JP2003059033A - Magnetic recording medium and its manufacturing method and device - Google Patents

Magnetic recording medium and its manufacturing method and device

Info

Publication number
JP2003059033A
JP2003059033A JP2001251547A JP2001251547A JP2003059033A JP 2003059033 A JP2003059033 A JP 2003059033A JP 2001251547 A JP2001251547 A JP 2001251547A JP 2001251547 A JP2001251547 A JP 2001251547A JP 2003059033 A JP2003059033 A JP 2003059033A
Authority
JP
Japan
Prior art keywords
film
recording medium
protective film
magnetic recording
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001251547A
Other languages
Japanese (ja)
Inventor
Yoichi Ogawa
容一 小川
Takanobu Takayama
孝信 高山
Akira Yano
亮 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2001251547A priority Critical patent/JP2003059033A/en
Publication of JP2003059033A publication Critical patent/JP2003059033A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic recording medium wherein a recording density is increased at a practical level. SOLUTION: This magnetic recording medium is constructed in such a manner that a metal thin-film magnetic film 2 having a thickness of 0.2 μm or lower and a hard protective film 3 having a thickness of 20 nm are formed in this order on a flexible substrate 1, surface roughness Ra of the nonmagnetic substrate 1 is 2 nm or lower, and a thin-film thick part having a film thickness difference 30% or thicker of a maximum protective film thickness is formed in a part of the hard protective film 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気記録媒体及び
その製造方法ならびに製造装置に係り、特にフレキシブ
ル基板上に厚さ0.2μm以下の金属薄膜からなる磁性
膜、厚さ20nm以下の硬質保護膜を順次設けた磁気記
録媒体及びその製造方法ならびに製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium, a method for manufacturing the same, and a manufacturing apparatus therefor, and more particularly, a magnetic film made of a metal thin film having a thickness of 0.2 μm or less on a flexible substrate, and a hard protection having a thickness of 20 nm or less. The present invention relates to a magnetic recording medium in which films are sequentially provided, a manufacturing method thereof, and a manufacturing apparatus.

【0002】[0002]

【従来の技術】フレキシブル磁気記録媒体における最近
の大容量化の取り組みの一手法として、ベースヘィルム
の薄手化、平滑化を目指す方法がある。ベースフィルム
の薄手化は記録面積の増大に寄与する。ベースフィルム
表面の平滑化は磁性膜欠陥を減少させ、記録密度の向上
に寄与する。
2. Description of the Related Art As one of recent techniques for increasing the capacity of a flexible magnetic recording medium, there is a method for thinning and smoothing a base film. Thinning the base film contributes to an increase in recording area. Smoothing the surface of the base film reduces magnetic film defects and contributes to an improvement in recording density.

【0003】しかし、ベースフィルムの表面性を平滑に
し過ぎると、ヘッドとの間で貼り付きを生じて、走行、
摺動特性が劣化し、安定した出力が得られなくなるとい
う問題が生じる。そこで例えば、現行の蒸着テープなど
ではベースフィルム上に易滑層と呼ばれる、均質にフィ
ルム表面を粗す層を設けている。この層はテープの摺動
特性を改善する一方、磁性膜の欠陥を増大させ、記録密
度向上の阻害要因となっている。
However, if the surface property of the base film is excessively smooth, sticking occurs between the head and the head, which causes running,
There is a problem that the sliding characteristics deteriorate and stable output cannot be obtained. Therefore, for example, in the current vapor deposition tape or the like, a layer called a slipping layer that uniformly roughens the film surface is provided on the base film. While this layer improves the sliding characteristics of the tape, it also increases defects in the magnetic film, which is an obstacle to improving the recording density.

【0004】このように摺動特性と記録再生特性がトレ
ードオフの関係にあり、実用化レベルでの記録密度向上
を困難にしている。
As described above, there is a trade-off relationship between the sliding characteristic and the recording / reproducing characteristic, which makes it difficult to improve the recording density at a practical level.

