JP2003057016A - High speed measuring method for shape of large caliber surface and measuring instrument therefor - Google Patents

High speed measuring method for shape of large caliber surface and measuring instrument therefor

Info

Publication number
JP2003057016A
JP2003057016A JP2001243323A JP2001243323A JP2003057016A JP 2003057016 A JP2003057016 A JP 2003057016A JP 2001243323 A JP2001243323 A JP 2001243323A JP 2001243323 A JP2001243323 A JP 2001243323A JP 2003057016 A JP2003057016 A JP 2003057016A
Authority
JP
Japan
Prior art keywords
measured
surface shape
measurement
diameter
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001243323A
Other languages
Japanese (ja)
Inventor
Minokichi Ban
箕吉 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001243323A priority Critical patent/JP2003057016A/en
Publication of JP2003057016A publication Critical patent/JP2003057016A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02034Interferometers characterised by particularly shaped beams or wavefronts
    • G01B9/02038Shaping the wavefront, e.g. generating a spherical wavefront
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02083Interferometers characterised by particular signal processing and presentation
    • G01B9/02085Combining two or more images of different regions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/025Testing optical properties by measuring geometrical properties or aberrations by determining the shape of the object to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0271Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring the shape of a large caliber surface at a high speed with high accuracy, and a measuring instrument therefor. SOLUTION: The surface to be measured of the lens 107 to be measured held to a holder 111 is divided into a plurality of partial regions having measurable mutually overlapped parts, and the partial regions are measured using a polarizing beam splitter 103, a transmission spherical lens 105, an image photoelectric conversion element 109 or the like. A plurality of the overlapped parts are fitted and the measured data of the partial regions is subjected to coordinates conversion to be joined to obtain the whole shape of the surface to be measured of the lens 107 to be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高速に大口径の面
の形状を計測する方法および装置に関する。特に、近
年、半導体等のデバイスの微細化対応のため、投影レン
ズを構成しているレンズエレメントは露光装置の投影レ
ンズの開口数(NA:Numerical Aperture)を大きくする
ために大型化しており、その面形状測定に有効となる方
法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring the shape of a large-diameter surface at high speed. In particular, in recent years, in order to cope with the miniaturization of devices such as semiconductors, the lens element forming the projection lens has become larger in order to increase the numerical aperture (NA: Numerical Aperture) of the projection lens of the exposure apparatus. The present invention relates to a method and an apparatus which are effective for measuring surface shape.

【0002】[0002]

【従来の技術】従来の大口径の面形状測定への対応とし
ては、特開平2−259509号に面形状等測定方法お
よび装置として開示されている。図4は、特開平2−2
59509号における大口径の面形状を測定する方法お
よび装置を示す図である。同図において、401は光源
であるレーザ、402はビーム径を拡げるビームエキス
パンダ、403は入射光をp偏光成分とs偏光成分に二
分する偏光ビームスプリッタ、404a,404bは往
復することで偏光方向を90度回転させるλ/4板、4
05は参照面である平面ミラーをそれぞれ示す。406
は平面波を球面波に変換するコリメータレンズ、407
は被測定物、408は互いに直交する2偏光成分を干渉
させる偏光板、409は結像レンズ、410は干渉縞を
観測するCCD素子等の光検出器をそれぞれ示す。ま
た、411は被測定物407にあおり(アオリ)を与え
るチルトステージ、412、413、414は夫々Zス
テージ、Yステージ、Xステージ、415は干渉縞をス
キャンして縞走査測定を行なわせるピエゾ素子をそれぞ
れ示す。さらに、416はステージの光軸方向(X方
向)の移動距離を測定するレーザ測定器、417はピエ
ゾ素子415を光軸方向に駆動するためのPZTドライ
バ、418はCCD素子410からのデータを一時蓄積
する画像メモリ、419はステージを駆動するためのス
テージドライバ、420は全システムを管理すると共に
CCD素子410からのデータを処理するマイクロコン
ピュータをそれぞれ示す。
2. Description of the Related Art A conventional method for measuring a large-diameter surface shape is disclosed in JP-A-2-259509 as a method and apparatus for measuring a surface shape. FIG. 4 shows Japanese Patent Laid-Open No. 2-2
It is a figure which shows the method and apparatus which measure the surface shape of large diameter in 59509. In the figure, 401 is a laser as a light source, 402 is a beam expander that expands the beam diameter, 403 is a polarization beam splitter that divides the incident light into a p-polarized component and an s-polarized component, and 404a and 404b are reciprocating polarization directions. Λ / 4 plate which rotates 90 degrees, 4
Reference numeral 05 denotes a plane mirror as a reference surface. 406
Is a collimator lens for converting a plane wave into a spherical wave, 407
Is an object to be measured, 408 is a polarizing plate for interfering two polarization components orthogonal to each other, 409 is an imaging lens, and 410 is a photodetector such as a CCD element for observing interference fringes. Further, 411 is a tilt stage for tilting the object to be measured 407, 412, 413, 414 are Z stage, Y stage, X stage, and 415 are piezo elements for scanning interference fringes to perform fringe scanning measurement. Are shown respectively. Further, 416 is a laser measuring device for measuring the moving distance of the stage in the optical axis direction (X direction), 417 is a PZT driver for driving the piezo element 415 in the optical axis direction, and 418 is a temporary data from the CCD element 410. An image memory for storage, 419 is a stage driver for driving the stage, and 420 is a microcomputer for managing the entire system and for processing the data from the CCD element 410.

【0003】上記したように、特開平2−259509
号においては、被測定面の部分測定として高精度な干渉
計を使い、被測定面の移動や傾きの調整として、干渉光
学系と被測定面の光軸方向の相対距離を変化させるステ
ージと、 被測定面の干渉測定光照射領域を光軸に直交す
る方向に変化させるステージと、 被測定面を干渉光学系
に対して光軸に直交する2軸まわりに回転させてあおり
を与えるステージとを有する方法および装置である。ま
ず、被測定面の領域を重なり部分を持つように分割し、
その各領域を順次測定し、その測定データのお互いの重
なり部分をフィッティングして、全体の面形状の求める
方法および装置になっている。
As described above, Japanese Patent Laid-Open No. 2-259509.
In the No., a high-precision interferometer is used as a partial measurement of the surface to be measured, and a stage that changes the relative distance in the optical axis direction between the interference optical system and the surface to be measured is used to adjust the movement and tilt of the surface to be measured. A stage that changes the interference measurement light irradiation area of the surface to be measured in a direction orthogonal to the optical axis, and a stage that rotates the surface to be measured about two axes orthogonal to the optical axis to give a tilt. A method and an apparatus having the same. First, divide the area of the surface to be measured so that it has overlapping parts,
The method and apparatus are such that each area is sequentially measured, and the overlapping portions of the measurement data are fitted to each other to obtain the overall surface shape.

【0004】また、大口径平面測定において、オプティ
カル エンジニアリング 第33巻、第2番、608−
613頁(1994年)(Optical Engineering,vol.3
3,No.2,608-613(1994) )では、最小二乗法を使った最
適化が示されている。被測定面が平面なので、重なり部
分のバイアス成分と傾き成分の差を最小にすれば、全体
の形状を求めることができることと、重なり部分の領域
と補正誤差を求めている。
Also, in large-diameter plane measurement, Optical Engineering Vol. 33, No. 2, 608-
Pp. 613 (1994) (Optical Engineering, vol.3
3, No. 2, 608-613 (1994)), the optimization using the least squares method is shown. Since the surface to be measured is a flat surface, if the difference between the bias component and the tilt component in the overlapping portion is minimized, the entire shape can be obtained, and the overlapping area and the correction error are obtained.

