと、前記ガスタービンの運転時における圧縮機の
出口圧力に対応する前記特性上の排ガス温度と実排ガス
温度との偏差がなくなるように前記ガスタービンの燃焼
器を制御するステップと、を含んでいる。
SUMMARY OF THE INVENTION A gas turbine inlet temperature control method according to the present invention provides a turbine exhaust gas temperature-compressor outlet pressure / atmospheric pressure characteristic for setting a turbine inlet temperature in a gas turbine to a predetermined value. And a step of setting the intake air temperature of the compressor of the gas turbine as a parameter, so that there is no deviation between the exhaust gas temperature and the actual exhaust gas temperature on the characteristic corresponding to the outlet pressure of the compressor during operation of the gas turbine. Controlling the combustor of the gas turbine.

【0007】また、本発明に係るガスタービン入口温度
の制御方法は、ガスタービンにおけるタービンの入口温
度を所定値に設定するためのタービン排ガス温度−圧縮
機出口圧力/大気圧力特性を、前記圧縮機のIGV開度
をパラメータとして設定するステップと、前記ガスター
ビンの運転時における圧縮機の出口圧力に対応する前記
特性上の排ガス温度と実排ガス温度との偏差がなくなる
ように前記ガスタービンの燃焼器を制御するステップ
と、を含んでいる。
Further, in the method for controlling the gas turbine inlet temperature according to the present invention, the turbine exhaust gas temperature-compressor outlet pressure / atmospheric pressure characteristic for setting the turbine inlet temperature in the gas turbine to a predetermined value is determined by the compressor. Setting the IGV opening as a parameter, and the combustor of the gas turbine so that there is no deviation between the exhaust gas temperature and the actual exhaust gas temperature in the characteristic corresponding to the outlet pressure of the compressor during operation of the gas turbine. And a step of controlling the.

【0008】本発明に係るガスタービン入口温度の推定
方法は、ガスタービンにおけるタービンの入口温度を所
定値に設定するためのタービン排ガス温度−圧縮機出口
圧力/大気圧力特性を、前記ガスタービンの圧縮機の吸
気温度をパラメータとして設定するステップと、前記ガ
スタービンの運転時における圧縮機の出口圧力に対応す
る前記特性上の排ガス温度と実排ガス温度との偏差に基
づいて前記入口温度を推定するステップと、を含んでい
る。
In the method for estimating the gas turbine inlet temperature according to the present invention, the turbine exhaust gas temperature-compressor outlet pressure / atmospheric pressure characteristic for setting the turbine inlet temperature in the gas turbine to a predetermined value is calculated as follows: Setting the intake air temperature of the engine as a parameter, and estimating the inlet temperature based on the deviation between the exhaust gas temperature on the characteristic and the actual exhaust gas temperature corresponding to the outlet pressure of the compressor during operation of the gas turbine And, are included.

【0009】上記吸気温度をパラメータとしてタービン
排ガス温度−圧縮機出口圧力/大気圧力特性を設定する
ステップは、少なくとも2つの吸気温度に対応する特性
に基づいて他の吸気温度に対応する特性を補間設定する
ステップを含むことができる。
In the step of setting the turbine exhaust gas temperature-compressor outlet pressure / atmospheric pressure characteristics using the intake air temperature as a parameter, the characteristics corresponding to other intake air temperatures are interpolated based on the characteristics corresponding to at least two intake air temperatures. Can be included.

【0010】本発明に係るガスタービン入口温度の推定
方法は、ガスタービンにおけるタービンの入口温度を所
定値に設定するためのタービン排ガス温度−圧縮機出口
圧力/大気圧力特性を、前記圧縮機のIGV開度をパラ
メータとして設定するステップと、前記ガスタービンの
運転時における圧縮機の出口圧力に対応する前記特性上
の排ガス温度と実排ガス温度との偏差に基づいて前記入
口温度を推定するステップと、を含んでいる。
According to the gas turbine inlet temperature estimating method of the present invention, the turbine exhaust gas temperature-compressor outlet pressure / atmospheric pressure characteristic for setting the turbine inlet temperature in the gas turbine to a predetermined value is determined by the IGV of the compressor. A step of setting the opening degree as a parameter, and a step of estimating the inlet temperature based on a deviation between the exhaust gas temperature and the actual exhaust gas temperature on the characteristic corresponding to the outlet pressure of the compressor during operation of the gas turbine, Is included.