【0005】上記問題を解決するため、基体表面の表面
性は良好なまま、硬質保護膜表面を粗す方法が幾つか提
案されている。例えば、硬質保護膜と磁性膜の間に島状
構造の中間膜を設ける方法、硬質保護膜と磁性膜の間に
分散させた微粉末層を挟む方法、硬質保護膜上に微粉末
を振り掛け、その表面をプラズマエッチングした後、洗
浄して微粉末を取り去る方法などが知られている。
In order to solve the above problems, some methods have been proposed for roughening the surface of the hard protective film while keeping the surface property of the substrate good. For example, a method of providing an intermediate film having an island structure between the hard protective film and the magnetic film, a method of sandwiching the fine powder layer dispersed between the hard protective film and the magnetic film, and sprinkling fine powder on the hard protective film, A method is known in which the surface is plasma-etched and then washed to remove fine powder.

【0006】[0006]

【発明が解決しようとする課題】しかし、硬質保護膜と
磁性膜の間に中間層を設ける方法は、スペーシングを増
大させ、記録再生特性を劣化させる。また、微粉末を振
り掛けた硬質保護膜表面をプラズマエッチングし洗浄し
て微粉末を取り去る方法は、生産性に問題があり、実用
的ではない。
However, the method of providing the intermediate layer between the hard protective film and the magnetic film increases the spacing and deteriorates the recording / reproducing characteristics. Further, the method of removing the fine powder by plasma etching and cleaning the surface of the hard protective film sprinkled with the fine powder has a problem in productivity and is not practical.

【0007】本発明の目的は、このような従来技術の摺
動特性と記録再生特性の相反性という欠点を解消し、実
用化レベルでの記録密度向上を図ることが可能な磁気記
録媒体及びその製造方法ならびに製造装置を提供するこ
とを目的とする。
An object of the present invention is to eliminate the drawbacks of the prior art such as the reciprocity of the sliding characteristic and the recording / reproducing characteristic, and to improve the recording density at a practical level, and a magnetic recording medium thereof. An object is to provide a manufacturing method and a manufacturing apparatus.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の第1の手段は、フレキシブル基板上に厚さ
0.2μm以下の金属薄膜からなる磁性膜、厚さ20n
m以下の硬質保護膜を順次設けた磁気記録媒体におい
て、前記フレキシブル基板の表面粗度Raが2nm以下
で、かつ前記硬質保護膜の最大膜厚をL1、最小膜厚を
L3、最大膜厚と最小膜厚の差をL2としたときの(L
2/L1)×100≧30%で、L3≧0.001nm
であることを特徴とするものである。
In order to achieve the above object, the first means of the present invention is a magnetic film made of a metal thin film having a thickness of 0.2 μm or less on a flexible substrate and having a thickness of 20 n.
In a magnetic recording medium in which hard protective films of m or less are sequentially provided, the surface roughness Ra of the flexible substrate is 2 nm or less, and the maximum film thickness of the hard protective film is L1, the minimum film thickness is L3, and the maximum film thickness is L3. When the difference in the minimum film thickness is L2, (L
2 / L1) × 100 ≧ 30%, L3 ≧ 0.001 nm
It is characterized by being.

【0009】本発明の第2の手段は、長尺のフレキシブ
ル基板を、冷却ドラムを介して連続的に巻き取りながら
硬質保護膜をプラズマCVD法によって成膜する磁気記
録媒体の製造方法において、前記冷却ドラム表面の50
μm×50μmの面積内に高さ50nm以上500nm
以下の1個以上の突起または窪みを形成することを特徴
とするものである。
A second means of the present invention is a method for manufacturing a magnetic recording medium, wherein a hard protective film is formed by a plasma CVD method while continuously winding a long flexible substrate through a cooling drum. 50 on the surface of the cooling drum
Height of 50 nm or more and 500 nm within an area of μm × 50 μm
It is characterized by forming one or more of the following protrusions or depressions.