【0005】[0005]

【発明が解決しようとする課題】半導体等のデバイス製
造用の露光装置の投影レンズを構成しているレンズエレ
メントは、例えば半導体の微細化対応のため、より大口
径でかつ高精度な加工が要求されてきたが、そのための
計測には、より大きな装置が必要であり、その装置開発
に多大な費用と時間、そしてその設置場所等多くの課題
がある。さらに、生産性の向上には、計測の測定時間の
短縮も重要になっている。その被測定面は、多くが球面
でかつ円形の領域が測定対象となっている。
The lens element constituting the projection lens of the exposure apparatus for manufacturing a device such as a semiconductor is required to have a larger diameter and a higher precision in order to cope with the miniaturization of the semiconductor, for example. However, a larger device is required for the measurement for that purpose, and there are many problems such as a great cost and time for developing the device, and its installation place. Furthermore, shortening the measurement time of measurement is also important for improving productivity. Most of the surface to be measured is a spherical surface and a circular area is a measurement target.

【0006】従来例に示した特開平2−259509号
は、重ね合わせ部分をもつ複数の部分領域の測定で全体
すなわち非対称非球面やシリンドリカル面や大口径の測
定に基本的な発明となっている。この方法や装置では、
被測定面を3次元に平行移動し、かつ光軸に垂直な軸ま
わりの回転やあおりにより、所定の位置に被測定面を持
っていくようになっている。しかし、すべての運動機構
を動かすことにより、所定の位置にもっていくことは、
振動や熱さらに干渉計では空気の擾乱を引き起こし、精
度の劣化原因や停止後から測定開始までの時間を長くす
るなど、精度低下と測定時間がかかってしまう結果とな
る。精密加工分野当然高精度レンズエレメントの生産に
おいては、加工時間に対して測定時間の割合が大きく、
修正加工や保証のための測定する測定時間が最重要であ
る。さらに、測定装置が高価なため、測定時間が短いこ
とは、測定装置の台数を増加しないで済むことから、設
備投資や費用面のメリットも大きい。
Japanese Unexamined Patent Publication No. 2-259509 shown in the prior art is a basic invention for measuring a plurality of partial regions having overlapping portions, that is, for measuring an asymmetric aspherical surface, a cylindrical surface, and a large aperture. . With this method and device,
The surface to be measured is three-dimensionally translated, and the surface to be measured is brought to a predetermined position by rotation or tilt around an axis perpendicular to the optical axis. However, by moving all motion mechanisms, it is
In the interferometer, vibration, heat, and the like cause air turbulence, which causes deterioration of accuracy and lengthening the time from the stop to the start of measurement, which results in lower accuracy and longer measurement time. Precision processing field Naturally, in the production of high precision lens elements, the ratio of measurement time to processing time is large,
The measurement time to measure for repair work and warranty is of utmost importance. Further, since the measuring device is expensive, the short measuring time does not require an increase in the number of measuring devices, and therefore, there are great advantages in terms of capital investment and cost.

【0007】本発明の目的は、高速かつ高精度に大口径
の面の面形状を計測する高速大口径面形状測定方法およ
び装置を提供することにある。
An object of the present invention is to provide a high-speed large-diameter surface shape measuring method and apparatus for measuring the surface shape of a large-diameter surface at high speed and with high accuracy.

【0008】[0008]

【課題を解決するための手段および作用】上記目的を達
成するために、本発明の高速大口径面形状測定方法は、
1回の測定領域より被測定面が大きな口径を持ち、そし
て被測定面が円形に近い被測定面を測定する方法におい
て、前記被測定面の円形のほぼ中央を中心に所定の曲率
半径の円周上を角度分割し、かつ被測定面を測定可能な
互いに重なり合う部分を持つ様な複数の部分領域に分割
して、各部分領域について該部分領域の曲率に応じた測
定位置に相対配置して測定を実行し、複数の重なり合う
部分をフィッティングさせる様に各部分領域の測定デー
タを座標変換して繋ぎ合わせることにより、被測定面の
全体形状を得ることを特徴とする。
In order to achieve the above object, the high-speed large-diameter surface shape measuring method of the present invention comprises:
In a method of measuring a measured surface in which the measured surface has a diameter larger than that of one measurement area and the measured surface is close to a circle, a circle having a predetermined radius of curvature centering on the approximate center of the circle of the measured surface. The circumference is angle-divided, and the surface to be measured is divided into a plurality of partial regions having measurable overlapping portions, and each partial region is relatively arranged at a measurement position according to the curvature of the partial region. It is characterized in that the entire shape of the surface to be measured is obtained by performing measurement and converting the measurement data of each partial region by coordinate conversion so as to fit a plurality of overlapping parts.

【0009】前記高速大口径面形状測定方法において、
前記各部分領域の測定は、該部分領域からの光を用いた
干渉作用を利用して行ない、面形状データを求めること
ができる。また、前記複数の重なり合う部分の相関度が
最大となるように座標変換してフィッティングすること
により、または、前記複数の重なり合う部分の差の自乗
和が最小となるように座標変換してフィッティングする
ことにより、前記各部分領域について測定した面形状デ
ータを繋ぎ合わせることが可能である。
In the high-speed large-diameter surface shape measuring method,
The surface shape data can be obtained by measuring each of the partial areas by utilizing the interference action using the light from the partial areas. Also, by performing coordinate conversion and fitting such that the degree of correlation of the plurality of overlapping portions is maximized, or by performing coordinate conversion and fitting such that the sum of squares of the differences between the plurality of overlapping portions is minimized. Thus, it is possible to connect the surface shape data measured for each of the partial areas.

【0010】前記各部分領域は、前記被測定面のほぼ中
央を中心に所定の曲率半径の円周上を角度分割して得ら
れた点を中心とする円形範囲内の各面領域であることが
好ましく、前記各面領域は、それぞれ所定の曲率半径を
有し、互いに重なり合う領域を有することが好ましい。
さらに、前記フィッティングとして、前記各部分領域の
測定データをツェルニケ多項式でフィッティングし、該
各部分領域における互いの重なった部分のバイアス成
分、デフォーカス成分、および傾き成分の相関が最大ま
たは互いの差が最小になるように該各部分領域のツェル
ニケ多項式を修正し、前記被測定面全体の面形状を算出
することができる。
Each of the partial areas is a surface area within a circular range centered on a point obtained by angle-dividing the circumference of a predetermined radius of curvature centering on the center of the surface to be measured. It is preferable that each of the surface regions has a predetermined radius of curvature and has regions overlapping with each other.
Further, as the fitting, the measurement data of each of the partial regions is fitted with a Zernike polynomial, and the bias component, the defocus component, and the slope component of the overlapping portions in each of the partial regions have the maximum correlation or the mutual difference. It is possible to correct the Zernike polynomials of the respective partial areas so as to be the minimum and calculate the surface shape of the entire surface to be measured.