【0011】[0011]

【発明の実施の形態】図1において、ガスタービンGT
は、入口部位に吸気量を調整するIGV(インレット・
ゲート・ベーン)1aを設けた空気圧縮機1、燃焼器2
およびタービン3によって構成され、燃焼器2によって
生成された高温の燃焼ガスの膨張作用によってタービン
3を回転駆動する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, a gas turbine GT is shown.
Is an IGV (inlet
Gate / vane) Air compressor 1 and combustor 2 provided with 1a
And the turbine 3, and the turbine 3 is rotationally driven by the expansion action of the high-temperature combustion gas generated by the combustor 2.

【0012】大気圧検出センサ4は大気圧を、吸気温度
検出センサ5は圧縮機1の吸気温度を、開度検出センサ
6は圧縮機1のIGV1aの開度を、圧縮機出口圧力検
出センサ7は圧縮機1の出口圧力を、また、排ガス温度
検出センサ8はタービン3の排ガスの温度をそれぞれ検
出するものである。そして、各センサ4〜8の検出信号
は、インタフェース部9を介して処理部10に入力され
る。
The atmospheric pressure detecting sensor 4 detects the atmospheric pressure, the intake temperature detecting sensor 5 detects the intake temperature of the compressor 1, the opening detecting sensor 6 detects the opening of the IGV1a of the compressor 1, and the compressor outlet pressure detecting sensor 7 operates. Indicates the outlet pressure of the compressor 1, and the exhaust gas temperature detection sensor 8 detects the temperature of the exhaust gas of the turbine 3. Then, the detection signals of the sensors 4 to 8 are input to the processing unit 10 via the interface unit 9.

【0013】図2における実線は、タービン入口温度を
所定の値(例えば、1450℃)に維持させるためのタ
ービン3のタービン排ガス温度−圧縮機出口圧力/大気
圧特性(温度調節特性)を圧縮機1の吸気温度をパラメ
ータとして示したものであり、この例では、パラメータ
となる吸気温度が−1℃,15℃および30℃である。
The solid line in FIG. 2 indicates the turbine exhaust gas temperature-compressor outlet pressure / atmospheric pressure characteristic (temperature adjusting characteristic) of the turbine 3 for maintaining the turbine inlet temperature at a predetermined value (for example, 1450 ° C.). The intake air temperature of 1 is shown as a parameter, and in this example, the intake air temperatures that are the parameters are -1 ° C, 15 ° C, and 30 ° C.

【0014】また、この図2における点線は、同様のタ
ービン排ガス温度−圧縮機出口圧力/大気圧特性(温度
調節特性)を圧縮機1のIGV1aの開度をパラメータ
として示したものであり、この例では、パラメータとな
るIGV1aの開度が4°,10°および19°であ
る。なお、この図2の関係は、実測によって得たもので
あり、上記処理部に内蔵された図示していないメモリに
記憶されている。
The dotted line in FIG. 2 shows a similar turbine exhaust gas temperature-compressor outlet pressure / atmospheric pressure characteristic (temperature control characteristic) using the opening of the IGV 1a of the compressor 1 as a parameter. In the example, the opening degrees of the IGV 1a serving as parameters are 4 °, 10 °, and 19 °. The relationship shown in FIG. 2 is obtained by actual measurement, and is stored in a memory (not shown) built in the processing unit.