【0010】本発明の第3の手段は、長尺のフレキシブ
ル基板を、冷却ドラムを介して連続的に巻き取りながら
硬質保護膜をプラズマCVD法によって成膜する磁気記
録媒体の製造装置において、前記冷却ドラム表面に50
μm×50μmの面積内に高さ50nm以上500nm
以下の1個以上の突起または窪みが形成されていること
を特徴とするものである。
A third means of the present invention is a magnetic recording medium manufacturing apparatus for forming a hard protective film by a plasma CVD method while continuously winding a long flexible substrate through a cooling drum. 50 on the surface of the cooling drum
Height of 50 nm or more and 500 nm within an area of μm × 50 μm
One or more of the following protrusions or depressions are formed.

【0011】[0011]

【発明の実施の形態】本発明では、フレキシブル基体表
面に例えば、Co−O磁性膜などをベーパーディポジシ
ョン法で連続的に成膜した磁気テープにおいて、磁性膜
上に硬質保護膜を、冷却ドラムを介して連続的に巻き取
りながらプラズマCVD法によって成膜するに際して、
冷却ドラム表面を均質に粗して、基体フィルムと冷却ド
ラムの接触状態を部分部分で不均質にすることによって
成膜温度を不均質にする。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, in a magnetic tape in which, for example, a Co—O magnetic film or the like is continuously formed on the surface of a flexible substrate by a vapor deposition method, a hard protective film is formed on the magnetic film and a cooling drum is used. When forming a film by the plasma CVD method while continuously winding it through
The surface of the cooling drum is uniformly roughened so that the contact state between the substrate film and the cooling drum is made non-uniform in some parts to make the film forming temperature non-uniform.

【0012】プラズマCVDにおける成膜速度は、膜の
付着と再蒸発のバランスで決まる。成膜温度の高い部分
では再蒸発速度が速くなり、成膜速度が遅くなる。成膜
温度の低い部分では成膜速度が速くなる。この結果、硬
質保護膜膜厚が不均一化する。
The deposition rate in plasma CVD is determined by the balance between film deposition and re-evaporation. The re-evaporation rate becomes faster and the film formation rate becomes slower in the portion where the film formation temperature is higher. The film forming speed is high in the portion where the film forming temperature is low. As a result, the thickness of the hard protective film becomes uneven.

【0013】この方法によれば、基体表面が平滑なため
に欠陥の少ない良質の磁性膜が成膜され、その上に膜厚
が不均質な硬質保護膜が成膜されるため、貼り付きもな
く、良好な走行性を維持する。冷却ドラム表面を均質に
粗す方法としては、直径100nm〜1000nmの球
状微粒子を分散させた高分子塗膜で覆うことによって実
現した。球状微粒子としては、SiO2 、C、Al2
3 、ベンガラなどが用いられる。
According to this method, a good quality magnetic film with few defects is formed because the surface of the substrate is smooth, and a hard protective film having an inhomogeneous film thickness is formed on the magnetic film. And maintain good runnability. A method of uniformly roughening the surface of the cooling drum was realized by covering with a polymer coating film in which spherical fine particles having a diameter of 100 nm to 1000 nm were dispersed. The spherical fine particles include SiO 2 , C, and Al 2 O.
3 , red iron oxide, etc. are used.

【0014】本発明に使用できる磁性材料としては、C
o−O、Co−Ni、Co−Cr、Co−Fe、Co−
Ni−Cr、Co−Pt−Crなどが好ましい材料とし
て挙げられる。本発明に使用できる非磁性基体として
は、ポリエチレン、ポリプロピレン、ポリエチレンテレ
フタレート、ポリエチレンナフタレート、ポリアラミ
ド、ポリイミド、ポリフェニレンサリファイドなどが好
ましい材料として挙げられる。
The magnetic material that can be used in the present invention is C
o-O, Co-Ni, Co-Cr, Co-Fe, Co-
Ni-Cr, Co-Pt-Cr, etc. are mentioned as a preferable material. Preferred examples of the non-magnetic substrate that can be used in the present invention include polyethylene, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polyaramid, polyimide, and polyphenylene sulfide.

【0015】硬質保護膜としては、プラズマカーボン
膜、SiOx、SiC、B、Siが候補として挙げられ
るが、プラズマカーボン膜、その中でもダイヤモンドラ
イクカーボン膜(以後DLCと略す)が特に賞用され
る。
As the hard protective film, plasma carbon film, SiOx, SiC, B and Si can be cited as candidates, but a plasma carbon film, among them, a diamond-like carbon film (hereinafter abbreviated as DLC) is particularly preferred.