【0011】上記目的を達成するために、本発明の高速
大口径面形状測定装置は、1回の測定領域より大きな口
径を有する被測定面を測定する高速大口径面形状測定装
置において、前記被測定面の所定部分の面形状を測定す
る測定部と、前記被測定面を保持する保持機構と、前記
保持機構を前記被測定面の所定の点を通る軸(例えば前
記被測定面におけるほぼ中央の点(中心点)を通り面の
法線方向の軸または該軸に交差する軸)を中心に回転す
る回転機構と、前記回転機構の回転軸に交差する面方向
に傾ける(例えば回転軸に垂直に傾ける)2次元のあお
り機構と、少なくとも前記保持機構、前記回転機構、お
よび前記あおり機構を3次元に平行移動させる移動機構
と、前記測定部、前記保持機構、前記回転機構、前記あ
おり機構、および前記移動機構を制御する制御部と、前
記被測定面の全体の面形状を算出する算出部とを有する
ことを特徴とする。
In order to achieve the above object, the high-speed large-diameter surface shape measuring apparatus of the present invention is a high-speed large-diameter surface shape measuring apparatus for measuring a measured surface having a diameter larger than one measurement area. A measuring unit that measures the surface shape of a predetermined portion of the measurement surface, a holding mechanism that holds the surface to be measured, and an axis that passes through the holding mechanism at a predetermined point on the surface to be measured (for example, approximately the center of the surface to be measured). And a rotation mechanism that rotates about an axis passing through the point (center point) in the normal direction of the surface or an axis that intersects the axis, and tilts in a surface direction that intersects the rotation axis of the rotation mechanism (for example, to the rotation axis). (Tilting vertically) Two-dimensional tilting mechanism, at least the holding mechanism, the rotating mechanism, and a moving mechanism that translates the tilting mechanism in three dimensions in parallel, the measuring unit, the holding mechanism, the rotating mechanism, and the tilting mechanism. ,and A control unit for controlling the serial moving mechanism, characterized by having a calculation unit for calculating a total surface shape of the surface to be measured.

【0012】2次元の前記あおり機構として、被測定面
の曲率半径の中心を中心に回転可能な球面軸受を有する
ことが可能である。
As the two-dimensional tilting mechanism, it is possible to have a spherical bearing rotatable about the center of the radius of curvature of the surface to be measured.

【0013】本発明の高速大口径面形状測定方法および
/または高速大口径面形状測定装置において、大口径面
形状の測定時間は、その面形状測定装置と被測定面の各
部分領域との相対位置の調整時間と、各部分領域での面
形状測定時間との和であるが、前者のその面形状測定装
置と被測定面の各部分領域の相対位置との調整時間に多
くの時間を要する。つまり、その調整時間の短縮によ
り、測定時間の短縮が可能となる。そのためには、その
面形状測定装置と被測定面の各部分領域の相対位置との
調整をすばやく合致させるために、使用頻度の高い動き
を少ない運動機構と運動量で行なうことにより、解決す
ることができる。
In the high-speed large-diameter surface shape measuring method and / or the high-speed large-diameter surface shape measuring apparatus of the present invention, the measuring time of the large-diameter surface shape is determined by the relative surface area measuring apparatus and each partial area of the surface to be measured. It is the sum of the position adjustment time and the surface shape measurement time in each partial area, but it takes a lot of time to adjust the relative shape of the former surface shape measuring device and each partial area of the measured surface. . That is, the shortening of the adjustment time makes it possible to shorten the measurement time. To that end, in order to quickly match the adjustment of the surface shape measuring device and the relative position of each partial area of the surface to be measured, it is possible to solve the problem by performing frequently used movements with a small motion mechanism and momentum. it can.

【0014】[0014]

【発明の実施の形態】本発明の好ましい実施の形態につ
いて以下に説明する。本発明の高速大口径面形状測定方
法では、1回の測定領域より被測定面が大きな口径を持
ちそして被測定面が円形に近い被測定面を測定する方法
において、 被測定面の円形のほぼ中央を中心に所定の曲
率半径の円周上を角度分割しかつ被測定面を測定可能な
互いに重なり合う部分を持つ様な複数の部分領域に分割
して、各部分領域について該部分領域の曲率に応じた測
定位置に相対配置して測定を実行し、 複数の重なり合う
部分をフィッティングさせる様に各部分領域の測定デー
タを座標変換して繋ぎ合せることにより被測定面の全体
形状を得ることが可能である。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below. In the high-speed large-diameter surface shape measuring method of the present invention, in a method of measuring a measured surface whose measured surface has a diameter larger than one measurement area and whose measured surface is close to a circle, Divide the circumference of a predetermined radius of curvature centered on the center and divide the surface to be measured into a plurality of partial areas having measurable overlapping parts, and for each partial area, calculate the curvature of the partial area. It is possible to obtain the overall shape of the surface to be measured by performing relative measurement at the appropriate measurement position and performing coordinate conversion to connect the measurement data of each partial area so that multiple overlapping parts can be fitted. is there.

【0015】本発明の高速大口径面形状測定方法では、
前記各部分領域の測定は該部分領域からの光を用いた干
渉作用を利用して行なわれて面形状データ等が求められ
ることが好ましい。
In the high-speed large-diameter surface shape measuring method of the present invention,
It is preferable that the measurement of each of the partial areas is performed by utilizing an interference action using light from the partial areas to obtain surface shape data and the like.

【0016】本発明の高速大口径面形状測定方法では、
前記複数の重なり合う部分の相関度が最大となるように
座標変換してフィッティングすることにより各部分領域
について測定した面形状データ等を繋ぎ合わせることが
できる。
In the high-speed large-diameter surface shape measuring method of the present invention,
By performing coordinate conversion and fitting so that the degree of correlation of the plurality of overlapping portions is maximized, the surface shape data and the like measured for each partial area can be connected.

【0017】本発明の高速大口径面形状測定方法では、
前記複数の重なり合う部分の差の自乗和が最小となるよ
うに座標変換してフィッティングすることにより各部分
領域について測定した面形状データ等を繋ぎ合わせるこ
とができる。
In the high-speed large-diameter surface shape measuring method of the present invention,
By performing coordinate conversion and fitting so that the sum of squares of the differences between the plurality of overlapping portions is minimized, the surface shape data and the like measured for each partial area can be joined together.

【0018】本発明の高速大口径面形状測定方法では、
前記被測定面の円形のほぼ中央を中心に所定の曲率半径
として、複数の曲率半径を持ち、各曲率半径での各測定
領域は他の曲率半径の測定領域と同一の曲率半径での他
の測定領域と重なり合いをもつことが好ましい。
In the high-speed large-diameter surface shape measuring method of the present invention,
With a predetermined radius of curvature centered on the approximate center of the circle of the surface to be measured, it has a plurality of radii of curvature, and each measurement region at each radius of curvature has another radius of curvature that is the same as that of another radius of curvature. It preferably has an overlap with the measurement area.

【0019】本発明の高速大口径面形状測定方法では、
前記フィッティングとして、各部分領域の測定データを
ツェルニケ多項式でフィッティングし、お互いの重なっ
た部分のバイアス成分、デフォーカス成分そして傾き成
分の差が最小になるように各領域のツェルニケ多項式を
修正し、全体の面形状を算出することができる。
In the high-speed large-diameter surface shape measuring method of the present invention,
As the fitting, the measurement data of each partial area is fitted with a Zernike polynomial, and the Zernike polynomial of each area is corrected so that the difference between the bias component, the defocus component and the slope component of the overlapping portions is minimized, and the whole The surface shape can be calculated.