【0015】−1℃(予想される下限吸気温度),15
℃および30℃(予想される上限吸気温度)の各吸気温
度についての温度調節特性は、互いにほぼ平行する関係
にある。したがって、−1℃と15℃間の吸気温度につ
いての特性は、これらの吸気温度−1℃,15℃につい
ての各特性に基づいて補間設定することができ、また、
吸気温度15℃と吸気温度30℃間の吸気温度について
の温度調節特性は、これらの吸気温度15℃,30℃に
ついての各温度特性に基づいて補間設定することができ
る。
-1 ° C (expected lower limit intake air temperature), 15
The temperature adjustment characteristics for each intake air temperature of 30 ° C. and 30 ° C. (expected upper limit intake air temperature) are substantially parallel to each other. Therefore, the characteristic of the intake air temperature between -1 ° C and 15 ° C can be interpolated and set based on these characteristics of the intake air temperature -1 ° C and 15 ° C.
The temperature adjustment characteristic for the intake air temperature between the intake air temperature of 15 ° C. and the intake air temperature of 30 ° C. can be set by interpolation based on the temperature characteristics for the intake air temperatures of 15 ° C. and 30 ° C.

【0016】以下、上記吸気温度−1℃,15℃および
30℃についての温度調節特性を利用したタービン入口
温度の制御および推定手順について説明する。いま、例
えば、吸気温度検出センサ5によって吸気温度が15℃
であることが検出されると、処理部10においてこの吸
気温度15℃についての温度調節特性が設定される。こ
のとき、圧縮機出口圧力検出センサ7によって検出され
た圧縮機出口圧力がP1であるとすると、処理部4は、
この圧縮機出口圧力P1と上記温度調節特性とによって
決定される目標タービン排ガス温度が得られるように制
御部11を介して燃焼器2の燃焼状態を制御する。すな
わち、上記目標タービン排ガス温度と、排ガス温度検出
センサ8によって検出される実排ガス温度との偏差ΔT
℃がなくなるように燃焼器2への燃料供給量等を制御
し、これによって、タービン入口温度を目標温度145
0℃に近づける。
The procedure for controlling and estimating the turbine inlet temperature using the temperature adjustment characteristics for the intake air temperatures -1 ° C, 15 ° C and 30 ° C will be described below. Now, for example, the intake air temperature sensor 5 detects that the intake air temperature is 15 ° C.
When it is detected that, the temperature adjusting characteristic for the intake air temperature of 15 ° C. is set in the processing unit 10. At this time, if the compressor outlet pressure detected by the compressor outlet pressure detection sensor 7 is P1, the processing unit 4
The combustion state of the combustor 2 is controlled via the control unit 11 so that the target turbine exhaust gas temperature determined by the compressor outlet pressure P1 and the temperature adjustment characteristic is obtained. That is, the deviation ΔT between the target turbine exhaust gas temperature and the actual exhaust gas temperature detected by the exhaust gas temperature detection sensor 8
The fuel supply amount to the combustor 2 and the like are controlled so that the temperature of the turbine inlet is not reached to the target temperature 145.
Close to 0 ° C.

【0017】一方、処理部4は、排ガス温度検出センサ
8によって検出された実排ガス温度に基づいて、タービ
ン入口温度の推定手順を実行する。すなわち、圧縮機出
口圧力P1と上記温度調節特性とによって決定される目
標タービン排ガス温度に対する上記実排ガス温度の偏差
−ΔT℃を算出する。
On the other hand, the processing unit 4 executes the procedure for estimating the turbine inlet temperature based on the actual exhaust gas temperature detected by the exhaust gas temperature detection sensor 8. That is, the deviation −ΔT ° C. of the actual exhaust gas temperature with respect to the target turbine exhaust gas temperature determined by the compressor outlet pressure P1 and the temperature adjustment characteristic is calculated.