【0016】また保護膜としてプラズマカーボン膜を形
成するときには、キャリアガスとしてはメタン、エタ
ン、エチレン、アセチレン、ブタン、ベンゼンなどの炭
化水素ガスからなるモノマーガスとアルゴン、ヘリウ
ム、ネオン、クリプトン、キセノン、ラドン、窒素、水
素、一酸化炭素、二酸化炭素などのキャリアガスが所定
の割合で供給される。なお、基板上にプラズマカーボン
膜が成膜できるならば、どのようなガス導入法、ガス種
を用いても構わない。
When a plasma carbon film is formed as a protective film, a carrier gas is a monomer gas composed of a hydrocarbon gas such as methane, ethane, ethylene, acetylene, butane, and benzene, and argon, helium, neon, krypton, xenon, Carrier gas such as radon, nitrogen, hydrogen, carbon monoxide and carbon dioxide is supplied at a predetermined ratio. Any gas introduction method and gas species may be used as long as the plasma carbon film can be formed on the substrate.

【0017】以下、図面に基づいて本発明の内容をさら
に詳細に説明する。図1は本発明の実施形態に係る磁気
記録媒体の断面図、図2はその磁気記録媒体を製造する
ためのプラズマCVD装置の概略構成図、図3は前記磁
気記録媒体の一部拡大断面図である。
The contents of the present invention will be described below in more detail with reference to the drawings. 1 is a sectional view of a magnetic recording medium according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram of a plasma CVD apparatus for manufacturing the magnetic recording medium, and FIG. 3 is a partially enlarged sectional view of the magnetic recording medium. Is.

【0018】図1において、1は基体、2は磁性膜、3
はDLCからなる保護膜、4はバックコート層を示す。
また図2において、5は回転ドラム、6は巻取ローラ、
7は供給ローラ、8は中間ローラ、9はガス導入口、1
0はマイクロ波リニアアプリケータ、11はマッチング
ボックス、12は高周波電源、13は搬送室、14は成
膜室、15は中間室をそれぞれ示す。また図3におい
て、L1は最大保護膜厚、L3は最小保護膜厚、L2は
最大保護膜厚L1と最小保護膜厚L3の膜厚差(L1−
L3)である。
In FIG. 1, 1 is a substrate, 2 is a magnetic film, 3
Indicates a protective film made of DLC, and 4 indicates a back coat layer.
In FIG. 2, 5 is a rotary drum, 6 is a take-up roller,
7 is a supply roller, 8 is an intermediate roller, 9 is a gas inlet, 1
Reference numeral 0 is a microwave linear applicator, 11 is a matching box, 12 is a high frequency power source, 13 is a transfer chamber, 14 is a film forming chamber, and 15 is an intermediate chamber. In FIG. 3, L1 is the maximum protective film thickness, L3 is the minimum protective film thickness, L2 is the film thickness difference between the maximum protective film thickness L1 and the minimum protective film thickness L3 (L1-
L3).

【0019】まず、一般的に用いられている方法で長尺
幅広の基体1上にCo−Oからなる磁性膜2を成膜し
た。基体1としてはポリエチレンナフタレートを用い
た。磁性膜2を形成した基体1に、図2のプラズマCV
D装置でDLC保護膜3を形成する。前述の磁性膜付基
体1は供給ローラ7から連続的に繰り出し、所定の速度
で回転する冷却状態の回転ドラム5の周面を通して成膜
を行い、巻取ローラ6に順次巻き取る。供給ローラ7、
回転ドラム5、巻取ローラ6の間にはガイド用に数本の
中間ローラ8がある。これら中間ローラ8は高周波的に
アースから絶縁されている。
First, a magnetic film 2 made of Co-O was formed on a long and wide substrate 1 by a commonly used method. Polyethylene naphthalate was used as the substrate 1. The plasma CV of FIG. 2 is formed on the substrate 1 on which the magnetic film 2 is formed.
The DLC protective film 3 is formed by the D device. The above-described magnetic film-coated substrate 1 is continuously fed from the supply roller 7, formed into a film through the peripheral surface of the rotating drum 5 which is in a cooling state and rotated at a predetermined speed, and is successively wound around the winding roller 6. Supply roller 7,
Between the rotary drum 5 and the winding roller 6, there are several intermediate rollers 8 for guiding. These intermediate rollers 8 are insulated from the ground in a high frequency manner.