【0020】本発明の高速大口径面形状測定装置では、
前記のいずれかの測定方法を用いて形状を測定する高速
大口径面形状測定方法において、ほぼ円形の被測定面の
部分の面形状を測定する装置、被測定面を保持する機
構、その保持する機構を被測定面のほぼ中央を中心を通
りかつそれにほぼ垂直な軸を中心に回転する機構、その
回転機構の回転軸に垂直に傾ける2次元のあおり機構そ
して全体を3次元に平行移動させる機構、個々の機構を
制御する制御装置そして全体の面形状を算出する装置を
もつことが可能である。
In the high-speed large-diameter surface shape measuring device of the present invention,
A high-speed large-diameter surface shape measuring method for measuring a shape using any one of the above-mentioned measuring methods, a device for measuring the surface shape of a portion of a substantially circular measured surface, a mechanism for holding the measured surface, and its holding A mechanism that rotates the mechanism about an axis that passes through substantially the center of the surface to be measured and is substantially perpendicular thereto, a two-dimensional tilt mechanism that tilts perpendicularly to the rotation axis of the rotating mechanism, and a mechanism that translates the entire mechanism in three dimensions. It is possible to have a control device that controls each mechanism, and a device that calculates the overall surface shape.

【0021】[0021]

【実施例】次に、本発明の実施例について図面を用いて
詳細に説明する。図1は、本発明の一実施例に係わる大
口径面形状測定装置の構成を示す図である。本実施例に
おいては、よく知られているフィゾータイプの位相干渉
計を使って構成される。光の進行をもって、以下説明す
る。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a diagram showing the configuration of a large-diameter surface shape measuring apparatus according to an embodiment of the present invention. In this embodiment, a well-known Fizeau type phase interferometer is used. The progress of light will be described below.

【0022】レーザ101から出射される可干渉性かつ
紙面に垂直(y軸)な偏光を有する平行な細いビーム
を、光の回折による誤差を減らすために複数のレンズで
構成されるビームイクスパンダ102により少し太い平
行ビームとする。そのビームを紙面に垂直(y軸)な光
(s偏光)を反射し、平行な光(p偏光)を透過する偏
光ビームスプリッタ103に入射させると、当該ビーム
はs偏光のみになっているから、全て反射することにな
る。その反射光を1/4波長板(λ/4板)104で円
偏光となるようにする。
A beam expander 102, which is composed of a plurality of lenses, reduces a coherent thin beam emitted from a laser 101 and having a coherent polarization perpendicular to the paper surface (y-axis) to reduce errors due to diffraction of light. To make the beam a little thicker. When the beam is incident on the polarization beam splitter 103 that reflects light (s-polarized light) perpendicular to the paper surface (y-axis) and transmits parallel light (p-polarized light), the beam is only s-polarized light. , All will be reflected. The reflected light is made into circularly polarized light by a quarter wavelength plate (λ / 4 plate) 104.

【0023】1/4波長板104により円偏光となった
ビームは、複数のレンズと参照球面106を有し、入射
平行ビームを集光させると共に基準となる参照波面をつ
くる透過球面レンズ(Transmition Sphere Lens :TS
レンズ)105に入射する。その一部は、参照球面10
6より、反射した波面が基準の参照波面となる。他方
は、透過球面レンズ105を透過した集光ビームに、そ
の波面と被測定レンズ(被検物)107の曲率半径を一
致させる。そのことにより、その被測定レンズ(被検
物)107から反射するビームは、再度透過球面レンズ
(TSレンズ)105を通り、前述の参照波面と干渉す
ることになる。その両ビームは、1/4波長板104に
より、紙面に平行な光(p偏光)となり、偏光ビームス
プリッタ103を通過する。
The beam circularly polarized by the quarter-wave plate 104 has a plurality of lenses and a reference spherical surface 106, and collects an incident parallel beam and forms a reference wavefront serving as a reference. Lens: TS
It enters the lens) 105. Part of it is the reference sphere 10.
From 6, the reflected wavefront becomes the reference wavefront. On the other hand, the wavefront of the focused beam that has passed through the transmissive spherical lens 105 and the radius of curvature of the lens to be measured (inspection object) 107 are matched. As a result, the beam reflected from the lens to be measured (object to be measured) 107 passes through the transmission spherical lens (TS lens) 105 again and interferes with the reference wavefront. Both beams are converted into light (p-polarized light) parallel to the paper surface by the quarter-wave plate 104 and pass through the polarization beam splitter 103.

【0024】偏光ビームスプリッタ103を通過した干
渉光は、結像レンズ108で画像光電変換素子109、
例えば2次元CCD素子上に結像する。当該結像による
干渉縞は、参照球面106と被測定レンズ(被検物)1
07の距離を多層のピエゾ素子110等からなる微動駆
動装置に電圧を印加して変化させながら、前述の画像光
電変換素子109、例えば2次元CCD素子で読み取ら
れ、その干渉縞の位相が正確に読み取られる。これによ
り、被測定レンズ(被検物)107に照射されている測
定面の面形状が測定される。しかし、これは被測定レン
ズ(被検物)107の一部である。
The interference light that has passed through the polarization beam splitter 103 is transferred to the image photoelectric conversion element 109 by the imaging lens 108.
For example, an image is formed on a two-dimensional CCD element. The interference fringes formed by the image formation are the reference spherical surface 106 and the measured lens (test object) 1
The distance of 07 is read by the image photoelectric conversion element 109, for example, a two-dimensional CCD element described above while changing the voltage by applying a voltage to the fine movement driving device including the multilayer piezo element 110, and the phase of the interference fringes is accurate. Read. As a result, the surface shape of the measurement surface irradiated on the lens to be measured (inspection object) 107 is measured. However, this is a part of the lens to be measured (inspection object) 107.

【0025】被測定レンズ(被検物)107は、そのレ
ンズ107を保持する保持具111に取り付けられる。
保持具111は、被測定レンズ(被検物)107のほぼ
光軸(表面の曲率中心と裏面の曲率中心を結ぶ軸)を中
心に回転可能でかつ任意の回転角度に設定可能な回転機
構112の上に取り付けられる。回転機構112は、あ
おり可能な機構114の上に取り付けられる。本実施例
では、あおり機構114として、球面軸受113を使っ
ている。球面軸受113は、被測定レンズ(被検物)1
07の曲率中心を中心として回転できるようにしてい
る。このようにすることで、干渉縞の縞間隔調整(傾き
成分、デフォーカス成分)での、あおり調整による被測
定レンズ(被検物)107の横ずれや上下のずれを非常
に少なくでき、横や上下移動調整を極力おさえることが
でき、各種運動機構の駆動源による振動、熱そして空気
の擾乱を減らすことができる。あおり機構114の下
に、紙面に平行なx−z平面および垂直なy軸に平行移
動可能なx−y−z移動機構115を設ける。x−y−
z移動機構115により、被測定レンズ(被検物)10
7の部分測定領域の測定中心と面形状測定装置の測定中
心をほぼ合致させる。
The lens to be measured (inspection object) 107 is attached to a holder 111 that holds the lens 107.
The holder 111 is rotatable about an optical axis (an axis connecting the center of curvature of the front surface and the center of curvature of the rear surface) of the lens to be measured (inspection object) 107 and can be set to an arbitrary rotation angle. Mounted on top of. The rotating mechanism 112 is mounted on a swingable mechanism 114. In this embodiment, a spherical bearing 113 is used as the tilt mechanism 114. The spherical bearing 113 is a lens to be measured (object to be measured) 1
The center of curvature of 07 can be rotated. By doing so, it is possible to significantly reduce the lateral deviation and the vertical deviation of the measured lens (inspection object) 107 due to the tilt adjustment in the fringe spacing adjustment (tilt component, defocus component) of the interference fringes. The vertical movement adjustment can be suppressed as much as possible, and the vibration, heat, and air disturbance caused by the driving sources of various motion mechanisms can be reduced. Below the tilt mechanism 114, an x-y-z moving mechanism 115 that can move in parallel with an x-z plane parallel to the paper surface and a vertical y-axis is provided. x-y-
By the z moving mechanism 115, the measured lens (inspection object) 10
The measurement center of the partial measurement region 7 and the measurement center of the surface shape measuring device are made to substantially coincide with each other.