【0018】タービン3においては、タービン入口温度
の温度変化がタービン排ガス温度に1/K倍(通常は、
K=2と近似することができる。)の温度変化をもたら
すことになる。実タービン入口温度は、目標タービン入
口温度1450℃に上記偏差−ΔT℃をK倍した温度を
加算することによって得られる。そこで、処理部4は、
1450℃+K・(−ΔT℃)という推定演算を実行し
て、実タービン入口温度を推定する。
In the turbine 3, the temperature change of the turbine inlet temperature is 1 / K times the turbine exhaust gas temperature (normally,
It can be approximated as K = 2. ) Will bring about a temperature change. The actual turbine inlet temperature is obtained by adding the target turbine inlet temperature 1450 ° C. to the temperature obtained by multiplying the deviation −ΔT ° C. by K times. Therefore, the processing unit 4
The actual turbine inlet temperature is estimated by executing the estimation calculation of 1450 ° C. + K · (−ΔT ° C.).

【0019】なお、処理部4は、推定された実タービン
入口温度を表示部12に表示させるとともに、タービン
3の寿命等を判定するための運転記録の1つとして実タ
ービン入口温度を図示していないメモリに記憶させる。
また、実タービン入口温度が異常値を示す場合に、図示
していない警報手段を作動させる。
The processing unit 4 displays the estimated actual turbine inlet temperature on the display unit 12 and illustrates the actual turbine inlet temperature as one of the operation records for determining the life of the turbine 3 and the like. Not stored in memory.
Further, when the actual turbine inlet temperature shows an abnormal value, an alarm means (not shown) is activated.

【0020】以上では、吸気温度が15℃の場合につい
て説明したが、吸気温度が15℃と30℃の間にある時
は、その吸気温度についての温度調節特性が吸気温度1
5℃および30℃の各温度調節特性に基づいて補間設定
され、また、吸気温度が15℃と−1℃の間にある時
は、その吸気温度についての温度調節特性が吸気温度1
5℃および−1℃の各温度調節特性に基づいて補間(内
挿)設定される。そしてその補間設定された温度調節特
性を用いたタービン入口温度の調節手順および推定手順
が実行される。
Although the case where the intake air temperature is 15 ° C. has been described above, when the intake air temperature is between 15 ° C. and 30 ° C., the temperature adjustment characteristic for the intake air temperature is the intake air temperature 1
Interpolation is set based on the temperature control characteristics of 5 ° C. and 30 ° C. When the intake air temperature is between 15 ° C. and −1 ° C., the temperature control characteristic for the intake air temperature is the intake air temperature 1
Interpolation (interpolation) is set based on the temperature adjustment characteristics of 5 ° C. and −1 ° C. Then, the adjustment procedure and estimation procedure of the turbine inlet temperature using the temperature adjustment characteristic set by the interpolation are executed.

【0021】なお、吸気温度−1℃および30℃につい
ての温度調節特性のみを実測設定して、これらの温度調
節特性から−1℃,30℃間の吸気温度についての温度
調節特性を補間設定することも当然可能である。また、
−1℃,30℃間の多数の吸気温度についての温度調節
特性をメモリに格納しておき、実吸気温度に近似する吸
気温度についての温度調節特性を実吸気温度についての
温度調節特性として設定することも可能である。
It should be noted that only the temperature control characteristics for the intake air temperatures -1 ° C. and 30 ° C. are actually set, and the temperature control characteristics for the intake air temperature between -1 ° C. and 30 ° C. are interpolated from these temperature control characteristics. Of course it is possible. Also,
The temperature adjustment characteristics for a large number of intake temperatures between -1 ° C and 30 ° C are stored in a memory, and the temperature adjustment characteristics for the intake temperature that approximates the actual intake temperature are set as the temperature adjustment characteristics for the actual intake temperature. It is also possible.

【0022】上記実施形態では、吸気温度と該吸気温度
をパラメータとする温度調節特性とを用いてタービン入
口温度の調節手順および推定手順を実行しているが、I
GV1aの開度と該開度をパラメータとする温度調節特
性とを用いてタービン入口温度の調節手順および推定手
順を実行することも可能である。このIGV1aの開度
に基づく上記各手順は、吸気温度に基づくそれに準じて
いるので、ここではそれについての説明を省略する。
In the above embodiment, the turbine inlet temperature adjustment procedure and the estimation procedure are executed using the intake air temperature and the temperature adjustment characteristic having the intake air temperature as a parameter.
It is also possible to execute the adjustment procedure and the estimation procedure of the turbine inlet temperature by using the opening degree of the GV1a and the temperature adjustment characteristic having the opening degree as a parameter. Since each of the above procedures based on the opening degree of the IGV 1a is similar to that based on the intake air temperature, description thereof will be omitted here.