【0020】図2のガス導入口9からはCH4 の炭化水
素ガスからなるモノマーガス、及びH2 のキャリアガス
が所定の割合で供給される。これらのガスは、マイクロ
波リニアアプリケータ10から印加されるマイクロ波
(MW)によりプラズマ状態に保たれ、搬送される磁性
膜付基体1の磁性膜表面にプラズマCVD膜が連続的に
形成される。
From the gas inlet 9 shown in FIG. 2, a monomer gas consisting of a hydrocarbon gas of CH 4 and a carrier gas of H 2 are supplied at a predetermined ratio. These gases are kept in a plasma state by the microwave (MW) applied from the microwave linear applicator 10, and a plasma CVD film is continuously formed on the surface of the magnetic film of the magnetic film-attached substrate 1 being conveyed. .

【0021】回転ドラム5にはマッチングボックス11
を介して高周波電源12によって自己バイアス電圧が加
えられ、磁性膜2上に連続して幅広で均質なプラズマC
VD膜が形成される。成膜時の基体1の搬送系のある搬
送室13と成膜を行う成膜室14の真空度は独立に制御
が可能であり、搬送室13はプラズマの発生しない高真
空に保たれる。
The rotating drum 5 has a matching box 11
A high-frequency power source 12 applies a self-bias voltage to the magnetic film 2 so that a continuous and uniform plasma C is formed on the magnetic film 2.
A VD film is formed. The degree of vacuum in the transfer chamber 13 in which the transfer system for the substrate 1 is formed during film formation and the film formation chamber 14 in which film formation is performed can be controlled independently, and the transfer chamber 13 is maintained in a high vacuum in which plasma is not generated.

【0022】次の表1に、厚さ6.4μmのポリエチレ
ンテレフタレートフィルム上に形成した厚さ0.15μ
mの斜め蒸着Co−O磁性膜を用いて、マイクロ波の周
波数を2.45GHz、投入電力1.5kW、導入ガス
をメタンとアルゴンの導入割合3:1、搬送室13の真
空度を5×10-5Torr、成膜室12の真空度を0.
03Torr、の条件でDLC保護膜3の成膜を行った
ときの各種成膜条件と硬質保護膜の膜厚減少比率(L2
/L1)×100〔%〕を示す。
In Table 1 below, a thickness of 0.15 μm formed on a polyethylene terephthalate film having a thickness of 6.4 μm.
Using a diagonally evaporated Co—O magnetic film of m, the microwave frequency was 2.45 GHz, the input power was 1.5 kW, the introduction gas was methane and argon at an introduction ratio of 3: 1, and the vacuum degree of the transfer chamber 13 was 5 ×. 10 −5 Torr, the degree of vacuum in the film forming chamber 12 is 0.
When the DLC protective film 3 is formed under the conditions of 03 Torr, various film forming conditions and the film thickness reduction ratio of the hard protective film (L2
/ L1) × 100 [%] is shown.

【0023】ただし、硬質保護膜の最大保護膜厚L1は
8nmと一定とした。前述のようにL1は硬質保護膜の
最大保護膜厚、L3は最小保護膜厚、L2は最大保護膜
厚L1と最小保護膜厚L3の膜厚差(L1−L3)であ
る(図3参照)。
However, the maximum protective film thickness L1 of the hard protective film was kept constant at 8 nm. As described above, L1 is the maximum protective film thickness of the hard protective film, L3 is the minimum protective film thickness, and L2 is the film thickness difference (L1-L3) between the maximum protective film thickness L1 and the minimum protective film thickness L3 (see FIG. 3). ).