【0026】図2は、図1の被測定レンズ(被検物)1
07を表面からみた平面図である。同図においては、そ
の口径を半径R、面形状測定装置の測定中心位置と被測
定レンズ(被検物)との光軸とのずれ(図2中の一点鎖
線参照)をΔ、そしてその測定口径(図2中の点線参
照)の半径をrとする。具体的には、Rを100[m
m]、Δを50[mm]、rを70[mm]とした場合
の分割した測定領域が示される。さらには、被測定レン
ズ(被検物)全面を測定し、かつ分割測定領域は重なり
部分を有することがわかる。この場合は、72度ずつ被
測定レンズ(被検物)を面形状測定装置に前述の回転機
構で回転し、計5回の測定で全面が測定できることを示
している。さらに大きな被測定レンズ(被検物)であれ
ば、さらに大きなΔでの位置であり、かつ回転角度を小
さくして分割した複数の測定を追加することで全面の面
形状を測定できる。
FIG. 2 shows a lens to be measured (test object) 1 shown in FIG.
It is the top view which looked at 07 from the surface. In the figure, the diameter is radius R, the deviation between the measurement center position of the surface shape measuring device and the optical axis of the lens to be measured (object to be measured) is Δ, and the measurement is performed. The radius of the aperture (see the dotted line in FIG. 2) is r. Specifically, R is 100 [m
The divided measurement areas are shown when m], Δ is 50 [mm], and r is 70 [mm]. Furthermore, it can be seen that the entire surface of the lens to be measured (object to be measured) is measured and the divided measurement regions have overlapping portions. In this case, it is shown that the lens to be measured (object to be measured) is rotated by 72 degrees in the surface shape measuring device by the above-described rotation mechanism, and the entire surface can be measured by a total of 5 times of measurement. If the lens to be measured (object to be measured) is larger, the surface shape of the entire surface can be measured by adding a plurality of divided measurements at a position with a larger Δ and a smaller rotation angle.

【0027】図3は、本発明の一実施例に係わる大口径
面形状測定方法のフローを示す図である。コンピュータ
(計算機)にて、まずステップ301では被測定レンズ
(被検物)の表面の曲率半径、口径、取付け位置等のデ
ータと面形状測定機の測定口径、その取付け位置等のデ
ータから、最適な複数の部分領域に分割する。次に、ス
テップ302では、その分割された領域に対して、各種
運動機構の位置、角度等の指示値(指令値)を算出す
る。
FIG. 3 is a diagram showing a flow of a large-diameter surface shape measuring method according to an embodiment of the present invention. First, in step 301, the computer (calculator) finds the optimum value from the data such as the radius of curvature of the surface of the lens to be measured (inspection object), the aperture, and the mounting position and the data such as the measurement aperture of the surface shape measuring machine and the mounting position. It is divided into a plurality of partial areas. Next, in step 302, instruction values (command values) such as positions and angles of various motion mechanisms are calculated for the divided areas.

【0028】ステップ303において、他方装置では、
被測定レンズ(被検物)をその保持具に取り付け、さら
にその保持具を回転機構の上面に取り付ける。
In step 303, in the other device,
The measured lens (inspection object) is attached to the holder, and the holder is attached to the upper surface of the rotating mechanism.

【0029】ステップ304では、前述のx−y−z機
構とあおり機構により被測定レンズ(被検物)の測定領
域の中心位置を、被測定レンズ(被検物)のN番目(最
初は1)の位置にあわせる。次に、ステップ305で
は、回転機構により、被測定面の方位角度をLn(最初
のN=nは1で、Lnも1)にあわせる。そして、ステ
ップ306では、あおり機構により、干渉測定可能なよ
うに傾き調整を行なう。このとき、もしデフォーカス成
分があればx−y−z機構のz機構で調整する。この状
態で、ステップ307では、面形状を測定し、その測定
値をメモリしてもよい。測定値は、その測定位置による
が、CCDのように位置は連続でないため後で座標変換
して重なり部分の位置を合わせるために、連続した値に
変換しておく必要がある。光学では、円形が多く、その
ため円形多項式であるツェルニケ多項式がよく使われ
る。この測定値をステップ308でツェルニケ多項式に
変換させ、さらにステップ309で測定座標を被測定レ
ンズ(被検物)の表面座標に変換しておく。すなわち、
回転方位角度、中心座標位置から座標変換しておく。
In step 304, the center position of the measurement region of the lens to be measured (object to be measured) is set to the Nth position of the lens to be measured (object to be measured) (first is 1 by the above-mentioned xyz mechanism and tilt mechanism). ) Position. Next, in step 305, the azimuth angle of the surface to be measured is adjusted to Ln (first N = n is 1 and Ln is 1) by the rotating mechanism. Then, in step 306, the tilt is adjusted by the tilt mechanism so that interference measurement can be performed. At this time, if there is a defocus component, it is adjusted by the z mechanism of the xyz mechanism. In this state, in step 307, the surface shape may be measured and the measured value may be stored in memory. The measured value depends on the measured position, but since the position is not continuous like CCD, it is necessary to convert it to a continuous value in order to coordinate-convert it later to match the position of the overlapping portion. In optics, there are many circular shapes, so Zernike polynomials, which are circular polynomials, are often used. This measured value is converted into a Zernike polynomial in step 308, and further in step 309 the measured coordinates are converted into the surface coordinates of the lens to be measured (object to be measured). That is,
Coordinates are converted from the rotational azimuth angle and the central coordinate position.

【0030】次に、回転機構により方位角度を2番目の
位置に移動(ステップ310でYesの場合)し、前述
の調整、測定、測定値の変換を繰り返しを行ない(ステ
ップ305〜ステップ307)、L1の最大数まで行な
う。
Next, the azimuth angle is moved to the second position by the rotating mechanism (in the case of Yes in step 310), and the adjustment, measurement, and conversion of the measured value are repeated (steps 305 to 307). Perform up to the maximum number of L1.

【0031】L1が最大までいったら(ステップ310
でNoの場合)、次はx−y−z機構とあおり機構によ
り被測定レンズ(被検物)の測定領域の中心位置を、被
測定レンズ(被検物)の2番目の位置にあわせ(ステッ
プ311でYesの場合)、前述の調整、測定、測定値
の変換を繰り返し(ステップ304およびステップ30
5〜ステップ307)、Nの最大まで行なう(ステップ
311でNoの場合)。
When L1 reaches the maximum (step 310
If No.), then the center position of the measurement area of the lens to be measured (object to be measured) is adjusted to the second position of the lens to be measured (object to be measured) by the xyz mechanism and the tilt mechanism ( If Yes in step 311, the above adjustment, measurement, and conversion of the measured value are repeated (step 304 and step 30).
5 to step 307), the process is performed up to the maximum of N (No in step 311).