【0023】[0023]

【発明の効果】請求項1および2に係る発明によれば、
それぞれ圧縮機の吸気温度およびIGVの開度の影響を
受けることなくタービン入口温度を精度良く制御するこ
とができる。また、請求項3,4に係る発明によれば、
圧縮機の吸気温度の影響を受けることなくタービン入口
温度を精度良く推定することができる。さらに、請求項
5に係る発明によれば、圧縮機のIGVの開度の影響を
受けることなくタービン入口温度を精度良く推定するこ
とができる。
According to the inventions of claims 1 and 2,
The turbine inlet temperature can be accurately controlled without being affected by the intake air temperature of the compressor and the opening degree of the IGV. Further, according to the inventions of claims 3 and 4,
The turbine inlet temperature can be accurately estimated without being affected by the intake air temperature of the compressor. Further, according to the invention of claim 5, the turbine inlet temperature can be accurately estimated without being affected by the opening degree of the IGV of the compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る方法を実施するための装置構成を
例示したブロック図。
FIG. 1 is a block diagram illustrating an apparatus configuration for performing a method according to the present invention.

【図2】吸気温度をパラメータとする温度調節特性と、
IGVの開度をパラメータとする温度調節特性を例示し
たグラフ。
FIG. 2 is a temperature control characteristic using intake air temperature as a parameter,
The graph which illustrated the temperature control characteristic which makes the opening of IGV a parameter.

【符号の説明】[Explanation of symbols]

1 圧縮機 1a IGV 2 燃焼器 3 タービン 4 大気圧検出センサ 5 吸気温度検出センサ 6 開度検出センサ 7 圧縮機出口圧力検出センサ 8 排ガス温度検出センサ 10 処理部 11 制御部 12 表示部 1 compressor 1a IGV 2 Combustor 3 turbine 4 Atmospheric pressure detection sensor 5 Intake temperature detection sensor 6 Opening detection sensor 7 Compressor outlet pressure detection sensor 8 Exhaust gas temperature detection sensor 10 Processing unit 11 Control unit 12 Display