【0024】[0024]

【表1】 また次の表2に、各試料の摩擦特性と記録再生特性を示
す。なお、表面粗度Raはランクテーラーホブソン株式
会社製タリステップを用いて測定した。ピン摺動はDV
C(シャープDC3)用のピンと1/4インチにスリッ
トしたテープを用いて、2m/minの走行速度で動摩
擦係数を測定した。記録再生特性は市販のDVCデッキ
(シャープDC3)を、出力を取り出せるように改造し
て測定した。
[Table 1] The following Table 2 shows the friction characteristics and recording / reproducing characteristics of each sample. The surface roughness Ra was measured using a Tally Step manufactured by Rank Taylor Hobson Co., Ltd. Pin sliding is DV
Using a pin for C (Sharp DC3) and a tape slit to 1/4 inch, the coefficient of dynamic friction was measured at a running speed of 2 m / min. The recording / reproducing characteristics were measured by modifying a commercially available DVC deck (Sharp DC3) so that the output could be taken out.

【0025】[0025]

【表2】 この表1ならびに表2から明らかなように、 (1)試料No.1からNo.4のものは、基板が超平
滑で硬質保護膜膜厚比が大きいため、ピン摺動摩擦係数
が低く、記録再生特性も良好である。 (2)試料No.5のものは、冷却ドラム表面の球状粒
子が小さいため、硬質保護膜膜厚減少比が小さく、貼り
付きが生じてピン摺動摩擦係数が高い。 (3)試料No.6のものは、冷却ドラム表面の球状粒
子が大き過ぎるため、基板が球状粒子の形に変形してC
/Nが低い。 (4)試料No.7のものは、冷却ドラム表面の球状粒
子密度が低いため、貼り付きが生じてピン摺動摩擦係数
が高い。 (5)試料No.8のものは、基体表面粗度が粗いため
磁気特性が劣化し、ヘッド−媒体間スペーシングも広く
なるためC/Nが低い。
[Table 2] As is clear from Table 1 and Table 2, (1) Sample No. 1 to No. In No. 4, since the substrate is ultra-smooth and the hard protective film thickness ratio is large, the pin sliding friction coefficient is low and the recording / reproducing characteristics are good. (2) Sample No. In No. 5, since the spherical particles on the surface of the cooling drum are small, the reduction ratio of the hard protective film thickness is small, and sticking occurs, and the pin sliding friction coefficient is high. (3) Sample No. In No. 6, since the spherical particles on the surface of the cooling drum are too large, the substrate is deformed into the shape of spherical particles and C
/ N is low. (4) Sample No. In No. 7, since the spherical particle density on the surface of the cooling drum is low, sticking occurs and the pin sliding friction coefficient is high. (5) Sample No. No. 8 has a low C / N ratio because the substrate surface roughness is rough and thus the magnetic properties are deteriorated and the head-medium spacing is wide.

【発明の効果】以上の結果から明らかなように、基体表
面を超平滑として硬質保護膜厚の一部を薄くして、その
膜厚差を保護膜厚の30%以上とすることにより、実用
化レベルでの記録密度向上を図ることが可能な磁気記録
媒体及びその製造方法ならびに製造装置を提供すること
ができる。
As is clear from the above results, the surface of the substrate is made to be ultra-smooth, a part of the hard protective film is thinned, and the film thickness difference is 30% or more of the protective film. It is possible to provide a magnetic recording medium capable of improving the recording density at a high level, a manufacturing method thereof, and a manufacturing apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気記録媒体の断面図である。FIG. 1 is a sectional view of a magnetic recording medium of the present invention.

【図2】本発明を実施するための連続プラズマCVD装
置の概略構成図である。
FIG. 2 is a schematic configuration diagram of a continuous plasma CVD apparatus for carrying out the present invention.

【図3】本発明の磁気記録媒体の一部拡大断面図であ
る。
FIG. 3 is a partially enlarged sectional view of a magnetic recording medium of the present invention.