【0032】全ての測定が終わり、つまりステップ30
9の座標変換終了およびステップ311でNoの場合
は、ステップ312で各測定の重なり部分のバイアス成
分、デフォーカス成分、傾き成分の相関が最大またはお
互いの差が最小になる各種成分の各測定値の補正値を算
出する。その補正値から、ステップ313では、各測定
値を補正し、全面の形状測定値を求める。
All measurements are complete, step 30
When the coordinate conversion of 9 is completed and No in step 311, each measured value of various components in which the correlation between the bias component, the defocus component, and the slope component of the overlapping portion of each measurement is maximum or the difference between them is minimum in step 312. The correction value of is calculated. In step 313, each measurement value is corrected from the correction value to obtain the shape measurement value of the entire surface.

【0033】以上、面形状測定装置として、フィゾータ
イプの干渉計を例として挙げたが、トワイマングリーン
タイプ干渉計等でも可能であるし、接触式の3次元測定
機でも可能である。
Although the Fizeau type interferometer has been described above as an example of the surface shape measuring device, a Twyman Green type interferometer or the like can be used, or a contact type three-dimensional measuring machine can be used.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
被測定面を測定可能な互いに重なり合う部分を有する複
数の部分領域に分割し、各部分領域について測定を実行
し、複数の重なり合う部分をフィッティングし、各部分
領域の測定データを座標変換して繋ぎ合せることによ
り、被測定面の全体形状を得るため、高速かつ高精度な
大口径面形状測定方法および装置を提供することが可能
となる。
As described above, according to the present invention,
The surface to be measured is divided into a plurality of partial areas that have measurable overlapping areas, the measurement is performed for each partial area, the overlapping parts are fitted, and the measurement data of each partial area is coordinate-converted and joined. This makes it possible to provide a high-speed and highly accurate large-diameter surface shape measuring method and apparatus in order to obtain the entire shape of the surface to be measured.

【0035】また本発明によれば、大口径であり、円形
に近い測定領域を有する被測定レンズ(被検物)を、部
分測定の合成で全面形状測定する場合、被測定レンズ
(被検物)の直下にその被測定レンズ(被検物)の曲率
中心を中心とする回転可能な球面軸受の回転可能な回転
機構を設けることで、運動機構の運動量を減らし、振
動、熱、空気擾乱等の測定誤差の要因を減らすことがで
き、かつ高速で測定できる効果がある。
Further, according to the present invention, when the entire surface shape of a lens to be measured (inspection object) having a large diameter and a measurement region close to a circle is measured by combining partial measurements, the lens to be measured (inspection object) ) Directly below the lens, the rotatable mechanism of the rotatable spherical bearing centering on the center of curvature of the measured lens (inspection object) is installed to reduce the momentum of the motion mechanism, resulting in vibration, heat, air disturbance, etc. It is possible to reduce the factor of the measurement error of and to measure at high speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係わる大口径面形状測定
装置の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a large-diameter surface shape measuring apparatus according to an embodiment of the present invention.

【図2】 図1の被測定レンズ(被検物)107を表面
からみた平面図である。
FIG. 2 is a plan view of a lens to be measured (inspection object) 107 of FIG. 1 seen from the surface.

【図3】 本発明の一実施例に係わる大口径面形状測定
方法のフローを示す図である。
FIG. 3 is a diagram showing a flow of a large-diameter surface shape measuring method according to an embodiment of the present invention.

【図4】 従来例に係わる特開平2−259509号に
おける大口径の面形状を測定する方法および装置を示す
図である。
FIG. 4 is a diagram showing a method and an apparatus for measuring a large-diameter surface shape in JP-A-2-259509 related to a conventional example.

【符号の説明】[Explanation of symbols]

101:レーザ、102:ビームイクスパンダ、10
3:偏光ビームスプリッタ、104:1/4波長板、1
05:透過球面レンズ、106:参照球面、107:被
測定レンズ、108:結像レンズ、109:画像光電変
換素子、110:ピエゾ素子、111:保持具、11
2:回転機構、113:球面軸受、114:あおり機
構、115:x−y−z移動機構、401:レーザ、4
02:ビームエキスパンダ、403:偏光ビームスプリ
ッタ、404a,404b:1/4波長板、405:平
面ミラー、406:コリメータレンズ、407:被測定
物、408:偏光板、409:結像レンズ、410:光
検出器、411:チルトステージ、412:Zステー
ジ、413:Yステージ、414:Xステージ、41
5:ピエゾ素子、416:レーザ測長器、417:PZ
Tドライバ、418:画像メモリ、419:ステージド
ライバ、420:マイクロコンピュータ。
101: laser, 102: beam expander, 10
3: polarizing beam splitter, 104: quarter wave plate, 1
05: transmission spherical lens, 106: reference spherical surface, 107: lens to be measured, 108: imaging lens, 109: image photoelectric conversion element, 110: piezo element, 111: holder, 11
2: rotating mechanism, 113: spherical bearing, 114: tilt mechanism, 115: x-y-z moving mechanism, 401: laser, 4
02: beam expander, 403: polarizing beam splitter, 404a, 404b: quarter wavelength plate, 405: plane mirror, 406: collimator lens, 407: object to be measured, 408: polarizing plate, 409: imaging lens, 410 : Photodetector, 411: Tilt stage, 412: Z stage, 413: Y stage, 414: X stage, 41
5: Piezo element, 416: Laser length measuring device, 417: PZ
T driver, 418: image memory, 419: stage driver, 420: microcomputer.

フロントページの続き Fターム(参考) 2F065 AA51 CC22 DD06 FF04 FF51 GG04 HH04 JJ03 JJ26 LL09 LL10 LL36 LL46 MM04 MM07 PP13 QQ18 QQ21 QQ24 QQ29 QQ31 QQ32 2G086 FF01 2H042 CA06 CA14 CA17 Continued front page    F term (reference) 2F065 AA51 CC22 DD06 FF04 FF51                       GG04 HH04 JJ03 JJ26 LL09                       LL10 LL36 LL46 MM04 MM07                       PP13 QQ18 QQ21 QQ24 QQ29                       QQ31 QQ32                 2G086 FF01                 2H042 CA06 CA14 CA17

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 1回の測定領域より被測定面が大きな口
径を持ち、そして被測定面が円形に近い被測定面を測定
する方法において、 前記被測定面の円形のほぼ中央を中心に所定の曲率半径
の円周上を角度分割し、かつ被測定面を測定可能な互い
に重なり合う部分を持つ様な複数の部分領域に分割し
て、各部分領域について該部分領域の曲率に応じた測定
位置に相対配置して測定を実行し、複数の重なり合う部
分をフィッティングさせる様に各部分領域の測定データ
を座標変換して繋ぎ合わせることにより、被測定面の全
体形状を得ることを特徴とする高速大口径面形状測定方
法。
1. A method for measuring a surface to be measured, the surface to be measured having a diameter larger than that of a single measurement area, and the surface to be measured is close to a circular shape, wherein the center of the circular surface of the surface to be measured is predetermined. The circumference of the radius of curvature of is divided into angles, and the surface to be measured is divided into a plurality of partial regions having measurable overlapping portions, and the measurement position according to the curvature of the partial regions for each partial region. The measurement is performed by arranging it relative to each other, and the measurement data of each partial area is coordinate-converted and connected so that multiple overlapping parts can be fitted to obtain the overall shape of the measured surface. Measuring method of caliber surface shape.
【請求項2】 請求項1の各部分領域の測定は、該部分
領域からの光を用いた干渉作用を利用して行ない、面形
状データを求めることを特徴とする請求項1に記載の高
速大口径面形状測定方法。
2. The high-speed according to claim 1, wherein the measurement of each partial area of claim 1 is performed by utilizing an interference action using light from the partial area to obtain surface shape data. Large-diameter surface shape measurement method.
【請求項3】 請求項1、2の複数の重なり合う部分の
相関度が最大となるように座標変換してフィッティング
することにより、前記各部分領域について測定した面形
状データを繋ぎ合わせることを特徴とする請求項1また
は2に記載の高速大口径面形状測定方法。
3. The surface shape data measured for each of the partial regions are connected by performing coordinate conversion and fitting so that the degree of correlation of a plurality of overlapping portions of claims 1 and 2 is maximized. The high-speed large-diameter surface shape measuring method according to claim 1 or 2.
【請求項4】 請求項1、2の複数の重なり合う部分の
差の自乗和が最小となるように座標変換してフィッティ
ングすることにより、前記各部分領域について測定した
面形状データを繋ぎ合わせることを特徴とする請求項1
または2に記載の高速大口径面形状測定方法。
4. The surface shape data measured for each of the partial regions are connected by performing coordinate conversion and fitting so that the sum of squares of the differences between the plurality of overlapping parts according to claim 1 or 2 is minimized. Claim 1 characterized by
Alternatively, the high-speed large-diameter surface shape measuring method described in 2.
【請求項5】 請求項1〜4いずれかの各部分領域は、
前記被測定面のほぼ中央を中心に所定の曲率半径の円周
上を角度分割して得られた点を中心とする円形範囲内の
各面領域であり、前記各面領域は、それぞれ所定の曲率
半径を有し、互いに重なり合う領域を有することを特徴
とする請求項1〜4のいずれか1項に記載の高速大口径
面形状測定方法。
5. The partial regions according to any one of claims 1 to 4,
It is each surface area within a circular range centered on a point obtained by angularly dividing the circumference of a predetermined radius of curvature around the center of the measured surface, and each surface area is a predetermined area. The high-speed large-diameter surface shape measuring method according to claim 1, wherein the high-speed large-diameter surface shape measuring method has areas having a radius of curvature and overlapping with each other.
【請求項6】 請求項1〜5いずれかの各部分領域の測
定データをツェルニケ多項式でフィッティングし、該各
部分領域における互いの重なった部分のバイアス成分、
デフォーカス成分、および傾き成分の相関が最大または
互いの差が最小になるように該各部分領域のツェルニケ
多項式を修正し、前記被測定面全体の面形状を算出する
ことを特徴とする請求項1〜5のいずれか1項に記載の
高速大口径面形状測定方法。
6. The measurement data of each partial region according to claim 1 is fitted with a Zernike polynomial, and bias components of mutually overlapping parts in each partial region,
The Zernike polynomial of each of the partial regions is modified so that the correlation between the defocus component and the tilt component is maximum or the difference between them is minimum, and the surface shape of the entire surface to be measured is calculated. The high-speed large-diameter surface shape measuring method according to any one of 1 to 5.
【請求項7】 1回の測定領域より大きな口径を有する
被測定面を測定する高速大口径面形状測定装置におい
て、前記被測定面の所定部分の面形状を測定する測定部
と、前記被測定面を保持する保持機構と、前記保持機構
を前記被測定面の所定の点を通る軸を中心に回転する回
転機構と、前記回転機構の回転軸に交差する面方向に傾
ける2次元のあおり機構と、前記保持機構、前記回転機
構、および前記あおり機構を3次元に平行移動させる移
動機構と、前記測定部、前記保持機構、前記回転機構、
前記あおり機構、および前記移動機構を制御する制御部
と、前記被測定面の全体の面形状を算出する算出部とを
有することを特徴とする高速大口径面形状測定装置。
7. A high-speed large-diameter surface shape measuring apparatus for measuring a surface to be measured having a diameter larger than one measurement area, a measuring section for measuring a surface shape of a predetermined portion of the surface to be measured, and the surface to be measured. A holding mechanism that holds a surface, a rotation mechanism that rotates the holding mechanism around an axis that passes through a predetermined point on the surface to be measured, and a two-dimensional tilt mechanism that tilts in a surface direction that intersects the rotation axis of the rotation mechanism. And a moving mechanism that translates the holding mechanism, the rotating mechanism, and the tilting mechanism in three dimensions, the measuring unit, the holding mechanism, the rotating mechanism,
A high-speed large-diameter surface shape measuring apparatus comprising: a control unit that controls the tilt mechanism and the moving mechanism; and a calculation unit that calculates the overall surface shape of the measured surface.
【請求項8】 請求項7の2次元のあおり機構として、
被測定面の曲率半径の中心を中心に回転可能な球面軸受
を有することを特徴とする請求項7の高速大口径面形状
測定装置。
8. The two-dimensional tilt mechanism according to claim 7,
The high-speed large-diameter surface shape measuring apparatus according to claim 7, further comprising a spherical bearing rotatable about a center of a radius of curvature of the surface to be measured.
JP2001243323A 2001-08-10 2001-08-10 High speed measuring method for shape of large caliber surface and measuring instrument therefor Pending JP2003057016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001243323A JP2003057016A (en) 2001-08-10 2001-08-10 High speed measuring method for shape of large caliber surface and measuring instrument therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001243323A JP2003057016A (en) 2001-08-10 2001-08-10 High speed measuring method for shape of large caliber surface and measuring instrument therefor

Publications (1)

Publication Number Publication Date
JP2003057016A true JP2003057016A (en) 2003-02-26

Family

ID=19073439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001243323A Pending JP2003057016A (en) 2001-08-10 2001-08-10 High speed measuring method for shape of large caliber surface and measuring instrument therefor

Country Status (1)

Country Link
JP (1) JP2003057016A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038488A (en) * 2004-07-22 2006-02-09 Olympus Corp Lens assembly support device
JP2007537426A (en) * 2004-05-14 2007-12-20 カール・ツァイス・エスエムティー・アーゲー Optical element manufacturing method
JP2008533439A (en) * 2005-02-01 2008-08-21 テイラー・ホブソン・リミテッド measurement tool
JP2008292438A (en) * 2007-05-23 2008-12-04 J Tec:Kk Ultraprecisely shape measuring method and device
JP2009500745A (en) * 2005-06-30 2009-01-08 コーニング インコーポレイテッド A method for assembling composite data maps with closed solutions.
JP2010060304A (en) * 2008-09-01 2010-03-18 Olympus Corp Shape measurement method
JP2010066103A (en) * 2008-09-10 2010-03-25 Olympus Corp Method for integrating shape data
WO2012039341A1 (en) * 2010-09-22 2012-03-29 イネイブル株式会社 Form measurement device, form measurement method, and optical axis adjustment jig utilized in both
JP2014219372A (en) * 2013-05-12 2014-11-20 夏目光学株式会社 Surface shape measuring apparatus
JP2014240826A (en) * 2013-05-12 2014-12-25 夏目光学株式会社 Surface shape measurement instrument or wavefront aberration measurement instrument
WO2016098469A1 (en) * 2014-12-16 2016-06-23 富士フイルム株式会社 Shape measuring device and shape measuring method
EP3056855A1 (en) 2015-02-16 2016-08-17 Canon Kabushiki Kaisha Shape measuring method, shape measuring apparatus, program, recording medium, method of manufacturing optical element, and optical element
JP2017181591A (en) * 2016-03-28 2017-10-05 富士ゼロックス株式会社 Digital holographic device
JP2017181580A (en) * 2016-03-28 2017-10-05 富士ゼロックス株式会社 Digital holographic device
CN108871733A (en) * 2018-05-08 2018-11-23 中国科学院国家天文台南京天文光学技术研究所 Heavy-caliber optical system near-field detection device and its measurement method
CN113983958A (en) * 2021-11-26 2022-01-28 中电科信息产业有限公司 Motion state determination method and device, electronic equipment and storage medium
CN116045835A (en) * 2023-03-31 2023-05-02 成都太科光电技术有限责任公司 Ultra-large caliber plane or spherical surface optical interference testing device
WO2023171192A1 (en) * 2022-03-09 2023-09-14 株式会社東京精密 Shape measurement device
CN117451324A (en) * 2023-12-22 2024-01-26 中国科学院合肥物质科学研究院 Secondary concave curved surface detection light path system for large relative caliber and design method

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537426A (en) * 2004-05-14 2007-12-20 カール・ツァイス・エスエムティー・アーゲー Optical element manufacturing method
US7728987B2 (en) 2004-05-14 2010-06-01 Carl Zeiss Smt Ag Method of manufacturing an optical element
JP2006038488A (en) * 2004-07-22 2006-02-09 Olympus Corp Lens assembly support device
US8296098B2 (en) 2005-02-01 2012-10-23 Taylor Hobson Limited Metrological instrument
JP2008533439A (en) * 2005-02-01 2008-08-21 テイラー・ホブソン・リミテッド measurement tool
JP2009500745A (en) * 2005-06-30 2009-01-08 コーニング インコーポレイテッド A method for assembling composite data maps with closed solutions.
JP4880683B2 (en) * 2005-06-30 2012-02-22 コーニング インコーポレイテッド A method for assembling composite data maps with closed solutions.
JP2008292438A (en) * 2007-05-23 2008-12-04 J Tec:Kk Ultraprecisely shape measuring method and device
JP2010060304A (en) * 2008-09-01 2010-03-18 Olympus Corp Shape measurement method
JP2010066103A (en) * 2008-09-10 2010-03-25 Olympus Corp Method for integrating shape data
WO2012039341A1 (en) * 2010-09-22 2012-03-29 イネイブル株式会社 Form measurement device, form measurement method, and optical axis adjustment jig utilized in both
JP5334227B2 (en) * 2010-09-22 2013-11-06 イネイブル株式会社 Shape measuring apparatus and shape measuring method, and optical axis adjusting jig used in the same
JP2014219372A (en) * 2013-05-12 2014-11-20 夏目光学株式会社 Surface shape measuring apparatus
JP2014240826A (en) * 2013-05-12 2014-12-25 夏目光学株式会社 Surface shape measurement instrument or wavefront aberration measurement instrument
WO2016098469A1 (en) * 2014-12-16 2016-06-23 富士フイルム株式会社 Shape measuring device and shape measuring method
JP6162907B2 (en) * 2014-12-16 2017-07-12 富士フイルム株式会社 Shape measuring apparatus and shape measuring method
JPWO2016098469A1 (en) * 2014-12-16 2017-07-20 富士フイルム株式会社 Shape measuring apparatus and shape measuring method
CN107003113A (en) * 2014-12-16 2017-08-01 富士胶片株式会社 Shape measuring apparatus and process for measuring shape
CN107003113B (en) * 2014-12-16 2018-10-30 富士胶片株式会社 Shape measuring apparatus and process for measuring shape
EP3056855A1 (en) 2015-02-16 2016-08-17 Canon Kabushiki Kaisha Shape measuring method, shape measuring apparatus, program, recording medium, method of manufacturing optical element, and optical element
US9857270B2 (en) 2015-02-16 2018-01-02 Canon Kabushiki Kaisha Shape measuring method, shape measuring apparatus, program, recording medium, method of manufacturing optical element, and optical element
JP2017181591A (en) * 2016-03-28 2017-10-05 富士ゼロックス株式会社 Digital holographic device
JP2017181580A (en) * 2016-03-28 2017-10-05 富士ゼロックス株式会社 Digital holographic device
CN108871733A (en) * 2018-05-08 2018-11-23 中国科学院国家天文台南京天文光学技术研究所 Heavy-caliber optical system near-field detection device and its measurement method
CN108871733B (en) * 2018-05-08 2020-04-07 中国科学院国家天文台南京天文光学技术研究所 Near-field detection device of large-caliber optical system and measurement method thereof
CN113983958A (en) * 2021-11-26 2022-01-28 中电科信息产业有限公司 Motion state determination method and device, electronic equipment and storage medium
WO2023171192A1 (en) * 2022-03-09 2023-09-14 株式会社東京精密 Shape measurement device
CN116045835A (en) * 2023-03-31 2023-05-02 成都太科光电技术有限责任公司 Ultra-large caliber plane or spherical surface optical interference testing device
CN116045835B (en) * 2023-03-31 2023-06-02 成都太科光电技术有限责任公司 Ultra-large caliber plane or spherical surface optical interference testing device
CN117451324A (en) * 2023-12-22 2024-01-26 中国科学院合肥物质科学研究院 Secondary concave curved surface detection light path system for large relative caliber and design method
CN117451324B (en) * 2023-12-22 2024-02-27 中国科学院合肥物质科学研究院 Secondary concave curved surface detection light path system for large relative caliber and design method

Similar Documents

Publication Publication Date Title
JP2003057016A (en) High speed measuring method for shape of large caliber surface and measuring instrument therefor
US6020964A (en) Interferometer system and lithograph apparatus including an interferometer system
US6456382B2 (en) Interferometer that measures aspherical surfaces
JP6622116B2 (en) Optical imaging device for determining imaging errors
JPH0666537A (en) System error measuring method and shape measuring device using it
JPH09275072A (en) Straightness error correction method for moving mirror and stage device
JP3162355B2 (en) Surface shape measurement method and device
US9606339B2 (en) Mirror of a projection exposure apparatus for microlithography with mirror surfaces on different mirror sides, and projection exposure apparatus
JP2000277411A (en) Projection aligner
US20100309458A1 (en) Asphere measurement method and apparatus
US20130044332A1 (en) Surface profile measurement apparatus and alignment method thereof and an improved sub-aperture measurement data acquisition method
JP6232207B2 (en) Surface shape measuring device
JP2008108852A (en) Projection exposure apparatus, optical component, and method of manufacturing device
JPH0996589A (en) Method and apparatus for measuring performance of lens
US6721056B1 (en) Surface shape measuring apparatus and method
JP3702733B2 (en) Alignment method and mechanism of optical inspection apparatus
RU182727U1 (en) INFRARED INTERFEROMETER
JP6445755B2 (en) Surface shape measuring device or wavefront aberration measuring device
JPH11211427A (en) Surface form measuring device
JPH10281720A (en) Stage device and wave front aberration measuring device using the same
JP2753545B2 (en) Shape measurement system
JP2013040803A (en) Calibration standard, shape measuring apparatus, horizontal coordinate calibrating method and optical element manufacturing method
JPH1038757A (en) Method and equipment for measuring wave aberration of lens for excimer laser light
JP2002310611A (en) Interferometer
JP3164444B2 (en) Interference measurement method