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービンにおけるタービンの入口温
度を所定値に設定するためのタービン排ガス温度−圧縮
機出口圧力/大気圧力特性を、前記ガスタービンの圧縮
機の吸気温度をパラメータとして設定するステップと、 前記ガスタービンの運転時における圧縮機の出口圧力に
対応する前記特性上の排ガス温度と実排ガス温度との偏
差がなくなるように前記ガスタービンの燃焼器を制御す
るステップと、を含むことを特徴とするガスタービン入
口温度の制御方法。
1. A step of setting a turbine exhaust gas temperature-compressor outlet pressure / atmospheric pressure characteristic for setting an inlet temperature of a turbine in a gas turbine to a predetermined value, using an intake air temperature of the compressor of the gas turbine as a parameter. Controlling the combustor of the gas turbine so that there is no deviation between the characteristic exhaust gas temperature corresponding to the compressor outlet pressure during operation of the gas turbine and the actual exhaust gas temperature. Control method of gas turbine inlet temperature.
【請求項2】 ガスタービンにおけるタービンの入口温
度を所定値に設定するためのタービン排ガス温度−圧縮
機出口圧力/大気圧力特性を、前記圧縮機のIGV開度
をパラメータとして設定するステップと、 前記ガスタービンの運転時における圧縮機の出口圧力に
対応する前記特性上の排ガス温度と実排ガス温度との偏
差がなくなるように前記ガスタービンの燃焼器を制御す
るステップと、を含むことを特徴とするガスタービン入
口温度の制御方法。
2. A step of setting a turbine exhaust gas temperature-compressor outlet pressure / atmospheric pressure characteristic for setting a turbine inlet temperature in a gas turbine to a predetermined value, using an IGV opening of the compressor as a parameter, Controlling the combustor of the gas turbine so that there is no deviation between the exhaust gas temperature on the characteristics and the actual exhaust gas temperature corresponding to the outlet pressure of the compressor during operation of the gas turbine. Gas turbine inlet temperature control method.
【請求項3】 ガスタービンにおけるタービンの入口温
度を所定値に設定するためのタービン排ガス温度−圧縮
機出口圧力/大気圧力特性を、前記ガスタービンの圧縮
機の吸気温度をパラメータとして設定するステップと、 前記ガスタービンの運転時における圧縮機の出口圧力に
対応する前記特性上の排ガス温度と実排ガス温度との偏
差に基づいて前記入口温度を推定するステップと、を含
むことを特徴とするガスタービン入口温度の推定方法。
3. A step of setting a turbine exhaust gas temperature-compressor outlet pressure / atmospheric pressure characteristic for setting a turbine inlet temperature in a gas turbine to a predetermined value, using an intake air temperature of the compressor of the gas turbine as a parameter. And a step of estimating the inlet temperature based on a deviation between the exhaust gas temperature on the characteristic corresponding to the outlet pressure of the compressor during operation of the gas turbine and the actual exhaust gas temperature. Inlet temperature estimation method.
【請求項4】 前記タービン排ガス温度−圧縮機出口圧
力/大気圧力特性を設定するステップが、少なくとも2
つの吸気温度に対応する特性に基づいて他の吸気温度に
対応する特性を補間設定するステップを含むことを特徴
とする請求項3に記載のタービン入口温度の推定方法。
4. The step of setting the turbine exhaust gas temperature-compressor outlet pressure / atmospheric pressure characteristic comprises at least 2.
The method for estimating the turbine inlet temperature according to claim 3, further comprising the step of interpolating a characteristic corresponding to another intake air temperature based on a characteristic corresponding to one intake air temperature.
【請求項5】 ガスタービンにおけるタービンの入口温
度を所定値に設定するためのタービン排ガス温度−圧縮
機出口圧力/大気圧力特性を、前記圧縮機のIGV開度
をパラメータとして設定するステップと、 前記ガスタービンの運転時における圧縮機の出口圧力に
対応する前記特性上の排ガス温度と実排ガス温度との偏
差に基づいて前記入口温度を推定するステップと、を含
むことを特徴とするガスタービン入口温度の推定方法。
5. A step of setting a turbine exhaust gas temperature-compressor outlet pressure / atmospheric pressure characteristic for setting a turbine inlet temperature in a gas turbine to a predetermined value, using an IGV opening of the compressor as a parameter, Gas turbine inlet temperature, the step of estimating the inlet temperature based on a deviation between the actual exhaust gas temperature and the exhaust gas temperature on the characteristic corresponding to the outlet pressure of the compressor during operation of the gas turbine. Estimation method.
JP2001254677A 2001-08-24 2001-08-24 Gas turbine inlet temperature control method and estimation method Expired - Fee Related JP4773646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001254677A JP4773646B2 (en) 2001-08-24 2001-08-24 Gas turbine inlet temperature control method and estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001254677A JP4773646B2 (en) 2001-08-24 2001-08-24 Gas turbine inlet temperature control method and estimation method

Publications (3)

Publication Number Publication Date
JP2003065081A true JP2003065081A (en) 2003-03-05
JP2003065081A5 JP2003065081A5 (en) 2008-09-18
JP4773646B2 JP4773646B2 (en) 2011-09-14

Family

ID=19082804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001254677A Expired - Fee Related JP4773646B2 (en) 2001-08-24 2001-08-24 Gas turbine inlet temperature control method and estimation method

Country Status (1)