【符号の説明】[Explanation of symbols]

1 基体 2 磁性膜 3 保護膜 4 バックコート層 5 回転ドラム 6 巻取ローラ 7 供給ローラ 8 中間ローラ 9 ガス導入口 10 マイクロ波リニアアプリケータ 11 マッチングボックス 12 高周波電源 13 搬送室 14 成膜室 15 中間室 L1 硬質保護膜の最大保護膜厚 L2 硬質保護膜の最大保護膜厚と最小保護膜厚の差 L3 硬質保護膜の最小保護膜厚 1 base 2 Magnetic film 3 protective film 4 Back coat layer 5 rotating drums 6 winding roller 7 Supply roller 8 Intermediate roller 9 gas inlet 10 Microwave linear applicator 11 Matching Box 12 High frequency power supply 13 Transport room 14 Deposition chamber 15 Intermediate room Maximum protective film thickness of L1 hard protective film Difference between the maximum and minimum protective film thickness of L2 hard protective film L3 Hard protective film minimum protective film thickness

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢野 亮 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 4K030 BA27 CA07 CA17 FA01 KA26 LA19 5D006 AA01 AA05 DA02 EA03 FA05 FA09 5D112 AA07 AA24 BC05 FA10 FB25 GA15    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ryo Yano             Hitachima, 1-88, Torora, Ibaraki City, Osaka Prefecture             Within Kucsel Co., Ltd. F-term (reference) 4K030 BA27 CA07 CA17 FA01 KA26                       LA19                 5D006 AA01 AA05 DA02 EA03 FA05                       FA09                 5D112 AA07 AA24 BC05 FA10 FB25                       GA15

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 フレキシブル基板上に厚さ0.2μm以
下の金属薄膜からなる磁性膜、厚さ20nm以下の硬質
保護膜を順次設けた磁気記録媒体において、前記フレキ
シブル基板の表面粗度Raが2nm以下で、かつ前記硬
質保護膜の最大膜厚をL1、最小膜厚をL3、最大膜厚
と最小膜厚の差をL2としたときの(L2/L1)×1
00≧30%で、L3≧0.001nmであることを特
徴とする磁気記録媒体。
1. A magnetic recording medium in which a magnetic film made of a metal thin film having a thickness of 0.2 μm or less and a hard protective film having a thickness of 20 nm or less are sequentially provided on a flexible substrate, and the surface roughness Ra of the flexible substrate is 2 nm. (L2 / L1) × 1 below, where L1 is the maximum film thickness of the hard protective film, L3 is the minimum film thickness, and L2 is the difference between the maximum film thickness and the minimum film thickness.
A magnetic recording medium, wherein 00 ≧ 30% and L3 ≧ 0.001 nm.
【請求項2】 請求項1記載の磁気記録媒体において、
前記硬質保護膜がプラズマカーボン膜であることを特徴
とする磁気記録媒体。
2. The magnetic recording medium according to claim 1,
A magnetic recording medium, wherein the hard protective film is a plasma carbon film.
【請求項3】 長尺のフレキシブル基板を、冷却ドラム
を介して連続的に巻き取りながら硬質保護膜をプラズマ
CVD法によって成膜する磁気記録媒体の製造方法にお
いて、前記冷却ドラム表面の50μm×50μmの面積
内に高さ50nm以上500nm以下の1個以上の突起
または窪みを形成することを特徴とする磁気記録媒体の
製造方法。
3. A method of manufacturing a magnetic recording medium, wherein a hard protective film is formed by a plasma CVD method while continuously winding a long flexible substrate through a cooling drum, and the surface of the cooling drum is 50 μm × 50 μm. A method for manufacturing a magnetic recording medium, characterized in that one or more protrusions or depressions having a height of 50 nm or more and 500 nm or less are formed in the area of the above.
【請求項4】 請求項3記載の磁気記録媒体の製造方法
において、前記硬質保護膜がプラズマカーボン膜である
ことを特徴とする磁気記録媒体の製造方法。
4. The method of manufacturing a magnetic recording medium according to claim 3, wherein the hard protective film is a plasma carbon film.
【請求項5】 長尺のフレキシブル基板を、冷却ドラム
を介して連続的に巻き取りながら硬質保護膜をプラズマ
CVD法によって成膜する磁気記録媒体の製造装置にお
いて、前記冷却ドラム表面に50μm×50μmの面積
内に高さ50nm以上500nm以下の1個以上の突起
または窪みが形成されていることを特徴とする磁気記録
媒体の製造装置。
5. A magnetic recording medium manufacturing apparatus in which a hard protective film is formed by a plasma CVD method while continuously winding a long flexible substrate through a cooling drum, and the surface of the cooling drum is 50 μm × 50 μm. 1. An apparatus for manufacturing a magnetic recording medium, characterized in that one or more protrusions or depressions having a height of 50 nm or more and 500 nm or less are formed in the area.
【請求項6】 請求項5記載の磁気記録媒体の製造装置
において、前記硬質保護膜がプラズマカーボン膜である
ことを特徴とする磁気記録媒体の製造装置。
6. The apparatus for manufacturing a magnetic recording medium according to claim 5, wherein the hard protective film is a plasma carbon film.
JP2001251547A 2001-08-22 2001-08-22 Magnetic recording medium and its manufacturing method and device Withdrawn JP2003059033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001251547A JP2003059033A (en) 2001-08-22 2001-08-22 Magnetic recording medium and its manufacturing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001251547A JP2003059033A (en) 2001-08-22 2001-08-22 Magnetic recording medium and its manufacturing method and device

Publications (1)

Publication Number Publication Date
JP2003059033A true JP2003059033A (en) 2003-02-28

Family

ID=19080173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001251547A Withdrawn JP2003059033A (en) 2001-08-22 2001-08-22 Magnetic recording medium and its manufacturing method and device

Country Status (1)

Country Link
JP (1) JP2003059033A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080360A (en) * 2004-09-10 2006-03-23 Toppan Printing Co Ltd Membrane mask and its manufacturing method
JP2006169585A (en) * 2004-12-16 2006-06-29 Toppan Printing Co Ltd Method for producing conductive gas barrier stacked body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080360A (en) * 2004-09-10 2006-03-23 Toppan Printing Co Ltd Membrane mask and its manufacturing method
JP4655558B2 (en) * 2004-09-10 2011-03-23 凸版印刷株式会社 Membrane mask and manufacturing method thereof
JP2006169585A (en) * 2004-12-16 2006-06-29 Toppan Printing Co Ltd Method for producing conductive gas barrier stacked body
JP4525330B2 (en) * 2004-12-16 2010-08-18 凸版印刷株式会社 Method for producing conductive gas barrier laminate

Similar Documents

Publication Publication Date Title
JP2000248365A (en) Device and method for forming thin film, and guide roll
JPH1011734A (en) Magnetic recording medium
JP2003059033A (en) Magnetic recording medium and its manufacturing method and device
JPH07121855A (en) Magnetic recording medium, production of magnetic recording medium, and plasma cvd film forming method
JP3429369B2 (en) Thin film forming equipment
JP2000239849A (en) Continuous plasma cvd method and cvd device
JPH1186275A (en) Magnetic recording medium
JP2002020869A (en) Method for depositing diamondlike carbon film and surface treating method therefor
JPH10251851A (en) Film deposition method and film deposition device
JP2000268347A (en) Magnetic recording medium
JP2003059036A (en) Magnetic tape
JP3606416B2 (en) Magnetic recording medium manufacturing method and manufacturing apparatus thereof
JP3687117B2 (en) Magnetic recording medium and method for manufacturing the same
JPH103663A (en) Production of magnetic recording medium
JP2951892B2 (en) Magnetic recording media
JP2000239850A (en) Continuous plasma cvd device and continuous plasma cvd method
JPS61216124A (en) Production of magnetic recording medium
JPH10219459A (en) Plasma cvd system and production of magnetic recording medium formed by using the same
JPH0869622A (en) Production of magnetic recording medium
JPH08287458A (en) Production of magnetic recording medium and producing device therefor
JPH10106834A (en) Magnetic recording medium
JPH10237659A (en) Formation of coating and device therefor
JP2004273032A (en) Method and apparatus for manufacturing magnetic recording medium
JPH09320043A (en) Magnetic recording medium
JPH09106541A (en) Production of magnetic recording medium

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104