Country Link
JP (1) JP4773646B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062833A (en) * 2010-09-16 2012-03-29 Honda Motor Co Ltd Temperature estimation apparatus for aeroplane gas turbine engine
CN105240130A (en) * 2014-07-11 2016-01-13 阿尔斯通技术有限公司 Method for the control and protection of a gas turbine and gas turbine using such method
KR102079565B1 (en) 2018-11-12 2020-02-20 한국전력공사 Turbine inlet temperature measurement system and measurement method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107819A (en) * 1981-12-22 1983-06-27 Toshiba Corp Gas turbine control device
JPS6397835A (en) * 1986-10-13 1988-04-28 Hitachi Ltd Gas turbine temperature control device
JPS63110639A (en) * 1986-10-28 1988-05-16 Nec Corp Manufacture of integrated circuit device
JPH1172029A (en) * 1997-06-30 1999-03-16 Hitachi Ltd Gas turbine having output increasing mechanism by water atomization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107819A (en) * 1981-12-22 1983-06-27 Toshiba Corp Gas turbine control device
JPS6397835A (en) * 1986-10-13 1988-04-28 Hitachi Ltd Gas turbine temperature control device
JPS63110639A (en) * 1986-10-28 1988-05-16 Nec Corp Manufacture of integrated circuit device
JPH1172029A (en) * 1997-06-30 1999-03-16 Hitachi Ltd Gas turbine having output increasing mechanism by water atomization

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062833A (en) * 2010-09-16 2012-03-29 Honda Motor Co Ltd Temperature estimation apparatus for aeroplane gas turbine engine
CN105240130A (en) * 2014-07-11 2016-01-13 阿尔斯通技术有限公司 Method for the control and protection of a gas turbine and gas turbine using such method
CN105240130B (en) * 2014-07-11 2019-03-26 安萨尔多能源瑞士股份公司 Control and protect the method for gas turbine and the gas turbine using such method
US10465552B2 (en) 2014-07-11 2019-11-05 Ansaldo Energia Switzerland AG Method for the control and protection of a gas turbine and gas turbine using such method
KR102079565B1 (en) 2018-11-12 2020-02-20 한국전력공사 Turbine inlet temperature measurement system and measurement method

Also Published As

Publication number Publication date
JP4773646B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4681280B2 (en) Method and system for incorporating an emission sensor into a gas turbine controller
JP3720804B2 (en) CLEARANCE CONTROL METHOD AND DEVICE
JP5144998B2 (en) Aerodynamic stability management system and its controller
US8221057B2 (en) Method, system and controller for establishing a wheel space temperature alarm in a turbomachine
KR100650095B1 (en) Method and apparatus for use in control and compensation of clearances in a gas turbine engine
JP4513771B2 (en) Performance monitoring method and system for single-shaft combined cycle plant
JP2003328841A (en) Diagnostic system for turbocharged engine
US11248537B2 (en) Gas turbine control device, gas turbine plant, and gas turbine control method
CN108758970B (en) Abnormal state detection method of exhaust temperature sensing bulb and compressor protection method
JP2010276023A (en) System and method for modifying performance of gas turbine
JP2001152875A (en) Method and system for compensating measurement error
JPH09509713A (en) Unrecoverable surge and blowout detection mechanism for gas turbine engine
JP6723799B2 (en) Air-conditioning outlet temperature estimation device and program
JP2017014924A (en) Device for controlling internal combustion engine with supercharger
JP2010242758A (en) Method and system for actively tuning valve
GB2417762A (en) Turbine case cooling to provide blade tip clearance
JP2003065081A (en) Control method and estimation method for gas turbine inlet temperature
US6694742B2 (en) Gas turbine system operation based on estimated stress
JP6729436B2 (en) Automatic pressure control valve and vacuum pumping system
US9494488B2 (en) Method and apparatus to determine rotational position of a phaser in a variable phasing system
JP2020084840A (en) Gas turbine and extraction amount adjustment method of the same
JP2002297244A (en) Method for controlling pressure of reaction chamber and device for the same
JP2009204321A (en) Flow rate estimation method and device
JPH1082523A (en) Method for controlling pressure in furnace
CN112484348A (en) Control method and device of electronic expansion valve and electrical equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4773646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees